Nothing Special   »   [go: up one dir, main page]

JP6396297B2 - White light emitting quantum dots - Google Patents

White light emitting quantum dots Download PDF

Info

Publication number
JP6396297B2
JP6396297B2 JP2015529678A JP2015529678A JP6396297B2 JP 6396297 B2 JP6396297 B2 JP 6396297B2 JP 2015529678 A JP2015529678 A JP 2015529678A JP 2015529678 A JP2015529678 A JP 2015529678A JP 6396297 B2 JP6396297 B2 JP 6396297B2
Authority
JP
Japan
Prior art keywords
group
light emitting
light
white light
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015529678A
Other languages
Japanese (ja)
Other versions
JP2015534211A (en
Inventor
ジョン−ホ イ
ジョン−ホ イ
グン−テ キム
グン−テ キム
ヒョン−チョル アン
ヒョン−チョル アン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongjin Semichem Co Ltd
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Priority claimed from PCT/KR2013/007772 external-priority patent/WO2014035159A1/en
Publication of JP2015534211A publication Critical patent/JP2015534211A/en
Application granted granted Critical
Publication of JP6396297B2 publication Critical patent/JP6396297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、白色発光量子ドットに関し、特に一つの量子ドット単独で白色発光が可能な白色発光量子ドットおよびその製造方法に関する。   The present invention relates to a white light-emitting quantum dot, and more particularly to a white light-emitting quantum dot capable of emitting white light by a single quantum dot and a method for manufacturing the same.

量子ドット(Quantum Dot)はナノサイズの半導体物質であって、量子制限(quantum confinement)効果を示し、このような量子ドットは励起源(excitation source)から光を受けてエネルギー励起状態に至ると、自主的に該当するエネルギーバンドギャップ(bandgap)によるエネルギーを放出するようになる。また、量子ドットの大きさを調節して該当バンドギャップを調節すれば電気的、光学的特性を調節することができるので、量子ドットの大きさ調節のみで発光波長を調節することができ、優れた色純度および高い発光効率などの特性を示すことができるため、発光素子または光電変換素子など多様な素子に応用することができる。   A quantum dot is a nano-sized semiconductor material and exhibits a quantum restriction effect. When such a quantum dot receives light from an excitation source and reaches an energy excited state, Voluntarily releases energy by the corresponding energy band gap. In addition, by adjusting the size of the quantum dot and adjusting the corresponding band gap, the electrical and optical characteristics can be adjusted. Therefore, the emission wavelength can be adjusted only by adjusting the size of the quantum dot, which is excellent. Therefore, the present invention can be applied to various elements such as a light emitting element or a photoelectric conversion element.

従来研究された発光素子としての量子ドットは、米国特許第6501091号およびWO2012/013272号のように一つの色の領域帯の波長のみを発光することについては開示されたが、一つの量子ドットのみで白色光を発光することが不可能であり、白色光を実現するためには別途のフィルター層を備え、発光する光の波長を変えなければならない困難があり、今まで多くの必要性にもかかわらず、一つの量子ドット自体で白色光を発光する量子ドットについては報告されていないのが実情である。   Quantum dots as light-emitting elements that have been studied in the past have been disclosed to emit only the wavelength of one color region band as in US Pat. No. 6,501,091 and WO2012 / 013272, but only one quantum dot is disclosed. In order to realize white light, it is difficult to provide a separate filter layer to change the wavelength of the emitted light. Regardless, the fact is that no single quantum dot itself emits white light.

前記のような問題点を解決するために、本発明は、自体のみでも白色発光が可能であり、優れた色純度、高安定性および高い発光効率を示すことができる白色発光量子ドット、その製造方法およびこれを含む発光素子を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention can produce white light emitting quantum dots that can emit white light by themselves and exhibit excellent color purity, high stability, and high luminous efficiency, and the production thereof. It is an object to provide a method and a light emitting device including the method.

前記目的を達成するために本発明は、
コア/シェルの構造体とシェルの表面に付着されたリガンドを含む量子ドットであって、
前記リガンドが発光グループを含み、
前記コア/シェル構造体とリガンドの発光グループは互いに補色関係である色を発光して全体的に白色光を発光することを特徴とする白色発光量子ドットを提供する。
In order to achieve the above object, the present invention provides:
A quantum dot comprising a core / shell structure and a ligand attached to the surface of the shell, comprising:
The ligand comprises a luminescent group;
The light emitting group of the core / shell structure and the ligand emits a color complementary to each other to emit white light as a whole, thereby providing a white light emitting quantum dot.

好ましくは、前記コア/シェルの構造体は、400以上500未満nm領域帯の光を発光するか、または500以上800以下nm領域帯の光を発光することができ、
コア/シェルの構造体は400以上500未満nm領域帯の光を発光する場合、発光グループは500以上800以下nm領域帯の光を発光し、コア/シェルの構造体は500以上800以下nm領域帯の光を発光する場合、発光グループは400以上500未満nm領域帯の光を発光して全体的に白色光を発光する量子ドットであり得る。
Preferably, the core / shell structure may emit light having a wavelength range of 400 to 500 nm, or may emit light having a wavelength range of 500 to 800 nm,
When the core / shell structure emits light in the 400 to 500 nm region band, the light emitting group emits light in the 500 to 800 nm region band, and the core / shell structure has the 500 to 800 nm region. In the case of emitting band light, the light emitting group may be quantum dots that emit light in the 400 to 500 nm region and emit white light as a whole.

また、本発明は、コア/シェルの構造体が分散した溶液に発光グループを含むリガンドを加えた後、攪拌する段階を含むことを特徴とする白色発光量子ドットの製造方法を提供する。   The present invention also provides a method for producing white light-emitting quantum dots, comprising a step of adding a ligand containing a light-emitting group to a solution in which a core / shell structure is dispersed and then stirring the solution.

また、本発明は、発光素子において、発光物質として前記白色発光量子ドットを含むことを特徴とする発光素子を提供する。   According to another aspect of the present invention, there is provided a light emitting device including the white light emitting quantum dot as a light emitting material.

また、本発明は、発光素子の製造方法において、前記白色発光量子ドットで発光層を形成する段階を含むことを特徴とする発光素子の製造方法を提供する。   According to another aspect of the present invention, there is provided a method for manufacturing a light emitting device, comprising the step of forming a light emitting layer with the white light emitting quantum dots.

本発明による白色発光量子ドットは、別途のフィルター層を備えなくても自体のみで白色光を発光することができるため、発光素子に適用時、構造が単純でありながらも従来の発光素子に比べて優れた色純度、高安定性および高い発光効率を有するようにすることができる。   Since the white light emitting quantum dots according to the present invention can emit white light by themselves without a separate filter layer, when applied to a light emitting element, the structure is simple but compared with a conventional light emitting element. And excellent color purity, high stability and high luminous efficiency.

本発明の一実施形態による白色発光量子ドットの模式図を示したものである。1 is a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention. 本発明の他の一実施形態による白色発光量子ドットの模式図を示したものである。FIG. 3 is a schematic view of a white light emitting quantum dot according to another embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットに使用されたCdSe/ZnS合成模式図である。It is a CdSe / ZnS synthetic schematic diagram used for white light emitting quantum dots according to an embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットの合成模式図である。It is a synthetic schematic diagram of white light emitting quantum dots according to an embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットのFT−IRスペクトルである。4 is an FT-IR spectrum of a white light emitting quantum dot according to an embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットのUV吸収およびPLスペクトルである。2 is a UV absorption and PL spectrum of a white light emitting quantum dot according to an embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットの素子発光効率を測定したグラフである。3 is a graph showing the device luminous efficiency of white light emitting quantum dots according to an embodiment of the present invention. 本発明の一実施形態による白色発光量子ドットの発光スペクトルを示したものである。2 shows an emission spectrum of a white light emitting quantum dot according to an embodiment of the present invention.

