JP6318678B2 - Ion exchange membrane electrolytic cell - Google Patents
Ion exchange membrane electrolytic cell Download PDFInfo
- Publication number
- JP6318678B2 JP6318678B2 JP2014027909A JP2014027909A JP6318678B2 JP 6318678 B2 JP6318678 B2 JP 6318678B2 JP 2014027909 A JP2014027909 A JP 2014027909A JP 2014027909 A JP2014027909 A JP 2014027909A JP 6318678 B2 JP6318678 B2 JP 6318678B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- exchange membrane
- ion exchange
- electrolytic cell
- coil body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
本発明は、陰極室、陰極集電体、開口部を有する陰極、イオン交換膜、開口部を有する陽極、及び、陽極室から構成されるイオン交換膜法電解槽において、陰極集電体と開口部を有する陰極との間に、充填密度が0.14g/cm3以上0.28g/cm3以下である金属製コイル体、又は前記金属製コイル体で構成される弾性クッションマットを有し、アルカリ金属塩化物水溶液等の電解に使用できるイオン交換膜法電解槽に関する。 The present invention relates to a cathode current collector and an opening in an ion exchange membrane method electrolytic cell comprising a cathode chamber, a cathode current collector, a cathode having an opening, an ion exchange membrane, an anode having an opening, and an anode chamber. parts between a cathode with a metallic coil body packing density is less than 0.14 g / cm 3 or more 0.28 g / cm 3, or has an elastic cushion mat composed of the metal coil body, The present invention relates to an ion exchange membrane method electrolytic cell that can be used for electrolysis of an aqueous alkali metal chloride solution or the like.
アルカリ金属塩化物水溶液の電解の中で、一番生産量が大きい食塩電解を代表とする電解工業は、電力多消費型産業の典型であり、日本のように電力コストが高い国ではその電力コストの削減が重要な課題である。 Among the electrolysis of alkali metal chloride aqueous solutions, the electrolysis industry, represented by salt electrolysis, which has the largest output, is a typical power-intensive industry. In countries with high power costs, such as Japan, the power cost is high. Reduction is an important issue.
これまで、わが国の食塩電解は、イオン交換膜法での弛まぬ省エネルギー化により、約25年で約40%のエネルギーコストの削減を達成してきたが、更なる削減が求められている。 So far, salt electrolysis in Japan has achieved energy cost reduction of about 40% in about 25 years due to the energy saving that is not relaxed by the ion exchange membrane method, but further reduction is required.
このような電力削減に資するため、食塩電解に使用するイオン交換膜法電解槽では、陽極、イオン交換膜及び陰極の三者を密着状態若しくは少なくとも出来る限り近づけることにより、電解液の液間電圧を削減して電解電圧の低下を図っているが、電解電極面積が数平方メートルにも達する大型の電解槽においては、陽極、イオン交換膜及び陰極の三者を均一に密着状態にさせ、陽極−イオン交換膜−陰極の間隔を所定値に設定することは極めて困難であった。 In order to contribute to such a power reduction, in an ion exchange membrane method electrolytic cell used for salt electrolysis, the inter-electrode voltage of the electrolyte solution can be reduced by bringing the anode, the ion exchange membrane and the cathode into close contact or at least as close as possible. Although the electrolysis voltage is reduced by reducing the electrolysis voltage, in a large electrolytic cell with an electrolysis electrode area of several square meters, the anode, ion exchange membrane and cathode are in close contact with each other, and the anode-ion It was extremely difficult to set the distance between the exchange membrane and the cathode to a predetermined value.
陽極、イオン交換膜及び陰極の三者を均一に密着状態電極間距離あるいは電極と電極集電体間の距離を小さくするため、もしくはほぼ一定値に維持するための手段として、電極と電極集電体間に弾性材料を介在させる電解槽が知られている。 As a means to reduce the distance between the electrodes, the distance between the electrodes or the distance between the electrodes and the electrode current collector, or to maintain a substantially constant value, the anode, the ion exchange membrane and the cathode are uniformly adhered. An electrolytic cell in which an elastic material is interposed between bodies is known.
この弾性材料には金属の細線の織布、不織布、網などの非剛性材料と、板バネ等の剛性材料が知られている。 Known elastic materials include non-rigid materials such as woven fabrics, non-woven fabrics, and nets of metal thin wires, and rigid materials such as leaf springs.
非剛性材料は、電解槽への装着後に、イオン交換膜を挟んで反対方向の電極から過度に押圧された場合に、その部分で電極が窪んで電極間距離が不均一になったり、非剛性材料の細線が、陰極又は陽極の開口部の間を通ってイオン交換膜に突き刺さり、イオン交換膜が破損するといった不都合があった。また、板バネ等の剛性材料では、陰極又は陽極のメッシュを変形させて、イオン交換膜に強く押し当て、イオン交換膜を傷つけたり、陰極又は陽極に塑性変形が生じて陰極又は陽極の再使用が不可能になるといった欠点があった。 Non-rigid material, when it is excessively pressed from the electrode in the opposite direction across the ion exchange membrane after being attached to the electrolytic cell, the electrode will be recessed at that part and the distance between the electrodes will become uneven, or non-rigid There is a disadvantage that the thin wire of the material penetrates between the openings of the cathode or the anode and pierces the ion exchange membrane and breaks the ion exchange membrane. Also, in rigid materials such as leaf springs, the cathode or anode mesh is deformed and pressed strongly against the ion exchange membrane, the ion exchange membrane is damaged, or plastic deformation occurs in the cathode or anode, and the cathode or anode is reused. There was a drawback that it became impossible.
