Nothing Special   »   [go: up one dir, main page]

JP6305748B2 - Foil bearing, foil bearing unit having the same, and turbomachine - Google Patents

Foil bearing, foil bearing unit having the same, and turbomachine Download PDF

Info

Publication number
JP6305748B2
JP6305748B2 JP2013256843A JP2013256843A JP6305748B2 JP 6305748 B2 JP6305748 B2 JP 6305748B2 JP 2013256843 A JP2013256843 A JP 2013256843A JP 2013256843 A JP2013256843 A JP 2013256843A JP 6305748 B2 JP6305748 B2 JP 6305748B2
Authority
JP
Japan
Prior art keywords
foil
bearing
holder
shaft
foil bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256843A
Other languages
Japanese (ja)
Other versions
JP2015113926A (en
Inventor
真人 吉野
真人 吉野
藤原 宏樹
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2013256843A priority Critical patent/JP6305748B2/en
Priority to US15/102,038 priority patent/US10012109B2/en
Priority to CN201480064681.6A priority patent/CN105765245B/en
Priority to PCT/JP2014/080639 priority patent/WO2015087675A1/en
Priority to EP14869649.5A priority patent/EP3096028B1/en
Publication of JP2015113926A publication Critical patent/JP2015113926A/en
Application granted granted Critical
Publication of JP6305748B2 publication Critical patent/JP6305748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)

Description

本発明は、内周に挿入された軸を回転自在に支持するフォイル軸受と、これを有するフォイル軸受ユニット及びターボ機械に関する。   The present invention relates to a foil bearing that rotatably supports a shaft inserted in an inner periphery, a foil bearing unit having the same, and a turbomachine.

ガスタービンやターボチャージャ等のターボ機械の主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。このような条件下での使用に適合する軸受として、フォイル軸受が着目されている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。軸の回転時には、軸の外周面とフォイルの軸受面との間に流体膜(例えば空気膜)が形成され、軸が非接触支持される。   A bearing that supports a main shaft of a turbo machine such as a gas turbine or a turbocharger is required to withstand a severe environment such as high temperature and high speed rotation. As a bearing suitable for use under such conditions, a foil bearing has attracted attention. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. When the shaft rotates, a fluid film (for example, an air film) is formed between the outer peripheral surface of the shaft and the bearing surface of the foil, and the shaft is supported in a non-contact manner.

例えば、下記の特許文献1及び2には、複数のフォイルを周方向に並べて配置し、各フォイルの周方向両端をフォイルホルダ(ハウジング)に取り付けた、いわゆる多円弧型のフォイル軸受が示されている。これらのフォイル軸受では、フォイルホルダの内周面から内径に突出した突出部(特許文献1の偏移抑制部62、特許文献2の峰70)に各フォイルの周方向両端を突き当てることで、各フォイルの周方向両端がフォイルホルダに保持されている。   For example, the following Patent Documents 1 and 2 show so-called multi-arc type foil bearings in which a plurality of foils are arranged in the circumferential direction and both ends of each foil in the circumferential direction are attached to a foil holder (housing). Yes. In these foil bearings, by striking both ends in the circumferential direction of each foil against the protruding portion (the shift suppressing portion 62 of Patent Document 1 and the peak 70 of Patent Document 2) protruding from the inner peripheral surface of the foil holder to the inner diameter, Both ends in the circumferential direction of each foil are held by the foil holder.

特開2009−216239号公報JP 2009-216239 A 特開2006−57828号公報JP 2006-57828 A

フォイル軸受では、フォイルと他部材(バックフォイルやフォイルホルダ)との間の微小摺動の摩擦エネルギーにより、軸の振動を減衰する効果が得られる。しかし、上記特許文献1及び2のフォイル軸受では、フォイルホルダに設けられた突出部により各フォイルが周方向両側から拘束されており、各フォイルの周方向両側への移動がフォイルホルダの突出部で規制される。このため、フォイルと他部材との摺動量が極めて微小となり、軸の振動減衰効果が十分に得られない恐れがある。   In the foil bearing, an effect of attenuating the vibration of the shaft is obtained by the frictional energy of minute sliding between the foil and another member (back foil or foil holder). However, in the foil bearings of Patent Documents 1 and 2, each foil is constrained from both sides in the circumferential direction by the protrusion provided on the foil holder, and the movement of each foil in the circumferential direction on both sides is the protrusion of the foil holder. Be regulated. For this reason, the sliding amount between the foil and the other member becomes extremely small, and there is a possibility that the vibration damping effect of the shaft cannot be sufficiently obtained.

本発明が解決しようとする課題は、多円弧型のフォイル軸受による軸の振動減衰効果を高めることにある。   The problem to be solved by the present invention is to increase the vibration damping effect of the shaft by the multi-arc type foil bearing.

上記の課題を解決するためになされた本発明は、筒状をなしたフォイルホルダと、軸受面を有し、前記フォイルホルダの内周面に周方向に並べて配された複数のフォイルとを備え、各フォイルの周方向両端が前記フォイルホルダに保持され、内周に挿入された軸を回転自在に支持するフォイル軸受であって、前記フォイルホルダの内周面に凹部を設け、各フォイルの周方向一部領域を前記凹部の内部で湾曲可能としたことを特徴とするものである。   The present invention made to solve the above-mentioned problems includes a foil holder having a cylindrical shape, and a plurality of foils having a bearing surface and arranged side by side in the circumferential direction on the inner peripheral surface of the foil holder. A foil bearing that is supported by the foil holder at both ends in the circumferential direction and rotatably supports the shaft inserted in the inner periphery, and is provided with a recess on the inner peripheral surface of the foil holder, A partial region in the direction can be bent inside the concave portion.

このフォイル軸受によれば、軸の回転時に、フォイルホルダの内周面に設けた凹部の内部で各フォイルの周方向一部領域を湾曲させることにより、フォイルを湾曲させた分だけ、各フォイルの他の領域を周方向移動させることができる。これにより、各フォイルとフォイルホルダとの摺動量が増えるため、フォイルの摺動による軸の振動減衰効果を高めることができる。   According to this foil bearing, when the shaft is rotated, a partial region in the circumferential direction of each foil is curved inside the concave portion provided on the inner peripheral surface of the foil holder. Other regions can be moved in the circumferential direction. Thereby, since the sliding amount of each foil and foil holder increases, the vibration damping effect of the shaft by the sliding of the foil can be enhanced.

上記のフォイル軸受は、前記凹部に、各フォイルの回転方向先行側の端部を差し込んだ構成とすることができる。この場合、各フォイルの回転方向先行側の端部と前記凹部とが周方向で係合することにより、フォイルの回転方向先行側への移動を所定位置で規制することができる。尚、「回転方向」とは、フォイル軸受で支持される軸の回転方向のことを言う(以下同様)。   Said foil bearing can be set as the structure which inserted the edge part of the rotation direction preceding side of each foil in the said recessed part. In this case, the end of each foil in the rotational direction leading side and the concave portion are engaged in the circumferential direction, so that the movement of the foil in the rotational direction leading side can be restricted at a predetermined position. The “rotation direction” refers to the rotation direction of the shaft supported by the foil bearing (the same applies hereinafter).

上記のフォイル軸受では、隣接するフォイルの周方向端部同士を軸方向視で交差させて交差部を形成し、各フォイルの周方向両端を隣接するフォイルの外径側に配することが好ましい。これにより、フォイルホルダの内周面全周に軸受面を設けることができる。   In the above foil bearing, it is preferable that the circumferential ends of adjacent foils intersect with each other in the axial direction to form an intersection, and the circumferential ends of each foil are disposed on the outer diameter side of the adjacent foil. Thereby, a bearing surface can be provided in the inner peripheral surface whole periphery of a foil holder.

フォイルホルダの内周面に形成される凹部の周方向幅が小さすぎると、各フォイルの周方向一部領域を凹部の内部で湾曲させることができない恐れがある。従って、凹部は、内部で各フォイルの湾曲を許容できる周方向幅を有する必要がある。例えば、上記のようにフォイルの周方向端部同士を交差させる場合、凹部の開口部の回転方向後方側の端部が前記交差部よりも回転方向後方側に配されるように、凹部の開口部の周方向幅を設定することが好ましい。   If the circumferential width of the recess formed on the inner peripheral surface of the foil holder is too small, there is a risk that the circumferential partial region of each foil cannot be curved inside the recess. Therefore, the concave portion needs to have a circumferential width that allows the bending of each foil inside. For example, when the circumferential ends of the foil are crossed as described above, the opening of the recess is arranged such that the end of the opening of the recess is on the rear side in the rotation direction with respect to the intersection. It is preferable to set the circumferential width of the part.