以下、本発明を詳しく説明する。
本発明の白色発光量子ドットは、コア/シェルの構造体とシェルの表面に付着されたリガンドを含む量子ドットであって、前記リガンドが発光グループを含み、前記コア/シェル構造体とリガンドの発光グループは互いに補色関係である色を発光して全体的に白色光を発光することを特徴とする白色発光量子ドットである。即ち、一つの量子ドットに補色関係にあるコア/シェルの構造体と発光グループを含むリガンドを含むことによって、一つの量子ドットが全体的に白色光を発光することができる白色発光量子ドットであることを特徴とする。
The present invention will be described in detail below.
The white light emitting quantum dot of the present invention is a quantum dot including a core / shell structure and a ligand attached to a surface of the shell, wherein the ligand includes a light emitting group, and the core / shell structure and the ligand emit light. A group is a white light-emitting quantum dot that emits white light as a whole by emitting colors that are complementary to each other. That is, a single quantum dot is a white light emitting quantum dot which can emit white light as a whole by including a core / shell structure having a complementary color relationship and a ligand containing a light emitting group. It is characterized by that.

本発明で補色関係にあるコア/シェルの構造体と発光グループを含むリガンドの発光波長は任意に調整可能であり、具体的な一例として、前記コア/シェルの構造体は400以上500未満nm領域帯の光を発光するか、または500以上800以下nm領域帯の光を発光することができ、
コア/シェルの構造体は400以上500未満nm領域帯の光を発光する場合、発光グループは500以上800以下nm領域帯の光を発光し、コア/シェルの構造体は500以上800以下nm領域帯の光を発光する場合、発光グループは400以上500未満nm領域帯の光を発光して、量子ドットは全体的に白色光を発光することができる。
In the present invention, the emission wavelength of a ligand including a core / shell structure and a light emitting group having a complementary color relationship can be arbitrarily adjusted. As a specific example, the core / shell structure has a wavelength range of 400 to 500 nm. Can emit light in the band, or can emit light in the range of 500 to 800 nm,
When the core / shell structure emits light in the 400 to 500 nm region band, the light emitting group emits light in the 500 to 800 nm region band, and the core / shell structure has the 500 to 800 nm region. In the case of emitting band light, the light emitting group emits light in the 400 to 500 nm region band, and the quantum dots can emit white light as a whole.

前記リガンドは発光グループおよびシェルと発光グループを連結する連結グループを含み、必要によって連結グループと発光グループの間にスペーサを含むことができる。   The ligand includes a light emitting group and a connecting group that connects the shell and the light emitting group, and may include a spacer between the connecting group and the light emitting group, if necessary.

下記構造式1は本発明の一実施形態による白色発光量子ドットの模式図を示したものである。
上記構造式1において、Aは発光グループを示し、Lはスペーサ、Xは連結グループを示す。
The following structural formula 1 shows a schematic diagram of a white light emitting quantum dot according to an embodiment of the present invention.
In the structural formula 1, A represents a light emitting group, L represents a spacer, and X represents a connected group.

本発明の白色発光量子ドットでコア/シェル構造体は、公知のコア/シェル構造体を用いることができ、一例として大韓民国公開特許公報第2010−35466号に記載されたコア/シェル構造体を用いることもできる。より具体的に、コア/シェル構造体は、a)2族、12族、13族および14族から選択された第1元素と16族から選択された第2元素;b)13族から選択された第1元素および15族から選択された第2元素;およびc)14族元素;からなる群より選択された一つの物質、或いはこれらがコア/シェルの構造体を形成したものが例として挙げられ、その例としては、MgO、MgS、MgSe、MgTe、CaO、CaS、CaSe、CaTe、SrO、SrS、SrSe、SrTe、BaO、BaS、BaSe、BaTE、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe、Al2O3、Al2S3、Al2Se3、Al2Te3、Ga2O3、Ga2S3、Ga2Se3、Ga2Te3、In2O3、In2S3、In2Se3、In2Te3、SiO2、GeO2、SnO2、SnS、SnSe、SnTe、PbO、PbO2、PbS、PbSe、PbTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、BP、Si、Geからなる群より1種以上選択されるものであり、これらがコア/シェル形態の構造体を形成したものを使用することができる。   As the core / shell structure of the white light-emitting quantum dot of the present invention, a known core / shell structure can be used. For example, the core / shell structure described in Korean Patent Publication No. 2010-35466 is used. You can also. More specifically, the core / shell structure is selected from a) a first element selected from Group 2, 12, 12, 13 and 14 and a second element selected from Group 16; b) selected from Group 13 As an example, one substance selected from the group consisting of a first element and a second element selected from group 15; and c) a group 14 element; or a substance formed of a core / shell structure. Examples thereof include MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS. , CdSe, CdTe, HgO, HgS, HgSe, HgTe, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, G 2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb One or more types selected from the group consisting of InN, InP, InAs, InSb, BP, Si, and Ge can be used in which these form a core / shell structure.

前記コア/シェルの構造体の平均直径は補色関係を考慮して任意に調節可能であり、1−12nmであるものを使用することができる。一例として、500以上800以下nm領域帯の光を発光するコア/シェルの構造体は5−12nmの直径、400以上500未満nm領域帯の光を発光するコア/シェルの構造体は1−3nmの直径を有するようにすることができ、好ましくは前記コア/シェルの構造体は500以上800以下nm領域帯の光を発光するものを使用することがよい。   The average diameter of the core / shell structure can be arbitrarily adjusted in consideration of complementary colors, and those having a diameter of 1 to 12 nm can be used. As an example, a core / shell structure that emits light in the 500 to 800 nm region band has a diameter of 5-12 nm, and a core / shell structure that emits light in the 400 to less than 500 nm region band has 1-3 nm. The core / shell structure preferably emits light in the range of 500 to 800 nm.

また、本発明の白色発光量子ドットでリガンドに含まれている前記コア/シェルの構造体の発光色と補色関係である色を発光して量子ドットが全体的に白色光を発光することができる発光グループが適用される。一例として、前記コア/シェルの構造体が400以上500未満nm領域帯の光を発光する場合、発光グループは500以上800以下nm領域帯の光を発光し、コア/シェルの構造体は500以上800以下nm領域帯の光を発光する場合、発光グループは400以上500未満nm領域帯の光を発光するグループを使用する。   In addition, the white light emitting quantum dots of the present invention emit light of a color complementary to the light emission color of the core / shell structure contained in the ligand, so that the quantum dots can emit white light as a whole. The lighting group is applied. As an example, when the core / shell structure emits light in the 400 nm to 500 nm nm region band, the light emitting group emits light in the 500 nm to 800 nm nm region band, and the core / shell structure has 500 nm or more. When light in the 800 nm or less nm band is emitted, a group that emits light in the 400 to 500 nm band is used.

前記発光グループは公知の発光グループを用いることができ、例えば蛍光またはリン光発光グループを使用することができる。より具体的に、400以上500未満nm領域帯の光を発光するグループは下記FL1乃至FL38、またはPL1乃至PL59のうちの一つであり得、500以上800以下nm領域帯の光を発光するグループは下記FL1乃至FL38、またはPL1乃至PL59のうちの一つであり得る。   As the light emitting group, a known light emitting group can be used. For example, a fluorescent or phosphorescent light emitting group can be used. More specifically, the group that emits light in the 400 to 500 nm region band may be one of the following FL1 to FL38 or PL1 to PL59, and the group that emits light in the 500 to 800 nm region band: Can be one of the following FL1 to FL38 or PL1 to PL59.

下記FL1乃至FL38、またはPL1乃至PL59において*は連結部分であり、ここで連結部分は括弧内の置換位置のうちの一つ以上に連結され、R1乃至R16はそれぞれ独立して水素;重水素;ハロゲン;アミノ基;ニトリル基;ニトロ基;重水素、ハロゲン、アミノ基、ニトリル基、ニトロ基に置換もしくは非置換のC〜C40のアルキル基;C〜C40のアルケニル基;C〜C40のアルコキシ基;C〜C40のシクロアルキル基;C〜C40のヘテロシクロアルキル基;C〜C40のアリール基;C〜C40のヘテロアリール基;C〜C40のアラルキル基;C〜C40のアリールオキシ基;C〜C40のアリールチオ基またはSiである。任意的にR乃至R16から選択された2つ以上は互いに結合して環を形成することができ、S、N、O、Siを含むことができる。
In the following FL1 to FL38 or PL1 to PL59, * is a linking moiety, wherein the linking moiety is linked to one or more of the substitution positions in parentheses, and R1 to R16 are each independently hydrogen; deuterium; halogen; amino group; nitrile group, a nitro group, an alkenyl group of C 2 -C 40;; deuterium, halogen, amino group, nitrile group, alkyl group of C 1 -C 40 substituted or unsubstituted nitro group C 1 heteroaryl group C 3 ~C 40;; aryl group C 6 -C 40; heterocycloalkyl group C 3 -C 40; cycloalkyl group C 3 -C 40; alkoxy groups -C 40 C 3 ~ A C 40 aralkyl group; a C 3 -C 40 aryloxy group; a C 3 -C 40 arylthio group or Si. Two or more optionally selected from R 1 to R 16 may be bonded to each other to form a ring, and may include S, N, O, and Si.

好ましくは、前記発光グループは400以上500未満nm領域帯の光を発光するグループであることがよい。   Preferably, the light emitting group is a group that emits light in a range of 400 to 500 nm.

また、本発明の白色発光量子ドットで前記連結グループはシェルに付着されながら発光グループまたはスペーサに連結される連結基であれば特に限定されず、一例としてチオール(thiol)基、カルボキシ基、アミン基、ホスフィン(phospine)基、およびホスフィド(phosphide)基からなる群より1種以上選択される基を使用することができる。好ましくは、前記連結基はチオール基である。   Further, in the white light emitting quantum dots of the present invention, the linking group is not particularly limited as long as it is a linking group attached to the shell and connected to the luminescent group or the spacer. For example, a thiol group, a carboxy group, an amine group A group selected from at least one selected from the group consisting of a phosphine group and a phosphide group can be used. Preferably, the linking group is a thiol group.

また、本発明の白色発光量子ドットでは前記発光グループと連結グループの間にスペーサをさらに含むことができる。前記スペーサはコア/シェル構造体に付着される発光グループを個数を増加させ、白色発光量子ドット製造時に発光物質を含むリガンドの溶媒に対する分散を容易にすることができる。具体的に、前記スペーサは置換もしくは非置換の飽和または不飽和C〜C30のアルキル基、C〜C40のシクロアルキル基、Si〜Si30のシランを用いることができるが、これに限定されるのではない。 The white light emitting quantum dot of the present invention may further include a spacer between the light emitting group and the connection group. The spacers can increase the number of light emitting groups attached to the core / shell structure, and can facilitate dispersion of a ligand containing a light emitting material in a solvent when manufacturing white light emitting quantum dots. Specifically, the spacer can be used substituted or unsubstituted, saturated or unsaturated C 1 -C 30 alkyl group, cycloalkyl group C 3 -C 40, the silane Si 1 ~Si 30, which It is not limited to.

好ましくは、本発明で発光グループ、スペーサおよび連結グループを全て含み、一例として下記のような構造であり得る。下記構造において−SHのH部分がコア/シェル構造体と結合する部分である。   Preferably, the present invention includes all the light emitting groups, spacers, and connection groups, and may have the following structure as an example. In the following structure, the H part of -SH is a part that binds to the core / shell structure.

400以上500未満nm領域帯の光を発光するのに適した構造:
A structure suitable for emitting light in the range of 400 to 500 nm:

500以上800以下nm領域帯の光を発光するのに適した構造:
A structure suitable for emitting light in the range of 500 to 800 nm:

本発明でリガンドに発光グループを含む全体白色発光量子ドットの大きさは任意に調節可能であり、好ましくは5乃至30nm、さらに好ましくは10−20nmであることがよい。また、本発明でコア/シェル構造体と発光グループの発光強度は任意に調節可能であり、好ましくは本発明で補色関係にあるコア/シェル構造体と発光グループの発光強度比はその差が30%以内であるのが好ましい。即ち、400以上500未満nm領域帯の発光強度が1である時、500以上800以下nm領域帯の発光強度は0.7−1.3が好ましく、0.7以下である場合は色純度がブルーシフト(Blue shift)し、1.3以上である場合は色純度がレッドシフト(Red shift)して、全体的に量子ドットが白色発光が難しくなることがある。また、500以上800以下nm領域帯の発光強度が1である時、400以上500未満nm領域帯の発光強度は0.7−1.3であるのがよく、0.7以下である場合は色純度がレッドシフト(Red shift)し、1.3以上である場合は色純度がブルーシフト(Blue shift)して、全体的に量子ドットが白色発光が難しくなることがある。   In the present invention, the size of the whole white light-emitting quantum dot containing a light-emitting group as a ligand can be arbitrarily adjusted, and is preferably 5 to 30 nm, more preferably 10 to 20 nm. In the present invention, the light emission intensity of the core / shell structure and the light emission group can be arbitrarily adjusted. Preferably, the difference in light emission intensity ratio between the core / shell structure and the light emission group which are complementary in the present invention is 30. % Is preferable. That is, when the emission intensity in the 400-500 nm region band is 1, the emission intensity in the 500-800 nm region band is preferably 0.7-1.3, and the color purity is 0.7 or less. If blue shift is performed and the color purity is 1.3 or more, the color purity may be red shifted, and it may be difficult for the entire quantum dot to emit white light. When the emission intensity in the 500 to 800 nm region band is 1, the emission intensity in the 400 to less than 500 nm region band is preferably 0.7 to 1.3, and is 0.7 or less. If the color purity is red shift and the color purity is 1.3 or more, the color purity may be blue shift and it may be difficult for the quantum dots to emit white light as a whole.

下記構造式2は本発明の具体的な一例による白色発光量子ドットの模式図を示したものであって、発光物質が400以上500未満nm領域帯の光を発光するので、コア/シェル構造体は500以上800以下nm領域帯の光を発光する大きさの構造体であってコアはCdSe、シェルはZnSを使用することができる。
The following structural formula 2 shows a schematic diagram of a white light emitting quantum dot according to a specific example of the present invention, and the core / shell structure because the luminescent material emits light in the 400 to 500 nm region band. Is a structure that emits light in the range of 500 to 800 nm, and the core can be CdSe and the shell can be ZnS.

本発明による白色発光量子ドットは、コア/シェルの構造体が分散した溶液に発光グループを含むリガンドを加えた後、攪拌する段階を含んで製造することができる。前記でコア/シェルの構造体の製造は公知の方法を用いることができるのはもちろんであり、具体的に図1に記載された合成方法によって製造できる。   The white light emitting quantum dots according to the present invention can be manufactured by adding a ligand containing a light emitting group to a solution in which a core / shell structure is dispersed, and then stirring. In the above, the core / shell structure can be manufactured by a known method, and can be specifically manufactured by the synthesis method shown in FIG.

また、発光グループを含むリガンドの製造は、発光グループに連結グループを結合させるか、または下記反応式1および2の過程を経てスペーサを発光グループと連結グループの間に含ませてリガンドを製造することができる。
In addition, a ligand including a luminescent group may be manufactured by combining a linking group with the luminescent group or by adding a spacer between the luminescent group and the linking group through the processes of the following reaction formulas 1 and 2. Can do.

また、コア/シェルの構造体に発光グループを含むリガンドを付着する方法で、前記攪拌は常温乃至100℃の温度で0.1乃至100時間行なうことができる。   In the method of attaching a ligand containing a light emitting group to a core / shell structure, the stirring can be performed at a temperature of room temperature to 100 ° C. for 0.1 to 100 hours.

また、本発明は前記白色発光量子ドットを用いた発光素子(QLED)およびその製造方法を提供する。本発明で前記発光素子は本発明による前記白色発光量子ドットを用いて形成した発光層を除いては他の公知技術が適用できるのはもちろんである。   Moreover, this invention provides the light emitting element (QLED) using the said white light emission quantum dot, and its manufacturing method. In the present invention, other known techniques can be applied to the light emitting device except for the light emitting layer formed using the white light emitting quantum dots according to the present invention.

一例として、発光素子は、一実施形態によれば、基板−陰極−本発明による白色発光量子ドットで形成した発光層−陽極が順次に形成されるように構成することができ、前記陰極と発光層の間に電子輸送層をさらに形成することができ、発光層と陽極の間に正孔輸送層をさらに形成することもできる。また、必要によって電子輸送層と発光層の間に正孔抑制層をさらに含むこともでき、各層の間にバッファー層を形成することもできる。   As an example, according to one embodiment, the light emitting device may be configured such that a substrate, a cathode, a light emitting layer formed of white light emitting quantum dots according to the present invention, and an anode are sequentially formed. An electron transport layer can be further formed between the layers, and a hole transport layer can be further formed between the light emitting layer and the anode. Further, if necessary, a hole suppression layer can be further included between the electron transport layer and the light emitting layer, and a buffer layer can be formed between the layers.

本発明で白色発光量子ドットを用いた発光素子(QLED)は通常の製作方法によって形成可能であり、前記発光層を含むそれぞれの有機膜の厚さは30乃至100nmになるように製造することができる。   In the present invention, a light emitting device (QLED) using white light emitting quantum dots can be formed by an ordinary manufacturing method, and each organic film including the light emitting layer can be manufactured to have a thickness of 30 to 100 nm. it can.

本発明によって白色発光量子ドットを用いて発光層として使用する場合、例えば電子輸送前記有機電界発光素子では各層の間にバッファー層を形成することができ、このようなバッファー層の素材としては通常使用される物質を使用することができ、例えば、銅フタロシアニン(copper phthalocyanine)、ポリチオフェン(polythiophene)、ポリアニリン(polyaniline)、ポリアセチレン(polyacetylene)、ポリピロール(polypyrrole)、ポリフェニレンビニレン(polyphenylene vinylene)、またはこれらの誘導体を使用することができるが、これに限定されない。   When used as a light-emitting layer using white light-emitting quantum dots according to the present invention, for example, in the organic electroluminescent device for electron transport, a buffer layer can be formed between each layer, and such a buffer layer is usually used as a material. For example, copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, ne, or polyphenylene vinyl. However, the present invention is not limited to this.

前記正孔輸送層の素材としては通常使用される物質を使用することができ、例えばポリトリフェニルアミン(polytriphenylamine)を使用することができるが、これに限定されない。 As the material of the hole transport layer, a commonly used material can be used, and for example, polytriphenylamine can be used, but is not limited thereto.

前記電子輸送層の素材としては通常使用される物質を使用することができ、例えばポリオキサジアゾール(polyoxadiazole)を使用することができるが、これに限定されない。   As the material for the electron transport layer, a commonly used material can be used. For example, polyoxadiazole can be used, but the material is not limited thereto.

前記正孔抑制層の素材としては通常使用される物質を使用することができ、例えばLiF、BaFまたはMgFなどを使用することができるが、これに限定されない。
より具体的に、本発明の発光素子は図2に記載された方法によって製造することもできる。
As the material for the hole suppression layer, a commonly used substance can be used. For example, LiF, BaF 2 or MgF 2 can be used, but the material is not limited thereto.
More specifically, the light emitting device of the present invention can be manufactured by the method described in FIG.

前記のように製造された本発明による発光素子は、別途のフィルター層を備えなくても自体のみで白色光を発光することができ、白色発光量子ドットで発光層を形成するため構造が単純でありながらも安定性が高く、従来の発光素子に比べて優れた色純度、および高い発光効率を有するようになる。   The light emitting device according to the present invention manufactured as described above can emit white light by itself without a separate filter layer, and has a simple structure because the light emitting layer is formed of white light emitting quantum dots. However, it has high stability and has excellent color purity and high luminous efficiency compared to conventional light emitting elements.

以下、本発明の理解のために好ましい実施例を提示するが、下記の実施例は本発明を例示するものに過ぎず、本発明の範囲が下記の実施例に限定されるのではない。   Hereinafter, preferred examples will be presented for the understanding of the present invention. However, the following examples are merely illustrative of the present invention, and the scope of the present invention is not limited to the following examples.

[合成例1]9−ブロモ−10−フェニルアントラセンの合成(発光物質の合成)
アルゴンまたは窒素雰囲気下で、250ml入りフラスコに、2−ナフタレンボロン酸4.2g、9−ブロモアントラセン6.8g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.6g、トルエン50mlおよび炭酸ナトリウム8.4gを水50mlに溶解せたものを入れ、還流しながら24時間加熱攪拌した。反応後、室温まで冷却させて析出した結晶をろ過分離した。これをトルエンで再結晶化して、7.5gの結晶を収得した。
アルゴンまたは窒素雰囲気下で、250ml入りフラスコに、前記結晶7.5gと脱水処理したDMF(ジメチルホルムアミド)100mlを入れ、80℃で加熱し、原料を溶解させた後、50℃でN−ブロモコハク酸イミド4.8gを加えて、2時間攪拌した。反応終了後、精製水200mlに反応液を注入して析出した結晶をろ過分離した。これをトルエンで再結晶化して、6.8gの結晶を収得した。
[Synthesis Example 1] Synthesis of 9-bromo-10-phenylanthracene (synthesis of luminescent material)
In a 250 ml flask under argon or nitrogen atmosphere, 4.2 g of 2-naphthaleneboronic acid, 6.8 g of 9-bromoanthracene, 0.6 g of tetrakis (triphenylphosphine) palladium (0), 50 ml of toluene and sodium carbonate 8. A solution prepared by dissolving 4 g in 50 ml of water was added, and the mixture was heated and stirred for 24 hours while refluxing. After the reaction, it was cooled to room temperature and the precipitated crystals were separated by filtration. This was recrystallized with toluene to obtain 7.5 g of crystals.
In a 250 ml flask under argon or nitrogen atmosphere, 7.5 g of the above crystals and 100 ml of dehydrated DMF (dimethylformamide) were added and heated at 80 ° C. to dissolve the raw materials, and then N-bromosuccinic acid at 50 ° C. 4.8 g of imide was added and stirred for 2 hours. After completion of the reaction, the reaction solution was poured into 200 ml of purified water, and the precipitated crystals were separated by filtration. This was recrystallized from toluene to obtain 6.8 g of crystals.

[合成例2]
9−(10−ブロモデシル)−10−フェニルアントラセン(スペーサ合成)
9−ブロモ−10−フェニルアントラセン8gを無水ジエチルエーテル(anhydrous diethyl ether)300mlに溶かした。ここで、0℃でn−BuLi(2M)18mlを徐々に入れた。0℃で1時間維持後、1.10−ジブロモデカン21.6mlを入れた。30分後、2時間還流攪拌した。反応がそれ以上行われないと、常温に冷却後、蒸溜水80mlを入れた。有機層を集め、水層をエチルエーテル40mlで3回抽出した。無水硫酸マグネシウムで水分除去後、ヘキサン(hexane)を移動相にしてカラム分離して薄緑色オイル状9−(10−ブロモデシル)−10−フェニルアントラセン5.7g(50%)を得た。
[Synthesis Example 2]
9- (10-bromodecyl) -10-phenylanthracene (spacer synthesis)
8 g of 9-bromo-10-phenylanthracene was dissolved in 300 ml of anhydrous diethyl ether. Here, 18 ml of n-BuLi (2M) was gradually added at 0 ° C. After maintaining at 0 ° C. for 1 hour, 21.6 ml of 1.10-dibromodecane was added. After 30 minutes, the mixture was stirred at reflux for 2 hours. If the reaction was not carried out any further, 80 ml of distilled water was added after cooling to room temperature. The organic layer was collected and the aqueous layer was extracted 3 times with 40 ml of ethyl ether. After removing moisture with anhydrous magnesium sulfate, hexane was used as a mobile phase and the column was separated to obtain 5.7 g (50%) of light green oily 9- (10-bromodecyl) -10-phenylanthracene.

H NMR(CDCl、400MHz):8.32(2H、d)、7.63(2H、d)、7.59(9H、m)、3.92(2H、t)、3.65(2H、t)、1.70−1.68(2H、m)、1.64−1.60(4H、m)、1.52(10H、m) 1 H NMR (CDCl 3 , 400 MHz): 8.32 (2H, d), 7.63 (2H, d), 7.59 (9H, m), 3.92 (2H, t), 3.65 ( 2H, t), 1.70-1.68 (2H, m), 1.64-1.60 (4H, m), 1.52 (10H, m)

[合成例3]化合物DJ−A−1合成
9−(10−ブロモデシル)−10−フェニルアントラセン4g(1eq)とチオウレア1.3g(2eq)を無水エタノール50mlに溶かし、4時間還流攪拌した。ここに6Mの水酸化ナトリウム50mlを入れ、2時間還流攪拌した。反応がそれ以上行われないと、エタノール除去後、エチルアセテート30mlで3回抽出した。ブライン溶液で洗浄した後、無水硫酸マグネシウムで水分除去後、CHClを移動相にしてカラム分離して薄緑色オイル状10−(10−フェニルアントラセン−9−イル)デカン−1−チオール1.4g(39%)を得た。
[Synthesis Example 3] Compound DJ-A-1 Synthesis 9- (10-bromodecyl) -10-phenylanthracene 4 g (1 eq) and thiourea 1.3 g (2 eq) were dissolved in 50 ml of absolute ethanol and stirred at reflux for 4 hours. To this, 50 ml of 6M sodium hydroxide was added and stirred under reflux for 2 hours. If the reaction was not carried out any further, the ethanol was removed and then extracted three times with 30 ml of ethyl acetate. After washing with a brine solution, water was removed with anhydrous magnesium sulfate, CHCl 3 was used as a mobile phase, and the column was separated to obtain a pale green oily 10- (10-phenylanthracen-9-yl) decane-1-thiol 1.4 g. (39%) was obtained.

[合成例4]化合物DJ−A−2合成
前記合成例1で合成例3]過程を繰り返し、但し、合成例2で1.10−ジブロモデカンの代わりに1,5−ジブロモペンタンを使用し、淡黄色(Pale yellow)DJ−A−2を合成した。
[Synthesis Example 4] Synthesis of Compound DJ-A-2 The above-mentioned Synthesis Example 1 and Synthesis Example 3] were repeated except that 1,5-dibromopentane was used instead of 1.10-dibromodecane in Synthesis Example 2. Pale yellow DJ-A-2 was synthesized.

1H-NMR (CDCl3,Varian400MHz): δ 1.45 (1H, t, J=7.6Hz),1.74-1.81(4H,m),1.87-1.92(2H,m),2.60(2H,q,J=7.6Hz),3.66-3.70(2H,m),7.32-7.35(2H,m),7.40-7.42(2H,m),7.48-7.54(3H,m),7.55-7.59(2H,m),7.66(2H,d,J=8.4Hz),8.31(2H,d,J=8.8Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 10% [water+0.01% HFBA+1.0% IPA] and 90% [CH3CN+0.01%HFBA+1.0%IPA]to5%[water+0.01%HFBA+1.0%IPA]and95%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.52%,Rt=2.61min;MSCalcd.:356.16;MSFound356.2[M].
1H-NMR (CDCl3, Varian400MHz): δ 1.45 (1H, t, J = 7.6Hz), 1.74-1.81 (4H, m), 1.87-1.92 (2H, m), 2.60 (2H, q, J = 7.6Hz ), 3.66-3.70 (2H, m), 7.32-7.35 (2H, m), 7.40-7.42 (2H, m), 7.48-7.54 (3H, m), 7.55-7.59 (2H, m), 7.66 (2H , d, J = 8.4Hz), 8.31 (2H, d, J = 8.8Hz).
LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 10% [water + 0.01% HFBA + 1.0% IPA] and 90% [CH3CN + 0.01% HFBA + 1.0% IPA] to5% [water + 0.01% HFBA + 1.0% IPA] and95% [CH3CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.52%, Rt = 2.61min; MSCalcd.: 356.16; MSFound356.2 [M].

前記合成例3および4の全体反応模式図は次の通りである。
The overall reaction schematic diagram of Synthesis Examples 3 and 4 is as follows.

[合成例5]化合物DJ−A−3合成
前記合成例1で合成例3の過程を繰り返し、但し、合成例1で9−ブロモ−10−フェニルアントラセンの代わりに9−(4−ブロモフェニル)−10−フェニルアントラセンを使用し、白色固体DJ−A−3を合成した。
[Synthesis Example 5] Synthesis of Compound DJ-A-3 The same procedure as in Synthesis Example 3 was repeated in Synthesis Example 1, except that 9- (4-bromophenyl) was used instead of 9-bromo-10-phenylanthracene in Synthesis Example 1. Using -10-phenylanthracene, white solid DJ-A-3 was synthesized.

1H-NMR (CDCl3,Varian400MHz): δ 1.32-1.45 (12H, m), 1.60-1.63 (2H, m), 1.75-1.78 (2H, m), 2.52 (2H, q, J=7.6Hz),2.75-2.79(2H,m),7.30-7.32(4H,m),7.35-7.41(4H,m),7.46-7.48(2H,m),7.53-7.61(3H,m),7.66-7.73(4H,m).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in10min).Purityis99.62%,Rt=3.94min;MSCalcd.:502.27;MSFound502.2[M].
1H-NMR (CDCl3, Varian400MHz): δ 1.32-1.45 (12H, m), 1.60-1.63 (2H, m), 1.75-1.78 (2H, m), 2.52 (2H, q, J = 7.6Hz), 2.75 -2.79 (2H, m), 7.30-7.32 (4H, m), 7.35-7.41 (4H, m), 7.46-7.48 (2H, m), 7.53-7.61 (3H, m), 7.66-7.73 (4H, m).
LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH3CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH3CN + 0.01% HFBA + 1.0% IPA] in10min) .Purityis99.62%, Rt = 3.94min; MSCalcd.: 502.27; MSFound502.2 [M].

[合成例6]化合物DJ−A−4合成
前記合成例5で1.10−ジブロモデカンの代わりに1,5−ジブロモペンタンを使用し、淡黄色(Pale yellow)固体DJ−A−4を合成した。
[Synthesis Example 6] Synthesis of Compound DJ-A-4 In Synthesis Example 5, 1,5-dibromopentane was used instead of 1.10-dibromodecane to synthesize pale yellow solid DJ-A-4. did.

1H-NMR (CDCl3,Varian400MHz): δ 1.39 (1H, t, J=7.6Hz),1.54-1.60(2H,m),1.73-1.82(2H,m),2.61(2H,q,J=7.6Hz),2.79-2.82(2H,m),7.31-7.33(4H,m),7.39-7.40(4H,m),7.47-7.49(2H,m),7.54-7.60(3H,m),7.67-7.73(4H,m).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 5% [water+0.01% HFBA+1.0% IPA] and 95% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.58%,Rt=2.85min;MSCalcd.:432.19;MSFound432.2[M].
1H-NMR (CDCl3, Varian400MHz): δ 1.39 (1H, t, J = 7.6Hz), 1.54-1.60 (2H, m), 1.73-1.82 (2H, m), 2.61 (2H, q, J = 7.6Hz ), 2.79-2.82 (2H, m), 7.31-7.33 (4H, m), 7.39-7.40 (4H, m), 7.47-7.49 (2H, m), 7.54-7.60 (3H, m), 7.67-7.73 (4H, m).
LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 5% [water + 0.01% HFBA + 1.0% IPA] and 95% [CH3CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH3CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.58%, Rt = 2.85min; MSCalcd.: 432.19; MSFound432.2 [M].

前記合成例5および6の全体反応模式図は次の通りである。
The overall reaction schematic diagram of Synthesis Examples 5 and 6 is as follows.

[合成例7]化合物DJ−A−5合成
前記合成例1で合成例3の過程を繰り返し、但し、合成例1で9−ブロモ−10−フェニルアントラセンの代わりに9−ブロモ−10−(2−ナフチル)アントラセンを使用し、黄色固体DJ−A−5を合成した。
[Synthesis Example 7] Synthesis of Compound DJ-A-5 The procedure of Synthesis Example 3 was repeated in Synthesis Example 1, except that 9-bromo-10- (2 instead of 9-bromo-10-phenylanthracene was synthesized in Synthesis Example 1. -Naphthyl) anthracene was used to synthesize yellow solid DJ-A-5.

1H-NMR (CDCl3,Varian400MHz): δ 1.32-1.42 (12H, m), 1.59-1.65 (2H, m), 1.75-1.81 (2H, m), 2.54 (2H, q, J=7.6Hz),2.79(2H,t,J=7.6Hz),7.28-7.35(4H,m),7.39-7.43(4H,m),7.57-7.62(3H,m),7.69-7.76(4H,m),7.90-7.93(1H,m),7.98(1H,s),8.01-8.04(1H,m),8.07(1H,d,J=8.4Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in10min).Purityis99.84%,Rt=4.95min;MSCalcd.:552.29;MSFound552.2[M].
1H-NMR (CDCl3, Varian400MHz): δ 1.32-1.42 (12H, m), 1.59-1.65 (2H, m), 1.75-1.81 (2H, m), 2.54 (2H, q, J = 7.6Hz), 2.79 (2H, t, J = 7.6Hz), 7.28-7.35 (4H, m), 7.39-7.43 (4H, m), 7.57-7.62 (3H, m), 7.69-7.76 (4H, m), 7.90-7.93 (1H, m), 7.98 (1H, s), 8.01-8.04 (1H, m), 8.07 (1H, d, J = 8.4Hz).
LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH3CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH3CN + 0.01% HFBA + 1.0% IPA] in10min) .Purityis99.84%, Rt = 4.95min; MSCalcd.: 552.29; MSFound552.2 [M].

合成例7の全体反応模式図は次の通りである。
The overall reaction schematic diagram of Synthesis Example 7 is as follows.

[合成例8]化合物DJ−A−6合成
前記合成例7の過程を繰り返し、但し、合成例2で1.10−ジブロモデカンの代わりに1,5−ジブロモペンタンを使用し、黄色固体DJ−A−6を合成した。
[Synthesis Example 8] Synthesis of Compound DJ-A-6 The process of Synthesis Example 7 was repeated except that 1,5-dibromopentane was used instead of 1.10-dibromodecane in Synthesis Example 2, and yellow solid DJ- A-6 was synthesized.

1H-NMR (CDCl3,Varian400MHz): δ1.39 (1H, t, J=7.2Hz),1.62-1.54(2H,m),1.85-1.71(4H,m),2.61(2H,q,J=7.2Hz),2.83-2.79(2H,m),7.36-7.28(4H,m),7.42(4H,s),7.63-7.59(3H,m),7.76-7.70(4H,m),7.93-7.91(1H,m),7.98(1H,s),8.04-8.02(1H,m),8.07(1H,d,J=8.4Hz).
LC-MS (LC:Agilent 1200, MS:LCQ Advantage Max): Mobile phase from 0% [water+0.01% HFBA+1.0% IPA] and 100% [CH3CN+0.01%HFBA+1.0%IPA]to0%[water+0.01%HFBA+1.0%IPA]and100%[CH3CN+0.01%HFBA+1.0%IPA]in6.0min).Purityis99.76%,Rt=2.23min;MSCalcd.:482.21;MSFound482.2[M].
1H-NMR (CDCl3, Varian400MHz): δ1.39 (1H, t, J = 7.2Hz), 1.62-1.54 (2H, m), 1.85-1.71 (4H, m), 2.61 (2H, q, J = 7.2 Hz), 2.83-2.79 (2H, m), 7.36-7.28 (4H, m), 7.42 (4H, s), 7.63-7.59 (3H, m), 7.76-7.70 (4H, m), 7.93-7.91 ( 1H, m), 7.98 (1H, s), 8.04-8.02 (1H, m), 8.07 (1H, d, J = 8.4Hz).
LC-MS (LC: Agilent 1200, MS: LCQ Advantage Max): Mobile phase from 0% [water + 0.01% HFBA + 1.0% IPA] and 100% [CH3CN + 0.01% HFBA + 1.0% IPA] to0% [water + 0.01% HFBA + 1.0% IPA] and100% [CH3CN + 0.01% HFBA + 1.0% IPA] in6.0min) .Purityis99.76%, Rt = 2.23min; MSCalcd.: 482.21; MSFound482.2 [M].

合成例8の全体反応模式図は次の通りである。
The overall reaction schematic diagram of Synthesis Example 8 is as follows.

[合成例9]CdSe/ZnS合成
図3の模式図に掲載された方法で製造した。より具体的に、カドミウム酸化物の0.4mmolCDO(99.99%)、亜鉛アセテート4mmol(99.9%、粉末)とオレイン酸(OA)の5.58mLを100mLの3口フラスコに入れ、窒素雰囲気下で150℃で30分間加熱した。その次、1オクタデセン(ODE)20mLを入れ、温度を310℃に増加した。トリオクチルホスフィン(trioctylphosphine)3mL(TOP)、セレニウム1mmol(SE)、硫黄(S)2.3mmolを急速にフラスコに注入した。反応温度を10分間310℃で維持した後、常温に冷却した。生成された量子ドットをクロロホルム20mLと過量のアセトンで精製した(3回以上)。量子ドットを5.0mg/mLの濃度でクロロホルムまたはヘキサンに再分散(redispersed)した。
Synthesis Example 9 CdSe / ZnS Synthesis The CdSe / ZnS synthesis was prepared by the method shown in the schematic diagram of FIG. More specifically, 0.4 mmol CDO (99.99%) of cadmium oxide, 4 mmol (99.9%, powder) of zinc acetate and 5.58 mL of oleic acid (OA) were placed in a 100 mL three-necked flask, and nitrogen was added. Heated at 150 ° C. for 30 minutes under atmosphere. Then 20 mL of 1 octadecene (ODE) was added and the temperature was increased to 310 ° C. 3 mL (TOP) of trioctylphosphine, 1 mmol of selenium (SE), and 2.3 mmol of sulfur (S) were rapidly injected into the flask. The reaction temperature was maintained at 310 ° C. for 10 minutes and then cooled to room temperature. The generated quantum dots were purified with 20 mL of chloroform and an excessive amount of acetone (three times or more). The quantum dots were redispersed in chloroform or hexane at a concentration of 5.0 mg / mL.

[合成例10]ZnOナノ粒子(nanoparticles)合成
ZnOナノ粒子は電子輸送層として使用され、ZnOナノ粒子合成は次の方法を用いた。即ち、酢酸亜鉛(Zinc acetate)をジメチルスルホキシド(DMSO、0.5M)30mL入れ、エタノールにテトラメチルアンモニウムヒドロキシド(TMAH、0.55M)混合物を1時間攪拌した。その後、遠心分離してエタノールと過度のアセトン混合物で洗浄した。合成されたZnOナノ粒子は30mg/mLの濃度でエタノールに分散およびLED製造装置に対する電子輸送層材料として使用した。
[Synthesis Example 10] Synthesis of ZnO nanoparticles (nanoparticulars) ZnO nanoparticles were used as an electron transport layer, and the following method was used for ZnO nanoparticle synthesis. That is, 30 mL of dimethyl sulfoxide (DMSO, 0.5M) was added to zinc acetate (Zinc acetate), and a tetramethylammonium hydroxide (TMAH, 0.55M) mixture in ethanol was stirred for 1 hour. Thereafter, it was centrifuged and washed with a mixture of ethanol and excess acetone. The synthesized ZnO nanoparticles were dispersed in ethanol at a concentration of 30 mg / mL and used as an electron transport layer material for an LED manufacturing apparatus.

[実施例1]白色発光量子ドット合成(Ligand Exchange)
図4のような方法で白色発光量子ドットを合成した。即ち、前記合成例9で製造した量子ドットでCdSe/ZnS溶液(0.2ml、5mg/ml in hexane)を製造し、前記合成例3で製造した発光物質(0.5ml、3mM in hexane)を添加し、30分間常温で攪拌した。反応フラスコにメタノールを加えて固体化させた後に遠心分離して白色発光量子ドットを製造した。リガンド交換(Ligand exchange)結果はIR DATAで確認し、UV吸収およびPLスペクトルを確認した。図5は前記製造された白色発光量子ドットのFT−IRスペクトルであり、(a)は合成例3(DJ−A−1)を、(b)は実施例1(DJ−A−1+CdSe/ZnS)を測定したものである。また、図6はUV吸収およびPLスペクトルであり、(a)は合成例8(QDs)、(b)は合成例3、および(c)は実施例1を測定したものである。
[Example 1] White light emitting quantum dot synthesis (Ligand Exchange)
White light emitting quantum dots were synthesized by the method shown in FIG. That is, a CdSe / ZnS solution (0.2 ml, 5 mg / ml in hexane) was produced from the quantum dots produced in Synthesis Example 9, and the luminescent material (0.5 ml, 3 mM in hexane) produced in Synthesis Example 3 was used. The mixture was added and stirred at room temperature for 30 minutes. Methanol was added to the reaction flask to solidify it, and then centrifuged to produce white light emitting quantum dots. The results of ligand exchange were confirmed by IR DATA, and UV absorption and PL spectrum were confirmed. FIG. 5 is an FT-IR spectrum of the produced white light-emitting quantum dots, where (a) shows Synthesis Example 3 (DJ-A-1) and (b) shows Example 1 (DJ-A-1 + CdSe / ZnS). ). FIG. 6 shows UV absorption and PL spectra. (A) shows Synthesis Example 8 (QDs), (b) shows Synthesis Example 3, and (c) shows Example 1.

[実施例2]QD−LED素子製作
QD−LEDは、インジウム錫酸化物がコーティングされたガラス(ITO/ガラス)基板(sheet resistance<10Ω/□)に製作した。ITOガラスは1分間超音波を用いてアセトンとイソプロピルアルコールで洗浄し、アルゴン/酸素1分間プラズマ処理した。また、ポリ(3,4−エチレンジオキシチオフェン):ポリ(スチレンスルホネート)(PEDOT:PSS、Baytron P AI 4083)9:1体積比でイソプロピルアルコールで希釈した後、30秒間4,000rpmでスピンコーティングした。PEDOT:PSSコーティングされたITOガラスを大気中に10分間120℃でホットプレートでベーキングした。
[Example 2] QD-LED device fabrication QD-LEDs were fabricated on a glass (ITO / glass) substrate coated with indium tin oxide (sheet resistance <10Ω / □). The ITO glass was cleaned with acetone and isopropyl alcohol using ultrasonic waves for 1 minute, and then plasma treated with argon / oxygen for 1 minute. Also, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS, Baytron P AI 4083) diluted with isopropyl alcohol at a 9: 1 volume ratio, and then spin coated at 4,000 rpm for 30 seconds did. PEDOT: PSS coated ITO glass was baked on the hot plate at 120 ° C. for 10 minutes in air.

コーティングされた基板をNで満たされたグローブボックスでポリビニルカルバゾール(PVK、クロロベンゼンの0.01g/mL)を30秒間3,000rpmでスピンコーティングした後、30分間180℃で基板をベーキング処理して、ホール輸送層として使用した。発光層としては前記実施例1で製造した白色発光量子ドット溶液を20秒間1,500rpmでスピンコーティングした。 The coated substrate was spin coated with polyvinylcarbazole (PVK, 0.01 g / mL of chlorobenzene) at 3000 rpm for 30 seconds in a glove box filled with N 2 , and then the substrate was baked at 180 ° C. for 30 minutes. Used as a hole transport layer. As the light emitting layer, the white light emitting quantum dot solution produced in Example 1 was spin coated at 1,500 rpm for 20 seconds.

その次に、ZnOナノ粒子(30mg/mL)溶液を30秒間1,500rpmでスピンコーティングし、基板は150℃で30分間ベーキングした。最後に、このような多層薄膜基板を高真空蒸着チャンバー(背景圧力〜5×10−6torr)に入れ、アルミニウムカソード(100nmの厚さ)を蒸着した。 Next, a ZnO nanoparticle (30 mg / mL) solution was spin coated at 1500 rpm for 30 seconds and the substrate was baked at 150 ° C. for 30 minutes. Finally, such a multilayer thin film substrate was placed in a high vacuum deposition chamber (background pressure ˜5 × 10 −6 torr), and an aluminum cathode (100 nm thickness) was deposited.

[比較例1]オレンジ色(Orange)QD−LED素子製作
実施例2で白色発光量子ドットの代わりに前記合成例9のオレンジ色(Orange)発光量子ドットを発光層として使用した。
[Comparative Example 1] Orange QD-LED device fabrication In Example 2, the orange light emitting quantum dots of Synthesis Example 9 were used as the light emitting layer instead of the white light emitting quantum dots.

[比較例2]青色(Blue)OLED素子製作
実施例2で白色発光量子ドットの代わりに前記合成例3のDJ−A−1を発光層として使用した。
[Comparative Example 2] Blue OLED Element Production In Example 2, DJ-A-1 of Synthesis Example 3 was used as a light emitting layer instead of white light emitting quantum dots.

前記製造された実施例2と比較例1および2の電界発光(EL)素子のIVL特性とELスペクトルを確認した。最大発光強さ2,000cd/m2であり、それぞれ素子の発光効率は下記表1およびグラフ7に示した。図7の(a)はCurrent density and luminance versus driving voltageを示したものであり、(b)はluminance power efficiency versus luminanceを示したものである。   The IVL characteristics and EL spectra of the electroluminescent (EL) devices of Example 2 and Comparative Examples 1 and 2 produced above were confirmed. The maximum light emission intensity was 2,000 cd / m 2. The light emission efficiency of each element is shown in Table 1 and Graph 7 below. (A) of FIG. 7 shows Current density and luminance vs. driving voltage, and (b) shows luminance power efficiency vs. luminance.

また、前記実施例2および比較例1および2で製造した素子の正規化された電界発光スペクトルを測定した。その結果は図8に示した。図8において、(b)は比較例1の光源、(c)は比較例2の光源、(d)実施例2の光源として使用したLEDのElectroluminecence(EL) spectraであり、半値幅(FWHM)はそれぞれ青色(Blue)、オレンジ色(Orange)と白色(white)が27.8nm、39.2nm、(42.2nm、39.3nm)であった。
Further, normalized electroluminescence spectra of the devices manufactured in Example 2 and Comparative Examples 1 and 2 were measured. The results are shown in FIG. 8, (b) is the light source of Comparative Example 1, (c) is the light source of Comparative Example 2, and (d) is the Electroluminescence (EL) spectrum of the LED used as the light source of Example 2, and the half-value width (FWHM). Were 27.8 nm, 39.2 nm, and (42.2 nm, 39.3 nm) in blue, orange and white, respectively.

Claims (10)

コア/シェルの構造体とシェルの表面に付着されたリガンドを含む量子ドットであって、
前記リガンドは、
発光グループと、
シェルと発光グループを連結する連結グループと、
前記コア/シェル構造体とリガンドの発光グループは互いに補色関係である色を発光して全体的に白色光を発光するように、前記連結グループと発光グループの間に前記コア/シェル構造と発光グループとの間のエネルギー移動をブロッキング可能なスペーサと、を含み、
前記スペーサは、置換もしくは非置換の飽和または不飽和C 10 〜C 30 のアルキル基、C 〜C 40 のシクロアルキル基、Si 〜Si 30 のシランであり、
前記発光グループは、下記グループからなる群より1種以上選択されることを特徴とする白色発光量子ドット。











前記FL1乃至FL6、FL8乃至FL14、FL16乃至FL38、またはPL1乃至PL59において*は連結部分であり、ここで連結部分は括弧内の置換位置のうちの一つ以上に連結され、R1乃至R16はそれぞれ独立して水素;重水素;ハロゲン;アミノ基;ニトリル基;ニトロ基;重水素、ハロゲン、アミノ基、ニトリル基、ニトロ基に置換もしくは非置換のC 〜C 40 のアルキル基;C 〜C 40 のアルケニル基;C 〜C 40 のアルコキシ基;C 〜C 40 のシクロアルキル基;C 〜C 40 のヘテロシクロアルキル基;C 〜C 40 のアリール基;C 〜C 40 のヘテロアリール基;C 〜C 40 のアラルキル基;C 〜C 40 のアリールオキシ基;C 〜C 40 のアリールチオ基またはSiである。任意的にR1乃至R16から選択された2つ以上は互いに結合して環を形成することができ、S、N、O、Siを含むことができる。
A quantum dot comprising a core / shell structure and a ligand attached to the surface of the shell, comprising:
The ligand is
Firing group,
A consolidated group that links the shell and the luminous group;
The core / shell structure and the light emitting group are disposed between the connection group and the light emitting group so that the core / shell structure and the light emitting group of the ligand emit light of a complementary color to each other to emit white light as a whole. A spacer capable of blocking energy transfer between and
The spacer is a substituted or unsubstituted, saturated or unsaturated C 10 -C 30 alkyl group, cycloalkyl group C 3 -C 40, a silane Si 1 ~Si 30,
One or more types of the light emitting group are selected from the group consisting of the following groups .











In FL1 to FL6, FL8 to FL14, FL16 to FL38, or PL1 to PL59, * is a connecting part, where the connecting part is connected to one or more of the substitution positions in parentheses, and R1 to R16 are respectively independently hydrogen; deuterium, halogen, amino group, nitrile group, nitro group, C 2 ~; deuterium, halogen, amino group, nitrile group, alkyl group of C 1 -C 40 substituted or unsubstituted nitro group an aryl group of C 6 ~C 40;; heterocycloalkyl group of C 3 -C 40; cycloalkyl group C 3 -C 40; alkoxy groups C 1 -C 40; alkenyl groups C 40 C 3 ~C 40 an arylthio group or Si der of C 3 -C 40; an aryloxy group C 3 ~C 40; C 3 aralkyl group -C 40; heteroaryl group . Two or more optionally selected from R1 to R16 may be bonded to each other to form a ring, and may include S, N, O, and Si.
前記コア/シェルの構造体は、400以上500未満nm領域帯の光を発光するか、または500以上800以下nm領域帯の光を発光し、
コア/シェルの構造体は、400以上500未満nm領域帯の光を発光する場合、発光グループは500以上800以下nm領域帯の光を発光し、コア/シェルの構造体は500以上800以下nm領域帯の光を発光する場合、発光グループは400以上500未満nm領域帯の光を発光して全体的に白色光を発光する請求項1に記載の量子ドット。
The core / shell structure emits light in a range of 400 to 500 nm, or emits light in a range of 500 to 800 nm,
When the core / shell structure emits light in the range of 400 to 500 nm, the light emitting group emits light in the range of 500 to 800 nm, and the core / shell structure has 500 to 800 nm. 2. The quantum dot according to claim 1, wherein when emitting light in a region band, the light emitting group emits light in a region band of 400 to 500 nm and emits white light as a whole.
前記発光グループは、400以上500未満nm領域帯の光を発光することを特徴とする請求項1に記載の白色光を発光する量子ドット。   The quantum dot that emits white light according to claim 1, wherein the light emitting group emits light in a band of 400 to 500 nm. 前記発光グループは、500以上800以下nm領域帯の光を発光することを特徴とする請求項1に記載の白色光を発光する量子ドット。   2. The quantum dot emitting white light according to claim 1, wherein the light emitting group emits light having a wavelength range of 500 to 800 nm. 前記連結グループは、チオール(thiol)基、カルボキシ基、アミン基、ホスフィン(phospine)基、およびホスフィド(phosphide)基からなる群より1種以上選択されることを特徴とする請求項に記載の白色光を発光する量子ドット。 The connecting group, thiol (thiol) group, a carboxy group, amine group, phosphine (phospine) groups, and phosphide (phosphide) according to claim 1, characterized in that the at least one selected from the group consisting of group Quantum dots that emit white light. 前記リガンドは、下記構造で表現されるもののうちの一つであることを特徴とする請求項に記載の白色光を発光する量子ドット:








前記構造において−SHのH部分がコア/シェル構造体と結合する部分である。
The quantum dot emitting white light according to claim 1 , wherein the ligand is one of those expressed by the following structure:








In the above structure, the H part of -SH is a part bonded to the core / shell structure.
前記リガンドは、下記構造で表現されるもののうちの一つであることを特徴とする請求項に記載の白色光を発光する量子ドット:





前記構造において−SHのH部分がコア/シェル構造体と結合する部分である。
The quantum dot emitting white light according to claim 1 , wherein the ligand is one of those expressed by the following structure:





In the above structure, the H part of -SH is a part bonded to the core / shell structure.
前記量子ドットの粒径は5乃至30nmであることを特徴とする請求項1に記載の白色光を発光する量子ドット。   The quantum dot emitting white light according to claim 1, wherein the quantum dot has a particle size of 5 to 30 nm. 前記コア/シェル構造体の発光強度が1である時、補色関係にあるリガンドの発光グループの発光強度は0.7−1.3であることを特徴とする請求項1に記載の白色光を発光する量子ドット。   2. The white light according to claim 1, wherein when the light emission intensity of the core / shell structure is 1, the light emission intensity of the light emission group of the ligand having a complementary color relationship is 0.7-1.3. Quantum dots that emit light. 発光素子において、
発光物質として請求項1記載の白色発光量子ドットを含むことを特徴とする発光素子。
In the light emitting element,
A light emitting device comprising the white light emitting quantum dot according to claim 1 as a light emitting substance.
JP2015529678A 2012-08-29 2013-08-29 White light emitting quantum dots Active JP6396297B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20120095010 2012-08-29
KR10-2012-0095010 2012-08-29
KR10-2013-0102868 2013-08-29
KR1020130102868A KR102243668B1 (en) 2012-08-29 2013-08-29 White Color Light Emitting Quantum Dot
PCT/KR2013/007772 WO2014035159A1 (en) 2012-08-29 2013-08-29 White light-emitting quantum dot

Publications (2)

Publication Number Publication Date
JP2015534211A JP2015534211A (en) 2015-11-26
JP6396297B2 true JP6396297B2 (en) 2018-09-26

Family

ID=50642399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529678A Active JP6396297B2 (en) 2012-08-29 2013-08-29 White light emitting quantum dots

Country Status (3)

Country Link
JP (1) JP6396297B2 (en)
KR (1) KR102243668B1 (en)
CN (1) CN104603231A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505661A (en) * 2012-12-03 2016-02-25 ドンジン セミケム カンパニー リミテッド Luminescent quantum dot
CN105954914B (en) * 2016-06-22 2019-03-22 深圳市华星光电技术有限公司 A kind of preparation method of liquid crystal display panel color blocking layer
CN106147749B (en) * 2016-06-27 2018-10-09 江门职业技术学院 Fluorescent microsphere be assembled into photonic crystal, and its preparation method and application
JP6934164B2 (en) * 2017-03-10 2021-09-15 国立大学法人群馬大学 New iridium complex, oxygen concentration measuring reagent, oxygen concentration measuring method and synthetic intermediate
KR102711313B1 (en) * 2018-06-25 2024-09-26 삼성전자주식회사 Semiconductor nanocrystal-lignad composite and device including composite
KR102686998B1 (en) * 2018-10-12 2024-07-19 엘지디스플레이 주식회사 Inogranic illuminant, light emitting diode and light emitting device having thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902374B2 (en) * 2005-05-06 2011-03-08 Universal Display Corporation Stability OLED materials and devices
CN1952037A (en) * 2005-10-19 2007-04-25 陕西西大北美基因股份有限公司 Functionalized quantum dot, process for preparation and use thereof
CN100559166C (en) * 2006-03-09 2009-11-11 同济大学 Quantum dots namo fluorescence probe combined with biochip is sought the method for Chinese medicine target spot
US20100224859A1 (en) * 2007-10-16 2010-09-09 Hcf Partners, Lp Organic Light-Emitting Diodes with Electrophosphorescent-Coated Emissive Quantum Dots
CN101423758B (en) * 2007-11-02 2012-05-23 财团法人工业技术研究院 Method for preparing white light quantum point
EP2599141B1 (en) * 2010-07-26 2019-12-11 Merck Patent GmbH Quantum dots and hosts
KR101740429B1 (en) * 2010-09-15 2017-05-26 삼성전자주식회사 Quantum dot comprising resonant surface ligands, and organoelectroluminescent device and solar cell employing the same
WO2012063690A1 (en) * 2010-11-11 2012-05-18 コニカミノルタホールディングス株式会社 Organic electroluminescent element, illumination device, and display device

Also Published As

Publication number Publication date
KR20140029280A (en) 2014-03-10
JP2015534211A (en) 2015-11-26
KR102243668B1 (en) 2021-04-26
CN104603231A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
CN110407858B (en) Novel compound, application thereof and organic electroluminescent device using compound
JP2016505661A (en) Luminescent quantum dot
JP6396297B2 (en) White light emitting quantum dots
TWI394746B (en) An oled device and materials of the same
RU2434836C2 (en) Condensed cyclic aromatic compound for organic light-emitting device and organic light-emitting device containing said compound
JP6290232B2 (en) Luminescent quantum dot
JP5751985B2 (en) Fused polycyclic compound and organic light emitting device having the same
WO2015190464A1 (en) Organic iridium complex for organic electroluminescent element
WO2008059713A1 (en) Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
JP2023554536A (en) Fused ring compounds and their applications, and organic electroluminescent devices containing the fused ring compounds
KR20160107669A (en) Novel organic light-emitting diode including antracene derivatives
JP4280617B2 (en) Organic light emitting device
KR101554693B1 (en) Triple or multiple core-based compound for organoelectroluminescent device and organoelectroluminescent device employing the same
KR102241863B1 (en) Quantum Dot Intensifying Light Emitting
CN108947925B (en) 1,3, 4-oxadiazole derivative, material and organic electroluminescent device
KR20160090242A (en) Novel antracene derivatives for organic light-emitting diode and organic light-emitting diode including the same
KR20140015226A (en) New compounds and organic electronic device using the same
WO2016031840A1 (en) Organic iridium complex for organic electroluminescent elements
KR20130046632A (en) Electriluminescent polymer containing benzothiadiazole derivatives and organoelectriluminescent device emloying the same
CN108134009B (en) Novel organic compounds and uses thereof
CN106495975B (en) 9, 9&#39; -bianthracene blue light multifunctional material and application thereof
EP1475372A1 (en) Nile red type compound emitting red light, process for producing the same, and luminescent element utilizing the same
KR100669724B1 (en) Terphenyl-based compound and organic electroluminescence display device employing the same
KR20150017523A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR20140074485A (en) Quantum Dot Intensifying Light Emitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250