前述したように陽極、イオン交換膜及び陰極の三者を密着状態若しくは少なくとも出来るだけ近づける構造を有するイオン交換膜法電解槽の構造上の特徴は、電極をイオン交換膜に均一に密着させてイオン交換膜の破損をさけるため、及び陽−陰両電極間距離を最小に保つために、少なくとも一方の電極の極間距離方向への移動が自由な構造であり、電極を弾性材料で押し、狭持圧を調節できる点にある。 As described above, the ion exchange membrane method electrolytic cell having a structure in which the anode, the ion exchange membrane, and the cathode are in close contact with each other or at least as close as possible is characterized by the fact that the electrode is uniformly adhered to the ion exchange membrane. In order to avoid damage to the exchange membrane and to keep the distance between the positive and negative electrodes to a minimum, it is a structure in which at least one of the electrodes can move freely in the interelectrode distance direction. The holding pressure can be adjusted.
この弾性材料としては、金属ワイヤーからなる編物や織物又はこれを積層したもの、あるいは三次元的に編んであるか、三次元的に編んだ後これにうねり加工等を施した形状、並びに金属繊維からなる不織物、コイルバネ(スプリング)、板バネなどがあり、いずれも何らかのバネ弾性を有するものである。 Examples of the elastic material include a knitted fabric or woven fabric made of metal wire, or a laminate of these, or a shape that is three-dimensionally knitted or three-dimensionally knitted and then subjected to undulation processing, and metal fibers. There are non-woven fabrics, coil springs (springs), leaf springs, etc., all of which have some spring elasticity.
一方、食塩電解槽などの工業用の電解槽では、電極集電体から電極への電力供給を円滑に行うために、板バネや金属網状体等が使用されることがある。 On the other hand, in an industrial electrolytic cell such as a salt electrolytic cell, a leaf spring or a metal mesh may be used to smoothly supply power from the electrode current collector to the electrode.
しかし前述の通り、板バネや金属網状体は剛体であるため、イオン交換膜を傷付けたり、変形率が小さく、十分な電気的接続が得られないことがあるため好ましくない。 However, as described above, since the leaf spring and the metal net are rigid bodies, the ion exchange membrane may be damaged, the deformation rate may be small, and sufficient electrical connection may not be obtained.
このような欠点を解消するために、金属網状体に替えて金属製コイル体を陰極と陰極端板の間に装着して前記陰極を隔膜方向に均一に押圧して電極とイオン交換膜を密着させたイオン交換膜法電解槽が開示されている(例えば、特許文献1参照)。 In order to eliminate such drawbacks, a metal coil body was mounted between the cathode and the cathode end plate in place of the metal mesh, and the cathode was pressed uniformly in the direction of the diaphragm to bring the electrode and the ion exchange membrane into close contact. An ion exchange membrane method electrolytic cell is disclosed (for example, see Patent Document 1).
この金属製コイル体はコイルの線径が非常に小さく、変形率が高いため、電極とイオン交換膜を十分に密着させることが可能となり、電極−イオン交換膜間の距離が一定となり、安定した電解槽の操業が可能になる。 Since this metal coil body has a very small coil wire diameter and a high deformation rate, the electrode and the ion exchange membrane can be sufficiently adhered, and the distance between the electrode and the ion exchange membrane is constant and stable. The electrolytic cell can be operated.
また、陰極室、陰極集電体、陰極、イオン交換膜、陽極、及び、陽極室から構成されるイオン交換膜法電解槽において、金属製コイル体を巻回して構成される弾性クッション材を、水素発生陰極と陰極集電体間及び/又は陽極と陽極集電体間、あるいは水素発生陰極と陰極隔壁及び/又は陽極と陽極隔壁間に収容したことを特徴とするイオン交換膜電解槽が開示されている(例えば、特許文献2参照)。 Further, in an ion exchange membrane method electrolytic cell composed of a cathode chamber, a cathode current collector, a cathode, an ion exchange membrane, an anode, and an anode chamber, an elastic cushion material configured by winding a metal coil body, Disclosed is an ion exchange membrane electrolytic cell characterized in that it is housed between a hydrogen generating cathode and a cathode current collector and / or between an anode and an anode current collector, or between a hydrogen generating cathode and a cathode partition wall and / or between an anode and an anode partition wall. (For example, refer to Patent Document 2).
このイオン交換膜電解槽では、陽極又は水素発生陰極と各集電体間に金属製コイル体を巻回して構成される弾性クッション材を設置して各電極への給電が確実に起こるようにしているために、さらに安定した電解槽の操業が可能になる。 In this ion exchange membrane electrolytic cell, an elastic cushion material is provided by winding a metal coil body between an anode or a hydrogen generation cathode and each current collector so that power supply to each electrode occurs reliably. Therefore, more stable electrolyzer operation becomes possible.
一方で、これまでに開示された金属製コイル体では、まだ密着性が不十分か、逆に陰極−金属製コイル体間の密着性が高く、陰極集電体から陰極への均一な給電は十分行われるものの、金属製コイル体の密度が高すぎて、陰極から発生するガスが金属性コイル体を通して陰極集電体の開口部から陰極室内部へスムーズに排出されず、陰極室上部への水素ガス流の上昇速度が不十分となり、イオン交換膜近傍の苛性が滞留して、その濃度が局所的に高くなる現象が起こり、その結果、イオン交換膜の劣化が起こる場合があった。 On the other hand, in the metal coil bodies disclosed so far, the adhesion is still insufficient, or conversely, the adhesion between the cathode and the metal coil body is high, and uniform power feeding from the cathode current collector to the cathode is possible. Although performed sufficiently, the density of the metal coil body is too high, and the gas generated from the cathode is not smoothly discharged from the opening of the cathode current collector through the metallic coil body to the inside of the cathode chamber. The rising rate of the hydrogen gas flow becomes insufficient, the causticity in the vicinity of the ion exchange membrane is retained, and the concentration locally increases. As a result, the ion exchange membrane may be deteriorated.
そこで、上記の金属製コイル体を陰極と開口部を有する陰極集電体の間に介在させて前記陰極をイオン交換膜方向に均一に押圧して電極−イオン交換膜間を密着させたイオン交換膜法電解槽において、上記のイオン交換膜の劣化が起こりにくいイオン交換膜法電解槽を提案することにある。 Therefore, the metal coil body is interposed between a cathode and a cathode current collector having an opening, and the cathode is uniformly pressed in the direction of the ion exchange membrane so that the electrode and the ion exchange membrane are in close contact with each other. An object of the present invention is to propose an ion exchange membrane method electrolytic cell in which the above-described ion exchange membrane is unlikely to deteriorate.