上記のフォイル軸受は、凹部の内壁に、各フォイルの回転方向先行側の端部が突き当たる角部を設けることが好ましい。この場合、各フォイルの回転方向先行側の端部が角部に突き当たることにより、各フォイルの回転方向先行側の端部を所定位置に配することができる。これにより、軸の回転時のフォイルの変形を制御しやすくなるため、所望の形状の軸受面を得やすくなり、軸受性能を安定させることができる。   In the foil bearing described above, it is preferable to provide a corner portion on the inner wall of the recess where the end portion of each foil in the rotation direction leading side abuts. In this case, the end of each foil in the rotation direction leading side abuts on the corner, so that the end of each foil in the rotation direction leading side can be disposed at a predetermined position. Thereby, since it becomes easy to control the deformation | transformation of the foil at the time of rotation of a axis | shaft, it becomes easy to obtain the bearing surface of a desired shape, and bearing performance can be stabilized.

上記のフォイル軸受の各フォイルは、フォイルホルダの内周面におおよそ沿って配され、その端部が凹部に差し込まれる。このとき、フォイルの端部を角部に突き当たらせるために、角部は、溝の開口部の回転方向後方側の端部を接点としたフォイルホルダの内周面の接線L上あるいはその近傍に設けることが好ましい{図5(A)参照}。具体的には、例えば、上記の接線Lを接点を中心に外径側に10°回転させた直線L’と、フォイルホルダの内周面との間の領域に、溝の角部を設けることが好ましい。   Each foil of the foil bearing described above is arranged approximately along the inner peripheral surface of the foil holder, and its end is inserted into the recess. At this time, in order to cause the end of the foil to abut against the corner, the corner is on or near the tangent L of the inner peripheral surface of the foil holder with the end on the rear side in the rotational direction of the opening of the groove as a contact. It is preferable to provide {see FIG. 5A}. Specifically, for example, a corner portion of the groove is provided in a region between a straight line L ′ obtained by rotating the tangent line L about the contact point by 10 ° toward the outer diameter side and the inner peripheral surface of the foil holder. Is preferred.

上記のフォイル軸受と、フォイル軸受の内周に挿入された回転部材とを、フォイル軸受ユニットとしてユニット化すれば、これらを一体的に取り扱うことができるため、ターボ機械等への組み付けが容易化される。   If the above-mentioned foil bearing and the rotating member inserted in the inner periphery of the foil bearing are unitized as a foil bearing unit, these can be handled as a unit, and assembling to a turbomachine or the like is facilitated. The

上記のフォイル軸受は、例えばターボ機械に好適に適用することができる。   The above foil bearing can be suitably applied to, for example, a turbomachine.

以上のように、本発明のフォイル軸受によれば、各フォイルの周方向一部領域を湾曲させることで、フォイルとフォイルホルダとの摺動量を増やして軸の振動減衰効果を高めることができる。   As described above, according to the foil bearing of the present invention, the amount of sliding between the foil and the foil holder can be increased by bending the circumferential partial region of each foil, thereby enhancing the vibration damping effect of the shaft.

ガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a gas turbine. 上記ガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said gas turbine. 上記支持構造に組み込まれた、本発明の一実施形態に係るフォイル軸受ユニットの断面図である。It is sectional drawing of the foil bearing unit which concerns on one Embodiment of this invention integrated in the said support structure. 上記フォイル軸受ユニットに組み込まれたラジアルフォイル軸受の断面図である。It is sectional drawing of the radial foil bearing integrated in the said foil bearing unit. 上記ラジアルフォイル軸受のフォイルホルダの溝付近の断面図であり、(A)は軸が停止しているとき、(B)は軸が回転したときの様子を示す。It is sectional drawing of the groove | channel vicinity of the foil holder of the said radial foil bearing, (A) shows a mode when the axis | shaft rotated when the axis | shaft has stopped. (A)は、上記ラジアルフォイル軸受のフォイルの斜視図であり、(B)は3枚のフォイルを仮組みした状態の斜視図である。(A) is a perspective view of the foil of the radial foil bearing, and (B) is a perspective view of a state in which three foils are temporarily assembled. 第1スラストフォイル軸受のフォイルの平面図である。It is a top view of the foil of a 1st thrust foil bearing. (A)は第1スラストフォイル軸受の平面図であり、(B)は第2スラストフォイル軸受の平面図である。(A) is a top view of a 1st thrust foil bearing, (B) is a top view of a 2nd thrust foil bearing. 第1スラストフォイル軸受の断面図である。It is sectional drawing of a 1st thrust foil bearing. ラジアルフォイル軸受の断面図であり、周方向を直線方向に変換して示している。It is sectional drawing of a radial foil bearing, and it has converted and showed the circumferential direction to the linear direction. 他の実施形態に係るラジアルフォイル軸受のフォイルホルダの溝付近の断面図であり、(A)は軸が停止しているとき、(B)は軸が回転したときの様子を示す。It is sectional drawing of the groove vicinity of the foil holder of the radial foil bearing which concerns on other embodiment, (A) shows a mode when the axis | shaft rotates, when (A) has stopped the axis | shaft. さらに他の実施形態に係るラジアルフォイル軸受の断面図である。It is sectional drawing of the radial foil bearing which concerns on other embodiment. フォイルの他の例を示す平面図である。It is a top view which shows the other example of foil. フォイルの他の例を示す平面図である。It is a top view which shows the other example of foil. フォイルの他の例を示す平面図である。It is a top view which shows the other example of foil. フォイルの他の例を示す平面図である。It is a top view which shows the other example of foil. フォイルの他の例を示す平面図である。It is a top view which shows the other example of foil.

図1に、ターボ機械の一種であるガスタービンの構成を概念的に示す。このガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of a gas turbine that is a kind of turbomachine. This gas turbine mainly includes a turbine 1 and a compressor 2 that form blade cascades, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、上記ガスタービンにおけるロータの軸6を支持するフォイル軸受ユニット10を示す。フォイル軸受ユニット10は、軸6に固定された回転部材20と、軸6及び回転部材20をラジアル方向に支持するラジアルフォイル軸受30と、軸6及び回転部材20をスラスト方向に支持する第1スラストフォイル軸受40及び第2スラストフォイル軸受50とを備える。   FIG. 2 shows a foil bearing unit 10 that supports the rotor shaft 6 in the gas turbine. The foil bearing unit 10 includes a rotating member 20 fixed to the shaft 6, a radial foil bearing 30 that supports the shaft 6 and the rotating member 20 in the radial direction, and a first thrust that supports the shaft 6 and the rotating member 20 in the thrust direction. A foil bearing 40 and a second thrust foil bearing 50 are provided.

回転部材20は、図3に示すように、スリーブ部21と、スリーブ部21から外径に突出した円盤状のフランジ部22とを備える。フランジ部22は例えば炭素繊維強化複合材で形成され、スリーブ部21は例えば炭素焼結材で形成される。   As shown in FIG. 3, the rotating member 20 includes a sleeve portion 21 and a disk-like flange portion 22 that protrudes from the sleeve portion 21 to the outer diameter. The flange portion 22 is formed of, for example, a carbon fiber reinforced composite material, and the sleeve portion 21 is formed of, for example, a carbon sintered material.

本発明の一実施形態に係るフォイル軸受としてのラジアルフォイル軸受30は、図4に示すように、筒状(図示例では円筒状)のフォイルホルダ31と、フォイルホルダ31の内周面に取り付けられた複数(図示例では3枚)のフォイル32とを有する。複数のフォイル32は、フォイルホルダ31の内周面に周方向に並べて配置される。   As shown in FIG. 4, a radial foil bearing 30 as a foil bearing according to an embodiment of the present invention is attached to a cylindrical (in the illustrated example, cylindrical) foil holder 31 and an inner peripheral surface of the foil holder 31. And a plurality of (three in the illustrated example) foils 32. The plurality of foils 32 are arranged on the inner peripheral surface of the foil holder 31 in the circumferential direction.

フォイルホルダ31の内周面31aには、凹部としての溝31bが形成される。本実施形態では、フォイルホルダ31の円周方向等間隔の複数箇所(図示例では3箇所)に、軸方向に沿って延びる溝31bが設けられる。溝31bは、少なくとも各フォイル32の回転方向先行側の端部(後述する凸部32e)の軸方向領域に設けられる。本実施形態では、溝31bが、フォイルホルダ31の軸方向全長にわたって形成される。   A groove 31b as a recess is formed on the inner peripheral surface 31a of the foil holder 31. In this embodiment, the groove | channel 31b extended along an axial direction is provided in the multiple places (three places in the example of illustration) of the foil holder 31 at equal intervals in the circumferential direction. The groove 31b is provided at least in the axial region of the end (the convex part 32e described later) of the foil 32 in the rotational direction leading side. In the present embodiment, the groove 31 b is formed over the entire axial length of the foil holder 31.

溝31bは、内部にフォイル32の湾曲を許容する空間を有する。本実施形態では、図5(A)に示すように、溝31bの開口部の回転方向後方側の端部31b2と角部31b1を結ぶ直線よりも外径側に空間31b3が設けられる。溝31bの内壁には、各フォイル32の回転方向先行側の端部(凸部32e)が突き当たる角部31b1が設けられる。角部31b1は、溝31bの開口部の回転方向後方側の端部31b2におけるフォイルホルダ31の内周面31aの接線L上あるいはその近傍に設けられる。具体的に、角部31b1は、接線Lを接点(端部31b2)を中心に外径側に10°(望ましくは5°)回転させた直線L’と、フォイルホルダ31の内周面31aとの間の領域に設けられる。図示例では、角部31b1がほぼ接線L上に設けられる。尚、角部31b1は、接線Lよりもフォイルホルダ31の内周面31a側の領域に設けてもよい。この場合、溝31bの回転方向先行側の端部31b4の角度が図示例よりも小さくなる場合があり、この端部31b4が破損する恐れがあるため、端部31b4が十分な強度を有する範囲で角部31b1の位置を設定する必要がある。   The groove 31b has a space that allows the foil 32 to bend inside. In the present embodiment, as shown in FIG. 5A, a space 31b3 is provided on the outer diameter side of the straight line connecting the end portion 31b2 and the corner portion 31b1 on the rear side in the rotation direction of the opening portion of the groove 31b. The inner wall of the groove 31b is provided with a corner portion 31b1 with which the end portion (convex portion 32e) on the leading side in the rotation direction of each foil 32 abuts. The corner 31b1 is provided on or near the tangent L of the inner peripheral surface 31a of the foil holder 31 at the end 31b2 on the rear side in the rotation direction of the opening of the groove 31b. Specifically, the corner portion 31b1 includes a straight line L ′ obtained by rotating the tangent line L by 10 ° (desirably 5 °) around the contact point (end portion 31b2), and the inner peripheral surface 31a of the foil holder 31. It is provided in the area between. In the illustrated example, the corner 31b1 is provided substantially on the tangent line L. In addition, you may provide the corner | angular part 31b1 in the area | region of the inner peripheral surface 31a side of the foil holder 31 rather than the tangent L. FIG. In this case, the angle of the end portion 31b4 on the leading side in the rotational direction of the groove 31b may be smaller than that in the illustrated example, and the end portion 31b4 may be damaged, so that the end portion 31b4 has sufficient strength. It is necessary to set the position of the corner 31b1.

フォイルホルダ31は、溝31bを含めて一体に型成形される。本実施形態のフォイルホルダ31は、焼結金属で一体に型成形される。本実施形態では、溝31bの周方向寸法が比較的大きいため、溝31bを成形するための成形型の周方向の肉厚が厚くなり、成形型の破損を防止できる。尚、フォイル軸受ユニット10が比較的低温環境で使用される場合、フォイルホルダ31を樹脂で型成形してもよい。   The foil holder 31 is integrally molded including the groove 31b. The foil holder 31 of this embodiment is integrally molded with a sintered metal. In this embodiment, since the circumferential dimension of the groove 31b is relatively large, the circumferential thickness of the molding die for molding the groove 31b is increased, and damage to the molding die can be prevented. When the foil bearing unit 10 is used in a relatively low temperature environment, the foil holder 31 may be molded with resin.

各フォイル32は、図6(A)に示すように、周方向一端に設けられた凸部32cと、周方向他端に設けられた凹部32dとを備える。各フォイル32の凸部32cと凹部32dとは、軸方向で同じ位置に設けられる。図6(B)に示すように、各フォイル32の凸部32cを、隣接するフォイル32の凹部32dに嵌め込むことで、3枚のフォイル32を筒状に仮組みすることができる。この場合、図4に示す軸方向視において、各フォイル32の周方向一端(凸部32c)と、隣接するフォイル32の周方向他端(凹部32dの軸方向両側の凸部32e)とが交差した状態となる。この状態で、各フォイル32の周方向両端が、フォイルホルダ31に保持される。具体的には、各フォイル32の周方向他端の凸部32eがフォイルホルダ31の溝31bに差し込まれ、各フォイル32の周方向一端の凸部32cが、隣接するフォイル32の外径面32bとフォイルホルダ31の内周面31aとの間に配される。この場合、複数のフォイル32の回転方向先行側への移動は、各フォイル32の凸部32eが溝31bの角部31b1に突き当たることで規制されるが、複数のフォイル32の回転方向後方側への移動は規制されていない。これにより、複数のフォイル32が、フォイルホルダ31に対して周方向移動可能とされる。   As shown in FIG. 6A, each foil 32 includes a protrusion 32c provided at one end in the circumferential direction and a recess 32d provided at the other end in the circumferential direction. The convex portion 32c and the concave portion 32d of each foil 32 are provided at the same position in the axial direction. As shown in FIG. 6B, the three foils 32 can be temporarily assembled into a cylindrical shape by fitting the convex portions 32c of the respective foils 32 into the concave portions 32d of the adjacent foils 32. In this case, when viewed in the axial direction shown in FIG. 4, one end in the circumferential direction (convex portion 32c) of each foil 32 intersects with the other circumferential end of the adjacent foil 32 (convex portions 32e on both sides in the axial direction of the concave portion 32d). It will be in the state. In this state, both ends in the circumferential direction of each foil 32 are held by the foil holder 31. Specifically, the protrusion 32e at the other circumferential end of each foil 32 is inserted into the groove 31b of the foil holder 31, and the protrusion 32c at one circumferential end of each foil 32 is the outer diameter surface 32b of the adjacent foil 32. And the inner peripheral surface 31 a of the foil holder 31. In this case, the movement of the plurality of foils 32 in the rotational direction leading side is restricted by the protrusions 32e of the foils 32 striking the corners 31b1 of the grooves 31b. Movement is not regulated. Accordingly, the plurality of foils 32 can be moved in the circumferential direction with respect to the foil holder 31.

各フォイル32の内径面32aは、ラジアル軸受面S1として機能する(図4参照)。図示例では、3枚のフォイル32で多円弧型のラジアル軸受面S1を形成している。フォイルホルダ31の内周面31aと各フォイル32との間には、フォイル32に弾性を付与するための部材(バックフォイル等)は設けられておらず、フォイル32の外径面32bとフォイルホルダ31の内周面31aとが摺動可能とされる。各フォイル32の凸部32cは、隣接するフォイル32のラジアル軸受面S1の外径側に配され、アンダーフォイル部として機能する。   The inner diameter surface 32a of each foil 32 functions as a radial bearing surface S1 (see FIG. 4). In the illustrated example, a multi-arc radial bearing surface S1 is formed by three foils 32. No member (back foil or the like) for imparting elasticity to the foil 32 is provided between the inner peripheral surface 31a of the foil holder 31 and each foil 32, and the outer diameter surface 32b of the foil 32 and the foil holder. The inner peripheral surface 31a of 31 can be slid. The convex portion 32c of each foil 32 is disposed on the outer diameter side of the radial bearing surface S1 of the adjacent foil 32 and functions as an underfoil portion.

隣接するフォイル32の端部同士は、周方向で互いに突っ張り合っている。具体的に、交差部P{図5(B)参照}において、一方のフォイル32の凹部32dと他方のフォイル32の凸部32cの根元部とが周方向に係合している{図6(B)参照}。このとき、各フォイル32のラジアル軸受面S1の周方向寸法A{図6(A)参照}を適正に設定することで、仮組みした複数のフォイル32を外径側に張り出させて略円筒状とし、各フォイル32がフォイルホルダ31の内周面31aに沿った状態とされる。   The ends of the adjacent foils 32 stick to each other in the circumferential direction. Specifically, at the intersection P {see FIG. 5B), the concave portion 32d of one foil 32 and the root portion of the convex portion 32c of the other foil 32 are engaged in the circumferential direction {FIG. B) See}. At this time, by appropriately setting the circumferential dimension A {refer to FIG. 6A) of the radial bearing surface S1 of each foil 32, a plurality of provisionally assembled foils 32 are projected to the outer diameter side to be substantially cylindrical. Each foil 32 is in a state along the inner peripheral surface 31 a of the foil holder 31.

第1スラストフォイル軸受40は、図3に示すように、回転部材20のフランジ部22を軸方向一方側(図中右側)から支持するものであり、円盤状のフォイルホルダ41と、フォイルホルダ41の端面41aに固定された複数のフォイル42とを備える。本実施形態では、第1スラストフォイル軸受40のフォイルホルダ41と、ラジアルフォイル軸受30のフォイルホルダ31とが一体に形成される。   As shown in FIG. 3, the first thrust foil bearing 40 supports the flange portion 22 of the rotating member 20 from one side in the axial direction (right side in the figure), and includes a disc-shaped foil holder 41 and a foil holder 41. And a plurality of foils 42 fixed to the end face 41a. In the present embodiment, the foil holder 41 of the first thrust foil bearing 40 and the foil holder 31 of the radial foil bearing 30 are integrally formed.

第1スラストフォイル軸受40の各フォイル42は、図7に示すように、本体部42aと、本体部42aよりも外径側に設けられた固定部42bと、本体部42aと固定部42bとを連結する連結部42cとを一体に備える。本体部42aの回転方向先行側の縁42d及び回転方向後方側の縁42eは、何れも中央部を回転方向先行側へ突出した略V字形状を成している。本体部42aの縁42d,42eの中央部は、円弧状に丸まっている。   As shown in FIG. 7, each foil 42 of the first thrust foil bearing 40 includes a main body portion 42a, a fixing portion 42b provided on the outer diameter side of the main body portion 42a, a main body portion 42a, and a fixing portion 42b. A connecting portion 42c to be connected is integrally provided. Both the edge 42d on the rotation direction leading side and the edge 42e on the rear side in the rotation direction of the main body 42a are substantially V-shaped with the central portion protruding toward the rotation direction leading side. The central portions of the edges 42d and 42e of the main body 42a are rounded in an arc shape.

各フォイル42の固定部42bは、図8(A)に示すように、フォイルホルダ41の端面41aの外径端に固定される。図示例では、複数のフォイル42の固定部42bが同一円周上に配され、リング状の固定部材43とフォイルホルダ41の端面41aとで固定部42bの全域が挟持固定される。複数のフォイル42は、円周方向等ピッチで配され、図示例では、各フォイル42の半分だけ位相をずらして重ね合わせている。図9に示すように、各フォイル42の回転方向先行側の縁42dは、隣接するフォイル42の上(フランジ部22側)に配される。すなわち、各フォイル42の回転方向先行側部分は、隣接するフォイル42の回転方向後方側部分に乗り上げている。各フォイル42の本体部42aの表面のうち、フランジ部22の一方の端面22aと直接対向している部分{図8(A)で見えている部分}は、スラスト軸受面S2として機能する。尚、各フォイル42の固定部42bを、フォイルホルダ41あるいは固定部材43に溶接や接着等により固定してもよい。   The fixing portion 42b of each foil 42 is fixed to the outer diameter end of the end surface 41a of the foil holder 41 as shown in FIG. In the illustrated example, the fixing portions 42 b of the plurality of foils 42 are arranged on the same circumference, and the entire fixing portion 42 b is sandwiched and fixed by the ring-shaped fixing member 43 and the end surface 41 a of the foil holder 41. The plurality of foils 42 are arranged at equal pitches in the circumferential direction. In the illustrated example, the foils 42 are overlapped with a phase shifted by half of each foil 42. As shown in FIG. 9, the edge 42d on the rotational direction leading side of each foil 42 is disposed on the adjacent foil 42 (flange portion 22 side). That is, the rotation direction leading side portion of each foil 42 rides on the rotation direction rear side portion of the adjacent foil 42. Of the surface of the main body portion 42a of each foil 42, the portion that directly faces one end surface 22a of the flange portion 22 (the portion visible in FIG. 8A) functions as the thrust bearing surface S2. In addition, you may fix the fixing | fixed part 42b of each foil 42 to the foil holder 41 or the fixing member 43 by welding or adhesion | attachment.

第2スラストフォイル軸受50は、図3に示すように、回転部材20のフランジ部22を軸方向他方側(図中左側)から支持するものである。第2スラストフォイル軸受50は、図8(B)に示すように、円盤状のフォイルホルダ51と、フォイルホルダ51の端面51aに固定された複数のフォイル52とを備える。各フォイル52の本体部の表面のうち、フランジ部22の他方の端面22bと直接対向している部分{図8(B)で見えている部分}は、スラスト軸受面S3として機能する。第2スラストフォイル軸受50のその他の構成は、第1スラストフォイル軸受40と同様であるため、重複説明を省略する。   As shown in FIG. 3, the second thrust foil bearing 50 supports the flange portion 22 of the rotating member 20 from the other axial side (left side in the drawing). As shown in FIG. 8B, the second thrust foil bearing 50 includes a disc-shaped foil holder 51 and a plurality of foils 52 fixed to the end surface 51 a of the foil holder 51. Of the surface of the main body portion of each foil 52, the portion directly facing the other end surface 22b of the flange portion 22 (the portion visible in FIG. 8B) functions as the thrust bearing surface S3. Since the other structure of the 2nd thrust foil bearing 50 is the same as that of the 1st thrust foil bearing 40, duplication description is abbreviate | omitted.

フォイル32,42,52は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm〜200μm程度の金属フォイルにプレス加工を施すことで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、金属フォイルとしてステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The foils 32, 42, 52 are formed by pressing a metal foil having a thickness of about 20 μm to 200 μm made of a metal having a high spring property and good workability, for example, a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in this embodiment, since there is no lubricating oil in the atmosphere, it is preferable to use a stainless steel or bronze metal foil.

上記構成のフォイル軸受ユニット10は、以下のような手順で組み立てられる。まず、ラジアルフォイル軸受30の内周に、回転部材20のスリーブ部21を挿入する。その後、回転部材20のフランジ部22を軸方向両側から挟み込むように、第2スラストフォイル軸受50を第1スラストフォイル軸受に取り付ける。具体的に、第1フォイル軸受40のフォイルホルダ41に取り付けた固定部材43と、第2フォイル軸受50のフォイルホルダ51に取り付けた固定部材53とを軸方向で当接させ、この状態で、図示しないボルト等で両フォイルホルダ41,51を固定する。以上により、図3に示すフォイル軸受ユニット10が完成する。   The foil bearing unit 10 having the above configuration is assembled in the following procedure. First, the sleeve portion 21 of the rotating member 20 is inserted into the inner periphery of the radial foil bearing 30. Then, the 2nd thrust foil bearing 50 is attached to a 1st thrust foil bearing so that the flange part 22 of the rotating member 20 may be inserted | pinched from the axial direction both sides. Specifically, the fixing member 43 attached to the foil holder 41 of the first foil bearing 40 and the fixing member 53 attached to the foil holder 51 of the second foil bearing 50 are brought into contact with each other in the axial direction. The foil holders 41 and 51 are fixed with bolts that are not used. Thus, the foil bearing unit 10 shown in FIG. 3 is completed.

上記構成のフォイル軸受ユニット10は、回転部材20の内周に軸6を圧入すると共に、フォイル軸受30,40,50のフォイルホルダ31,41,51の一部又は全部をガスタービンのハウジングに固定することにより、ガスタービンに組みつけられる。フォイル軸受ユニット10では、ラジアルフォイル軸受30及びスラストフォイル軸受40,50で構成される軸受部材の内部に回転部材20が収容され、軸受部材と回転部材20との分離が規制された状態でこれらが一体化されているため、ガスタービンへの組み付け時に軸受部材及び回転部材20を一体的に取り扱うことができ、組み付け性が向上する。   In the foil bearing unit 10 having the above-described configuration, the shaft 6 is press-fitted into the inner periphery of the rotating member 20, and part or all of the foil holders 31, 41, 51 of the foil bearings 30, 40, 50 are fixed to the housing of the gas turbine. By doing so, it is assembled to the gas turbine. In the foil bearing unit 10, the rotating member 20 is accommodated inside the bearing member constituted by the radial foil bearing 30 and the thrust foil bearings 40, 50, and these are in a state where separation between the bearing member and the rotating member 20 is restricted. Since they are integrated, the bearing member and the rotating member 20 can be handled integrally at the time of assembling to the gas turbine, and the assembling property is improved.

軸6が周方向一方(図4及び図8の矢印方向)に回転すると、ラジアルフォイル軸受30のフォイル32のラジアル軸受面S1と回転部材20のスリーブ部21の外周面21aとの間にラジアル軸受隙間が形成され、このラジアル軸受隙間に生じる空気膜の圧力により回転部材20及び軸6がラジアル方向に支持される。これと同時に、第1スラストフォイル軸受40のフォイル42のスラスト軸受面S2と回転部材20のフランジ部22の一方の端面22aとの間、及び、第2スラストフォイル軸受50のフォイル52のスラスト軸受面S3と回転部材20のフランジ部22の他方の端面22bとの間にそれぞれスラスト軸受隙間が形成され、各スラスト軸受隙間に生じる空気膜の圧力により、回転部材20及び軸6が両スラスト方向に支持される。   When the shaft 6 rotates in one circumferential direction (the arrow direction in FIGS. 4 and 8), the radial bearing is located between the radial bearing surface S 1 of the foil 32 of the radial foil bearing 30 and the outer peripheral surface 21 a of the sleeve portion 21 of the rotating member 20. A gap is formed, and the rotary member 20 and the shaft 6 are supported in the radial direction by the pressure of the air film generated in the radial bearing gap. At the same time, between the thrust bearing surface S2 of the foil 42 of the first thrust foil bearing 40 and one end surface 22a of the flange portion 22 of the rotating member 20, and the thrust bearing surface of the foil 52 of the second thrust foil bearing 50. A thrust bearing gap is formed between S3 and the other end face 22b of the flange portion 22 of the rotating member 20, and the rotating member 20 and the shaft 6 are supported in both thrust directions by the pressure of the air film generated in each thrust bearing gap. Is done.

このとき、フォイル32,42,52が有する可撓性により、各フォイル32,42,52の軸受面S1,S2,S3が、荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間及びスラスト軸受隙間は運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、ラジアル軸受隙間及びスラスト軸受隙間を最適幅に管理することができ、回転部材20及び軸6を安定して支持することが可能となる。   At this time, due to the flexibility of the foils 32, 42, 52, the bearing surfaces S 1, S 2, S 3 of the foils 32, 42, 52 depend on the operating conditions such as the load, the rotational speed of the shaft 6, and the ambient temperature. In order to deform arbitrarily, the radial bearing gap and the thrust bearing gap are automatically adjusted to appropriate widths according to the operating conditions. Therefore, even under severe conditions such as high temperature and high speed rotation, the radial bearing gap and the thrust bearing gap can be managed to the optimum width, and the rotating member 20 and the shaft 6 can be stably supported.

また、本実施形態では、軸6の回転に伴って流動する流体(空気)との摩擦により、各フォイル32が回転方向先行側に押し込まれ、図10に示すように、ラジアルフォイル軸受30の各フォイル32の周方向一端がフォイルホルダ31の内周面31aから立ち上がる。一方、各フォイル32の周方向他端は、フォイルホルダ31の内周面31aに沿って配されている。このため、各フォイル32の頂部32f(軸6の外周面に最も近接した領域)が、複数の溝31bの円周方向間領域の中央部よりも回転方向先行側に配される。これにより、フォイル32と軸6の外周面との間に形成されるラジアル軸受隙間のうち、正圧を発生させる領域、すなわち、回転方向先行側(図10の左側)へ向けて徐々に狭くなった領域を広く取ることができ、ラジアル方向の支持力が高められる。   Further, in the present embodiment, the foils 32 are pushed into the rotation direction leading side by friction with the fluid (air) that flows along with the rotation of the shaft 6, and as shown in FIG. 10, each of the radial foil bearings 30. One end in the circumferential direction of the foil 32 rises from the inner peripheral surface 31 a of the foil holder 31. On the other hand, the other circumferential end of each foil 32 is disposed along the inner peripheral surface 31 a of the foil holder 31. For this reason, the top portion 32f of each foil 32 (the region closest to the outer peripheral surface of the shaft 6) is disposed on the leading side in the rotational direction with respect to the central portion of the region between the circumferential directions of the plurality of grooves 31b. As a result, the radial bearing gap formed between the foil 32 and the outer peripheral surface of the shaft 6 gradually becomes narrower toward the region where positive pressure is generated, that is, toward the leading side in the rotational direction (left side in FIG. 10). The wide area can be taken, and the supporting force in the radial direction is increased.

また、フォイルホルダ31に組み込まれた複数のフォイル32は、隣接するフォイル32が交差部で周方向に互いに突っ張り合い、各フォイル32がフォイルホルダ31の内周面31aに沿った状態とされる。このため、フォイル32と回転部材20との摺接が抑えられ、回転トルクを低減することができる。   In addition, the plurality of foils 32 incorporated in the foil holder 31 are adjacent to each other in the circumferential direction at the intersections, and the foils 32 are in a state along the inner peripheral surface 31 a of the foil holder 31. For this reason, the sliding contact between the foil 32 and the rotating member 20 is suppressed, and the rotational torque can be reduced.

軸受の運転中は、軸受隙間に形成された空気膜の影響でフォイル32,42,52がフォイルホルダ31,41,51に押し付けられ、これに伴って両者の間で微小摺動が生じる。この微小摺動による摩擦エネルギーにより、軸6の振動を減衰させることができる。本実施形態では、図5(A)に示すように、フォイルホルダ31の内周面31aに、周方向幅が比較的広い凹部(溝31b)を設けることで、積極的に各フォイル32を周方向に移動させることができる。すなわち、軸6が回転すると、図5(B)に示すように、軸6の回転に伴って流動する流体(空気)との摩擦によりフォイル32が回転方向先行側に押し込まれる。このとき、各フォイル32の周方向一部領域が、溝31bに押し込まれることにより湾曲する。具体的に、軸6の回転に伴い、フォイル32の凸部32eの先端が溝31bの角部31b1に突き当たると共に、凸部32eを含むフォイル32の回転方向先行側の端部が湾曲する。図示例では、各フォイル32の回転方向先行側の端部が外径側に凸をなして湾曲する。各フォイル32の回転方向先行側の端部は、他の領域よりも大きい曲率で湾曲し、例えば、フォイルホルダ31の内周面31aよりも大きい曲率で湾曲する。こうしてフォイル32の端部が湾曲した分だけ、フォイル32のその他の領域(凸部32e以外の周方向領域)が回転方向先行側に移動する。これにより、フォイル32とフォイルホルダ31との摺動量が増大するため、軸6の振動減衰効果がさらに高められる。   During operation of the bearing, the foils 32, 42, 52 are pressed against the foil holders 31, 41, 51 due to the influence of the air film formed in the bearing gap, and accordingly, a slight sliding occurs between them. The vibration of the shaft 6 can be attenuated by the frictional energy generated by the minute sliding. In the present embodiment, as shown in FIG. 5 (A), each foil 32 is actively surrounded by providing a recess (groove 31b) having a relatively wide circumferential width on the inner peripheral surface 31a of the foil holder 31. Can be moved in the direction. That is, when the shaft 6 rotates, as shown in FIG. 5B, the foil 32 is pushed to the front side in the rotational direction by friction with the fluid (air) that flows along with the rotation of the shaft 6. At this time, a circumferential partial region of each foil 32 is curved by being pushed into the groove 31b. Specifically, as the shaft 6 rotates, the tip of the convex portion 32e of the foil 32 abuts against the corner portion 31b1 of the groove 31b, and the end portion of the foil 32 including the convex portion 32e on the leading side in the rotational direction is curved. In the illustrated example, the end of each foil 32 on the leading side in the rotational direction is curved with a convex toward the outer diameter side. The end on the rotational direction leading side of each foil 32 is curved with a larger curvature than the other regions, for example, curved with a larger curvature than the inner peripheral surface 31 a of the foil holder 31. In this way, the other region of the foil 32 (circumferential region other than the convex portion 32e) moves toward the rotation direction leading side by the amount of curvature of the end of the foil 32. Thereby, since the sliding amount of the foil 32 and the foil holder 31 increases, the vibration damping effect of the shaft 6 is further enhanced.

このとき、フォイルホルダ31の溝31bの周方向幅が小さすぎると、各フォイル31の凸部32eを溝31bの内部で湾曲させることができず、軸6の振動減衰効果が十分に得られない恐れがある。従って、溝31bの周方向幅、特に溝31bの開口部の周方向幅は、凸部32eの湾曲を許容するように設定する必要があり、例えば各フォイル32の軸受面S1の周方向寸法A{図6(A)参照}の5%以上とされる。本実施形態では、溝31bの開口部の周方向領域内に、隣接するフォイル32の周方向端部同士の交差部Pが配されるように、溝31bの周方向幅が設定される。具体的には、溝31bの開口部の回転方向後方側の端部31b2が、フォイル32の交差部Pよりも回転方向後方側(図5の左側)に配される。また、本実施形態では、溝31bの開口部の周方向幅が、各フォイル32の凸部32eの周方向寸法よりも大きい。一方、溝31bの周方向幅が大きすぎると、溝31bに入り込むフォイル32の周方向領域が過大となり、フォイル32とフォイルホルダ31との接触面積が減少し、これらの摺動による軸6の振動減衰効果が低減する恐れがある。従って、溝31bの周方向幅、特に溝31bの開口部の周方向幅は、フォイル32のフォイルホルダ31との接触面積を十分に確保可能な範囲で設定され、例えば各フォイル32の軸受面S1の周方向寸法Aの30%以下とされる。   At this time, if the circumferential width of the groove 31b of the foil holder 31 is too small, the convex portion 32e of each foil 31 cannot be curved inside the groove 31b, and the vibration damping effect of the shaft 6 cannot be sufficiently obtained. There is a fear. Therefore, the circumferential width of the groove 31b, particularly the circumferential width of the opening of the groove 31b, needs to be set so as to allow the convex portion 32e to be curved. For example, the circumferential dimension A of the bearing surface S1 of each foil 32 It should be 5% or more of {see FIG. 6 (A)}. In the present embodiment, the circumferential width of the groove 31b is set so that the intersection P between the circumferential ends of the adjacent foils 32 is disposed in the circumferential region of the opening of the groove 31b. Specifically, the end 31b2 on the rear side in the rotation direction of the opening of the groove 31b is arranged on the rear side in the rotation direction (the left side in FIG. 5) with respect to the intersection P of the foil 32. Moreover, in this embodiment, the circumferential direction width | variety of the opening part of the groove | channel 31b is larger than the circumferential direction dimension of the convex part 32e of each foil 32. FIG. On the other hand, if the circumferential width of the groove 31b is too large, the circumferential area of the foil 32 entering the groove 31b becomes excessive, the contact area between the foil 32 and the foil holder 31 decreases, and the vibration of the shaft 6 due to these sliding movements. The attenuation effect may be reduced. Accordingly, the circumferential width of the groove 31b, in particular, the circumferential width of the opening of the groove 31b is set within a range in which the contact area of the foil 32 with the foil holder 31 can be sufficiently secured, for example, the bearing surface S1 of each foil 32. 30% or less of the circumferential dimension A.

本実施形態では、ラジアルフォイル軸受30のフォイル32が、フォイルホルダ31に対して周方向で固定されていないため、フォイル32がフォイルホルダ31に対して周方向移動することで両者の摺動量が大きくなり、軸6の振動を減衰する効果がさらに高められる。図示例では、各フォイル32の回転方向後方側の端部(凸部32c)が、隣接するフォイル32とフォイルホルダ31の内周面31aとの間に配されることで、フォイルホルダ31の内周面31aと面接触した状態で周方向に摺動するため、軸6の振動減衰効果がさらに高められる。   In the present embodiment, since the foil 32 of the radial foil bearing 30 is not fixed in the circumferential direction with respect to the foil holder 31, the sliding amount of both of them increases when the foil 32 moves in the circumferential direction with respect to the foil holder 31. Thus, the effect of damping the vibration of the shaft 6 is further enhanced. In the illustrated example, the end (convex portion 32 c) on the rear side in the rotation direction of each foil 32 is disposed between the adjacent foil 32 and the inner peripheral surface 31 a of the foil holder 31. Since it slides in the circumferential direction while being in surface contact with the peripheral surface 31a, the vibration damping effect of the shaft 6 is further enhanced.

尚、軸6の停止直前や起動直後の低速回転時には、各フォイルの軸受面S1〜S3と回転部材20が接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。また、フォイル32,42,52とフォイルホルダ31,41,51との間の微小摺動による摩擦力を調整するために、これらの何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。   In addition, since the bearing surfaces S1 to S3 of the foils and the rotating member 20 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 6 is stopped or immediately after starting, a DLC film, titanium aluminum nitride is provided on one or both of them. A low friction coating such as a film, a tungsten disulfide film, or a molybdenum disulfide film may be formed. Further, in order to adjust the frictional force caused by the minute sliding between the foils 32, 42, 52 and the foil holders 31, 41, 51, either one or both of them is provided with the above-described low friction coating. It may be formed.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same function as said embodiment, and duplication description is abbreviate | omitted.

例えば、上記の実施形態では、隣接するフォイル32の端部同士を交差部Pにおいて周方向に突っ張り合わせている。このため、図5(B)に示すように、軸6の回転に伴って、各フォイルの回転方向先行側の端部(凸部32e周辺)が溝31bの内部に押し込まれることにより、隣接するフォイル32の回転方向後方側の端部(凸部32c周辺)も溝31bの内部に押し込まれる。これにより、各フォイル32の回転方向後方側の端部付近が湾曲しながら溝31bに入り込むことで、フォイル32の周方向移動(特に凸部32cの周方向移動)が阻害され、軸6の振動減衰効果が小さくなる恐れがある。   For example, in the above-described embodiment, the ends of the adjacent foils 32 are stuck together in the circumferential direction at the intersection P. For this reason, as shown in FIG. 5 (B), as the shaft 6 rotates, the end of each foil in the rotation direction leading side (the vicinity of the convex portion 32e) is pushed into the groove 31b to be adjacent. The end of the foil 32 on the rear side in the rotation direction (around the convex portion 32c) is also pushed into the groove 31b. As a result, the circumferential vicinity of the foil 32 (particularly the circumferential movement of the convex portion 32c) is hindered by the fact that the vicinity of the end portion on the rear side in the rotation direction of each foil 32 enters the groove 31b while curving, and the vibration of the shaft 6 is inhibited. The attenuation effect may be reduced.

そこで、図11(A)に示す実施形態では、隣接するフォイル32の端部同士を周方向で係合させない構成としている。具体的には、各フォイル32の凸部32eの周方向寸法を上記の実施形態よりも長くして、凹部32dを交差部Pよりも回転方向後方側(図中左側)に配している。この場合、図11(B)に示すように、軸6の回転に伴って各フォイル32の回転方向先行側の端部(凸部32e周辺)が溝31bの内部に押し込まれたときでも、各フォイル32の回転方向後方側の端部(凸部32c周辺)は溝31bの内部に押し込まれず、フォイルホルダ31の内周面31aに沿った形状で維持される。これにより、各フォイル32の回転方向後方側の端部付近の周方向移動が阻害されず、優れた振動減衰効果を得ることができる。   Therefore, in the embodiment shown in FIG. 11A, the end portions of the adjacent foils 32 are not engaged in the circumferential direction. Specifically, the circumferential dimension of the convex portion 32e of each foil 32 is made longer than that in the above embodiment, and the concave portion 32d is arranged behind the intersecting portion P in the rotational direction (left side in the figure). In this case, as shown in FIG. 11B, each end of the foil 32 in the rotational direction leading side (around the convex portion 32e) is pushed into the groove 31b as the shaft 6 rotates. The end of the foil 32 on the rear side in the rotation direction (periphery of the convex portion 32 c) is not pushed into the groove 31 b and is maintained in a shape along the inner peripheral surface 31 a of the foil holder 31. Thereby, the circumferential movement in the vicinity of the end portion on the rear side in the rotation direction of each foil 32 is not inhibited, and an excellent vibration damping effect can be obtained.

図12に示す実施形態では、各フォイル32の周方向両端をフォイルホルダ31の溝31bに差し込んだ点で、上記の実施形態と異なる。本実施形態では、互いに交差する隣接するフォイル32の端部(凸部32e,凸部32c)が、共通の溝31bに差し込まれる。溝31bには、各フォイルの周方向一端(凸部32e)が突き当たる角部31b1と、各フォイルの周方向他端(凸部32c)が突き当たる角部31b5とが設けられる。この場合、各フォイル32の周方向両側への移動を規制することができるため、両方向に回転する軸6を支持することができる。すなわち、軸6が周方向一方(図12の実線矢印方向)に回転すると、各フォイル32の凸部32eが溝31bの角部31b1に突き当たると共に、この凸部32eが溝31bの内部で湾曲する{図5(B)あるいは図11(B)と同様}。一方、軸6が周方向他方(図12の点線矢印方向)に回転すると、各フォイル32の凸部32cが溝31bの角部31b5に突き当たると共に、この凸部32cが溝31bの内部で湾曲する。以上のように、凸部32eあるいは凸部32cが溝31bの内部で湾曲することにより、上記の実施形態と同様にフォイル32とフォイルホルダ31との摺動量が増え、軸6の振動減衰効果が得られる。   The embodiment shown in FIG. 12 differs from the above-described embodiment in that both ends in the circumferential direction of each foil 32 are inserted into the grooves 31b of the foil holder 31. In this embodiment, the edge part (convex part 32e, convex part 32c) of the foil 32 which mutually cross | intersects is inserted in the common groove | channel 31b. The groove 31b is provided with a corner portion 31b1 with which one end in the circumferential direction (convex portion 32e) of each foil abuts and a corner portion 31b5 with which the other end in the circumferential direction (convex portion 32c) of each foil abuts. In this case, since the movement of each foil 32 to both sides in the circumferential direction can be restricted, the shaft 6 rotating in both directions can be supported. That is, when the shaft 6 rotates in one circumferential direction (the direction indicated by the solid line in FIG. 12), the convex portions 32e of the foils 32 abut against the corner portions 31b1 of the grooves 31b, and the convex portions 32e are curved inside the grooves 31b. {Same as FIG. 5B or FIG. 11B}. On the other hand, when the shaft 6 rotates in the other circumferential direction (in the direction of the dotted arrow in FIG. 12), the convex portions 32c of the foils 32 abut against the corner portions 31b5 of the grooves 31b, and the convex portions 32c are curved inside the grooves 31b. . As described above, the convex portion 32e or the convex portion 32c is curved inside the groove 31b, so that the sliding amount between the foil 32 and the foil holder 31 is increased similarly to the above embodiment, and the vibration damping effect of the shaft 6 is increased. can get.

また、図12に示す実施形態では、各フォイル32の周方向両端がそれぞれ溝31bの角部31b1,31b5に当接しているが、これに限らず、各フォイル32の端部と溝31bの角部31b1,31b5との間に隙間を設けた構成としてもよい(図示省略)。この場合、各フォイル32が周方向移動可能な状態、すなわち、周方向の遊びを有する状態でフォイルホルダ31に保持される。これにより、フォイル32とフォイルホルダ31との摺動量が増え、軸6の振動減衰効果を高めることができる。   In the embodiment shown in FIG. 12, both ends in the circumferential direction of each foil 32 are in contact with the corners 31b1 and 31b5 of the groove 31b. However, the present invention is not limited to this, and the corners of the end of each foil 32 and the groove 31b. It is good also as a structure which provided the clearance gap between part 31b1, 31b5 (illustration omitted). In this case, each foil 32 is held by the foil holder 31 in a state in which the foil 32 can move in the circumferential direction, that is, in a state having play in the circumferential direction. Thereby, the sliding amount of the foil 32 and the foil holder 31 increases, and the vibration damping effect of the shaft 6 can be enhanced.

ラジアルフォイル軸受30のフォイル32の形状は、上記の実施形態に限られない。図13に示すフォイル32は、周方向一端に複数(図示例では2箇所)の凸部32cが設けられ、周方向他端に、隣接する凸部32cが嵌まり込む複数(図示例では2箇所)の凹部32dが設けられる。凹部32dの軸方向幅は、凸部32cの軸方向幅よりも若干小さい。凹部32dの軸方向両側の角部には、軸方向の切り込み32fが設けられる。フォイル32の周方向一端の凸部32cを隣接するフォイル32の凹部32dに嵌め込みながら、各凸部32cの軸方向両端を各凹部32dの切り込み32fに差し込むことで、複数のフォイル32が筒状に組まれる。   The shape of the foil 32 of the radial foil bearing 30 is not limited to the above embodiment. The foil 32 shown in FIG. 13 is provided with a plurality (two in the illustrated example) of convex portions 32c at one end in the circumferential direction, and a plurality (two in the illustrated example) in which adjacent convex portions 32c are fitted. ) Recess 32d. The axial width of the concave portion 32d is slightly smaller than the axial width of the convex portion 32c. At the corners on both sides in the axial direction of the recess 32d, axial cuts 32f are provided. A plurality of foils 32 are formed into a cylindrical shape by inserting both ends in the axial direction of each convex portion 32c into the notches 32f of each concave portion 32d while fitting the convex portion 32c at one circumferential direction of the foil 32 into the concave portion 32d of the adjacent foil 32. Assembled.

図14に示すフォイル32は、図13のフォイル32の周方向一端の凸部32cを周方向に延長したものである。図示例では、凸部32cが、隣接するフォイル32の本体部(凸部32c,32eの周方向間の矩形領域)の周方向中央を越えて延びている。尚、図10に示すように、各フォイル32のラジアル軸受面S1の外径側には、隣接するフォイル32の凸部32cが配される(点線参照)。このとき、各フォイル32が隣接するフォイル32の凸部32cに乗り上げることにより、各フォイル32には、外径側に凸をなした第1のバネ要素Q1と、内径側に凸をなした第2のバネ要素Q2とが形成される。従って、各フォイル32の凸部32cの周方向長さを調整することで、フォイル32の第1バネ要素Q1と第2バネ要素Q2との境界(変曲点)の位置を調整し、フォイル32の軸受面S1に様々なバネ特性を付与することが可能となる。   The foil 32 shown in FIG. 14 is obtained by extending a convex portion 32c at one end in the circumferential direction of the foil 32 of FIG. 13 in the circumferential direction. In the example of illustration, the convex part 32c is extended beyond the center of the circumferential direction of the main-body part (rectangular area | region between the circumferential directions of the convex parts 32c and 32e) of the foil 32 which adjoins. In addition, as shown in FIG. 10, the convex part 32c of the adjacent foil 32 is distribute | arranged to the outer-diameter side of radial bearing surface S1 of each foil 32 (refer dotted line). At this time, as each foil 32 rides on the convex portion 32c of the adjacent foil 32, each foil 32 has a first spring element Q1 that is convex on the outer diameter side and a first spring element Q1 that is convex on the inner diameter side. Two spring elements Q2 are formed. Therefore, by adjusting the circumferential length of the convex portion 32c of each foil 32, the position of the boundary (inflection point) between the first spring element Q1 and the second spring element Q2 of the foil 32 is adjusted. Various spring characteristics can be imparted to the bearing surface S1.

ところで、図14に示すフォイル32では、隣接するフォイル32の凸部32cの縁(特に軸方向両端縁)に乗り上げる部分が盛り上がり、この部分が大きく摩耗する恐れがある。そこで、図15に示すように、フォイル32の凸部32cを、フォイル32の軸方向全長にわたって連続して設けることにより、隣接するフォイル32が凸部32cの軸方向端縁に乗り上げることがないため、フォイル32の摩耗を抑えることができる。この場合、フォイル32の凸部32cの根元部には、周方向他端の凸部32eが差し込まれるスリット32gが形成される。   By the way, in the foil 32 shown in FIG. 14, the part which rides on the edge (especially axial direction both ends edge) of the convex part 32c of the adjacent foil 32 swells, and there exists a possibility that this part may wear large. Therefore, as shown in FIG. 15, by providing the convex portion 32c of the foil 32 continuously over the entire axial length of the foil 32, the adjacent foil 32 does not run on the axial end edge of the convex portion 32c. The wear of the foil 32 can be suppressed. In this case, a slit 32g into which the convex portion 32e at the other circumferential end is inserted is formed at the base portion of the convex portion 32c of the foil 32.

また、図15に示すフォイル32では、凸部32eがフォイルホルダ31の溝31bに差し込まれて湾曲することで、凸部32e付近の剛性が高くなるため、タッチダウン時(軸との接触時)に柔軟に変形せず、局部的な接触(片当たり)が生じる恐れがある。そこで、図16に示すように、フォイル32の凸部32eの根元部付近にスリット32hを形成することで、凸部32e付近の剛性が低下し、片当たりを改善することができる。図示例では、凹部32dの軸方向両端に、周方向に延びるスリット32hが設けられる。   Further, in the foil 32 shown in FIG. 15, since the convex portion 32e is inserted into the groove 31b of the foil holder 31 and curved, the rigidity in the vicinity of the convex portion 32e is increased, so at the time of touchdown (at the time of contact with the shaft) There is a possibility that local contact (per one piece) may occur. Therefore, as shown in FIG. 16, the slit 32h is formed in the vicinity of the root portion of the convex portion 32e of the foil 32, thereby reducing the rigidity in the vicinity of the convex portion 32e and improving the one-sided contact. In the illustrated example, slits 32h extending in the circumferential direction are provided at both axial ends of the recess 32d.

図17に示すフォイル32は、図16に示すフォイル32の凸部32cに、へリングボーン形状の切れ込み32iが形成される。各フォイル32が、隣接するフォイル32の凸部32cに乗り上げることにより、フォイル32に、へリングボーン形状の切れ込み32iに沿った段差が形成される(図17の点線参照)。このへリングボーン形状の段差に沿って空気が流れ、各切り込み32iの軸方向中央側へ空気が集められることにより、空気膜の圧力が高められる(図17の点線矢印参照)。尚、図17ではへリングボーン形状の切れ込み32iが複列形成されているが、これに限らず、単列であってもよい。   In the foil 32 shown in FIG. 17, a herringbone-shaped cut 32i is formed in the convex portion 32c of the foil 32 shown in FIG. As each foil 32 rides on the convex portion 32c of the adjacent foil 32, a step along the herringbone-shaped cut 32i is formed in the foil 32 (see the dotted line in FIG. 17). Air flows along the herringbone-shaped step and collects air toward the center in the axial direction of each cut 32i, thereby increasing the pressure of the air film (see the dotted line arrow in FIG. 17). In FIG. 17, the herringbone-shaped cuts 32i are formed in a double row, but the present invention is not limited to this and may be a single row.

また、以上の実施形態では、ラジアルフォイル軸受30及びスラストフォイル軸受40,50をフォイル軸受ユニット10として一体化した後、これをガスタービンに取り付ける場合を示したが、これに限らず、各フォイル軸受30,40,50をそれぞれ別々にガスタービンに取り付けてもよい。   In the above embodiment, the radial foil bearing 30 and the thrust foil bearings 40 and 50 are integrated as the foil bearing unit 10 and then attached to the gas turbine. However, the present invention is not limited to this. 30, 40, and 50 may be separately attached to the gas turbine.

本発明にかかるフォイル軸受の適用対象は、上述したガスタービンに限られず、例えば過給機のロータを支持する軸受としても使用することができる。また、本発明にかかるフォイル軸受は、ガスタービンや過給機等のターボ機械に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The application object of the foil bearing according to the present invention is not limited to the gas turbine described above, and can be used as a bearing for supporting a rotor of a supercharger, for example. In addition, the foil bearing according to the present invention is not limited to a turbo machine such as a gas turbine or a turbocharger, and it is difficult to lubricate with a liquid such as a lubricating oil. It can be widely used as a bearing for a vehicle such as an automobile, which is used under a restriction that it is difficult to provide or resistance due to shearing of a liquid becomes a problem, and further, as a bearing for industrial equipment.

また、以上に説明した各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず、圧力発生流体としてその他のガスを使用することもでき、あるいは水や油などの液体を使用することもできる。   Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid. However, the present invention is not limited to this, and other gases can be used as the pressure generating fluid, or water or oil can be used. A liquid such as can also be used.

6 軸
10 フォイル軸受ユニット
20 回転部材
30 ラジアルフォイル軸受(フォイル軸受)
31 フォイルホルダ
31b 溝(凹部)
31b1 角部
32 フォイル
40 第1スラストフォイル軸受
41 フォイルホルダ
42 フォイル
43 固定部材
50 第2スラストフォイル軸受
51 フォイルホルダ
52 フォイル
53 固定部材
P 交差部
S1 ラジアル軸受面
S2 スラスト軸受面
S3 スラスト軸受面
6 shaft 10 foil bearing unit 20 rotating member 30 radial foil bearing (foil bearing)
31 Foil holder 31b Groove (concave)
31b1 Corner portion 32 Foil 40 First thrust foil bearing 41 Foil holder 42 Foil 43 Fixing member 50 Second thrust foil bearing 51 Foil holder 52 Foil 53 Fixing member P Intersection S1 Radial bearing surface S2 Thrust bearing surface S3 Thrust bearing surface

Claims (8)

筒状をなしたフォイルホルダと、軸受面を有し、前記フォイルホルダの内周面に周方向に並べて配された複数のフォイルとを備え、各フォイルの周方向両端が前記フォイルホルダに保持され、内周に挿入された軸を回転自在に支持するフォイル軸受であって、
前記フォイルホルダの内周面に凹部を設け、各フォイルの回転方向先行側の端部を前記凹部に差し込むと共に、各フォイルの回転方向後方側の端部の回転方向先行側への移動が許容され、
各フォイルの回転方向先行側の端部を前記凹部の内部で湾曲可能としたことを特徴とするフォイル軸受。
A foil holder having a cylindrical shape and a plurality of foils having a bearing surface and arranged in the circumferential direction on the inner peripheral surface of the foil holder, and both ends in the circumferential direction of each foil are held by the foil holder. A foil bearing that rotatably supports a shaft inserted in the inner periphery,
A recess is provided on the inner peripheral surface of the foil holder, and the end of each foil in the rotation direction leading side is inserted into the recess, and the movement of the end of each foil in the rotation direction rear side to the rotation direction leading side is allowed. ,
A foil bearing characterized in that an end of each foil in the rotational direction leading side can be bent inside the recess.
隣接するフォイルを軸方向視で互いに交差させて交差部を形成し、各フォイルの周方向両端を他のフォイルの外径側に配した請求項記載のフォイル軸受。 Adjacent foils are crossed with each other viewed in the axial direction of the cross section formed, the foil bearing according to claim 1, wherein the circumferential ends of each foil was placed on the outer diameter side of the other foil. 前記凹部の開口部の回転方向後方側の端部が、前記交差部よりも回転方向後方側に配された請求項記載のフォイル軸受。 The foil bearing according to claim 2 , wherein an end of the opening of the concave portion on the rear side in the rotational direction is arranged on the rear side in the rotational direction with respect to the intersecting portion. 前記凹部の内壁に、各フォイルの回転方向先行側の端部が突き当たる角部を設けた請求項1〜3の何れかに記載のフォイル軸受。 The foil bearing in any one of Claims 1-3 which provided the corner | angular part which the edge part of the rotation direction preceding side of each foil collided with the inner wall of the said recessed part. 前記凹部の開口部の回転方向後方側の端部を接点とした前記フォイルホルダの内周面の接線を、前記接点を中心に外径側に10°回転させた直線と、前記フォイルホルダの内周面との間の領域に、前記角部を設けた請求項記載のフォイル軸受。 A straight line obtained by rotating a tangent line of the inner peripheral surface of the foil holder with the end on the rear side in the rotation direction of the opening of the concave portion as a contact point by 10 ° to the outer diameter side around the contact point, and the inner side of the foil holder The foil bearing of Claim 4 which provided the said corner | angular part in the area | region between peripheral surfaces. 請求項1〜の何れかに記載のフォイル軸受と、前記フォイル軸受の内周に挿入され、内周に前記軸が固定される回転部材とを備えたフォイル軸受ユニット。 A foil bearing unit comprising: the foil bearing according to any one of claims 1 to 5 ; and a rotating member that is inserted into an inner periphery of the foil bearing and to which the shaft is fixed . 請求項1〜の何れかに記載のフォイル軸受と、前記フォイル軸受の内周に挿入された軸とを備えたターボ機械。 The turbomachine provided with the foil bearing in any one of Claims 1-5 , and the axis | shaft inserted in the inner periphery of the said foil bearing. 請求項に記載のフォイル軸受ユニットと、前記回転部材の内周に固定された前記軸とを備え、前記フォイル軸受により、前記回転部材及び前記軸が回転自在に支持されたターボ機械。 A foil bearing unit according to claim 6, and a said shaft that is fixed to an inner periphery of said rotary member, by the foil bearing, a turbomachine said rotary member and said shaft is rotatably supported.
JP2013256843A 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine Active JP6305748B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013256843A JP6305748B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine
US15/102,038 US10012109B2 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same
CN201480064681.6A CN105765245B (en) 2013-12-12 2014-11-19 Foil bearing and the foil bearing unit with the foil bearing and turbomachinery
PCT/JP2014/080639 WO2015087675A1 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same
EP14869649.5A EP3096028B1 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256843A JP6305748B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine

Publications (2)

Publication Number Publication Date
JP2015113926A JP2015113926A (en) 2015-06-22
JP6305748B2 true JP6305748B2 (en) 2018-04-04

Family

ID=53527922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256843A Active JP6305748B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine

Country Status (1)

Country Link
JP (1) JP6305748B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622054B2 (en) * 2015-10-16 2019-12-18 Ntn株式会社 Foil bearing
US10480568B2 (en) 2015-10-16 2019-11-19 Ntn Corporation Foil bearing
JP6545605B2 (en) * 2015-11-19 2019-07-17 Ntn株式会社 Foil bearing
KR102218462B1 (en) * 2020-12-10 2021-02-22 주식회사 뉴로스 Air foil journal bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935723U (en) * 1982-08-31 1984-03-06 石川島播磨重工業株式会社 gas bearing structure
JP4015388B2 (en) * 2001-08-20 2007-11-28 三菱重工業株式会社 Foil gas bearing
JP2008241015A (en) * 2007-03-29 2008-10-09 Daido Metal Co Ltd Multirobe foil fluid bearing and its manufacturing method
JP5751062B2 (en) * 2011-07-22 2015-07-22 株式会社Ihi Radial foil bearing

Also Published As

Publication number Publication date
JP2015113926A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
CN107061495B (en) Thin liner bearing
WO2013018605A1 (en) Thrust foil bearing
CN109812493B (en) Air foil radial bearing
JP6113444B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6305748B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP6104597B2 (en) Foil bearing
JP5840423B2 (en) Foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP2013053645A (en) Thrust foil bearing
CN108350934B (en) Foil bearing, method for manufacturing same, and intermediate product of foil bearing
JP6104596B2 (en) Foil bearing
JP2013044394A (en) Thrust foil bearing
JP6257965B2 (en) Foil bearing unit
JP2015132309A (en) foil bearing
JP6144222B2 (en) Foil bearing
JP6246574B2 (en) Foil bearing unit and turbomachine
JP6629042B2 (en) Foil bearing
WO2020179475A1 (en) Thrust foil bearing
JP2019019914A (en) Foil bearing
JP6219489B2 (en) Foil bearing
JP6440999B2 (en) Foil bearing and foil provided on the same
JP6541946B2 (en) Foil bearing and foil provided thereto
JP2020041589A (en) Foil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250