JP6334293B2 - Tubular body - Google Patents
Tubular body Download PDFInfo
- Publication number
- JP6334293B2 JP6334293B2 JP2014137017A JP2014137017A JP6334293B2 JP 6334293 B2 JP6334293 B2 JP 6334293B2 JP 2014137017 A JP2014137017 A JP 2014137017A JP 2014137017 A JP2014137017 A JP 2014137017A JP 6334293 B2 JP6334293 B2 JP 6334293B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- tubular body
- fiber
- layer
- mandrel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 250
- 239000010410 layer Substances 0.000 claims description 133
- 238000004804 winding Methods 0.000 claims description 48
- 239000000919 ceramic Substances 0.000 claims description 44
- 239000011247 coating layer Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 25
- 239000011184 SiC–SiC matrix composite Substances 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 187
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 161
- 239000011159 matrix material Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 20
- 238000000576 coating method Methods 0.000 description 14
- 230000035882 stress Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910003465 moissanite Inorganic materials 0.000 description 3
- 239000003758 nuclear fuel Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910004166 TaN Inorganic materials 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 239000005055 methyl trichlorosilane Substances 0.000 description 2
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003257 polycarbosilane Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
- G21C3/32—Bundles of parallel pin-, rod-, or tube-shaped fuel elements
- G21C3/324—Coats or envelopes for the bundles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、セラミック/セラミック複合材及びSiC/SiC複合材からなる多角形の管状体に関する。 The present invention relates to a polygonal tubular body made of a ceramic / ceramic composite material and a SiC / SiC composite material.
SiC/SiC複合材からなる管状体は、高強度のSiC繊維を骨材とし、主にSiCがマトリックスを構成する。SiCは、耐熱性を有するとともに耐酸化性のある素材であるので、C/Cコンポジット(炭素繊維強化炭素複合材)が使用できない酸化雰囲気下で使用できる特徴がある。 A tubular body made of a SiC / SiC composite material uses high-strength SiC fibers as an aggregate, and SiC mainly forms a matrix. Since SiC is a material having heat resistance and oxidation resistance, it has a feature that it can be used in an oxidizing atmosphere in which a C / C composite (carbon fiber reinforced carbon composite material) cannot be used.
特許文献1には、セラミック繊維からなる骨材と前記セラミック繊維間に充填された炭素質とからなる管状の繊維強化炭素質基材の少なくとも外表面にSiC層が形成され、
前記繊維強化炭素質基材と前記SiC層の境界領域から当該繊維強化炭素質基材の内部に向かってケイ素原子が拡散してなる管状体が記載されている。
このような管状体では、セラミック繊維の表面が、炭素質に接しているため、熱応力により発生するクラックを、セラミック繊維表面で止めることができ、管状体の内外を貫通するクラックが発生しにくい上、個々のセラミック繊維に被覆を設ける前処理が必要ないため工程が簡略化でき、性能向上によりさらには原子炉をより高温で運転できるため、エネルギー効率の高い原子炉を提供することができると共に使用寿命が長期化可能であることが記載されている。
In Patent Document 1, a SiC layer is formed on at least the outer surface of a tubular fiber-reinforced carbonaceous substrate made of an aggregate made of ceramic fibers and a carbonaceous material filled between the ceramic fibers,
A tubular body is described in which silicon atoms are diffused from the boundary region between the fiber-reinforced carbonaceous substrate and the SiC layer toward the inside of the fiber-reinforced carbonaceous substrate.
In such a tubular body, since the surface of the ceramic fiber is in contact with the carbonaceous material, cracks caused by thermal stress can be stopped at the surface of the ceramic fiber, and cracks penetrating the inside and outside of the tubular body are unlikely to occur. In addition, since no pretreatment is required to provide coatings on individual ceramic fibers, the process can be simplified, and the reactor can be operated at a higher temperature by improving performance, so that an energy efficient nuclear reactor can be provided. It is described that the service life can be extended.
しかしながら、前記記載のSiC/SiC複合材よりなる管状体は、円筒形の形状に関する記載があるのみで、四角形など多角形の管状体に関しては何の記載もない。
実際多角形の管状体を製造する際には、円筒形状の管状体には無い課題がある。本発明では、四角形など多角形のSiC/SiC複合材の管状体の場合におこりうる様々な問題を解決可能な管状体を提供することを目的とする。
However, the tubular body made of the SiC / SiC composite described above has only a description regarding a cylindrical shape, and there is no description regarding a polygonal tubular body such as a quadrangle.
When actually manufacturing a polygonal tubular body, there is a problem that is not found in a cylindrical tubular body. An object of the present invention is to provide a tubular body that can solve various problems that may occur in the case of a tubular body of a polygonal SiC / SiC composite such as a quadrangle.
前記課題を解決するための本発明の管状体は、複数層のセラミック繊維層と、前記複数層のセラミック繊維層を被覆する繊維被覆層と、前記セラミック繊維層の隙間を充填するとともに外表面を構成するCVD−セラミック層とからなるセラミック/セラミック複合材からなる多角形の管状体であって、前記管状体の長手方向の辺は、R面を有し、前記セラミック繊維層は、最外層のセラミック繊維層が、最外層セラミック繊維層直下のセラミック繊維層よりもマンドレルの軸線に対する巻き角度が小さい。 A tubular body of the present invention for solving the above-mentioned problems is provided with a plurality of ceramic fiber layers, a fiber coating layer covering the plurality of ceramic fiber layers, and a gap between the ceramic fiber layers and an outer surface. A polygonal tubular body made of a ceramic / ceramic composite material composed of a CVD-ceramic layer to be formed, wherein a longitudinal side of the tubular body has an R surface, and the ceramic fiber layer is an outermost layer The ceramic fiber layer has a smaller winding angle with respect to the mandrel axis than the ceramic fiber layer immediately below the outermost ceramic fiber layer.
前記課題を解決するための本発明の管状体は、複数層のSiC繊維層と、前記複数層のSiC繊維層を被覆する繊維被覆層と、前記SiC繊維層の隙間を充填するとともに外表面を構成するCVD−SiC層とからなるSiC/SiC複合材からなる多角形の管状体であって、前記管状体の長手方向の辺は、R面を有し、前記SiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。 The tubular body of the present invention for solving the above-mentioned problems is provided with a plurality of SiC fiber layers, a fiber coating layer covering the plurality of SiC fiber layers, and a gap between the SiC fiber layers and an outer surface. It is a polygonal tubular body made of a SiC / SiC composite material composed of a CVD-SiC layer to be formed, the longitudinal side of the tubular body has an R surface, and the SiC fiber layer is an outermost layer The winding angle of the SiC fiber layer with respect to the axis of the mandrel is smaller than that of the SiC fiber layer immediately below the outermost SiC fiber layer.
本発明の管状体によれば、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。 The tubular body of the present invention has a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange | positions so that tension | tensile_strength may be applied to any SiC fiber layer with respect to the force of the various directions concerning a tubular body. For this reason, a high intensity | strength tubular body can be obtained.
本発明の管状体によれば、複数層のSiC繊維層は、隙間をCVD−SiCによって充填されるので、繊維どうしを強く結びつけることができる。このため高強度の管状体を得ることができる。
また、管状体の長手方向の辺は、R面を有しているので、SiC繊維が緩やかに曲がり、延びる側の繊維表面にかかる張力を小さくすることができる。さらにSiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。このため、繊維の毛羽立ちが少なく、CVDによって形成されるマトリックスは、毛羽立ちしたSiC繊維への付着が少なく、ピンホールの少ないSiC/SiC複合材よりなる管状体を得ることができる。
According to the tubular body of the present invention, since the plurality of SiC fiber layers are filled with CVD-SiC in the gaps, the fibers can be strongly connected. For this reason, a high strength tubular body can be obtained.
Moreover, since the longitudinal side of the tubular body has an R surface, the SiC fiber bends gently, and the tension applied to the fiber surface on the extending side can be reduced. Further, in the SiC fiber layer, the outermost SiC fiber layer has a smaller winding angle with respect to the mandrel axis than the SiC fiber layer immediately below the outermost SiC fiber layer. For this reason, the matrix formed by CVD with few fiber fluffs can obtain the tubular body which consists of SiC / SiC composite material with few adhesion to the fluffed SiC fiber, and few pinholes.
本発明の管状体は、以下の態様であることが望ましい。
(1)前記最外層のSiC繊維層は、マンドレルの軸線に対する巻き角度が30〜60度である。
本発明の管状体は、最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、30度以上であると、最外層のSiC繊維層が管状体に強固に巻き付けられるので、SiC繊維層の剥離しにくい管状体を構成することができる。最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、60度以下であると、マンドレルの長手方向の辺に沿って曲げられるSiC繊維の曲げの曲率半径を大きくする効果が発揮され、歪みに伴う応力を緩和することができ強固な管状体を得ることができる。
The tubular body of the present invention is desirably in the following manner.
(1) The winding angle of the outermost SiC fiber layer with respect to the mandrel axis is 30 to 60 degrees.
In the tubular body of the present invention, when the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 30 degrees or more, the outermost SiC fiber layer is firmly wound around the tubular body. It is possible to form a tubular body that is difficult to perform. When the winding angle of the outermost SiC fiber layer with respect to the mandrel axis is 60 degrees or less, the effect of increasing the radius of curvature of the SiC fiber bent along the longitudinal side of the mandrel is exerted, resulting in distortion. The accompanying stress can be relieved and a strong tubular body can be obtained.
(2)前記管状体は、断面が四角形である。
四角形の管状体は、複数の管状体を規則的に配列することができ、かつ、管状体の内部に様々なものを収納することができ空間を有効に利用することができる。
(2) The tubular body has a quadrangular cross section.
In the rectangular tubular body, a plurality of tubular bodies can be regularly arranged, and various things can be stored inside the tubular body, so that the space can be used effectively.
(3)前記R面の曲率半径は、5〜20mmである。
R面の曲率半径が、5mm以上であると、R面に沿って曲がるSiC繊維にかかる応力を緩和することができる。R面の曲率半径が、20mm以下であると、R面によってできる利用できない空間を少なくすることができる。
(3) The radius of curvature of the R surface is 5 to 20 mm.
When the curvature radius of the R surface is 5 mm or more, the stress applied to the SiC fiber that bends along the R surface can be relaxed. When the radius of curvature of the R surface is 20 mm or less, it is possible to reduce the space that cannot be used by the R surface.
(4)前記SiC繊維は、繊維直径が5〜20μmである。
SiC繊維の繊維直径が5μm以上であると繊維表面に発生する微少な傷などの欠陥の影響を小さくすることができ、折れにくくすることができる。SiC繊維の繊維直径が20μm以下であると、曲げに伴って延びる側の外表面に発生する張力を抑制することができ、折れにくくすることができ強固な管状体を得ることができる。
(4) The SiC fiber has a fiber diameter of 5 to 20 μm.
When the fiber diameter of the SiC fiber is 5 μm or more, the influence of defects such as minute scratches generated on the fiber surface can be reduced, and it can be made difficult to break. When the fiber diameter of the SiC fiber is 20 μm or less, it is possible to suppress the tension generated on the outer surface on the side extending along with the bending, and it is possible to obtain a strong tubular body that can be hardly broken.
(5)前記繊維被覆層は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する。
これらの元素からなる繊維被覆層がSiC繊維の表面に有することによって、SiC繊維とマトリックスとの界面に異質な物質を介在させることができる。繊維被覆層が、CVD−SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
(5) The fiber coating layer contains one or more elements selected from metal elements, silicon, carbon, and boron.
By having the fiber coating layer made of these elements on the surface of the SiC fiber, a foreign substance can be interposed at the interface between the SiC fiber and the matrix. Since the fiber coating layer is interposed at the interface between the matrix made of CVD-SiC and the SiC fiber, there is an effect of suppressing the extension of cracks from the matrix.
(6)前記管状体は、原子力用である。
本発明の管状体は、SiC/SiC複合材で構成され、耐熱性を有している上に、高い強度を備えているので、原子力燃料を収納するチャンネルボックスなど原子力用として好適に利用することができる。
(6) The tubular body is for nuclear power.
The tubular body of the present invention is composed of a SiC / SiC composite material, has heat resistance, and has high strength, so that it can be suitably used for nuclear power such as a channel box for storing nuclear fuel. Can do.
本発明の管状体によれば、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。 The tubular body of the present invention has a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange | positions so that tension | tensile_strength may be applied to any SiC fiber layer with respect to the force of the various directions concerning a tubular body. For this reason, a high intensity | strength tubular body can be obtained.
本発明の管状体によれば、複数層のSiC繊維層は、隙間をCVD−SiCによって充填されるので、繊維どうしを強く結びつけることができる。このため高強度の管状体を得ることができる。
また、管状体の長手方向の辺は、R面を有しているので、SiC繊維が緩やかに曲がり、延びる側の繊維表面にかかる張力を小さくすることができる。さらにSiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。このため、繊維の毛羽立ちが少なく、CVDによって形成されるマトリックスは、毛羽立ちしたSiC繊維への付着が少なく、ピンホールの少ないSiC/SiC複合材よりなる管状体を得ることができる。
According to the tubular body of the present invention, since the plurality of SiC fiber layers are filled with CVD-SiC in the gaps, the fibers can be strongly connected. For this reason, a high strength tubular body can be obtained.
Moreover, since the longitudinal side of the tubular body has an R surface, the SiC fiber bends gently, and the tension applied to the fiber surface on the extending side can be reduced. Further, in the SiC fiber layer, the outermost SiC fiber layer has a smaller winding angle with respect to the mandrel axis than the SiC fiber layer immediately below the outermost SiC fiber layer. For this reason, the matrix formed by CVD with few fiber fluffs can obtain the tubular body which consists of SiC / SiC composite material with few adhesion to the fluffed SiC fiber, and few pinholes.
本明細書は、SiC繊維と、CVD−SiCのマトリックスにより構成されたSiC/SiC複合材を中心に説明するが、セラミック繊維と、セラミック−CVDのマトリックスよりなるセラミック/セラミック複合材についても作用効果は同一である。SiC繊維はセラミック繊維に対応し、CVD−SiCは、セラミック−CVDに対応し、置き換えて説明可能である。
セラミック繊維としては、SiC、チタンシリコンカーバイド、アルミナ、TaC、TaN、SiO2などの繊維が挙げられ特に限定されない。CVD−SiCとしては、SiC、チタンシリコンカーバイド、アルミナ、TaC、TaN、SiO2などが挙げられる。また、セラミック繊維、セラミック−CVDの組合せについては特に限定されない。
The present specification mainly describes a SiC / SiC composite material composed of a SiC fiber and a CVD-SiC matrix. However, the present invention is also effective for a ceramic / ceramic composite material composed of a ceramic fiber and a ceramic-CVD matrix. Are the same. The SiC fiber corresponds to the ceramic fiber, and the CVD-SiC corresponds to the ceramic-CVD and can be described as a substitute.
The ceramic fibers, SiC, not titanium silicon carbide, alumina, TaC, TaN, particularly include fibers such as SiO 2 limited. The CVD-SiC, SiC, titanium silicon carbide, alumina, TaC, TaN, etc. SiO 2 and the like. The combination of ceramic fiber and ceramic-CVD is not particularly limited.
本明細書において、マンドレルの軸線とは、マンドレルの長手方向の中心軸である。
本明細書において、マンドレルの軸線に対する巻き角度とは、SiC繊維がマンドレルの軸線に平行な線と交わる角度である。0度の場合、SiC繊維はマンドレルの長手方向に巻回され、90度の場合、マンドレルを周回するように巻回される。
In the present specification, the axis of the mandrel is the central axis in the longitudinal direction of the mandrel.
In the present specification, the winding angle with respect to the axis of the mandrel is an angle at which the SiC fiber intersects with a line parallel to the axis of the mandrel. In the case of 0 degrees, the SiC fiber is wound in the longitudinal direction of the mandrel, and in the case of 90 degrees, the SiC fiber is wound around the mandrel.
以下本発明の管状体について説明する。 Hereinafter, the tubular body of the present invention will be described.
本発明の管状体は、複数層のセラミック繊維層と、前記複数層のセラミック繊維層を被覆する繊維被覆層と、前記セラミック繊維層の隙間を充填するとともに外表面を構成するCVD−セラミック層とからなるセラミック/セラミック複合材からなる多角形の管状体であって、前記管状体の長手方向の辺は、R面を有し、前記セラミック繊維層は、最外層のセラミック繊維層が、最外層セラミック繊維層直下のセラミック繊維層よりもマンドレルの軸線に対する巻き角度が小さい。 The tubular body of the present invention includes a plurality of ceramic fiber layers, a fiber coating layer that covers the plurality of ceramic fiber layers, and a CVD-ceramic layer that fills a gap between the ceramic fiber layers and constitutes an outer surface. A polygonal tubular body made of a ceramic / ceramic composite material, wherein a longitudinal side of the tubular body has an R surface, and the ceramic fiber layer is an outermost ceramic fiber layer. The winding angle with respect to the axis of the mandrel is smaller than that of the ceramic fiber layer immediately below the ceramic fiber layer.
本発明の管状体は、複数層のSiC繊維層と、前記複数層のSiC繊維層を被覆する繊維被覆層と、前記SiC繊維層の隙間を充填するとともに外表面を構成するCVD−SiC層とからなるSiC/SiC複合材からなる多角形の管状体であって、前記管状体の長手方向の辺は、R面を有し、前記SiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。 The tubular body of the present invention includes a plurality of SiC fiber layers, a fiber coating layer that covers the plurality of SiC fiber layers, a CVD-SiC layer that fills a gap between the SiC fiber layers and constitutes an outer surface. A polygonal tubular body made of a SiC / SiC composite material comprising: a longitudinal side of the tubular body having an R plane; and the SiC fiber layer is an outermost SiC fiber layer. The winding angle with respect to the axis of the mandrel is smaller than that of the SiC fiber layer immediately below the SiC fiber layer.
本発明の管状体によれば、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。 The tubular body of the present invention has a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange | positions so that tension | tensile_strength may be applied to any SiC fiber layer with respect to the force of the various directions concerning a tubular body. For this reason, a high intensity | strength tubular body can be obtained.
本発明の管状体によれば、複数層のSiC繊維層は、隙間をCVD−SiCによって充填されるので、繊維どうしを強く結びつけることができる。このため高強度の管状体を得ることができる。
また、管状体の長手方向の辺は、R面を有しているので、SiC繊維が緩やかに曲がり、延びる側の繊維表面にかかる張力を小さくすることができる。さらにSiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。このため、繊維の毛羽立ちが少なく、CVDによって形成されるマトリックスは、毛羽立ちしたSiC繊維への付着が少なく、ピンホールの少ないSiC/SiC複合材よりなる管状体を得ることができる。
According to the tubular body of the present invention, since the plurality of SiC fiber layers are filled with CVD-SiC in the gaps, the fibers can be strongly connected. For this reason, a high strength tubular body can be obtained.
Moreover, since the longitudinal side of the tubular body has an R surface, the SiC fiber bends gently, and the tension applied to the fiber surface on the extending side can be reduced. Further, in the SiC fiber layer, the outermost SiC fiber layer has a smaller winding angle with respect to the mandrel axis than the SiC fiber layer immediately below the outermost SiC fiber layer. For this reason, the matrix formed by CVD with few fiber fluffs can obtain the tubular body which consists of SiC / SiC composite material with few adhesion to the fluffed SiC fiber, and few pinholes.
本発明の管状体は、以下の態様であることが望ましい。
(1)前記最外層のSiC繊維層は、マンドレルの軸線に対する巻き角度が30〜60度である。
本発明の管状体は、最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、30度以上であると、最外層のSiC繊維層が管状体に強固に巻き付けられるので、SiC繊維層の剥離しにくい管状体を構成することができる。最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、60度以下であると、マンドレルの長手方向の辺に沿って曲げられるSiC繊維の曲げの曲率半径を大きくする効果が発揮され、歪みに伴う応力を緩和することができ強固な管状体を得ることができる。
The tubular body of the present invention is desirably in the following manner.
(1) The winding angle of the outermost SiC fiber layer with respect to the mandrel axis is 30 to 60 degrees.
In the tubular body of the present invention, when the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 30 degrees or more, the outermost SiC fiber layer is firmly wound around the tubular body. It is possible to form a tubular body that is difficult to perform. When the winding angle of the outermost SiC fiber layer with respect to the mandrel axis is 60 degrees or less, the effect of increasing the radius of curvature of the SiC fiber bent along the longitudinal side of the mandrel is exerted, resulting in distortion. The accompanying stress can be relieved and a strong tubular body can be obtained.
(2)前記管状体は、断面が四角形である。
四角形の管状体は、複数の管状体を規則的に配列することができ、かつ、管状体の内部に様々なものを収納することができ空間を有効に利用することができる。
(2) The tubular body has a quadrangular cross section.
In the rectangular tubular body, a plurality of tubular bodies can be regularly arranged, and various things can be stored inside the tubular body, so that the space can be used effectively.
(3)前記R面の曲率半径は、5〜20mmである。
R面の曲率半径が、5mm以上であると、R面に沿って曲がるSiC繊維にかかる応力を緩和することができる。R面の曲率半径が、20mm以下であると、R面によってできる利用できない空間を少なくすることができる。
(3) The radius of curvature of the R surface is 5 to 20 mm.
When the curvature radius of the R surface is 5 mm or more, the stress applied to the SiC fiber that bends along the R surface can be relaxed. When the radius of curvature of the R surface is 20 mm or less, it is possible to reduce the space that cannot be used by the R surface.
(4)前記SiC繊維は、繊維直径が5〜20μmである。
SiC繊維の繊維直径が5μm以上であると繊維表面に発生する微少な傷などの欠陥の影響を小さくすることができ、折れにくくすることができる。SiC繊維の繊維直径が20μm以下であると、曲げに伴って延びる側の外表面に発生する張力を抑制することができ、折れにくくすることができ強固な管状体を得ることができる。
(4) The SiC fiber has a fiber diameter of 5 to 20 μm.
When the fiber diameter of the SiC fiber is 5 μm or more, the influence of defects such as minute scratches generated on the fiber surface can be reduced, and it can be made difficult to break. When the fiber diameter of the SiC fiber is 20 μm or less, it is possible to suppress the tension generated on the outer surface on the side extending along with the bending, and it is possible to obtain a strong tubular body that can be hardly broken.
(5)前記繊維被覆層は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する。
これらの元素からなる繊維被覆層がSiC繊維の表面に有することによって、SiC繊維とマトリックスとの界面に異質な物質を介在させることができる。繊維被覆層が、CVD−SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
(5) The fiber coating layer contains one or more elements selected from metal elements, silicon, carbon, and boron.
By having the fiber coating layer made of these elements on the surface of the SiC fiber, a foreign substance can be interposed at the interface between the SiC fiber and the matrix. Since the fiber coating layer is interposed at the interface between the matrix made of CVD-SiC and the SiC fiber, there is an effect of suppressing the extension of cracks from the matrix.
(6)前記管状体は、原子力用である。
本発明の管状体は、SiC/SiC複合材で構成され、耐熱性を有している上に、高い強度を備えているので、原子力燃料を収納するチャンネルボックスなど原子力用として好適に利用することができる。
(6) The tubular body is for nuclear power.
The tubular body of the present invention is composed of a SiC / SiC composite material, has heat resistance, and has high strength, so that it can be suitably used for nuclear power such as a channel box for storing nuclear fuel. Can do.
以下本発明の管状体を得るための製造方法について説明する。
本発明の管状体の製造方法は、長手方向の辺にR面形状部を有する多角形マンドレルにSiC繊維を巻回し、マンドレルの軸線に対する巻き角度の異なる複数層のSiC繊維層が積層された巻回体を得る巻回工程と、前記巻回体にSiC−CVDを被覆し、被覆体を形成するCVD工程と、前記被覆体からマンドレルを除去するマンドレル除去工程と、からなり、前記SiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さいことを特徴とする。
Hereinafter, a production method for obtaining the tubular body of the present invention will be described.
The tubular body manufacturing method of the present invention is a winding in which SiC fibers are wound around a polygonal mandrel having an R-shaped portion on the longitudinal side, and a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel are laminated. The SiC fiber layer comprising: a winding step for obtaining a roll, a CVD step for coating the wound body with SiC-CVD to form a cover, and a mandrel removal step for removing a mandrel from the cover. Is characterized in that the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.
SiC繊維は高強度、高弾性の繊維であるため、引っ張りに対しては高強度を発揮する一方、歪みに対しては発生する応力が大きく、折れやすい性質を持っている。このため、鋭い曲げ加工が必要な多角形の管状体では、コーナー部分で繊維が折れ、毛羽立ちができやすくなる。本発明では、マンドレルの長手方向の辺にR面を有しているので、SiC繊維の曲げに伴う応力を小さくでき折れにくくすることができる。 Since the SiC fiber is a high strength and high elasticity fiber, it exhibits high strength against tension, while it has a large amount of stress generated against strain and is easily broken. For this reason, in a polygonal tubular body that requires sharp bending, fibers are broken at the corner portion, and fluffing is likely to occur. In this invention, since it has R surface in the side of the longitudinal direction of a mandrel, the stress accompanying the bending of a SiC fiber can be made small and it cannot be broken easily.
また、SiC繊維をマンドレルの軸線に対する巻き角度が小さくなるように、マンドレルに巻回することにより、SiC繊維の曲げの曲率半径をより大きくし、曲げに伴う応力を緩和することができる。さらに、マンドレルの軸線に対する巻き角度が小さいSiC繊維層を最外層に配置することにより、最外層SiC繊維層直下のSiC繊維層よりも折れにくくできる。つまり毛羽立ちし易いSiC繊維層を、毛羽立ちしにくいSiC繊維層で覆い、毛羽立ちの発生を抑えることができる。 Further, by winding the SiC fiber around the mandrel so that the winding angle with respect to the axis of the mandrel becomes small, the curvature radius of bending of the SiC fiber can be increased, and the stress accompanying the bending can be reduced. Furthermore, by arranging the SiC fiber layer having a small winding angle with respect to the axis of the mandrel in the outermost layer, it can be more difficult to break than the SiC fiber layer immediately below the outermost SiC fiber layer. That is, it is possible to cover the SiC fiber layer that is easily fluffed with the SiC fiber layer that is difficult to fluff, and to suppress the occurrence of fluff.
また本発明の管状体は、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層を有している。このため、管状体にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。このため、高強度の管状体を得ることができる。 The tubular body of the present invention has a plurality of SiC fiber layers having different winding angles with respect to the axis of the mandrel. For this reason, it arrange | positions so that tension | tensile_strength may be applied to any SiC fiber layer with respect to the force of the various directions concerning a tubular body. For this reason, a high intensity | strength tubular body can be obtained.
さらに、複数層のSiC繊維層は、隙間をCVD−SiCによって充填されるので、繊維どうしを強く結びつけることができる。 Furthermore, since the plurality of SiC fiber layers are filled with gaps by CVD-SiC, the fibers can be strongly connected.
さらに本発明の管状体は、以下のように製造されることが望ましい。
(1)前記巻回工程と、前記CVD工程との間に前記巻回体にコーティング材を塗布後、焼成するコーティング工程をさらに有する。
CVD工程では高温に曝されるため、熱膨張差でSiC繊維に負担が掛かり毛羽立ちの発生原因となりやすい。本発明では、SiC繊維の毛羽立ちの発生しやすいCVD工程の前に、コーティング工程を加えることでSiC繊維に繊維被覆層を形成するとともにSiC繊維を互いに結び付けているので、毛羽立ちの発生を抑えることができる。
CVD工程の原料ガスを流す段階で毛羽立ちがあると、毛羽立ちにもCVD−SiCが沈着し、原料ガスが巻回体の内部に充分行き渡らず、管状体にピンホールなど欠陥ができやすくなるが、このような構成にすることにより、一様にCVD−SiCが被覆され、毛羽立ちを原因とする欠陥の発生を抑止することができる。
Furthermore, it is desirable that the tubular body of the present invention is manufactured as follows.
(1) It further has a coating process of baking after applying a coating material to the wound body between the winding process and the CVD process.
Since the CVD process is exposed to a high temperature, the SiC fiber is burdened by the difference in thermal expansion, and is likely to cause fluffing. In the present invention, since a fiber coating layer is formed on the SiC fiber by adding a coating process before the CVD process in which SiC fiber is likely to fluff, and the SiC fibers are bound to each other, the occurrence of fluff can be suppressed. it can.
If there is fuzz at the stage of flowing the source gas in the CVD process, CVD-SiC is deposited on the fuzz, the source gas does not spread sufficiently inside the wound body, and it becomes easy to make defects such as pin holes in the tubular body, By adopting such a configuration, CVD-SiC is uniformly coated, and generation of defects due to fluffing can be suppressed.
また、コーティング工程により、SiC繊維の表面に繊維被覆層を形成する。繊維被覆層はCVD−SiCによるマトリックスとSiC繊維との界面に形成されるので、マトリックスから伸展するクラックをSiC繊維に伝達しないように応力を分散することができる。
これら作用により、高強度のSiC/SiC複合材よりなる管状体を得ることができる。
Moreover, a fiber coating layer is formed on the surface of the SiC fiber by a coating process. Since the fiber coating layer is formed at the interface between the CVD-SiC matrix and the SiC fiber, the stress can be dispersed so that cracks extending from the matrix are not transmitted to the SiC fiber.
By these actions, a tubular body made of a high-strength SiC / SiC composite material can be obtained.
(2)前記最外層のSiC繊維層は、マンドレルの軸線に対する巻き角度が30〜60度である。
最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、30度以上であると、最外層のSiC繊維層が管状体に強固に巻き付けられるので、SiC繊維層の剥離しにくい管状体を構成することができる。最外層のSiC繊維層のマンドレルの軸線に対する巻き角度が、60度以下であると、マンドレルの長手方向の辺に沿って曲げられるSiC繊維の曲げの曲率半径を大きくすることができ、歪みに伴う応力を緩和することができる。
(2) The outermost SiC fiber layer has a winding angle of 30 to 60 degrees with respect to the axis of the mandrel.
When the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 30 degrees or more, the outermost SiC fiber layer is firmly wound around the tubular body, so that the SiC fiber layer is difficult to peel off. be able to. When the winding angle of the outermost SiC fiber layer with respect to the axis of the mandrel is 60 degrees or less, the curvature radius of the bending of the SiC fiber bent along the longitudinal side of the mandrel can be increased, resulting in distortion. Stress can be relaxed.
(3)前記管状体は、断面が四角形である。
四角形の管状体であれば、複数の管状体を規則的に配列することができる上に、管状体の内部に様々なものを収納することができ空間を有効に利用できる。
(3) The tubular body has a quadrangular cross section.
In the case of a rectangular tubular body, a plurality of tubular bodies can be regularly arranged, and various things can be stored inside the tubular body, so that the space can be used effectively.
(4)前記R面形状部の曲率半径は、5〜20mmである。
本発明の管状体は、R面形状部の曲率半径が、5mm以上であると、R面に沿って曲がるSiC繊維にかかる応力を緩和することができる。R面形状部の曲率半径は、20mm以下であると、R面形状部によってできる利用できない空間を少なくすることができる。
(4) The radius of curvature of the R-surface shaped part is 5 to 20 mm.
In the tubular body of the present invention, when the radius of curvature of the R-plane shape portion is 5 mm or more, the stress applied to the SiC fiber that is bent along the R-plane can be relaxed. When the radius of curvature of the R-surface shape portion is 20 mm or less, it is possible to reduce an unusable space that can be generated by the R-surface shape portion.
(5)前記SiC繊維は、繊維直径が5〜20μmである。
SiC繊維の繊維直径が5μm以上であると繊維表面に発生する微少な傷などの欠陥の影響を小さくすることができ、折れにくくすることができる。SiC繊維の繊維直径が20μm以下であると、曲げに伴って延びる側の外表面に発生する張力を抑制することができ、折れにくくすることができる。
(5) The SiC fiber has a fiber diameter of 5 to 20 μm.
When the fiber diameter of the SiC fiber is 5 μm or more, the influence of defects such as minute scratches generated on the fiber surface can be reduced, and it can be made difficult to break. When the fiber diameter of the SiC fiber is 20 μm or less, it is possible to suppress the tension generated on the outer surface on the side extending along with the bending, and to make it difficult to break.
(6)前記コーティング材は、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物である。
これらの化合物は、焼成によってSiC繊維の表面に残留し、繊維被覆層を形成する。繊維被覆層が、CVD−SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
(6) The coating material is a compound containing one or more elements selected from metal elements, silicon, carbon, and boron.
These compounds remain on the surface of the SiC fiber by firing to form a fiber coating layer. Since the fiber coating layer is interposed at the interface between the matrix made of CVD-SiC and the SiC fiber, there is an effect of suppressing the extension of cracks from the matrix.
(7)前記管状体は、原子力用である。
本発明の管状体は、SiC/SiC複合材で構成され、耐熱性を有している上に、高い強度を備えているので、原子力燃料を収納するチャンネルボックスなど原子力用として好適に利用することができる。
(7) The tubular body is for nuclear power.
The tubular body of the present invention is composed of a SiC / SiC composite material, has heat resistance, and has high strength, so that it can be suitably used for nuclear power such as a channel box for storing nuclear fuel. Can do.
本発明の管状体の製造方法の実施形態1について説明する。(図1)
実施形態1の管状体の製造方法は、巻回工程(a)、コーティング工程(b)、CVD工程(c)、マンドレル除去工程(d)とからなる。
Embodiment 1 of the manufacturing method of the tubular body of this invention is demonstrated. (Figure 1)
The manufacturing method of the tubular body of Embodiment 1 includes a winding step (a), a coating step (b), a CVD step (c), and a mandrel removal step (d).
<巻回工程>図1(a)
本発明の管状体の製造に用いるマンドレルは、SiC繊維を巻回したまま焼成、CVD処理がされるので耐熱性を有するものであればよく、特に限定されない。例えば、黒鉛、SiCなどが利用できる。黒鉛としては、等方性黒鉛材などが利用でできる。等方性黒鉛材は、SiCと熱膨張係数が近いので加熱、冷却の過程で熱歪みが発生しにくい。
また、黒鉛は後のマンドレル除去工程で、空気酸化させて除去することができる利点もある。
<Winding process> FIG. 1 (a)
The mandrel used in the production of the tubular body of the present invention is not particularly limited as long as it has heat resistance because it is fired and CVD-treated while the SiC fiber is wound. For example, graphite, SiC, etc. can be used. As the graphite, an isotropic graphite material or the like can be used. An isotropic graphite material has a thermal expansion coefficient close to that of SiC, so that thermal distortion is unlikely to occur during heating and cooling.
Further, there is an advantage that graphite can be removed by air oxidation in a later mandrel removal step.
黒鉛のマンドレル1を回転させながら、複数のSiC繊維を束ねたストランドの形態で巻回する。SiC繊維は特に限定されない。宇部興産社製SiC繊維「チラノSA」を用いることができる。繊維直径は7.5μmである。
黒鉛のマンドレル1は、断面が130mmの辺の長さの正方形であり、コーナー部分は10mmのR面形状部2がなされている。また、黒鉛のマンドレル1の長さは1000mmである。図2にそのマンドレルの斜視図を示す。マンドレル1の長手方向の4辺にはR面形状部を有している。
While the graphite mandrel 1 is rotated, it is wound in the form of a strand in which a plurality of SiC fibers are bundled. The SiC fiber is not particularly limited. SiC fiber “Tyranno SA” manufactured by Ube Industries, Ltd. can be used. The fiber diameter is 7.5 μm.
The graphite mandrel 1 is a square having a side length of 130 mm in cross section, and an R-plane shape portion 2 having a 10 mm corner portion. The length of the graphite mandrel 1 is 1000 mm. FIG. 2 shows a perspective view of the mandrel. The four sides in the longitudinal direction of the mandrel 1 have R-shaped portions.
実施形態1の管状体の巻回工程を、図3を用いて説明する。
1層目(a)では、SiC繊維をマンドレルの軸線に対し45度となるように交互に移動させながら巻回する。交互に移動しながら巻回するので、表面に菱形の模様が形成されるヘリカル巻きとなる。
2層目(b)では、マンドレルの軸線に対し0度となるように、複数のSiC繊維を束ねたストランドの形態で巻回する。
3層目(c)では、マンドレルの軸線に直交するように、複数のSiC繊維を束ねたストランドの形態で巻回する。このような巻き方は、フープ巻きである。
4層目(d)では、SiC繊維をマンドレルの軸線に対し45度となるように交互に移動させながら巻回する。交互に移動しながら巻回するので、表面に菱形の模様が形成されるヘリカル巻きとなる。
このように4層のSiC繊維層を有する巻回体が得られる。
The winding process of the tubular body of Embodiment 1 is demonstrated using FIG.
In the first layer (a), the SiC fiber is wound while being alternately moved so as to be 45 degrees with respect to the axis of the mandrel. Since it winds while moving alternately, it becomes a helical winding in which a rhombus pattern is formed on the surface.
In the second layer (b), it is wound in the form of a strand in which a plurality of SiC fibers are bundled so as to be 0 degrees with respect to the axis of the mandrel.
In the third layer (c), winding is performed in the form of a strand in which a plurality of SiC fibers are bundled so as to be orthogonal to the axis of the mandrel. Such a winding method is hoop winding.
In the fourth layer (d), the SiC fiber is wound while being alternately moved so as to be 45 degrees with respect to the axis of the mandrel. Since it winds while moving alternately, it becomes a helical winding in which a rhombus pattern is formed on the surface.
In this way, a wound body having four SiC fiber layers is obtained.
最外層である4層目のSiC繊維層は、マンドレルの軸線に対し45度の巻き角度であり、最外層SiC繊維層直下の3層目のSiC繊維層は、マンドレルの軸線に対し90度の巻き角度である。このような構成にすることにより最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい巻回体がえられる。
長辺にR面形状部2を有するマンドレルにSiC繊維を巻回するので、SiC繊維に大きな曲げ応力が加わりにくくすることができる。
また、3層目のSiC繊維は、マンドレルの軸線に直交するようにSiC繊維が巻回されるのでマンドレルのR面形状部の曲率半径と同等の曲率半径で巻回される。これに対し、最外層の4層目のマンドレルでは、マンドレルの軸線に対し45度の角度で巻回されるので、実際巻回されるSiC繊維の曲率半径は(1/cos45°)倍、すなわち1.41倍に緩和され、より折れにくくすることができる。
このような構成にすることにより、より折れにくくなったSiC繊維層で最外層が構成されるので、毛羽立ちを効率良く防止することができる。
The fourth SiC fiber layer that is the outermost layer has a winding angle of 45 degrees with respect to the axis of the mandrel, and the third SiC fiber layer immediately below the outermost SiC fiber layer is 90 degrees with respect to the axis of the mandrel. It is a winding angle. With such a configuration, a wound body is obtained in which the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.
Since the SiC fiber is wound around the mandrel having the R-shaped portion 2 on the long side, it is possible to make it difficult to apply a large bending stress to the SiC fiber.
Further, since the SiC fiber is wound so that the third-layer SiC fiber is orthogonal to the axis of the mandrel, the SiC fiber is wound with a curvature radius equivalent to the curvature radius of the R-surface shape portion of the mandrel. On the other hand, the mandrel of the fourth outermost layer is wound at an angle of 45 degrees with respect to the axis of the mandrel, so the radius of curvature of the actually wound SiC fiber is (1 / cos 45 °) times, that is, It is relaxed 1.41 times and can be made more difficult to break.
By setting it as such a structure, since the outermost layer is comprised by the SiC fiber layer which became hard to break, fuzzing can be prevented efficiently.
<コーティング工程>図1(b)
次に、巻回体に、コーティング材を塗布した後焼成する。コーティング材としては、金属元素、シリコン、炭素、ホウ素から選択される1または2以上の元素を含有する化合物である。
実施形態1ではコーティング材として、フェノール樹脂であり、焼成によって、SiC繊維の表面に繊維被覆層を形成する。
これらの化合物は、焼成によってSiC繊維の表面に残留し、繊維被覆層を形成する。繊維被覆層が、CVD−SiCからなるマトリックスとSiC繊維との界面に介在することにより、マトリックスからのクラックの伸展を抑制する作用がある。
コーティング工程は必須ではないが、このようにSiC/SiC複合材を破壊しにくくする効果があるため、管状体の製造方法に用いることが望ましい。
他のコーティング材としては、例えば、ポリカルボシラン、ポリオルガノボロンシラザン、フラン樹脂などの有機物、有機金属化合物、ナノシリカなどのセラミック微細粒子などが利用できる。
焼成は、例えば400〜1000℃で処理することができる。焼成雰囲気は、形成する繊維被覆層の形態によって適宜選択することができ、例えば、カーボン系の繊維被覆層の場合には還元性雰囲気、酸化物系の繊維被覆層には酸化性雰囲気とすることにより、望ましい繊維被覆層を得ることができる。
<Coating process> FIG. 1 (b)
Next, the coating material is applied to the wound body and then fired. The coating material is a compound containing one or more elements selected from metal elements, silicon, carbon, and boron.
In the first embodiment, the coating material is a phenol resin, and a fiber coating layer is formed on the surface of the SiC fiber by firing.
These compounds remain on the surface of the SiC fiber by firing to form a fiber coating layer. Since the fiber coating layer is interposed at the interface between the matrix made of CVD-SiC and the SiC fiber, there is an effect of suppressing the extension of cracks from the matrix.
The coating process is not essential, but it is desirable to use the method for manufacturing a tubular body because it has the effect of making the SiC / SiC composite material difficult to break.
Examples of other coating materials that can be used include organic substances such as polycarbosilane, polyorganoboronsilazane, furan resin, organometallic compounds, and ceramic fine particles such as nano silica.
Baking can be processed at 400-1000 degreeC, for example. The firing atmosphere can be appropriately selected depending on the form of the fiber coating layer to be formed. For example, in the case of a carbon-based fiber coating layer, a reducing atmosphere is used, and in the case of an oxide-based fiber coating layer, an oxidizing atmosphere is used. Thus, a desired fiber coating layer can be obtained.
<CVD工程>図1(c)
こうして得られた巻回体を、CVD炉に入れ、CVD−SiCにより被覆する。
成膜温度は、例えば1000〜1800℃が利用できる。原料ガスは特に限定されない。例えば、シランガス/メタンガスの混合ガス、テトラクロロシランガス/メタンガスの混合ガス、メチルトリクロロシラン(MTS)などが利用できる。他に炉内分圧を調整するための水素ガスなどを適宜利用することができる。
CVDの形式は特に限定されないが、炉内のヒーターの輻射で炉内全体を暖めるホットウォール型、マンドレル内部に組み込まれたヒーターにより、巻回体のみを暖めるコールドウォール型のいずれでも利用することができる。コールドウォール型を用いた場合には、原料ガスを供給するノズルに被膜は形成されにくいので、効率良く成膜することができ、厚い被膜を容易に得ることができる。
なお、CVD−SiCは、SiC繊維間を充填するだけではなく、さらに沈積することによって、CVD−SiCのみからなる表層を有している。
<CVD process> FIG. 1 (c)
The wound body thus obtained is placed in a CVD furnace and covered with CVD-SiC.
The film forming temperature can be 1000 to 1800 ° C., for example. The source gas is not particularly limited. For example, a mixed gas of silane gas / methane gas, a mixed gas of tetrachlorosilane gas / methane gas, methyltrichlorosilane (MTS), or the like can be used. In addition, hydrogen gas or the like for adjusting the partial pressure in the furnace can be used as appropriate.
The type of CVD is not particularly limited, but it can be used for either the hot wall type that heats the entire furnace with the radiation of the heater in the furnace, or the cold wall type that heats only the wound body with a heater built into the mandrel. it can. When the cold wall type is used, it is difficult to form a film on the nozzle that supplies the source gas, so that the film can be efficiently formed and a thick film can be easily obtained.
Note that CVD-SiC not only fills between SiC fibers but also has a surface layer made of only CVD-SiC by further depositing.
<マンドレル除去工程>図1(d)
こうして得られたマンドレルを除去することにより、四角形のSiC/SiC複合材よりなる管状体を得ることができる。
マンドレルの除去の方法は、特に限定されない。機械的に切削加工して除去する切削法、酸化雰囲気炉で燃焼させる燃焼法、油圧など外部からの力で引き抜く引き抜き法など、どのような方法でも利用でき、これらを併用しても良い。
さらに、管状体の両端を切断し、形状を整える。
<Mandrel removal process> FIG. 1 (d)
By removing the mandrel thus obtained, a tubular body made of a square SiC / SiC composite material can be obtained.
The method for removing the mandrel is not particularly limited. Any method can be used, such as a cutting method that is mechanically cut and removed, a combustion method that burns in an oxidizing atmosphere furnace, or a pulling method that is pulled out by an external force such as hydraulic pressure, and these methods may be used in combination.
Furthermore, the both ends of the tubular body are cut to adjust the shape.
次に得られた実施形態1の管状体について説明する。図4は実施形態1の製造方法で得られた管状体の外観写真である。ヘリカル巻きの特徴である菱形の模様を表面に有している。図5は、実施形態1の管状体の断面図である。
SiC繊維層4と、CVD−SiCからなるマトリックス5を有している。CVD−SiCからなるマトリックス5は、繊維間を充填するのみならず、さらに沈積し、CVD−SiCのみからなる表層部を有している。
このようにして得られた管状体10は、複数層のSiC繊維層4と、前記複数層のSiC繊維層4を被覆する繊維被覆層8と、前記SiC繊維層の隙間を充填するとともに外表面を構成するCVD−SiC5とからなるSiC/SiC複合材からなる多角形の管状体10であって、前記管状体の長手方向の辺は、R面6を有し、前記SiC繊維層4は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。
Next, the obtained tubular body of Embodiment 1 will be described. FIG. 4 is an appearance photograph of the tubular body obtained by the manufacturing method of the first embodiment. It has a diamond-shaped pattern on the surface that is characteristic of helical winding. FIG. 5 is a cross-sectional view of the tubular body of the first embodiment.
It has the SiC fiber layer 4 and the matrix 5 which consists of CVD-SiC. The matrix 5 made of CVD-SiC not only fills between the fibers, but further deposits and has a surface layer portion made only of CVD-SiC.
The tubular body 10 thus obtained has a plurality of SiC fiber layers 4, a fiber coating layer 8 that covers the plurality of SiC fiber layers 4, and a gap between the SiC fiber layers and an outer surface. Is a polygonal tubular body 10 made of a SiC / SiC composite material composed of CVD-SiC5, and the side in the longitudinal direction of the tubular body has an R surface 6, and the SiC fiber layer 4 is The outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.
また実施形態1の管状体10は、マンドレルの軸線に対する巻き角度が異なる複数層のSiC繊維層4を有している。このため、管状体10にかかる様々な方向の力に対し、いずれかのSiC繊維層に張力がかかるように配置される。 Moreover, the tubular body 10 of Embodiment 1 has the several SiC fiber layer 4 from which the winding angle with respect to the axis line of a mandrel differs. For this reason, it arrange | positions so that tension | tensile_strength may be applied to any SiC fiber layer with respect to the force of the various directions concerning the tubular body 10. FIG.
複数層のSiC繊維層4は、隙間をCVD−SiC5によって充填されるので、繊維どうしを強く結びつくことができる。このため高強度の管状体を得ることができる。
また、管状体10の長手方向の辺は、R面6を有しているので、SiC繊維が緩やかに曲がり、延びる側の繊維表面にかかる張力を小さくすることができる。SiC繊維層4は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さい。このため、繊維の毛羽立ちが少なく、CVDによって形成されるマトリックスは、毛羽立ちしたSiC繊維への付着が少なく、ピンホールの少ないSiC/SiC複合材よりなる管状体を得ることができる。
Since the plurality of SiC fiber layers 4 are filled with CVD-SiC 5 in the gaps, the fibers can be strongly connected. For this reason, a high strength tubular body can be obtained.
Further, since the side in the longitudinal direction of the tubular body 10 has the R surface 6, the SiC fiber bends gently, and the tension applied to the extending fiber surface can be reduced. In SiC fiber layer 4, the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer. For this reason, the matrix formed by CVD with few fiber fluffs can obtain the tubular body which consists of SiC / SiC composite material with few adhesion to the fluffed SiC fiber, and few pinholes.
原子力用途の燃料集合体材料にとして用いられる薄肉長尺角筒、薄肉長尺円筒などの様々な形状にも利用することができる。 It can also be used in various shapes such as a thin long rectangular tube and a thin long cylindrical tube used as a fuel assembly material for nuclear applications.
1 マンドレル
2 R面形状部
3 マンドレルの軸線
4 SiC繊維層
5 CVD−SiC(マトリックス)
6 R面
7 SiC繊維
8 繊維被覆層
10 管状体
DESCRIPTION OF SYMBOLS 1 Mandrel 2 R surface shape part 3 Mandrel axis 4 SiC fiber layer 5 CVD-SiC (matrix)
6 R face 7 SiC fiber 8 Fiber coating layer 10 Tubular body
Claims (8)
前記管状体の長手方向の辺は、R面を有し、
前記セラミック繊維層は、最外層のセラミック繊維層が、最外層セラミック繊維層直下のセラミック繊維層よりもマンドレルの軸線に対する巻き角度が小さいことを特徴とする多角形の管状体。 A ceramic / ceramic composite material comprising a plurality of ceramic fiber layers, a fiber coating layer that covers the plurality of ceramic fiber layers, and a CVD-ceramic layer that fills a gap between the ceramic fiber layers and constitutes an outer surface A polygonal tubular body consisting of
The longitudinal side of the tubular body has an R-plane,
The ceramic fiber layer is a polygonal tubular body characterized in that the outermost ceramic fiber layer has a smaller winding angle with respect to the axis of the mandrel than the ceramic fiber layer immediately below the outermost ceramic fiber layer.
前記管状体の長手方向の辺は、R面を有し、
前記SiC繊維層は、最外層のSiC繊維層が、最外層SiC繊維層直下のSiC繊維層よりもマンドレルの軸線に対する巻き角度が小さいことを特徴とする多角形の管状体。 SiC / SiC composite material comprising a plurality of SiC fiber layers, a fiber coating layer that covers the plurality of SiC fiber layers, and a CVD-SiC layer that fills the gaps between the SiC fiber layers and forms the outer surface A polygonal tubular body consisting of
The longitudinal side of the tubular body has an R-plane,
The SiC fiber layer is a polygonal tubular body characterized in that the outermost SiC fiber layer has a smaller winding angle with respect to the axis of the mandrel than the SiC fiber layer immediately below the outermost SiC fiber layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014137017A JP6334293B2 (en) | 2014-07-02 | 2014-07-02 | Tubular body |
PCT/JP2015/069214 WO2016002914A1 (en) | 2014-07-02 | 2015-07-02 | Tubular body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014137017A JP6334293B2 (en) | 2014-07-02 | 2014-07-02 | Tubular body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016013951A JP2016013951A (en) | 2016-01-28 |
JP6334293B2 true JP6334293B2 (en) | 2018-05-30 |
Family
ID=55019440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014137017A Active JP6334293B2 (en) | 2014-07-02 | 2014-07-02 | Tubular body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6334293B2 (en) |
WO (1) | WO2016002914A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105605332A (en) * | 2016-01-21 | 2016-05-25 | 中国石油大学(北京) | Carbon-fiber-based reinforcing ring of pipe penetrating through active fault area |
US10446276B2 (en) | 2016-06-21 | 2019-10-15 | Westinghouse Electric Company Llc | Method of manufacturing a SiC composite fuel cladding with inner Zr alloy liner |
JP6917770B2 (en) * | 2017-05-15 | 2021-08-11 | 株式会社東芝 | Long fiber reinforced silicon carbide member, its manufacturing method, and reactor structural member |
FR3071830B1 (en) * | 2017-10-02 | 2021-03-12 | Safran Ceram | PROCESS FOR MAKING A HOLLOW PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX |
US20190108922A1 (en) * | 2017-10-06 | 2019-04-11 | Westinghouse Electric Company, Llc | Removable mandrel for automating process to manufacture ceramic composite nuclear fuel cladding tubes |
JP6868601B2 (en) * | 2018-11-01 | 2021-05-12 | 株式会社フェローテックマテリアルテクノロジーズ | Tubular body containing SiC fiber and its manufacturing method |
JP7427626B2 (en) * | 2021-03-18 | 2024-02-05 | 株式会社東芝 | Channel box and fuel assembly |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3034084B2 (en) * | 1991-08-12 | 2000-04-17 | 川崎重工業株式会社 | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same |
JPH07206535A (en) * | 1993-12-29 | 1995-08-08 | Osaka Gas Co Ltd | Fiber-reinforced refractory structure and ts production |
US6189286B1 (en) * | 1996-02-05 | 2001-02-20 | The Regents Of The University Of California At San Diego | Modular fiber-reinforced composite structural member |
US20060039524A1 (en) * | 2004-06-07 | 2006-02-23 | Herbert Feinroth | Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants |
JP2009210266A (en) * | 2008-02-29 | 2009-09-17 | Ibiden Co Ltd | Tubular body |
FR2951312B1 (en) * | 2009-10-08 | 2011-12-09 | Commissariat Energie Atomique | NUCLEAR FUEL ASSEMBLY BODY AND NUCLEAR FUEL ASSEMBLY COMPRISING SUCH A BODY |
US20110268243A1 (en) * | 2010-04-28 | 2011-11-03 | Lars Hallstadius | Fuel channel arranged to be comprised by a fuel element for a fission reactor |
FR2972448B1 (en) * | 2011-03-07 | 2013-04-19 | Commissariat Energie Atomique | PROCESS FOR PRODUCING A CERAMIC MATRIX COMPOSITE |
US20140192949A1 (en) * | 2011-06-16 | 2014-07-10 | Thor Energy As | Nuclear reactor fuel element having silicon carbide multilayered cladding and thoria-based fissionable fuel |
FR2978776B1 (en) * | 2011-08-04 | 2013-09-27 | Commissariat Energie Atomique | PROCESS FOR THE IMPROVED PRODUCTION OF A TUBULAR GEOMETRY PIECE OF CERAMIC MATRIX COMPOSITE MATERIAL |
-
2014
- 2014-07-02 JP JP2014137017A patent/JP6334293B2/en active Active
-
2015
- 2015-07-02 WO PCT/JP2015/069214 patent/WO2016002914A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2016013951A (en) | 2016-01-28 |
WO2016002914A1 (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6334293B2 (en) | Tubular body | |
JP6334292B2 (en) | Method for manufacturing tubular body | |
JP2009210266A (en) | Tubular body | |
JP2013210372A (en) | Nuclear fuel cladding and method for manufacturing the same | |
US8613580B2 (en) | Fastening device | |
JP5539386B2 (en) | Processing method of ceramic fiber | |
JP5013767B2 (en) | Rotating anode and method of manufacturing rotating anode cooling body | |
WO2016006668A1 (en) | Tubular body and method for manufacturing same | |
TWI573892B (en) | A method for making a film of nanotue | |
JP6467290B2 (en) | Ceramic composite material | |
CN113862773B (en) | Long-life guide cylinder and preparation method thereof | |
JP2017024923A (en) | Ceramic composite material | |
JP2012012240A (en) | Method for producing fiber-reinforced ceramic composite material and fiber-reinforced ceramic composite material | |
JP6854657B2 (en) | Ceramic spring manufacturing method and ceramic spring | |
JP2018095508A (en) | PRODUCTION METHOD OF SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL | |
JP5263980B2 (en) | REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM. | |
JP6460808B2 (en) | Tubular body | |
JP6868601B2 (en) | Tubular body containing SiC fiber and its manufacturing method | |
JP2011523694A (en) | Composite pipe and manufacturing method thereof | |
JP2011032125A (en) | Crucible protection sheet for silicon single crystal production apparatus, silicon single crystal production apparatus, and method for producing silicon single crystal | |
WO2020039599A1 (en) | TUBULAR BODY INCLUDING SiC FIBER | |
JP6473642B2 (en) | Ceramic structure and method for manufacturing ceramic structure | |
JP6484047B2 (en) | Fluid rectifier | |
WO2016076354A1 (en) | Rectification member for fluid | |
JP7343360B2 (en) | Ceramic composite material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20151211 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6334293 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |