Nothing Special   »   [go: up one dir, main page]

JP6332600B2 - Method for producing polyamine conjugate - Google Patents

Method for producing polyamine conjugate Download PDF

Info

Publication number
JP6332600B2
JP6332600B2 JP2014015763A JP2014015763A JP6332600B2 JP 6332600 B2 JP6332600 B2 JP 6332600B2 JP 2014015763 A JP2014015763 A JP 2014015763A JP 2014015763 A JP2014015763 A JP 2014015763A JP 6332600 B2 JP6332600 B2 JP 6332600B2
Authority
JP
Japan
Prior art keywords
reaction
polyamine
acid
purified sample
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014015763A
Other languages
Japanese (ja)
Other versions
JP2015139433A (en
Inventor
岸本 憲明
憲明 岸本
松浦 寛
寛 松浦
淳志 倉田
淳志 倉田
柴谷 滋郎
滋郎 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Toyobo Co Ltd
Original Assignee
Kinki University
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University, Toyobo Co Ltd filed Critical Kinki University
Priority to JP2014015763A priority Critical patent/JP6332600B2/en
Publication of JP2015139433A publication Critical patent/JP2015139433A/en
Application granted granted Critical
Publication of JP6332600B2 publication Critical patent/JP6332600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、ポリアミンコンジュゲートの新規な製造方法に関し、具体的には桂皮酸類およびポリアミンから生成されるポリアミンコンジュゲートを簡便かつ高収率で製造する方法に関する。   The present invention relates to a novel method for producing a polyamine conjugate, and more specifically to a method for producing a polyamine conjugate produced from cinnamic acid and polyamine in a simple and high yield.

ポリアミンは、2個以上の第1級アミノ基を有する脂肪族炭化水素の総称であり、全ての生物に普遍的に存在する天然物である。代表的なポリアミンとしては、プトレシン、スペルミジン及びスペルミンが挙げられる。ポリアミンの主な生理作用としては、(1)核酸との相互作用による核酸の安定化と構造変化、(2)種々の核酸合成系の促進作用、(3)タンパク質合成系の活性化、(4)細胞膜の安定化や物質の膜透過性の強化、(5)活性酸素の消去、(6)細胞増殖の促進等が知られている。   Polyamine is a general term for aliphatic hydrocarbons having two or more primary amino groups, and is a natural product that exists universally in all living organisms. Exemplary polyamines include putrescine, spermidine and spermine. The main physiological functions of polyamines are as follows: (1) Nucleic acid stabilization and structural change by interaction with nucleic acid, (2) Various nucleic acid synthesis system promoting action, (3) Protein synthesis system activation, (4 It is known to stabilize cell membranes, enhance membrane permeability of substances, (5) eliminate active oxygen, and (6) promote cell growth.

ポリアミンは、細胞内で酸性物質と相互作用して存在し、細菌や動物細胞では大部分がRNAと結合して存在している。従って、ポリアミンの生理作用は、主としてRNAとの相互作用により起こると考えられている(非特許文献1参照)。   Polyamines exist by interacting with acidic substances in cells, and most bacteria and animal cells exist by binding to RNA. Therefore, it is considered that the physiological action of polyamine is mainly caused by interaction with RNA (see Non-Patent Document 1).

一方、植物細胞においては、遊離のポリアミンと共に、桂皮酸、カフェ酸等の種々のフェニルプロパノイドや、その他の酸がポリアミンにアミド結合した化合物、すなわち、ポリアミンコンジュゲートが単離されている。これらのポリアミンコンジュゲートは、種々の科の植物に存在し、細胞内のポリアミン濃度を制御していると考えられ、花芽の発育促進、病原菌の感染抑制等の生理機能が報告されている(非特許文献2、3参照)。   On the other hand, in plant cells, various phenylpropanoids such as cinnamic acid and caffeic acid as well as free polyamines and compounds in which other acids are amide-bonded to polyamines, that is, polyamine conjugates have been isolated. These polyamine conjugates are present in plants of various families, and are thought to regulate intracellular polyamine concentrations, and physiological functions such as promotion of flower bud growth and suppression of infection with pathogenic bacteria have been reported (non- (See Patent Documents 2 and 3).

このようなポリアミンコンジュゲートの生理機能は、未解明の点が多いが、桂皮酸類とポリアミンの機能を兼ね備えた素材として、その有用性が期待される。しかしながら、ポリアミンコンジュゲートは、従来は、植物からの単離または化学的合成により得られており、工業レベルでの大量生産は困難な状況である(非特許文献4、5参照)。従って、ポリアミンコンジュゲートの簡便で高収率の製造方法を開発することが求められている。   Although the physiological function of such a polyamine conjugate has many unclear points, its usefulness is expected as a material having the functions of cinnamic acid and polyamine. However, polyamine conjugates have been conventionally obtained by isolation from plants or chemical synthesis, and are difficult to mass-produce at an industrial level (see Non-Patent Documents 4 and 5). Accordingly, there is a need to develop a simple and high-yield production method for polyamine conjugates.

五十嵐一衛「神秘の生命物質−ポリアミン」、共立出版、1993Kazue Igarashi “Mysterious Life Material-Polyamine”, Kyoritsu Shuppan, 1993 Martin−Tanguy,J.et al.(1978)Phytochemistry,17,1927Martin-Tanguy, J. et al. et al. (1978) Phytochemistry, 17, 1927 Martin−Tanguy,J.(1985)Plant Growth Regulation,3,381Martin-Tanguy, J. et al. (1985) Plant Growth Regulation, 3,381 Bagni,N.and Tassoni,A.(2001)Amino Acids,20,301Bagni, N .; and Tassoni, A.M. (2001) Amino Acids, 20, 301 Fixon−Owoo,S.et al.(2003)Phytochemistry,63,315Fixon-Owoo, S .; et al. (2003) Phytochemistry, 63, 315

本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、ポリアミンコンジュゲートの簡便で高収率の製造方法を提供することにある。   The present invention has been made in view of the current state of the prior art, and an object of the present invention is to provide a simple and high-yield production method for polyamine conjugates.

本発明者らは、上記目的を達成するために、酵素の触媒作用によるアミド合成交換反応について鋭意研究した結果、桂皮酸類とポリアミンとのアミド合成反応において、桂皮酸類及びポリアミンを基質として使用して、有機溶媒中で酵素による触媒反応を行うことにより、一工程の反応でポリアミンコンジュゲートを簡便かつ高収率で合成できることを見出し、本発明の完成に至った。   In order to achieve the above object, the present inventors have intensively studied the amide synthesis exchange reaction catalyzed by an enzyme. As a result, in the amide synthesis reaction between cinnamic acids and polyamines, cinnamic acids and polyamines were used as substrates. The inventors have found that a polyamine conjugate can be synthesized easily and in a high yield by a one-step reaction by performing a catalytic reaction with an enzyme in an organic solvent, and the present invention has been completed.

即ち、本発明は、以下の(1)〜()の構成を有するものである。
(1)桂皮酸類とポリアミンとのアミド合成反応によってポリアミンコンジュゲートを製造する方法において、桂皮酸類及びポリアミンを基質として使用して、有機溶媒中で酵素による触媒反応を行うこと、前記桂皮酸類が、桂皮酸類中のカルボキシ基を、1〜4個の炭素原子を有するアルキル基またはビニル基にエステル交換して得られる、桂皮酸、カフェ酸、ヒドロキシ桂皮酸、フェルラ酸、ヘスペリチン酸、3,4−ジヒドロキシフェニルプロピオン酸、3−フェニルプロピオン酸及びシナピン酸のアルキルエステルまたはビニルエステルからなる群から選択されること、前記有機溶媒が、アセトン、クロロホルム、テトラヒドロフラン、t−ブタノール、1,4−ジオキサン、イソアミルエーテル、n−ヘキサン、2−メチル−2−ブタノールおよびジイソプロピルエーテルからなる群から選ばれる有機溶媒またはその組み合わせであること、及び前記酵素が、リパーゼであることを特徴とする方法。
)前記ポリアミンが、プトレシン、スペルミジン及びスペルミンからなる群から選択されることを特徴とする(1)に記載の方法。
前記有機溶媒が、テトラヒドロフラン、t−ブタノールおよび2−メチル−2−ブタノールからなる群から選ばれる有機溶媒またはその組み合わせであることを特徴とする(1)または(2)に記載の方法。
That is, the present invention has the following configurations (1) to ( 3 ).
(1) In the method for producing a polyamine conjugate by an amide synthesis reaction of cinnamic acid and polyamine, using cinnamic acid and polyamine as a substrate, performing a catalytic reaction with an enzyme in an organic solvent , Cinnamic acid, caffeic acid, hydroxycinnamic acid, ferulic acid, hesperic acid, 3,4-obtained by transesterification of a carboxy group in cinnamic acid to an alkyl group or vinyl group having 1 to 4 carbon atoms Selected from the group consisting of alkyl esters or vinyl esters of dihydroxyphenylpropionic acid, 3-phenylpropionic acid and sinapinic acid, and the organic solvent is acetone, chloroform, tetrahydrofuran, t-butanol, 1,4-dioxane, isoamyl Ether, n-hexane, 2-methyl-2- It is an organic solvent or a combination thereof selected from the group consisting of ethanol and diisopropyl ether, and wherein said enzyme is characterized in that it is a lipase.
( 2 ) The method according to ( 1), wherein the polyamine is selected from the group consisting of putrescine, spermidine and spermine.
( 3 ) The method according to (1) or (2), wherein the organic solvent is an organic solvent selected from the group consisting of tetrahydrofuran, t-butanol and 2-methyl-2-butanol or a combination thereof. .

本発明の製造方法は、従来の化学的合成法と異なり、酵素による触媒反応を利用しているので、ポリアミンコンジュゲートを一工程の反応で簡便かつ高効率で製造することができる。従って、本発明の製造方法は、桂皮酸類とポリアミンの生理機能を兼ね備えた素材としての有用性が期待されるポリアミンコンジュゲートの工業レベルでの生産に寄与するものと期待される。   Unlike the conventional chemical synthesis method, the production method of the present invention utilizes a catalytic reaction by an enzyme, so that a polyamine conjugate can be produced simply and with high efficiency by a one-step reaction. Therefore, the production method of the present invention is expected to contribute to the production of polyamine conjugates expected to be useful as materials having the physiological functions of cinnamic acids and polyamines at the industrial level.

桂皮酸エチルとプトレシンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。An HPLC chromatogram of an enzyme reaction solution obtained by reacting ethyl cinnamate and putrescine as substrates and adding lipase in 2M2B for 24 hours. 精製標品1のESI−MSスペクトル。ESI-MS spectrum of purified sample 1. 精製標品1のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 1. MS/MS分析のフラグメントイオンピークから推定される精製標品1の開裂パターン。The cleavage pattern of the purified sample 1 estimated from the fragment ion peak of MS / MS analysis. 精製標品1がN−桂皮酸プトレシンであると同定されたNMR分析の結果。The result of the NMR analysis which identified the refinement | purification sample 1 as N-cinnamate putrescine. 桂皮酸エチルとスペルミジンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。The HPLC chromatogram of the enzyme reaction liquid which made ethyl cinnamate and spermidine a substrate, added lipase in 2M2B, and was made to react for 24 hours. 精製標品2のESI−MSスペクトル。ESI-MS spectrum of purified sample 2. 精製標品2のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 2 MS/MS分析のフラグメントイオンピークから推定される精製標品2の開裂パターン。The cleavage pattern of the purified sample 2 estimated from the fragment ion peak of MS / MS analysis. 桂皮酸エチルとスペルミンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。The HPLC chromatogram of the enzyme reaction liquid which made ethyl cinnamate and spermine a substrate and added lipase in 2M2B and made it react for 24 hours. 精製標品3のESI−MSスペクトル。ESI-MS spectrum of purified sample 3 精製標品3のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 3 MS/MS分析のフラグメントイオンピークから推定される精製標品3の開裂パターン。The cleavage pattern of the purified sample 3 estimated from the fragment ion peak of MS / MS analysis. 精製標品3がN,N’−ジ−桂皮酸スペルミンであると同定されたNMR分析の結果。Results of NMR analysis in which purified sample 3 was identified as N, N'-di-cinnamic acid spermine. p−クマル酸メチルとプトレシンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。The HPLC chromatogram of the enzyme-reaction liquid which made p-methylcoumarate and putrescine a substrate, added lipase in 2M2B, and was made to react for 24 hours. 精製標品4のESI−MSスペクトル。ESI-MS spectrum of purified sample 4 精製標品4のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 4 MS/MS分析のフラグメントイオンピークから推定される精製標品4の開裂パターン。The cleavage pattern of the purified sample 4 estimated from the fragment ion peak of MS / MS analysis. 精製標品4がN−p−クマル酸プトレシンであると同定されたNMR分析の結果。The result of the NMR analysis in which the purified sample 4 was identified as Np-putrescine coumarate. p−クマル酸メチルとスペルミジンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。The HPLC chromatogram of the enzyme-reaction liquid which added lipase in 2M2B and made it react for 24 hours, using methyl p-coumarate and spermidine as a substrate. 精製標品5のESI−MSスペクトル。ESI-MS spectrum of purified sample 5. 精製標品5のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 5 MS/MS分析のフラグメントイオンピークから推定される精製標品5の開裂パターン。The cleavage pattern of the purified sample 5 estimated from the fragment ion peak of MS / MS analysis. 精製標品5がN1−p−クマル酸スペルミジンであると同定されたNMR分析の結果。The result of the NMR analysis in which the purified sample 5 was identified as N1-p-spermidine coumarate. 精製標品6のESI−MSスペクトル。ESI-MS spectrum of purified sample 6 精製標品6のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 6 MS/MS分析のフラグメントイオンピークから推定される精製標品6の開裂パターン。The cleavage pattern of the purified sample 6 estimated from the fragment ion peak of MS / MS analysis. 精製標品6がN1,N10−ジ−p−クマル酸スペルミジンであると同定されたNMR分析の結果。Results of NMR analysis in which purified sample 6 was identified as N1, N10-di-p-coumarate spermidine. p−クマル酸メチルとスペルミンを基質とし、2M2B中でリパーゼを添加し、24時間反応させた酵素反応液のHPLCクロマトグラム。The HPLC chromatogram of the enzyme-reaction liquid which made p-methyl coumarate and spermine a substrate and added lipase in 2M2B and made it react for 24 hours. 精製標品7のESI−MSスペクトル。ESI-MS spectrum of the purified sample 7 精製標品7のESI−MS/MSスペクトル。ESI-MS / MS spectrum of the purified sample 7 MS/MS分析のフラグメントイオンピークから推定される精製標品7の開裂パターン。The cleavage pattern of the purified sample 7 estimated from the fragment ion peak of MS / MS analysis. 精製標品7がN−p−クマル酸スペルミンであると同定されたNMR分析の結果。The result of the NMR analysis which identified the refinement | purification sample 7 as Np-coumarate spermine. 精製標品8のESI−MSスペクトル。ESI-MS spectrum of purified sample 8. 精製標品8のESI−MS/MSスペクトル。ESI-MS / MS spectrum of purified sample 8 MS/MS分析のフラグメントイオンピークから推定される精製標品8の開裂パターン。The cleavage pattern of the purified sample 8 estimated from the fragment ion peak of MS / MS analysis. 精製標品8がN,N’−ジ−p−クマル酸スペルミンであると同定されたNMR分析の結果。Results of NMR analysis where the purified sample 8 was identified as spermine N, N'-di-p-coumarate. p−クマル酸メチルとプトレシンを基質とし、種々の溶媒においてリパーゼを添加し、24時間反応させた酵素反応液中のN−p−クマル酸プトレシンの生成量。Production amount of putrescine Np-coumarate in an enzyme reaction solution in which lipase was added in various solvents and reacted for 24 hours using methyl p-coumarate and putrescine as substrates.

本発明のポリアミンコンジュゲートの製造方法は、桂皮酸類とポリアミンとのアミド合成反応において、桂皮酸類及びポリアミンを基質として使用して、有機溶媒中で酵素による触媒反応を行うことを特徴とする。   The method for producing a polyamine conjugate of the present invention is characterized in that, in an amide synthesis reaction between cinnamic acids and polyamines, cinnamic acids and polyamines are used as substrates, and an enzyme catalytic reaction is performed in an organic solvent.

本発明で使用する桂皮酸類としては、桂皮酸、カフェ酸、ヒドロキシ桂皮酸、フェルラ酸、ヘスペリチン酸、3,4−ジヒドロキシフェニルプロピオン酸、3−フェニルプロピオン酸、シナピン酸等が挙げられる。これらの桂皮酸類は、ポリアミンとのアミド合成反応における形態として、カルボキシ基を、1〜4個の炭素原子を有するアルキル基またはビニル基にエステル交換したアルキルエステルまたはビニルエステルであることが好ましい。   Cinnamic acids used in the present invention include cinnamic acid, caffeic acid, hydroxycinnamic acid, ferulic acid, hesperic acid, 3,4-dihydroxyphenylpropionic acid, 3-phenylpropionic acid, sinapinic acid and the like. These cinnamic acids are preferably alkyl esters or vinyl esters in which a carboxy group is transesterified to an alkyl group having 1 to 4 carbon atoms or a vinyl group as a form in an amide synthesis reaction with a polyamine.

本発明で使用するポリアミンは、2個以上の第1級アミノ基を有する脂肪族炭化水素の総称であり、生体内に普遍的に存在する天然物である。例えば、1,3−ジアミノプロパン、プトレシン、カダベリン、カルジン、スペルミジン、ホモスペルミジン、アミノプロピルカダベリン、テルミン、スペルミン、テルモスペルミン、カナバルミン、アミノペンチルノルスペルミジン、N,N−ビス(アミノプロピル)カダベリン、ホモスペルミン、カルドペンタミン、ホモカルドペンタミン、カルドヘキサミン、ホモカルドヘキサミン等が挙げられる。代表的なポリアミンとしては、プトレシン、スペルミジン、スペルミンがある。   The polyamine used in the present invention is a general term for aliphatic hydrocarbons having two or more primary amino groups, and is a natural product that exists universally in the living body. For example, 1,3-diaminopropane, putrescine, cadaverine, cardine, spermidine, homospermidine, aminopropyl cadaverine, theremin, spermine, thermospermine, canabalmin, aminopentylnorspermidine, N, N-bis (aminopropyl) cadaverine, homo Examples include spermine, cardopentamine, homocardopentamine, cardohexamine, and homocardohexamine. Typical polyamines include putrescine, spermidine and spermine.

本発明で使用するポリアミンコンジュゲートは、上述の桂皮酸類とポリアミンがアミド合成反応によって生成されるアミド化合物の総称であり、ポリアミンアミドまたはポリアミン系アルカロイドと称されることもある。この場合、ポリアミンのアミノ基の数に応じて、アミドが形成されることから、1分子のポリアミンに1分子以上の桂皮酸類が結合したポリアミンコンジュゲートが1種類以上合成される。本発明の製造方法においては、桂皮酸類は、2種類以上を同時に用いても良い。従って、2種類以上の異なる桂皮酸類がポリアミンに結合したポリアミンコンジュゲートも、本発明の製造方法によって得られる製造物に包含される。   The polyamine conjugate used in the present invention is a general term for amide compounds in which the above cinnamic acids and polyamine are produced by an amide synthesis reaction, and is sometimes called a polyamine amide or a polyamine-based alkaloid. In this case, since an amide is formed according to the number of amino groups of the polyamine, at least one polyamine conjugate in which one molecule or more of cinnamic acid is bonded to one molecule of polyamine is synthesized. In the production method of the present invention, two or more cinnamic acids may be used simultaneously. Accordingly, a polyamine conjugate in which two or more different cinnamic acids are bonded to a polyamine is also included in the product obtained by the production method of the present invention.

本発明で使用する有機溶媒としては、特に制限されないが、アセトン、クロロホルム、テトラヒドロフラン、t−ブタノール、1,4−ジオキサン、イソアミルエーテル、n−ヘキサン、2‐メチル‐2‐ブタノールおよびジイソプロピルエーテルが挙げられる。これらの有機溶媒は、1種のみでもよいし、2種以上の組み合わせにしてもよい。   The organic solvent used in the present invention is not particularly limited, and examples thereof include acetone, chloroform, tetrahydrofuran, t-butanol, 1,4-dioxane, isoamyl ether, n-hexane, 2-methyl-2-butanol and diisopropyl ether. It is done. These organic solvents may be used alone or in combination of two or more.

本発明で使用する酵素としては、アミド合成反応において、桂皮酸類及びポリアミンを基質として、有機溶媒中で触媒反応を行うことができる酵素であれば、特に制限されないが、リパーゼが好ましい。   The enzyme used in the present invention is not particularly limited as long as it is an enzyme capable of performing a catalytic reaction in an organic solvent using cinnamic acid and polyamine as substrates in the amide synthesis reaction, but lipase is preferable.

本発明の製造方法における酵素合成の反応は、有機溶媒中、桂皮酸誘導体とポリアミンに上述の酵素を作用させることにより行われる。基質である桂皮酸誘導体の濃度は、通常、10mM〜200mMであり、好ましくは50〜150mMである。もう一方の基質であるポリアミンの濃度は、通常、10mM〜200mMであり、好ましくは25〜75mMである。桂皮酸類とポリアミンのモル比は、6:1〜1:1が好ましく、特に、3:1〜2:1の範囲が好ましい。   The reaction of enzyme synthesis in the production method of the present invention is carried out by allowing the above-described enzyme to act on cinnamic acid derivative and polyamine in an organic solvent. The concentration of the cinnamic acid derivative as a substrate is usually 10 mM to 200 mM, preferably 50 to 150 mM. The density | concentration of the polyamine which is another substrate is 10 mM-200 mM normally, Preferably it is 25-75 mM. The molar ratio of cinnamic acid to polyamine is preferably 6: 1 to 1: 1, and particularly preferably 3: 1 to 2: 1.

使用する酵素の量は、該アミド合成反応に対する生体触媒の活性の程度によって異なるが、通常、10〜200mg/mLが好ましく、特に、60〜100mg/mLが好ましい。   The amount of enzyme to be used varies depending on the degree of activity of the biocatalyst for the amide synthesis reaction, but is usually preferably 10 to 200 mg / mL, particularly preferably 60 to 100 mg / mL.

反応温度は、通常、30〜60℃で行うのが好ましい。酵素の失活、寿命低下、または反応速度への悪影響が無ければ60℃以上、または30℃以下の温度で行うことができる。反応は、減圧下、或いは0.1MPa以上の加圧状態でも反応を行うことができるが、通常は、常圧で行うことが好ましい。   The reaction temperature is usually preferably 30 to 60 ° C. If there is no adverse effect on enzyme deactivation, life reduction, or reaction rate, the reaction can be performed at a temperature of 60 ° C. or higher or 30 ° C. or lower. The reaction can be carried out under reduced pressure or under a pressure of 0.1 MPa or more, but it is usually preferred to carry out at normal pressure.

反応時間は、適宜調整すればよいが、通常、1時間以上、96時間以下程度とすることができる。該アミド合成反応に対する生体触媒の活性の程度によって異なるが、通常、24時間が好ましい。   The reaction time may be appropriately adjusted, but can usually be about 1 hour or more and 96 hours or less. Usually, 24 hours is preferable, although it depends on the degree of activity of the biocatalyst for the amide synthesis reaction.

該アミド合成反応で生成するポリアミンコンジュゲートは、例えば、酢酸、メタノール等で抽出し、容易に分離することができる。また、分離したポリアミンコンジュゲートは、カチオン交換カラムやHPLC逆相カラム等を用いることにより、高純度に精製することが可能である。この場合、精製の形態としては、適切な樹脂を用いて、カラムクロマトグラフィーのみならず、バッチ方式も適用できる。   The polyamine conjugate produced by the amide synthesis reaction can be easily separated by extraction with, for example, acetic acid or methanol. The separated polyamine conjugate can be purified with high purity by using a cation exchange column, a HPLC reverse phase column, or the like. In this case, as a form of purification, not only column chromatography but also a batch system can be applied using an appropriate resin.

また、水分が反応系中に多量に存在すると反応速度が低下するので、本発明のアミド合成反応を効率よく行うためには、水分は可能な限り反応系外に除くことが好ましい。例えば、モレキュラーシーブを用いる等の水分除去策を講じて、実質的に水分の存在しない条件下(水分含量:0.5重量%以下)で反応を行うことが望ましい。   In addition, since the reaction rate decreases when a large amount of water is present in the reaction system, it is preferable to remove the water from the reaction system as much as possible in order to efficiently perform the amide synthesis reaction of the present invention. For example, it is desirable to take a water removal measure such as using a molecular sieve, and to carry out the reaction under conditions where water is not substantially present (water content: 0.5% by weight or less).

上述の方法によって、桂皮酸誘導体とポリアミンからポリアミンコンジュゲートを簡便かつ高収率で製造することが可能になる。また、反応後の生成物の分離、回収も容易であり、工業レベルでの実施に適している。   According to the above-described method, it becomes possible to produce a polyamine conjugate simply and in high yield from a cinnamic acid derivative and a polyamine. In addition, separation and recovery of the product after the reaction are easy, and it is suitable for implementation on an industrial level.

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited by these Examples.

(実施例1)N−桂皮酸プトレシンの酵素合成
2−メチル−2−ブタノール(2M2B)中に150mM桂皮酸エチル、50mMプトレシンおよびmolecular seaves 3Å 200mgを含有する2.5mLの反応液を60℃にて10分間予備加温した後、固定化リパーゼ(Novozym 435)100mgを加え、60℃にて350rpmで24時間攪拌した。反応開始24時間後の反応液を高速液体クロマトグラフィー(HPLC;High Performance Liquid Chromatography)および薄層クロマトグラフィー(TLC;Thin−Layer Chromatography)による分析に供した。
(Example 1) Enzymatic synthesis of putrescine N-cinnamate 2.5 mL of a reaction solution containing 200 mg of 150 mM ethyl cinnamate, 50 mM putrescine, and molecular seaves 3 mg in 2-methyl-2-butanol (2M2B) was heated to 60 ° C. After preheating for 10 minutes, 100 mg of immobilized lipase (Novozym 435) was added and stirred at 60 ° C. and 350 rpm for 24 hours. The reaction solution 24 hours after the start of the reaction was subjected to analysis by high performance liquid chromatography (HPLC; High Performance Liquid Chromatography) and thin layer chromatography (TLC; Thin-Layer Chromatography).

HPLCの分析用カラムにはCosmosil ODS 5C18−PAQ(4.6mm I.D.x250mm、ナカライテスク)を用い、0.2%(v/v)酢酸水(A)およびメタノール(B)を移動相としてリニアグラジェントモード(0%→80% B/50分)で、25℃にて流速1ml/minで流し、254nmの吸光度をモニターして反応生成物を検出した。図1は、反応開始24時間後の反応液を分析したHPLCの結果の一例を示す。溶出時間15〜16分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。   Cosmosil ODS 5C18-PAQ (4.6 mm ID x 250 mm, Nacalai Tesque) was used as the HPLC analytical column, and 0.2% (v / v) acetic acid water (A) and methanol (B) were used as the mobile phase. In linear gradient mode (0% → 80% B / 50 min), the flow rate was 1 ml / min at 25 ° C., and the absorbance at 254 nm was monitored to detect the reaction product. FIG. 1 shows an example of HPLC results obtained by analyzing a reaction solution 24 hours after the start of the reaction. The peak detected after 15 to 16 minutes of elution time is the peak of the reaction product detected 24 hours after the start of the reaction after adding the enzyme.

TLCにはSILICA GEL 60 RP−18 F254S アルミプレート(MERCK)を使用し、メタノール:水:酢酸(7:3:0.2)で展開後、UV照射(254nm)およびニンヒドリン染色により、反応液中の桂皮酸類、ポリアミンおよびポリアミンコンジュゲートを検出する指標とした。上述の反応開始24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   For TLC, SILICA GEL 60 RP-18 F254S aluminum plate (MERCK) was used. After developing with methanol: water: acetic acid (7: 3: 0.2), UV irradiation (254 nm) and ninhydrin staining were performed in the reaction solution. Were used as indicators for detecting cinnamic acids, polyamines and polyamine conjugates. As a result of subjecting the reaction solution 24 hours after the start of the above reaction to TLC, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水2.5mLに溶解し、以下の精製に供した。反応生成物を精製する分取用カラムとしてCosmosil ODS 5C18−PAQ(10mm I.D.x250mm、ナカライテスク)を用い、反応液サンプル500μLを注入後、移動相をグラジェントモード(0% Bにて10mlの後、10%→30% Bにて60ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。得られた溶出画分は、上述のHPLCによる分析で溶出時間15〜16分後に単一のピークとして検出された。本精製により、9.6mgの精製標品1が得られた。   In order to obtain a reaction product, the reaction solution was dried under reduced pressure, dissolved in 2.5 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. Cosmosil ODS 5C18-PAQ (10 mm ID x 250 mm, Nacalai Tesque) was used as a preparative column for purifying the reaction product. After injecting 500 μL of the reaction solution sample, the mobile phase was set to gradient mode (0% B). After 10 ml, 10% → 30% B (60 ml) was allowed to flow at 25 ° C. at a flow rate of 5 ml / min, the absorbance at 254 nm was monitored, and the fraction eluted was collected by a fraction collector. The obtained elution fraction was detected as a single peak after elution time of 15 to 16 minutes in the analysis by HPLC described above. By this purification, 9.6 mg of purified sample 1 was obtained.

精製標品1のESI−MSの結果、m/z 219に分子イオンピークが検出された(図2)。m/z 219のピークをMS/MS分析すると、m/z 202,131,103にフラグメントイオンピークが検出された(図3)。これらの結果から、精製標品1は、N−桂皮酸プトレシン(cinnamoyl putrescine)の構造に帰属された(図4)。   As a result of ESI-MS of the purified sample 1, a molecular ion peak was detected at m / z 219 (FIG. 2). When MS / MS analysis was performed on the peak at m / z 219, fragment ion peaks were detected at m / z 202, 131, and 103 (FIG. 3). From these results, purified sample 1 was assigned to the structure of N-cinnamoyl putrescine (FIG. 4).

さらに、精製標品1をNMRで分析した結果、N−cinnamoyl putrescineの構造に帰属された(図5)。以上のMSおよびNMRの分析結果から、精製標品1は、N−桂皮酸プトレシン(N−cinnamoyl putrescine)であると同定された。   Furthermore, as a result of analyzing the purified sample 1 by NMR, it was assigned to the structure of N-cinnamoyl putrescine (FIG. 5). From the above MS and NMR analysis results, the purified sample 1 was identified as N-cinnamoyl putrescine.

(実施例2)N1−桂皮酸スペルミジンの酵素合成
2M2B中に150mM桂皮酸エチル、50mMスペルミジンおよびmolecular seaves 3Å 200mgを含有する2.5mLの反応液を60℃にて10分間予備加温した後、Novozym 435 100mgを加え、60℃にて350rpmで24時間攪拌した。反応開始24時間後の反応液をHPLCおよびTLCによる分析に供した。
(Example 2) Enzymatic synthesis of spermidine N1-cinnamate After preheating a 2.5 mL reaction solution containing 200 mg of 150 mM ethyl cinnamate, 50 mM spermidine and molecular seaves 3Å in 2M2B at 60 ° C. for 10 minutes, Novozym 435 100 mg was added and stirred at 60 ° C. and 350 rpm for 24 hours. The reaction solution 24 hours after the start of the reaction was subjected to analysis by HPLC and TLC.

図6は、実施例1と同様の操作で、反応生成物を分析したHPLCの結果の一例である。溶出時間3分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。さらに、実施例1と同様の操作で、24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   FIG. 6 is an example of the HPLC result obtained by analyzing the reaction product in the same manner as in Example 1. The peak detected after 3 minutes of elution time is the peak of the reaction product detected 24 hours after the start of the reaction after adding the enzyme. Furthermore, as a result of subjecting the reaction solution after 24 hours to TLC in the same manner as in Example 1, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水2.5mLに溶解し、以下の精製に供した。実施例1と同様の操作で、HPLC分取用カラムを用い、反応液サンプル500μLを注入後、移動相をグラジェントモード(0% Bにて50mlの後、0%→100% Bにて20ml)で、25℃にて流速3ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。得られた溶出画分は、上述のHPLCによる分析で溶出時間3〜5分後に複数のピークとして検出された。本精製により、1.9mgの精製標品2が得られた。   In order to obtain a reaction product, the reaction solution was dried under reduced pressure, dissolved in 2.5 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. In the same manner as in Example 1, using an HPLC preparative column, 500 μL of the reaction solution sample was injected, and the mobile phase was changed to gradient mode (50 ml at 0% B, then 20 ml at 0% → 100% B). ) At 25 ° C. at a flow rate of 3 ml / min, the absorbance at 254 nm was monitored, and the fraction eluted was collected by a fraction collector. The obtained elution fraction was detected as a plurality of peaks after elution time 3 to 5 minutes in the analysis by HPLC described above. By this purification, 1.9 mg of purified sample 2 was obtained.

精製標品2のESI−MSの結果、m/z 276に分子イオンピークが検出された(図7)。m/z 276のピークをMS/MS分析すると、m/z 259,188,131にフラグメントイオンピークが検出された(図8)。スペルミジンには、5位のNHに炭素数の異なるアミノプロピル基とアミノブチル基が結合している。1分子の桂皮酸がスペルミジンとアミド結合する際には、1位と10位のいずれかのアミノ基に桂皮酸が結合した2種類の桂皮酸スペルミジンが合成される可能性がある。HPLCにおいて溶出時間3〜5分後に検出された複数のピークには、これら2種類の桂皮酸スペルミジンが含まれていると考えられる。以上の結果から、精製標品2は、N1−桂皮酸スペルミジン(N1−cinnamoyl spermidine)の構造に帰属された(図9)。   As a result of ESI-MS of the purified sample 2, a molecular ion peak was detected at m / z 276 (FIG. 7). When MS / MS analysis was performed on the peak at m / z 276, a fragment ion peak was detected at m / z 259, 188, 131 (FIG. 8). In spermidine, aminopropyl group and aminobutyl group having different carbon numbers are bonded to NH at the 5-position. When one molecule of cinnamic acid forms an amide bond with spermidine, two types of spermidine cinnamate with cinnamic acid bonded to either the 1-position or the 10-position amino group may be synthesized. It is considered that these two types of spermidine cinnamate are contained in a plurality of peaks detected after 3 to 5 minutes of elution time on HPLC. From the above results, the purified preparation 2 was assigned to the structure of N1-cinnamoyl spermidine (FIG. 9).

(実施例3)N,N’−ジ−桂皮酸スペルミンの酵素合成
2M2B中に150mM桂皮酸エチル、50mMスペルミンおよびmolecular seaves 3Å 200mgを含有する2.5mLの反応液を60℃にて10分間予備加温した後、Novozym 435 100mgを加え、60℃にて350rpmで24時間攪拌した。反応開始24時間後の反応液をHPLCおよびTLCによる分析に供した。
(Example 3) Enzymatic synthesis of N, N'-di-cinnamate spermine 2.5 mL of a reaction solution containing 150 mg of ethyl cinnamate, 50 mM spermine and 200 mg of molecular saves in 2M2B was preliminarily prepared at 60 ° C for 10 minutes. After warming, 100 mg of Novozym 435 was added and stirred at 60 ° C. and 350 rpm for 24 hours. The reaction solution 24 hours after the start of the reaction was subjected to analysis by HPLC and TLC.

図10は、実施例1と同様の操作で、反応生成物を分析したHPLCの結果の一例である。溶出時間20〜21分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。さらに、実施例1と同様の操作で、反応開始24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   FIG. 10 is an example of the HPLC result obtained by analyzing the reaction product in the same manner as in Example 1. The peak detected after 20 to 21 minutes of elution time is the peak of the reaction product detected 24 hours after the start of the reaction after adding the enzyme. Furthermore, as a result of subjecting the reaction solution 24 hours after the start of the reaction to TLC in the same manner as in Example 1, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水2.5mLに溶解し、以下の精製に供した。実施例1と同様の操作で、分取用HPLCカラムを用い、反応液サンプル500μLを注入後、移動相をグラジェントモード(10% Bにて40mlの後、10%→70% Bにて160ml)で、25℃にて流速3ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。複数のピークの中で最大のピークに相当する溶出画分を再度グラジェントモード(0% Bにて40mlの後、10%→40% Bにて120ml)で、25℃にて流速3ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。得られた溶出画分は、上述のHPLCによる分析で溶出時間20分後に単一のピークとして検出された。本精製により、11.7mgの精製標品3が得られた。   In order to obtain a reaction product, the reaction solution was dried under reduced pressure, dissolved in 2.5 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. In the same manner as in Example 1, using a preparative HPLC column, 500 μL of the reaction solution sample was injected, and the mobile phase was changed to gradient mode (40 ml at 10% B, then 160 ml at 10% → 70% B). ) At 25 ° C. at a flow rate of 3 ml / min, the absorbance at 254 nm was monitored, and the fraction eluted was collected by a fraction collector. The elution fraction corresponding to the largest peak among a plurality of peaks is again in gradient mode (40 ml at 0% B, then 120 ml at 10% → 40% B) at a flow rate of 3 ml / min at 25 ° C. The absorbance at 254 nm was monitored, and the eluted fraction was collected by a fraction collector. The obtained elution fraction was detected as a single peak after an elution time of 20 minutes in the analysis by HPLC described above. By this purification, 11.7 mg of purified sample 3 was obtained.

精製標品3のESI−MSの結果、m/z 463に分子イオンピークが検出された(図11)。m/z 276のピークをMS/MS分析すると、m/z 259,188,131にフラグメントイオンピークが検出された(図12)。これらの結果から、精製標品3は、N,N’−ジ−桂皮酸スペルミン(N,N’−dicinnamoyl spermine)の構造に帰属された(図13)。   As a result of ESI-MS of the purified sample 3, a molecular ion peak was detected at m / z 463 (FIG. 11). When MS / MS analysis was performed on the peak at m / z 276, a fragment ion peak was detected at m / z 259, 188, 131 (FIG. 12). From these results, the purified sample 3 was assigned to the structure of N, N'-dicinnamoyl spermine (FIG. 13).

さらに、精製標品3をNMRで分析した結果、N,N’−dicinnamoyl spermineの構造に帰属された(図14)。以上のMSおよびNMRの分析結果から、精製標品3は、N,N’−ジ−桂皮酸スペルミン(N,N’−dicinnamoyl spermine)であると同定された。   Furthermore, as a result of analyzing the purified sample 3 by NMR, it was assigned to the structure of N, N′-dicinnamylylspermine (FIG. 14). From the above MS and NMR analysis results, the purified sample 3 was identified as N, N'-dicinnamylylspermine.

(実施例4)N−p−クマル酸プトレシンの酵素合成
2M2B中に150mM p−クマル酸メチル、50mMプトレシンおよびmolecular seaves 3Å 2000mgを含有する25mLの反応液を60℃にて10分間予備加温した後、Novozym 435 1000mgを加え、60℃にて280rpmで24時間攪拌した。反応開始24時間後の反応液を高速液体クロマトグラフィー(HPLC)および薄層クロマトグラフィー(TLC)による分析に供した。
(Example 4) Enzymatic synthesis of N-p- putresuccinate putrescine 25 mL of a reaction solution containing 2Om2B of 150mM methyl p-coumarate, 50mM putrescine and 3 ~ 2000mg molecular saves was pre-warmed at 60 ° C for 10 minutes. Then, Novozym 435 1000 mg was added, and it stirred at 280 rpm for 24 hours at 60 degreeC. The reaction solution 24 hours after the start of the reaction was subjected to analysis by high performance liquid chromatography (HPLC) and thin layer chromatography (TLC).

図15は、実施例1と同様の操作で、反応生成物を分析したHPLCの結果の一例である。溶出時間13分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。さらに、実施例1と同様の操作で、24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   FIG. 15 is an example of the HPLC results obtained by analyzing the reaction product in the same manner as in Example 1. The peak detected after 13 minutes of elution time is the peak of the reaction product detected 24 hours after the start of the reaction after adding the enzyme. Furthermore, as a result of subjecting the reaction solution after 24 hours to TLC in the same manner as in Example 1, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水20mLに溶解し、以下の精製に供した。0.2%(v/v)酢酸水で平衡化したCM Sepharose Fast Flowカラム(φ1.6x11cm,20mL、GEヘルスケア)に反応液サンプルを流し、蒸留水で非吸着画分を除去した後、3M酢酸100mLで吸着成分を溶出した。3M酢酸で溶出した画分を減圧乾固し、0.2%(v/v)酢酸水5mLに溶解し、HPLCによる精製に供した。実施例1と同様の操作で、分取用カラムを用い、サンプル500μLを注入後、移動相をステップワイズモード(10% Bにて20mlの後、100% Bにて40ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。後半に最大のピークとして得られた溶出画分は、上述のHPLCによる分析で溶出時間13分後に単一のピークとして検出された。本精製により、48mgの精製標品4が得られた。   In order to obtain a reaction product, the reaction solution was dried under reduced pressure, dissolved in 20 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. The reaction solution sample was passed through a CM Sepharose Fast Flow column (φ1.6 × 11 cm, 20 mL, GE Healthcare) equilibrated with 0.2% (v / v) acetic acid water, and the non-adsorbed fraction was removed with distilled water. The adsorbed component was eluted with 100 mL of 3M acetic acid. The fraction eluted with 3M acetic acid was dried under reduced pressure, dissolved in 5 mL of 0.2% (v / v) acetic acid water, and subjected to purification by HPLC. In the same manner as in Example 1, using a preparative column, after injecting 500 μL of sample, the mobile phase was set to 25 ° C. in stepwise mode (20 ml at 10% B, then 40 ml at 100% B). The flow rate was 5 ml / min, the absorbance at 254 nm was monitored, and the eluted fraction was collected by a fraction collector. The elution fraction obtained as the maximum peak in the latter half was detected as a single peak after 13 minutes elution time in the analysis by HPLC described above. By this purification, 48 mg of purified sample 4 was obtained.

精製標品4のESI−MSの結果、m/z 235に分子イオンピークが検出された(図16)。m/z 235のピークをMS/MS分析すると、m/z 218,147,119にフラグメントイオンピークが検出された(図17)。これらの結果から、精製標品4は、N−p−クマル酸プトレシン(N−p−coumaroyl putrescine)の構造に帰属された(図18)。   As a result of ESI-MS of the purified sample 4, a molecular ion peak was detected at m / z 235 (FIG. 16). When MS / MS analysis was performed on the peak at m / z 235, fragment ion peaks were detected at m / z 218, 147, and 119 (FIG. 17). From these results, the purified sample 4 was assigned to the structure of Np-coumaroyl putrescine (FIG. 18).

さらに、精製標品4をNMRで分析した結果、N−p−coumaroyl putrescineの構造に帰属された(図19)。以上のMSおよびNMRの分析結果から、精製標品4は、N−p−クマル酸プトレシン(N−p−coumaroyl putrescine)であると同定された。   Furthermore, as a result of analyzing the purified sample 4 by NMR, it was attributed to the structure of Np-comumaroyl putrescine (FIG. 19). From the MS and NMR analysis results described above, the purified sample 4 was identified as Np-cumaroyl putrescine.

(実施例5)N1−p−クマル酸スペルミジンの酵素合成
2M2B中に100mM p−クマル酸メチル、75mMスペルミジンおよびmolecular seaves 3Å 2000mgを含有する25mLの反応液を60℃にて10分間予備加温した後、Novozym 435 1000mgを加え、60℃にて280rpmで24時間攪拌した。
(Example 5) Enzymatic synthesis of spermidine N1-p-coumarate 25 mL of a reaction solution containing 100 mM methyl p-coumarate, 75 mM spermidine and 2000 mg of molecular sieves 3 mg in 2M2B was pre-warmed at 60 ° C. for 10 minutes. Then, Novozym 435 1000 mg was added, and it stirred at 280 rpm for 24 hours at 60 degreeC.

図20は、実施例1と同様の操作で、24時間反応後の反応液を分析したHPLCの結果の一例である。溶出時間4分後および24分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。さらに、実施例1と同様の操作で、反応開始24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   FIG. 20 is an example of HPLC results obtained by analyzing the reaction solution after 24 hours of reaction in the same operation as in Example 1. The peaks detected at 4 minutes and 24 minutes after the elution time are peaks of the reaction product detected 24 hours after the start of the reaction after addition of the enzyme. Furthermore, as a result of subjecting the reaction solution 24 hours after the start of the reaction to TLC in the same manner as in Example 1, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

これらの反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水20mLに溶解し、以下の精製に供した。0.2%(v/v)酢酸水で平衡化したCM Sepharose Fast Flowカラム(φ1.6x11cm,20mL、GEヘルスケア)に反応液サンプルを流し、蒸留水で非吸着画分を除去した後、0.2M、0.5M、1M、2Mおよび3M酢酸で吸着成分をそれぞれ100mL溶出した。得られた溶出画分をTLCに供した結果、0.2Mおよび0.5M酢酸の溶出画分にUV吸収およびニンヒドリン陽性を示すスポットが認められた(結果は図示せず)。   In order to obtain these reaction products, the reaction solution was dried under reduced pressure, dissolved in 20 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. The reaction solution sample was passed through a CM Sepharose Fast Flow column (φ1.6 × 11 cm, 20 mL, GE Healthcare) equilibrated with 0.2% (v / v) acetic acid water, and the non-adsorbed fraction was removed with distilled water. 100 mL of the adsorbed component was eluted with 0.2 M, 0.5 M, 1 M, 2 M and 3 M acetic acid, respectively. As a result of subjecting the obtained elution fraction to TLC, spots showing UV absorption and ninhydrin positivity were observed in the elution fractions of 0.2 M and 0.5 M acetic acid (results not shown).

0.2M酢酸で溶出した画分を減圧乾固し、0.2%(v/v)酢酸水5mLに溶解し、実施例1と同様の操作で、分取用カラムを用い、500μLを注入後、移動相をステップワイズモード(10% Bにて20mlの後、100% Bにて60ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。後半に最大のピークとして得られた溶出画分は、上述のHPLCによる分析で溶出時間4〜5分後に単一のピークとして検出された。本精製により、86mgの精製標品5が得られた。   The fraction eluted with 0.2 M acetic acid was dried under reduced pressure, dissolved in 5 mL of 0.2% (v / v) acetic acid water, and 500 μL was injected using a preparative column in the same manner as in Example 1. Then, the mobile phase was flowed at a flow rate of 5 ml / min at 25 ° C. in stepwise mode (20 ml at 10% B, then 60 ml at 100% B), and the absorbance at 254 nm was monitored. Minutes were collected. The elution fraction obtained as the maximum peak in the latter half was detected as a single peak after elution time of 4 to 5 minutes in the analysis by HPLC described above. By this purification, 86 mg of purified sample 5 was obtained.

精製標品5のESI−MSの結果、m/z 292に分子イオンピークが検出された(図21)。m/z 292のピークをMS/MS分析すると、m/z 275,204,147にフラグメントイオンピークが検出された(図22)。これらの結果から、精製標品5は、N1−p−クマル酸スペルミジン(N1−p−coumaroyl spermidine)の構造に帰属された(図23)。   As a result of ESI-MS of the purified sample 5, a molecular ion peak was detected at m / z 292 (FIG. 21). When the peak of m / z 292 was analyzed by MS / MS, a fragment ion peak was detected at m / z 275, 204, 147 (FIG. 22). From these results, the purified sample 5 was assigned to the structure of N1-p-cumaroyl spermidine (FIG. 23).

さらに、精製標品5をNMRで分析した結果、N1−p−coumaroyl spermidineの構造に帰属された(図24)。以上のMSおよびNMRの分析結果から、精製標品5は、N1−p−クマル酸スペルミジン(N1−p−coumaroyl spermidine)であると同定された。   Furthermore, as a result of analyzing the purified sample 5 by NMR, it was attributed to the structure of N1-p-cumaroyl spermidine (FIG. 24). From the MS and NMR analysis results described above, the purified sample 5 was identified as N1-p-cumaroyl spermidine.

(実施例6)N1,N10−ジ−p−クマル酸スペルミジンの酵素合成
実施例5のCM Sepharose Fast Flowカラムによる精製において、0.5M酢酸で溶出した画分を減圧乾固し、0.2%(v/v)酢酸水5mLに溶解し、実施例1と同様の操作で、分取用カラムに500μLを注入後、移動相をステップワイズモード(10% Bにて20mlの後、100% Bにて60ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。後半に最大のピークとして得られた溶出画分は、上述のHPLCによる分析で溶出時間24〜25分後に単一のピークとして検出された。本精製により、77mgの精製標品6が得られた。
(Example 6) Enzymatic synthesis of N1, N10-di-p-coumarate spermidine In the purification by CM Sepharose Fast Flow column in Example 5, the fraction eluted with 0.5 M acetic acid was dried under reduced pressure, 0.2 % (V / v) dissolved in 5 mL of acetic acid water, and 500 μL was injected into the preparative column in the same manner as in Example 1, and then the mobile phase was changed to stepwise mode (20 ml at 10% B, then 100% B was flowed at 25 ° C. at a flow rate of 5 ml / min, the absorbance at 254 nm was monitored, and the eluted fraction was collected by a fraction collector. The elution fraction obtained as the maximum peak in the latter half was detected as a single peak after the elution time of 24 to 25 minutes in the analysis by HPLC described above. By this purification, 77 mg of purified sample 6 was obtained.

精製標品6のESI−MSの結果、m/z 439に分子イオンピークが検出された(図25)。m/z 439のピークをMS/MS分析すると、m/z 292,204,147にフラグメントイオンピークが検出された(図26)。m/z 439はN1,N10−di−p−coumaroyl spermidineの分子イオンピークm/z 438より1大きいが、フラグメントイオンピークの解析から、m/z 439を示す物質はN1,N10−di−p−coumaroyl spermidineの5位のNHにプロトンが付加した物質と考えられる。これらの結果から、精製標品6は、N1,N10−ジ−p−クマル酸スペルミジン(N1,N10−di−p−coumaroyl spermidine)の構造に帰属された(図27)。   As a result of ESI-MS of the purified sample 6, a molecular ion peak was detected at m / z 439 (FIG. 25). When the peak at m / z 439 was analyzed by MS / MS, a fragment ion peak was detected at m / z 292, 204, and 147 (FIG. 26). Although m / z 439 is 1 larger than the molecular ion peak m / z 438 of N1, N10-di-p-comaroyl spermidine, the substance showing m / z 439 is N1, N10-di-p from the analysis of the fragment ion peak. -Probably a substance in which a proton is added to NH at the 5-position of coumeric ylmidine. From these results, the purified sample 6 was assigned to the structure of spermidine N1, N10-di-p-coumaroyl spermidine (FIG. 27).

さらに、精製標品6をNMRで分析した結果、N1,N10−di−p−coumaroyl spermidineの構造に帰属された(図28)。以上のMSおよびNMRの分析結果から、精製標品6は、N1,N10−ジ−p−クマル酸スペルミジン(N1,N10−di−p−coumaroyl spermidine)であると同定された。   Furthermore, as a result of analyzing the purified sample 6 by NMR, it was assigned to the structure of N1, N10-di-p-comaroylylmidine (FIG. 28). From the above MS and NMR analysis results, the purified sample 6 was identified as spermidine N1, N10-di-p-coumaroyl spermidine.

(実施例7)N−p−クマル酸スペルミンの酵素合成
2M2B中に150mM p−クマル酸メチル、75mMスペルミンおよびmolecular seaves 3Å 2000mgを含有する25mLの反応液を60℃にて10分間予備加温した後、Novozym 435 1000mgを加え、60℃にて280rpmで24時間攪拌した。
(Example 7) Enzymatic synthesis of Np-spermic acid spermine 25 mL of a reaction solution containing 150 mg of methyl p-coumarate, 75 mM spermine and 2000 mg of molecular saves 3 mg in 2M2B was pre-warmed at 60 ° C. for 10 minutes. Then, Novozym 435 1000 mg was added, and it stirred at 280 rpm for 24 hours at 60 degreeC.

図29は、実施例1と同様の操作で、24時間反応後の反応液を分析したHPLCの結果の一例である。溶出時間2〜3分後および15〜16分後に検出されたピークは、酵素を添加して反応開始24時間後に検出された反応生成物のピークである。さらに、実施例1と同様の操作で、反応開始24時間後の反応液をTLCに供した結果、UV吸収およびニンヒドリン陽性を示す新たなスポットが認められた(結果は図示せず)。   FIG. 29 is an example of HPLC results obtained by analyzing the reaction solution after a 24-hour reaction in the same manner as in Example 1. The peaks detected after 2 to 3 minutes and 15 to 16 minutes after the elution time are peaks of reaction products detected 24 hours after the start of the reaction after addition of the enzyme. Furthermore, as a result of subjecting the reaction solution 24 hours after the start of the reaction to TLC in the same manner as in Example 1, new spots showing UV absorption and ninhydrin positivity were observed (results not shown).

これらの反応生成物を得るため、反応液を減圧乾固し、0.2%(v/v)酢酸水20mLに溶解し、以下の精製に供した。0.2%(v/v)酢酸水で平衡化したCM Sepharose Fast Flowカラム(φ1.6x11cm,20mL、GEヘルスケア)に反応液サンプルを流し、蒸留水で非吸着画分を洗浄した後、0.2M、0.5M、1Mおよび3M酢酸で吸着成分をそれぞれ100mL溶出した。溶出画分をTLCに供した結果、0.2Mおよび0.5M酢酸の溶出画分にUV吸収およびニンヒドリン陽性を示すスポットが認められた(結果は図示せず)。   In order to obtain these reaction products, the reaction solution was dried under reduced pressure, dissolved in 20 mL of 0.2% (v / v) acetic acid water, and subjected to the following purification. The reaction solution sample was passed through a CM Sepharose Fast Flow column (φ1.6 × 11 cm, 20 mL, GE Healthcare) equilibrated with 0.2% (v / v) acetic acid water, and the non-adsorbed fraction was washed with distilled water. 100 mL of adsorbed components were eluted with 0.2 M, 0.5 M, 1 M and 3 M acetic acid, respectively. As a result of subjecting the eluted fraction to TLC, spots showing UV absorption and ninhydrin positivity were observed in the eluted fractions of 0.2 M and 0.5 M acetic acid (results not shown).

0.2M酢酸で溶出した画分を減圧乾固し、0.2%(v/v)酢酸水5mLに溶解し、実施例1と同様の操作で、分取用カラムに500μLを注入後、移動相をステップワイズモード(10% Bにて20mlの後、100% Bにて60ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。後半に最大のピークとして得られた溶出画分は、上述のHPLCによる分析で溶出時間4〜5分後に単一のピークとして検出された。本精製により、60mgの精製標品7が得られた。   The fraction eluted with 0.2 M acetic acid was dried under reduced pressure, dissolved in 5 mL of 0.2% (v / v) acetic acid water, and 500 μL was injected into the preparative column in the same manner as in Example 1. Run the mobile phase in stepwise mode (20 ml at 10% B, then 60 ml at 100% B) at 25 ° C. with a flow rate of 5 ml / min, monitor the absorbance at 254 nm, and extract the eluted fraction with a fraction collector. It was collected. The elution fraction obtained as the maximum peak in the latter half was detected as a single peak after elution time of 4 to 5 minutes in the analysis by HPLC described above. By this purification, 60 mg of purified sample 7 was obtained.

精製標品7のESI−MSの結果、m/z 349に分子イオンピークが検出された(図30)。m/z 292のピークをMS/MS分析すると、m/z 275,204,129にフラグメントイオンピークが検出された(図31)。これらの結果から、精製標品7は、N−p−クマル酸スペルミン(N−p−coumaroyl spermine)の構造に帰属された(図32)。   As a result of ESI-MS of the purified sample 7, a molecular ion peak was detected at m / z 349 (FIG. 30). When MS / MS analysis was performed on the peak at m / z 292, a fragment ion peak was detected at m / z 275, 204, 129 (FIG. 31). From these results, the purified sample 7 was assigned to the structure of Np-coumaroyl spermine (FIG. 32).

さらに、精製標品7をNMRで分析した結果、N−p−coumaroyl spermineの構造に帰属された(図33)。以上のMSおよびNMRの分析結果から、精製標品7は、N−p−クマル酸スペルミン(N−p−coumaroyl spermine)であると同定された。   Furthermore, as a result of analyzing the purified sample 7 by NMR, it was attributed to the structure of Np-comuaroyl spermine (FIG. 33). From the MS and NMR analysis results described above, the purified sample 7 was identified as Np-cumaroyl spermine.

(実施例8)N,N’−ジ−p−クマル酸スペルミンの酵素合成
実施例7のCM Sepharose Fast Flowカラムによる精製において、0.5M酢酸で溶出した画分を減圧乾固し、0.2%(v/v)酢酸水5mLに溶解し、実施例1と同様の操作で、分取用カラムを用い、500μLを注入後、移動相をステップワイズモード(10% Bにて20mlの後、100% Bにて60ml)で、25℃にて流速5ml/minで流し、254nmの吸光度をモニターし、フラクションコレクターにより溶出画分を回収した。後半に最大のピークとして得られた溶出画分は、上述のHPLCによる分析で溶出時間24〜25分後に単一のピークとして検出された。本精製により、92mgの精製標品8が得られた。
(Example 8) Enzymatic synthesis of N, N'-di-p-coumarate spermine In the purification using the CM Sepharose Fast Flow column of Example 7, the fraction eluted with 0.5 M acetic acid was dried under reduced pressure. Dissolve in 5 mL of 2% (v / v) acetic acid water, and inject the 500 μL using the preparative column in the same manner as in Example 1. , 60 ml at 100% B) at 25 ° C. with a flow rate of 5 ml / min, the absorbance at 254 nm was monitored, and the eluted fraction was collected by a fraction collector. The elution fraction obtained as the maximum peak in the latter half was detected as a single peak after the elution time of 24 to 25 minutes in the analysis by HPLC described above. By this purification, 92 mg of purified preparation 8 was obtained.

精製標品8のESI−MSの結果、m/z 495に分子イオンピークが検出された(図34)。m/z 439のピークをMS/MS分析すると、m/z 275,204,147にフラグメントイオンピークが検出された(図35)。これらの結果から、精製標品8は、N,N’−ジ−p−クマル酸スペルミン(N,N’−di−p−coumaroyl spermine)の構造に帰属された(図36)。   As a result of ESI-MS of the purified sample 8, a molecular ion peak was detected at m / z 495 (FIG. 34). When the peak at m / z 439 was analyzed by MS / MS, a fragment ion peak was detected at m / z 275, 204, 147 (FIG. 35). From these results, the purified sample 8 was assigned to the structure of N, N′-di-p-comauroyl spermine (FIG. 36).

さらに、精製標品8をNMRで分析した結果、N,N’−di−p−coumaroyl spermineの構造に帰属された(図37)。以上のMSおよびNMRの分析結果から、精製標品8は、N,N’−ジ−p−クマル酸スペルミン(N,N’−di−p−coumaroyl spermine)であると同定された。   Furthermore, as a result of analyzing the purified sample 8 by NMR, it was attributed to the structure of N, N′-di-p-comaroyl spermine (FIG. 37). From the above MS and NMR analysis results, the purified sample 8 was identified as N, N′-di-p-coumaroyl spermine.

(実施例9)各種の溶媒におけるN−p−クマル酸プトレシンの酵素合成
150mM p−クマル酸メチルと50mMプトレシンを基質として、図38に示すような種々の溶媒においてNovozym 435を10mg添加し、酵素反応を行い、N−p−クマル酸プトレシンの生成量を調べた(図38)。沸点が70℃以上のtert−ブタノール、1,4−ジオキサン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルフォキシド(DMSO)、3−メチル−1−ブタノール(3M1B)およびイソアミルエーテルは60℃で、沸点が70℃以下のn−ヘキサン、クロロホルム、テトラヒドロフラン(THF)、アセトン、ジイソプロピルエーテルは45℃で、2−メチル−2−ブタノール(2M2B)は両方の温度で反応を行った。その結果、tert−ブタノール、THFおよび2M2Bにおいて、N−p−クマル酸プトレシンの特に高い生成量が得られた。
(Example 9) Enzymatic synthesis of Np-putrescine couprate in various solvents Using 150 mM methyl p-coumarate and 50 mM putrescine as substrates, 10 mg of Novozym 435 was added in various solvents as shown in FIG. Reaction was performed and the production amount of putrescine Np-coumarate was examined (FIG. 38). Tert-butanol, 1,4-dioxane, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 3-methyl-1-butanol (3M1B) and isoamyl ether having a boiling point of 70 ° C. or higher are 60 ° C. N-hexane, chloroform, tetrahydrofuran (THF), acetone and diisopropyl ether having a boiling point of 70 ° C. or lower were reacted at 45 ° C., and 2-methyl-2-butanol (2M2B) was reacted at both temperatures. As a result, a particularly high production amount of putrescine Np-coumarate was obtained in tert-butanol, THF and 2M2B.

本発明の方法によれば、ポリアミンコンジュゲートを簡便かつ高収率で製造することができる。また、本発明は、桂皮酸類とポリアミンの生理機能を兼ね備えた機能性素材としての有用性が期待されるポリアミンコンジュゲートの工業レベルでの生産に適している。さらに、本発明の方法によって製造されたポリアミンコンジュゲートは、医薬品、化成品、化粧品、食品等の用途で利用することができる。   According to the method of the present invention, a polyamine conjugate can be produced simply and with high yield. Further, the present invention is suitable for industrial production of polyamine conjugates that are expected to be useful as functional materials having the physiological functions of cinnamic acids and polyamines. Furthermore, the polyamine conjugate produced by the method of the present invention can be used in applications such as pharmaceuticals, chemical products, cosmetics, and foods.

Claims (3)

桂皮酸類とポリアミンとのアミド合成反応によってポリアミンコンジュゲートを製造する方法において、桂皮酸類及びポリアミンを基質として使用して、有機溶媒中で酵素による触媒反応を行うこと、前記桂皮酸類が、桂皮酸類中のカルボキシ基を、1〜4個の炭素原子を有するアルキル基またはビニル基にエステル交換して得られる、桂皮酸、カフェ酸、ヒドロキシ桂皮酸、フェルラ酸、ヘスペリチン酸、3,4−ジヒドロキシフェニルプロピオン酸、3−フェニルプロピオン酸及びシナピン酸のアルキルエステルまたはビニルエステルからなる群から選択されること、前記有機溶媒が、アセトン、クロロホルム、テトラヒドロフラン、t−ブタノール、1,4−ジオキサン、イソアミルエーテル、n−ヘキサン、2−メチル−2−ブタノールおよびジイソプロピルエーテルからなる群から選ばれる有機溶媒またはその組み合わせであること、及び前記酵素が、リパーゼであることを特徴とする方法。 In a method for producing a polyamine conjugate by an amide synthesis reaction between cinnamic acids and a polyamine, an enzyme-catalyzed reaction is carried out in an organic solvent using cinnamic acids and polyamine as a substrate, and the cinnamic acids are contained in cinnamic acids. Cinnamic acid, caffeic acid, hydroxycinnamic acid, ferulic acid, hesperic acid, 3,4-dihydroxyphenylpropion obtained by transesterification of the carboxy group of 1 to 4 with an alkyl group or vinyl group having 1 to 4 carbon atoms Selected from the group consisting of acids, alkyl esters or vinyl esters of 3-phenylpropionic acid and sinapinic acid, and the organic solvent is acetone, chloroform, tetrahydrofuran, t-butanol, 1,4-dioxane, isoamyl ether, n -Hexane, 2-methyl-2-butano How is an organic solvent or a combination thereof selected from the group consisting of Le and diisopropyl ether, and the enzyme, characterized in that it is a lipase. 前記ポリアミンが、プトレシン、スペルミジン及びスペルミンからなる群から選択されることを特徴とする請求項1に記載の方法。 The method of claim 1, wherein the polyamine is selected from the group consisting of putrescine, spermidine and spermine. 前記有機溶媒が、テトラヒドロフラン、t−ブタノールおよび2−メチル−2−ブタノールからなる群から選ばれる有機溶媒またはその組み合わせであることを特徴とする請求項1または2に記載の方法。The method according to claim 1 or 2, wherein the organic solvent is an organic solvent selected from the group consisting of tetrahydrofuran, t-butanol and 2-methyl-2-butanol or a combination thereof.
JP2014015763A 2014-01-30 2014-01-30 Method for producing polyamine conjugate Active JP6332600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015763A JP6332600B2 (en) 2014-01-30 2014-01-30 Method for producing polyamine conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015763A JP6332600B2 (en) 2014-01-30 2014-01-30 Method for producing polyamine conjugate

Publications (2)

Publication Number Publication Date
JP2015139433A JP2015139433A (en) 2015-08-03
JP6332600B2 true JP6332600B2 (en) 2018-05-30

Family

ID=53770241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015763A Active JP6332600B2 (en) 2014-01-30 2014-01-30 Method for producing polyamine conjugate

Country Status (1)

Country Link
JP (1) JP6332600B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906525A (en) * 2016-05-19 2016-08-31 沈阳药科大学 Method for synthesizing kukoamine A and analogue thereof
CN106366014B (en) * 2016-08-09 2018-07-06 徐一达 A kind of rape flower alkali and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651817B1 (en) * 1993-05-06 2000-09-20 Dsm N.V. Enzymatic synthesis of ceramides and hybrid ceramides
US6677427B1 (en) * 2000-06-13 2004-01-13 Hercules Incorporated Enzyme-catalyzed polyamides and compositions and processes of preparing and using the same
US7067291B2 (en) * 2002-12-20 2006-06-27 Pfizer Inc. Biocatalytic preparation of enantiomerically enriched aminopentanenitrile
DE102005018935A1 (en) * 2005-04-22 2006-10-26 Basf Ag Enzymatic synthesis of poly (oxyalkylene) acrylamides

Also Published As

Publication number Publication date
JP2015139433A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Mei et al. Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique
Xu et al. Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans
CN108866028B (en) Amino lyase mutant protein, and coding gene and application thereof
BRPI0607623B1 (en) transgenic escherichia coli
JP6332600B2 (en) Method for producing polyamine conjugate
CN104529710A (en) Method for performing pre-column derivation high performance liquid chromatography chiral resolution on DL-menthol by using chiral derivation reagent
Kašparová et al. Production of podophyllotoxin by plant tissue cultures of Juniperus virginiana
Shah et al. Strategy for purification of aggregation prone β-glucosidases from the cell wall of yeast: a preparative scale approach
JP5359348B2 (en) Method for producing high purity lactic acid
Rousseau et al. Scale-up of a chemo-biocatalytic route to (2 R, 4 R)-and (2 S, 4 S)-monatin
Mussatto et al. A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate
WO2012055253A1 (en) Regeneration method of silica gel for chromatographing coenzyme q10
CN108753626B (en) Bacterial strain for biosynthesis of 16 β -hydroxy-19-nor-4-androstenedione and application thereof
CN112708644A (en) Preparation method of florfenicol intermediate
CN115433747A (en) Enzymatic synthesis method of puerarin 6'' -O-acetate
CN106317136A (en) Method for separating alpha-arbutin from alpha-arbutin broth
CN107686492A (en) A kind of method of rhodioside in extraction purification zymotic fluid using macroporous absorbent resin
JP2009089689A (en) Method for producing ferulic acid ester compound by enzymatic method
JP3916144B2 (en) Method for producing jasmonic acids and theobroxide using microorganisms
TWI614255B (en) Method for separating cyclic macrocyclic lactone compound
JP2018000032A (en) Production method of 3hb ester
JPH0419834B2 (en)
CN107417750B (en) Method for extracting cyclic adenosine monophosphate from microbial fermentation liquid
JP2010053259A (en) Purification method for hyaluronic acid and/or salt thereof
JP4405631B2 (en) Method for purification of conjugated linoleic acid isomers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6332600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250