発明者らは上記課題に対し、鋭意検討を進めた結果、陰極室、陰極集電体、開口部を有する陰極、イオン交換膜、開口部を有する陽極、及び、陽極室から構成されるイオン交換膜法電解槽において、陰極集電体と開口部を有する陰極との間に、充填密度が0.14g/cm3以上0.28g/cm3以下である金属製コイル体、又は該金属製コイル体で構成される弾性クッションマットを有するイオン交換膜法電解槽を用いると、該金属製コイル体の充填密度を最適化することによって、陰極室上部へのガス流の上昇速度を十分な速度とし、且つ、電極−イオン交換膜間の密着性を十分なものとして、陰極への給電が均一に行われることを見出した。 As a result of diligent investigations on the above problems, the inventors conducted an ion exchange comprising a cathode chamber, a cathode current collector, a cathode having an opening, an ion exchange membrane, an anode having an opening, and an anode chamber. in the membrane process electrolytic cell between the cathode having a cathode current collector and the opening, the metal coil body packing density is less than 0.14 g / cm 3 or more 0.28 g / cm 3, or the metal coil When an ion exchange membrane electrolytic cell having an elastic cushion mat composed of a body is used, the filling rate of the metal coil body is optimized so that the rate of gas flow rising to the upper part of the cathode chamber is sufficient. In addition, the inventors have found that the power supply to the cathode is uniformly performed with sufficient adhesion between the electrode and the ion exchange membrane.
具体的には、前記陰極集電体から陰極に十分な給電が行われるため、電解電圧が低く維持されると共に、陰極から発生するガスが前記弾性クッションマット(又は、前記弾性クッションマット及び前記陰極集電体)を通して陰極室内部へスムーズに排出され、陰極室上部への十分な上昇流が確保されて、陰極室内部の苛性濃度がより均一となるため、イオン交換膜近傍の苛性濃度が局所的に高くなることもなく、イオン交換膜の劣化が抑制されて、長期間安定した電解槽の操業が可能になる。 Specifically, since sufficient power is supplied from the cathode current collector to the cathode, the electrolysis voltage is kept low, and the gas generated from the cathode is transferred to the elastic cushion mat (or the elastic cushion mat and the cathode). Is smoothly discharged to the inside of the cathode chamber through the current collector), and a sufficient upward flow to the upper portion of the cathode chamber is secured, so that the caustic concentration in the cathode chamber becomes more uniform. Therefore, the deterioration of the ion exchange membrane is suppressed, and the electrolytic cell can be operated stably for a long time.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のイオン交換膜法電解槽の陰極室内で実施する電解反応は、クロルアルカリ(食塩)電解による水酸化アルカリ(水酸化ナトリウム)及び水素ガスの生成反応であることが望ましい。 The electrolytic reaction carried out in the cathode chamber of the ion exchange membrane method electrolytic cell of the present invention is preferably a production reaction of alkali hydroxide (sodium hydroxide) and hydrogen gas by chloralkali (salt) electrolysis.
以降の説明では、食塩電解の例で説明する。 In the following description, an example of salt electrolysis will be described.
本発明では、イオン交換膜法電解槽の陰極と陰極集電体との間に充填密度が0.14g/cm3以上0.28g/cm3以下である金属製コイル体、又は、該金属製コイル体を巻回して構成される弾性クッションマットを設置する。これにより、前記陰極集電体から陰極への給電が十分になるようにすると共に、開口部を有する陰極から発生する水素ガスが前記弾性クッションマット(又は、前記弾性クッションマット及び前記陰極集電体)を通して陰極室内部へスムーズに排出され、陰極室上部へ十分な上昇流が確保されて、陰極室内部の苛性濃度が均一となり、イオン交換膜近傍の苛性濃度が局所的に高くなることもないため、イオン交換膜の劣化が抑制される。 In the present invention, a metal coil body packing density is less than 0.14 g / cm 3 or more 0.28 g / cm 3 between the cathode and the cathode current collector of an ion-exchange membrane method electrolyzer, or the metallic An elastic cushion mat constructed by winding a coil body is installed. As a result, sufficient power is supplied from the cathode current collector to the cathode, and hydrogen gas generated from the cathode having an opening is transferred to the elastic cushion mat (or the elastic cushion mat and the cathode current collector). ) Is smoothly discharged to the inside of the cathode chamber, a sufficient upward flow is secured to the upper part of the cathode chamber, the caustic concentration in the cathode chamber becomes uniform, and the caustic concentration in the vicinity of the ion exchange membrane does not increase locally. Therefore, deterioration of the ion exchange membrane is suppressed.
充填密度が0.10g/cm3未満である金属製コイル体を巻回して構成される弾性クッションマットの場合、陰極−イオン交換膜間の十分な密着性が得られないために、電解電圧を低く維持することができない。 In the case of an elastic cushion mat formed by winding a metal coil body having a packing density of less than 0.10 g / cm 3 , since sufficient adhesion between the cathode and the ion exchange membrane cannot be obtained, an electrolytic voltage is set. It cannot be kept low.
充填密度が0.10g/cm3以上0.14g/cm3未満である金属製コイル体を巻回して構成される弾性クッションマットの場合、陰極−イオン交換膜間の密着性がまだ不十分であり、更に陰極室上部への水素ガスの十分な上昇流が確保されないために、イオン交換膜近傍の苛性濃度が局所的に高くなり、イオン交換膜の劣化がし易くなると考えられる。 In the case of an elastic cushion mat formed by winding a metal coil body having a packing density of 0.10 g / cm 3 or more and less than 0.14 g / cm 3 , the adhesion between the cathode and the ion exchange membrane is still insufficient. In addition, since a sufficient upward flow of hydrogen gas to the upper part of the cathode chamber is not ensured, it is considered that the caustic concentration in the vicinity of the ion exchange membrane is locally increased and the ion exchange membrane is easily deteriorated.
充填密度が0.28g/cm3を超える金属製コイル体を巻回して構成されるクッションマットの場合、陰極−イオン交換膜間の十分な密着性が得られ、電解電圧を低く維持することはできるが、金属製コイル体の充填密度が高すぎて、陰極から発生するガスの金属製コイル体内又は弾性クッションマット内の移動が困難となり、陰極室内部へスムーズに水素ガスが排出されず、陰極室内部に水素ガスの十分な上昇流が確保されないために、イオン交換膜近傍の苛性濃度が局所的に高くなり、イオン交換膜の劣化がし易くなる。 In the case of a cushion mat formed by winding a metal coil body with a packing density exceeding 0.28 g / cm 3 , sufficient adhesion between the cathode and the ion exchange membrane can be obtained, and the electrolytic voltage can be kept low. However, since the packing density of the metal coil body is too high, it becomes difficult to move the gas generated from the cathode within the metal coil body or the elastic cushion mat, and hydrogen gas is not smoothly discharged into the cathode chamber, and the cathode Since a sufficient upward flow of hydrogen gas is not ensured in the room, the caustic concentration in the vicinity of the ion exchange membrane is locally increased, and the ion exchange membrane is easily deteriorated.
この金属製コイル体は、良好な苛性ソーダ及び水素ガスに対して耐食性を示すニッケル、ニッケル合金、ステンレス鋼あるいは銅等の固有抵抗の小さい金属に良好な耐食性を示すニッケル等をめっき等で被覆して製造した線材をロール加工により螺旋コイルに加工することにより得られる。これらの金属製コイル体の材質の中でも、苛性ソーダ及び水素ガスに対して耐食性が優れたニッケル、又はニッケル合金が好ましい。線材の断面形状は、円、楕円、角部が丸い矩形等が好ましい。イオン交換膜の損傷を防止するために、三角形又は矩形のような鋭利な角部を有する断面形状は望ましくない。例えば、直径0.17mmのニッケル線(NW2201)をロール加工すると、断面形状が約0.05mm×0.5mmの角部が丸い矩形に成り、巻き径が約6mmであるコイル線となり、得られたコイル線は好ましく使用できる。 This metal coil body is made of nickel, nickel alloy, stainless steel, or copper, which has good corrosion resistance against caustic soda and hydrogen gas. It is obtained by processing the manufactured wire into a spiral coil by roll processing. Among these metal coil bodies, nickel or nickel alloy having excellent corrosion resistance against caustic soda and hydrogen gas is preferable. The cross-sectional shape of the wire is preferably a circle, an ellipse, a rectangle with round corners, or the like. In order to prevent damage to the ion exchange membrane, a cross-sectional shape with sharp corners such as a triangle or rectangle is not desirable. For example, when a nickel wire (NW2201) having a diameter of 0.17 mm is rolled, a square wire having a cross-sectional shape of about 0.05 mm × 0.5 mm is formed into a round rectangle, and a coil wire having a winding diameter of about 6 mm is obtained. The coil wire can be preferably used.
本発明では、金属製コイル体自体を使用するか、又は耐食性フレームに金属製コイル体を巻回して構成した弾性クッションマットとして使用する。 In the present invention, the metal coil body itself is used, or it is used as an elastic cushion mat formed by winding a metal coil body around a corrosion-resistant frame.
つまり、前記金属製コイル体は変形率が高いため、金属製コイル自体は取扱い難く、作業員の意図通りに電解槽の所定箇所に設置することが困難であることが多い。更に容易に変形する(強度が不十分である)ため、一旦電解槽の所定箇所に設置しても電解槽内の電解液や生成ガスにより偏位して各部材の均一密着が困難になることがある。 That is, since the metal coil body has a high deformation rate, it is difficult to handle the metal coil itself, and it is often difficult to install it at a predetermined location of the electrolytic cell as intended by the operator. Furthermore, since it is easily deformed (the strength is insufficient), even if it is once installed at a predetermined location of the electrolytic cell, it is displaced by the electrolytic solution or generated gas in the electrolytic cell, and it becomes difficult to uniformly adhere each member. There is.
例えば、長方形状の耐食性フレームの4本の枠杆のうち対向する2本の間に、ほぼ均一密度になるように1本の又は複数本の金属製コイル体を巻回すことにより得られる弾性クッションマットは、その組立て作業が電解槽外の作業であるため、容易に行うことができ、得られた弾性クッション材は、電解槽組立時に、電解槽内の対象電極と装着の集電体とを電気的に接続するように装着すれば良く、この装着時にも弾性クッションマット自体は耐食性フレームの強度により組立に支障が出る程には変形しないため、容易に所定箇所に設置することができる。 For example, an elastic cushion obtained by winding one or a plurality of metal coil bodies so as to obtain a substantially uniform density between two opposing frames of four rectangular rods of a rectangular corrosion resistant frame. The mat can be easily assembled because the assembly work is outside the electrolytic cell, and the obtained elastic cushion material is used to connect the target electrode in the electrolytic cell and the attached current collector when the electrolytic cell is assembled. The elastic cushion mat itself may be mounted so as to be electrically connected, and the elastic cushion mat itself is not deformed so as to hinder the assembly due to the strength of the corrosion-resistant frame, so that it can be easily installed at a predetermined location.
この弾性クッションマットでは、耐食性フレームの左右に通常2層の金属製コイル体が積層されるが、金属製コイル体自体が変形し易いため、隣接するコイル同士が櫛歯状に噛み合わされて、見掛け上、1層になっている。このようにして得られた弾性クッションマットは、食器洗浄用の金属タワシのような外観を有している。 In this elastic cushion mat, two layers of metal coil bodies are usually laminated on the left and right sides of the corrosion-resistant frame. However, since the metal coil bodies themselves are easily deformed, adjacent coils are meshed with each other in a comb-like shape. The top is a single layer. The elastic cushion mat thus obtained has an appearance like a metal scrub for dishwashing.
この金属製コイル体の径(コイルの見掛け上の直径)は電解槽内に装着されることにより通常10〜70%まで縮んで弾性が生じ、この弾性により陰極と陰極集電体を弾性的に接続して電極への給電が容易になる。線径の小さい金属製コイル体を使用すれば必然的に陰極や陰極集電体と弾性クッションマットとの接触点の数が多くなり、均一接触が可能になる。電解槽に装着された後の弾性クッションマットは、その耐食性フレームにより形状が保持されるため、塑性変形を受けることが殆どなく、電解槽の解体−再組立時にも殆どの場合再使用できる。 The diameter of the metal coil body (the apparent diameter of the coil) is usually reduced to 10 to 70% by mounting in the electrolytic cell, and elasticity is generated. This elasticity makes the cathode and the cathode current collector elastic. It is easy to connect and feed power to the electrode. If a metal coil body having a small wire diameter is used, the number of contact points between the cathode or the cathode current collector and the elastic cushion mat is inevitably increased, and uniform contact is possible. Since the shape of the elastic cushion mat after being mounted on the electrolytic cell is held by the corrosion-resistant frame, the elastic cushion mat is hardly subjected to plastic deformation and can be reused in most cases even when the electrolytic cell is disassembled and reassembled.
本発明のイオン交換膜法電解槽を組み立てる際には、陰極とその陰極集電体間に金属製コイル体、又は、耐食性フレームに金属製コイル体を巻回して構成した弾性クッションマットを位置させ、その後は通常通りに組立てれば所定の位置に弾性クッションマットが保持された電解槽が得られる。 When assembling the ion exchange membrane electrolytic cell of the present invention, a metal coil body or an elastic cushion mat formed by winding a metal coil body around a corrosion-resistant frame is positioned between the cathode and the cathode current collector. Thereafter, when assembled as usual, an electrolytic cell in which the elastic cushion mat is held at a predetermined position can be obtained.
前述のような構成から成るイオン交換膜法電解槽を使用して食塩電解を行うには、陽極室に食塩水溶液の電解液を、陰極室に水又は希釈苛性ソーダ水溶液を供給しながら、両極間に通電する。本発明の金属製コイル体又は弾性クッションマットが陰極集電体との間に保持されている陰極では、弾性クッションマットの高強度及び強靭性により、陰極−イオン交換膜の密着性が十分で、その密着状態が長期間維持されるため、陰極によりイオン交換膜が機械的に損傷したりすることはなく、また陰極が変形して給電が不十分になることがなく、苛性ソーダを長期間、安定的に高効率で製造することができる。 In order to perform salt electrolysis using the ion exchange membrane electrolytic cell having the above-described configuration, while supplying an electrolyte solution of a saline solution to the anode chamber and water or a diluted caustic soda solution to the cathode chamber, Energize. In the cathode in which the metal coil body or elastic cushion mat of the present invention is held between the cathode current collector, due to the high strength and toughness of the elastic cushion mat, the adhesion of the cathode-ion exchange membrane is sufficient, Since the close contact state is maintained for a long time, the ion exchange membrane is not mechanically damaged by the cathode, and the cathode is not deformed and power supply is not insufficient, so that the caustic soda can be stably maintained for a long time. Can be manufactured with high efficiency.
尚、本発明のイオン交換膜法電解槽に使用される陰極は、陰極からの生成物をその背面の弾性クッションマット及び開口部を有する陰極集電体に通して陰極室内部へスムーズに排出するためには、陰極自体にも開口部を有する、例えば、エキスパンドメタルメッシュからなる開口を有する陰極が使用可能である。 The cathode used in the ion-exchange membrane electrolytic cell of the present invention smoothly discharges the product from the cathode into the cathode chamber through the elastic cushion mat and the cathode current collector having the opening on the back surface. For this purpose, a cathode having an opening in the cathode itself, for example, an opening made of an expanded metal mesh can be used.
また、陰極の材質については、通常の食塩電解に使用される材質の陰極を適宜選択して使用することが可能であるが、例えば、導電性基材上に、白金と遷移金属元素との白金合金を担持してなる水素発生用電極(特開2005−330575号参照)は、電解液中の鉄イオンによる被毒の影響が少なく、運転中や起動・停止中にも水素過電圧の上昇や担持物の脱落がなく、耐久性に優れた水素発生用電極であるため好ましい。 As for the material of the cathode, it is possible to appropriately select and use a cathode of a material used for normal salt electrolysis. For example, platinum of a platinum and a transition metal element on a conductive substrate is used. An electrode for hydrogen generation formed by supporting an alloy (see Japanese Patent Application Laid-Open No. 2005-330575) is less affected by poisoning due to iron ions in the electrolyte, and increases or supports hydrogen overvoltage even during operation, starting and stopping. It is preferable because it is an electrode for hydrogen generation that is excellent in durability and does not drop off.
本発明のイオン交換膜法電解槽に使用される開口部を有する陰極集電体は、特に限定されないが、例えば、ニッケルメッシュからなる陰極集電体が使用可能である。 The cathode current collector having an opening used in the ion exchange membrane method electrolytic cell of the present invention is not particularly limited. For example, a cathode current collector made of nickel mesh can be used.
また、本発明のイオン交換膜法電解槽に使用される陽極は、陽極からの生成物をその背面の弾性クッションマット及び開口部を有する陰極集電体に通して陰極室内部へスムーズに排出するためには、陽極自体にも開口部を有する。例えば、エキスパンドメタルメッシュからなる開口を有する陽極が使用可能である。 The anode used in the ion exchange membrane electrolytic cell of the present invention smoothly discharges the product from the anode to the inside of the cathode chamber through the elastic cushion mat and the cathode current collector having an opening on the back surface. For this purpose, the anode itself also has an opening. For example, an anode having an opening made of an expanded metal mesh can be used.
また、陽極の材質については、通常の食塩電解に使用される材質の陽極を適宜選択して使用することが可能であるが、例えば、導電性基材上に、白金族酸化物を担持してなる塩素発生用電極、通常DSEと呼ばれる陽極は、運転中や起動・停止中にも塩素過電圧の上昇や担持物の脱落がなく、耐久性に優れた塩素発生電極であるため好ましい。 Further, regarding the material of the anode, it is possible to appropriately select and use an anode of a material used in normal salt electrolysis. For example, a platinum group oxide is supported on a conductive substrate. A chlorine generating electrode, usually an anode called DSE, is preferable because it is a chlorine generating electrode that is excellent in durability and does not increase in chlorine overvoltage or drop off during loading, starting and stopping.
また、イオン交換膜については、食塩電解に使用される通常のイオン交換膜が使用可能である。 Moreover, about an ion exchange membrane, the normal ion exchange membrane used for salt electrolysis can be used.
本発明によるイオン交換膜法電解槽で使用可能な弾性クッション材の例を図1〜図3に基づいて説明する。図1は耐食性フレームの平面図、図2は弾性クッションマットを例示する平面図、図3は図2のA−A線縦断面図である。 Examples of the elastic cushion material that can be used in the ion exchange membrane electrolytic cell according to the present invention will be described with reference to FIGS. 1 is a plan view of a corrosion-resistant frame, FIG. 2 is a plan view illustrating an elastic cushion mat, and FIG. 3 is a longitudinal sectional view taken along line AA in FIG.
図1に示すように、耐食性フレーム1はニッケル等のアルカリに対して耐食性のある金属の丸棒や角棒で構成された枠である。
As shown in FIG. 1, the corrosion-
図3に示す金属製コイル体2は、細径の金属線をコイル状にロール加工して得られ、例えば、洗浄用の金属タワシのように剛性のない自由に変形できる材料になっている。この金属製コイル体2は図2に示すように、例えば、直径約2mmのニッケル製耐食性フレーム3の長手方向の1対の丸棒間のほぼ全長に渡って巻回されて、弾性クッションマット3が製造される。
The
このようにして製造された弾性クッションマット3は、金属製コイル体2が耐食性フレーム1に巻回されているため、耐食性フレームの形状のまま保持され、金属製コイル体2が耐食性フレーム1から離脱することは殆どなく、金属製コイル体2を耐食性フレーム1と一体化したものとして取り扱える。
The elastic cushion mat 3 manufactured in this manner is held in the shape of the corrosion-resistant frame because the
これらの金属製コイル体や弾性クッションマットは、必ずしも陰極集電体や陰極に溶接等で固定する必要はないが、固定しても構わない。通常、電気は固定せずに接触通電方式で流すことにする。 These metal coil bodies and elastic cushion mats are not necessarily fixed to the cathode current collector or the cathode by welding or the like, but may be fixed. Normally, electricity is not fixed but is flowed by contact energization.
図4には、金属製コイル体又は弾性クッションマットを陰極集電体と陰極の間に介在させて圧縮した時の構造を示すが、圧力により、図3に示す金属製コイル体の2つのコイル部が重なって図4の構造の金属製コイル体となり、図2の様な弾性クッションマットでも、それを構成する金属製コイル体は図4の構造の金属製コイル体となる。 FIG. 4 shows a structure when a metal coil body or an elastic cushion mat is compressed between a cathode current collector and a cathode, and the two coils of the metal coil body shown in FIG. 4 are overlapped to form a metal coil body having the structure shown in FIG. 4, and even in the elastic cushion mat as shown in FIG. 2, the metal coil body constituting the same is a metal coil body having the structure shown in FIG.
図5は、複極式イオン交換膜法電解槽を食塩電解に使用する時に、弾性クッションマットを水素発生陰極と陰極集電体の電気的接続に使用した例を示す概略平面図である。 FIG. 5 is a schematic plan view showing an example in which an elastic cushion mat is used for electrical connection between a hydrogen generating cathode and a cathode current collector when a bipolar ion exchange membrane electrolytic cell is used for salt electrolysis.
図5の複極式イオン交換膜法電解槽は、陽極室4、陰極室5及びそれらを分けるイオン交換膜6から構成されている。陽極室4側には陽極7が配置されており、陰極室5側には陰極集電体9、本発明の弾性クッションマット3及び陰極8が配置されている。 The bipolar ion exchange membrane method electrolytic cell in FIG. 5 includes an anode chamber 4, a cathode chamber 5, and an ion exchange membrane 6 that separates them. The anode 7 is disposed on the anode chamber 4 side, and the cathode current collector 9, the elastic cushion mat 3 of the present invention, and the cathode 8 are disposed on the cathode chamber 5 side.
図6は、図4のB部分を拡大した平面図である。陰極8、陽極7及び陰極集電体9が開口部を有することが示されている。陰極集電体9と弾性クッションマット3(又は金属製コイル体2)とは電気的に接触し、更に弾性クッションマット3と陰極8が電気的に接続されて、陰極集電体9から弾性クッションマット3を通して陰極8へ給電が行われる。 6 is an enlarged plan view of a portion B in FIG. It is shown that the cathode 8, anode 7 and cathode current collector 9 have openings. The cathode current collector 9 and the elastic cushion mat 3 (or the metal coil body 2) are in electrical contact, and the elastic cushion mat 3 and the cathode 8 are electrically connected. Power is supplied to the cathode 8 through the mat 3.
金属製コイル体は耐食性フレームに巻回されている弾性クッションマット3を使用しているので、この複極式イオン交換膜法電解槽の組立時に、弾性クッションマット3の取り扱いが容易で形が崩れたりすることは殆どない。よって、陰極8から発生した水素ガスは弾性コイルクッション3内の金属製コイル体2内部の空洞部を通り抜け、陰極室内を効率的に循環することができる。
Since the metal coil body uses an elastic cushion mat 3 wound around a corrosion-resistant frame, the elastic cushion mat 3 is easy to handle and loses its shape when this bipolar ion exchange membrane electrolytic cell is assembled. There is little to do. Therefore, the hydrogen gas generated from the cathode 8 can pass through the cavity inside the
この状態で、陽極室に食塩水を、陰極室に希釈苛性ソーダ水溶液をそれぞれ供給しながら両極間に通電すると、陰極室で濃縮苛性ソーダ水溶液が得られる。 In this state, when a saline solution is supplied to the anode chamber and a dilute caustic soda solution is supplied to the cathode chamber, and electricity is applied between both electrodes, a concentrated caustic soda solution is obtained in the cathode chamber.
本発明は、イオン交換膜により、開口部を有する陽極を収容する陽極室と開口部を有する陰極を収容する陰極室に区画されたイオン交換膜法電解槽において、陰極集電体と陰極との間に、充填密度が0.14g/cm3以上0.28g/cm3以下である金属製コイル体、又は該金属製コイル体で構成される弾性クッションマットを有することを特徴とするイオン交換膜法電解槽である。 The present invention relates to an ion exchange membrane method electrolytic cell partitioned by an ion exchange membrane into an anode chamber containing an anode having an opening and a cathode chamber containing a cathode having an opening. during the ion exchange membrane and having a resilient cushion mat composed of packing density 0.14 g / cm 3 or more 0.28 g / cm 3 metal coil body is less, or the metallic coil body It is a process electrolytic cell.
金属製コイル体は自由に変形でき、更に十分な導電性を有するため、陰極と陰極集電体間を確実に電気的に接続できる。この金属製コイル体を耐食性フレームに巻回して構成した弾性クッションマットを使用すると、金属製コイル体を耐食性フレームと一体化しているため、取扱いが容易で、更に形が崩れたりすることが殆どなく、電解槽の解体−再組立時にも殆どの場合再使用できる。 Since the metal coil body can be freely deformed and has sufficient conductivity, the cathode and the cathode current collector can be reliably electrically connected. Using an elastic cushion mat that is formed by winding this metal coil body around a corrosion-resistant frame, the metal coil body is integrated with the corrosion-resistant frame, so that it is easy to handle and the shape is hardly lost. In most cases, it can be reused even when the electrolytic cell is disassembled and reassembled.
本発明に係る金属製コイル体、又は弾性クッションマットを使用するイオン交換膜法電解槽を以下の実施例により具体的に説明する。 An ion exchange membrane method electrolytic cell using a metal coil body or an elastic cushion mat according to the present invention will be specifically described with reference to the following examples.
実施例1
次のようにしてイオン交換膜法電解槽の単位セルを組み立てた。
Example 1
A unit cell of an ion exchange membrane electrolytic cell was assembled as follows.
陽極にはペルメレック電極株式会社製の開口部を有する寸法安定性電極を使用し、陰極はニッケル製マイクロメッシュ基材の活性陰極とした。陽極及び陰極の反応面サイズはそれぞれ幅40mm、高さ75mmとした。イオン交換膜は旭硝子株式会社製のFlemion F−8020を使用した。 A dimensional stability electrode having an opening made by Permerek Electrode Co., Ltd. was used as the anode, and the cathode was an active cathode of a nickel micromesh substrate. The reaction surface size of the anode and the cathode was 40 mm in width and 75 mm in height, respectively. As the ion exchange membrane, Flemion F-8020 manufactured by Asahi Glass Co., Ltd. was used.
金属製コイル体には、線径が0.17mmで、引張強度620〜680N/m2のニッケル線(NW2201)をロール加工により約0.5mm幅のコイル線にし、コイルの巻数16回、巻き径を6.0mmにしたものを用いた。 For the metal coil body, a nickel wire (NW2201) having a wire diameter of 0.17 mm and a tensile strength of 620 to 680 N / m 2 is formed into a coil wire having a width of about 0.5 mm by roll processing, and the number of turns of the coil is 16 times. A diameter of 6.0 mm was used.
この金属製コイル体を、直径2mmのニッケル丸棒製枠(耐食性フレーム)に巻回して直方体状に形状を整え、概略サイズが厚さ3mm×幅40mm×長さ75mmの弾性クッションマットとした。この弾性クッションマットのコイル充填密度は0.14g/cm3であった。陰極集電体にはニッケル製エキスパンデッドメタルを使用した。 This metal coil body was wound around a nickel round bar frame (corrosion resistant frame) having a diameter of 2 mm to adjust the shape to a rectangular parallelepiped shape, thereby obtaining an elastic cushion mat having an approximate size of 3 mm thick × 40 mm wide × 75 mm long. The coil packing density of this elastic cushion mat was 0.14 g / cm 3 . Nickel expanded metal was used for the cathode current collector.
陰極集電体と水素発生陰極間に弾性クッションマットを弾性が生じるように挿入し、陽極室側の電解液を200g/LのNaCl溶液とし、電流密度4kA/m2、陰極室内の苛性濃度を32wt%として2日間電解を行った後、電流密度を6.5kA/m2に上げ、更に2日間電解を行った。続いて、電流密度を6.5kA/m2のままで、苛性濃度を36wt%に上げて2日間、更に苛性濃度を39wt%に上げて2日間電解した際の電解電圧とイオン交換膜の電流効率を測定した。 An elastic cushion mat is inserted between the cathode current collector and the hydrogen generating cathode so as to produce elasticity. The electrolyte solution on the anode chamber side is a 200 g / L NaCl solution, the current density is 4 kA / m 2 , and the caustic concentration in the cathode chamber is After electrolysis at 32 wt% for 2 days, the current density was increased to 6.5 kA / m 2 and electrolysis was further carried out for 2 days. Subsequently, with the current density kept at 6.5 kA / m 2 , the electrolysis voltage and the ion exchange membrane current when electrolysis was carried out for 2 days by increasing the caustic concentration to 36 wt% and further increasing the caustic concentration to 39 wt%. Efficiency was measured.
実施例1における金属製コイル体のワイヤー径などの条件と電解電圧、電流効率の結果を表1に示す。 Table 1 shows the conditions such as the wire diameter of the metal coil body in Example 1 and the results of electrolysis voltage and current efficiency.
このように、39wt%の高苛性濃度条件であっても、低い電解電圧と高い電流効率が維持された。 Thus, a low electrolysis voltage and high current efficiency were maintained even under high caustic concentration conditions of 39 wt%.
実施例2
金属製コイル体のコイルの巻数12回、巻き径を8.5mmにした以外は実施例1と同様に弾性クッションマットを作製し、以下同様に電解評価を行った。
結果を表1に示す。
Example 2
An elastic cushion mat was prepared in the same manner as in Example 1 except that the number of turns of the coil of the metal coil body was 12 and the winding diameter was 8.5 mm, and the electrolytic evaluation was performed in the same manner.
The results are shown in Table 1.
実施例3〜7
金属製コイル体のコイルの巻数20〜60回、巻き径5.0〜7.0mmにした以外は実施例1と同様に弾性クッションマットを作製し、以下同様に電解評価を行った。
結果を表1に示す。
Examples 3-7
An elastic cushion mat was prepared in the same manner as in Example 1 except that the number of turns of the metal coil body was 20 to 60 and the winding diameter was 5.0 to 7.0 mm.
The results are shown in Table 1.
比較例1〜4
金属製コイル体のコイル径、コイルの巻数、巻き径を変え、本発明範囲外のコイル充填密度の弾性クッションマットを実施例1と同様に作製し、以下同様に電解評価を行った。
Comparative Examples 1-4
An elastic cushion mat having a coil filling density outside the range of the present invention was produced in the same manner as in Example 1 by changing the coil diameter, the number of turns of the coil, and the winding diameter of the metal coil body, and the electrolytic evaluation was performed in the same manner.
結果を表1にまとめて示す。 The results are summarized in Table 1.
本発明のイオン交換膜法電解槽は、金属製コイル体を陰極と陰極集電体の間に介在させて前記陰極をイオン交換膜方向に均一に押圧したイオン交換膜法電解槽であり、上記のイオン交換膜の劣化が起こりにくいイオン交換膜法電解槽であり、食塩電解などのクロルアルカリ電解に代表される電解工業で広く利用することができ、電解工業の電気分解に必要なエネルギーを長期間安定に低く抑えることができる。 The ion exchange membrane method electrolytic cell of the present invention is an ion exchange membrane method electrolytic cell in which a metal coil body is interposed between a cathode and a cathode current collector and the cathode is uniformly pressed in the ion exchange membrane direction. This is an ion-exchange membrane electrolytic cell that is unlikely to deteriorate, and can be widely used in the electrolysis industry represented by chloralkali electrolysis such as salt electrolysis. The period can be kept low.
1:耐食性フレーム
2:金属製コイル体
3:弾性クッションマット
4:陽極室
5:陰極室
6:イオン交換膜
7:陽極
8:陰極
9:陰極集電体
1: Corrosion resistant frame 2: Metal coil body 3: Elastic cushion mat 4: Anode chamber 5: Cathode chamber 6: Ion exchange membrane 7: Anode 8: Cathode 9: Cathode current collector
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014027909A JP6318678B2 (en) | 2014-02-17 | 2014-02-17 | Ion exchange membrane electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014027909A JP6318678B2 (en) | 2014-02-17 | 2014-02-17 | Ion exchange membrane electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015151591A JP2015151591A (en) | 2015-08-24 |
JP6318678B2 true JP6318678B2 (en) | 2018-05-09 |
Family
ID=53894181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014027909A Active JP6318678B2 (en) | 2014-02-17 | 2014-02-17 | Ion exchange membrane electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6318678B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500319B2 (en) * | 2001-04-05 | 2002-12-31 | Giner Electrochemical Systems, Llc | Proton exchange membrane (PEM) electrochemical cell having an integral, electrically-conductive, compression pad |
JP3860132B2 (en) * | 2003-03-31 | 2006-12-20 | クロリンエンジニアズ株式会社 | Ion exchange membrane electrolyzer using hydrogen generating cathode |
JP5885065B2 (en) * | 2011-11-14 | 2016-03-15 | 株式会社大阪ソーダ | Zero gap type electrolytic cell electrode unit |
JP2013216922A (en) * | 2012-04-04 | 2013-10-24 | Chlorine Engineers Corp Ltd | Ion exchange membrane electrolytic cell |
-
2014
- 2014-02-17 JP JP2014027909A patent/JP6318678B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015151591A (en) | 2015-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846869B1 (en) | Cathode structure for electrolysis and electrolytic cell using the same | |
CN1537973B (en) | Electrode for electrolysis and ion exchange membrane electrolytic cell | |
JP5945154B2 (en) | Ion exchange membrane electrolytic cell | |
TW200409834A (en) | Bipolar, zero-gap type electrolytic cell | |
JP6183620B2 (en) | Zero gap type anode for salt electrolyzer, salt electrolyzer, and salt electrolysis method using the same | |
JP2017222897A (en) | Electrolytic tank | |
TW202124779A (en) | Elastic mat for alkaline water electrolysis vessel | |
KR101848339B1 (en) | Elastic cushion material and ion exchange membrane electrolytic cell utilizing same | |
KR20200138369A (en) | Electrode structure, manufacturing method of electrode structure, electrolytic cell and electrolytic cell | |
JP5819790B2 (en) | Electrolytic cell and electrolytic cell | |
JP3860132B2 (en) | Ion exchange membrane electrolyzer using hydrogen generating cathode | |
JP4246530B2 (en) | Electrode for electrolysis and ion exchange membrane electrolytic cell using the same | |
JP6423856B2 (en) | Electrolytic cell and method for retrofitting electrolytic cell | |
JP6318678B2 (en) | Ion exchange membrane electrolytic cell | |
JP5457951B2 (en) | Electrolytic cell | |
WO2014199440A1 (en) | Ion exchange membrane electrolytic cell | |
JP2013216922A (en) | Ion exchange membrane electrolytic cell | |
JP3869383B2 (en) | Ion-exchange membrane electrolytic cell using liquid-permeable gas diffusion cathode | |
JP2014221930A (en) | Ion exchange membrane electrolytic cell | |
JP2014214350A (en) | Ion exchange membrane electrolytic bath |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180319 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6318678 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |