Nothing Special   »   [go: up one dir, main page]

JP6387773B2 - Method for manufacturing translucent member and method for manufacturing light emitting device - Google Patents

Method for manufacturing translucent member and method for manufacturing light emitting device Download PDF

Info

Publication number
JP6387773B2
JP6387773B2 JP2014201255A JP2014201255A JP6387773B2 JP 6387773 B2 JP6387773 B2 JP 6387773B2 JP 2014201255 A JP2014201255 A JP 2014201255A JP 2014201255 A JP2014201255 A JP 2014201255A JP 6387773 B2 JP6387773 B2 JP 6387773B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
translucent
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201255A
Other languages
Japanese (ja)
Other versions
JP2016072466A (en
Inventor
洋一 板東
洋一 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014201255A priority Critical patent/JP6387773B2/en
Publication of JP2016072466A publication Critical patent/JP2016072466A/en
Application granted granted Critical
Publication of JP6387773B2 publication Critical patent/JP6387773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明の実施形態は、透光部材の製造方法及び発光装置の製造方法に関する。   Embodiments described herein relate generally to a method for manufacturing a translucent member and a method for manufacturing a light emitting device.

近年、車両用ヘッドライト等に利用される光源として、発光ダイオードなどの発光素子を備える発光装置が利用されている。車両用ヘッドライトに用いられる発光装置には、複数の発光素子が1つの実装基板上に配列され、それらの複数の発光素子上に、蛍光体を含有する1枚の波長変換部材が配置されるものがある(例えば、特許文献1及び2)。
しかし、このような複数の発光素子を備えた発光装置において、個々の発光素子をそれぞれ独立に点灯(発光)ないし制御する場合、点灯した発光素子に隣接する非点灯の発光素子があると、点灯した発光素子からの光によって、非点灯の発光素子が微小発光するという現象が生じる恐れがある。その一方、発光装置の発光素子の搭載数にかかわらず、各発光装置から照射される光の方向をより高精度に制御し、発光装置の見切り性を高めることが求められている。見切り性とは、発光方向への指向性が高いことを指す。
In recent years, a light emitting device including a light emitting element such as a light emitting diode has been used as a light source used for a vehicle headlight or the like. In a light emitting device used for a vehicle headlight, a plurality of light emitting elements are arranged on one mounting substrate, and one wavelength conversion member containing a phosphor is disposed on the plurality of light emitting elements. There are some (for example, Patent Documents 1 and 2).
However, in such a light-emitting device including a plurality of light-emitting elements, when each light-emitting element is individually lit (emitted) or controlled, if there is a non-light-emitting light-emitting element adjacent to the light-emitting element that is lit, The light from the light emitting element may cause a phenomenon that a non-lighting light emitting element emits a small amount of light. On the other hand, regardless of the number of light-emitting elements mounted on the light-emitting device, it is required to control the direction of light emitted from each light-emitting device with higher accuracy and to improve the parting ability of the light-emitting device. The parting ability refers to high directivity in the light emitting direction.

特開2012−119407号公報JP 2012-119407 A 特表2012−527742号公報Special table 2012-527742 gazette

そこで、本願発明の実施形態は、より良好な配光性を得ることができる発光装置を、高精度、簡便かつ容易に製造し得る透光部材の製造方法、発光装置の製造方法及び透光部材を提供することを目的とする。   Therefore, an embodiment of the present invention provides a light-emitting device manufacturing method, a light-emitting device manufacturing method, and a light-transmitting member capable of manufacturing a light-emitting device capable of obtaining better light distribution with high accuracy, simply, and easily. The purpose is to provide.

実施形態に係る透光部材の製造方法は、
筒状に延長する第1光反射部材を準備する第1の工程と、
該第1光反射部材内に、透光性樹脂を充填して硬化させ、透光部材前駆体を得る第2の工程と、
前記透光部材前駆体を、前記第1光反射部材が延長する方向に交差する方向で切断して個片化する第3の工程とを有することを特徴とする。
The manufacturing method of the translucent member which concerns on embodiment is as follows.
A first step of preparing a first light reflecting member extending in a cylindrical shape;
A second step of filling the first light reflecting member with a translucent resin and curing it to obtain a translucent member precursor;
And a third step of cutting the translucent member precursor into pieces by cutting in a direction crossing the extending direction of the first light reflecting member.

また、実施形態に係る発光装置の製造方法は、
上述した製造方法によって得られた透光部材を、発光素子の上面に固定する第4の工程と、
前記発光素子の側面を、第2光反射部材で被覆する第5の工程とを有することを特徴とする。
In addition, the method for manufacturing the light emitting device according to the embodiment includes:
A fourth step of fixing the translucent member obtained by the manufacturing method described above to the upper surface of the light emitting element;
And a fifth step of covering a side surface of the light emitting element with a second light reflecting member.

さらに、実施形態に係る透光部材は、
光反射性物質を含有する樹脂からなる板状体に貫通孔を有する第1光反射部材と、
前記貫通孔内に配置され、波長変換部材を含有する透光性樹脂とを備え、
前記第1光反射部材及び前記透光性樹脂の上面は、略同一面上にあることを特徴とする。
Furthermore, the translucent member according to the embodiment is
A first light reflecting member having a through hole in a plate-like body made of a resin containing a light reflecting substance;
A translucent resin disposed in the through hole and containing a wavelength conversion member;
The upper surfaces of the first light reflecting member and the translucent resin are substantially on the same plane.

実施形態によれば、より良好な配光性を得ることができる発光装置を、高精度、簡便かつ容易に製造し得る透光部材の製造方法、発光装置の製造方法及び透光部材を提供することができる。   According to the embodiment, a light-emitting device manufacturing method, a light-emitting device manufacturing method, and a light-transmitting member capable of manufacturing a light-emitting device capable of obtaining better light distribution with high accuracy, simply, and easily are provided. be able to.

透光部材の製造方法の一実施形態を示す製造工程図である。It is a manufacturing-process figure which shows one Embodiment of the manufacturing method of a translucent member. 透光部材の製造方法の一実施形態を示す製造工程図である。It is a manufacturing-process figure which shows one Embodiment of the manufacturing method of a translucent member. 透光部材の製造方法で得られた透光部材の斜視図である。It is a perspective view of the translucent member obtained with the manufacturing method of the translucent member. 透光部材の製造方法の一実施形態を示す製造工程図である。It is a manufacturing-process figure which shows one Embodiment of the manufacturing method of a translucent member. 透光部材の製造方法の別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a translucent member. 透光部材の製造方法の別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a translucent member. 発光装置の製造方法の一実施形態を示す製造工程図である。It is a manufacturing process figure which shows one Embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法の一実施形態を示す製造工程図である。It is a manufacturing process figure which shows one Embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法の一実施形態を示す製造工程図である。It is a manufacturing process figure which shows one Embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法の別の実施形態で得られた発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device obtained by another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device. 発光装置の製造方法のさらに別の実施形態を示す製造工程図である。It is a manufacturing-process figure which shows another embodiment of the manufacturing method of a light-emitting device.

実施形態及び実施例においては、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。以下の説明において、同一の名称、符号については同一又は同質の部材を示しており、詳細説明を適宜省略する。一実施形態及び一実施例において説明された内容は、他の実施形態及び他の実施例等に利用可能である。   In the embodiments and examples, the size and positional relationship of members shown in each drawing may be exaggerated for clarity of explanation. In the following description, the same name and reference numeral indicate the same or similar members, and detailed description thereof will be omitted as appropriate. The contents described in one embodiment and one example can be used in other embodiments and other examples.

〔透光部材の製造方法〕
透光部材の製造では、まず、第1の工程において、第1光反射部材を準備する。そして、第2の工程において、第1の工程で準備した第1光反射部材に、準備した透光性樹脂を充填して硬化させて、透光部材前駆体を得る。第2の工程で得られた透光部材前駆体を、第3の工程において、第1光反射部材が延長する方向で切断することで、透光部材を作製する。
[Method for producing translucent member]
In the manufacture of the translucent member, first, in the first step, a first light reflecting member is prepared. Then, in the second step, the first light reflecting member prepared in the first step is filled with the prepared translucent resin and cured to obtain a translucent member precursor. In the third step, the translucent member precursor obtained in the second step is cut in the direction in which the first light reflecting member extends to produce a translucent member.

・第1の工程
第1の工程において、筒状に延長した第1光反射部材を準備する。筒状とは、細長い棒状であって、中心が空洞であるものを意味する。例えば、パイプ状、チューブ状、管状と言い換えることができる。延長する方向とは、筒の高さ方向又は筒の直径に対する垂直方向を意味する。この延長する方向に対して垂直な断面における外径(直径)は、筒状に延長した第1光反射部材よりも短い。第1光反射部材は、剛性であってもよいし柔軟性を有していてもよい。
-1st process In the 1st process, the 1st light reflection member extended in the cylinder shape is prepared. The cylindrical shape means an elongated rod shape having a hollow center. For example, it can be paraphrased as a pipe shape, a tube shape, or a tubular shape. The extending direction means the height direction of the cylinder or a direction perpendicular to the diameter of the cylinder. The outer diameter (diameter) in a cross section perpendicular to the extending direction is shorter than that of the first light reflecting member extended in a cylindrical shape. The first light reflecting member may be rigid or flexible.

第1光反射部材の延長方向の長さは特に限定されるものではなく、用いる材料等によって適宜設定することができる。   The length of the first light reflecting member in the extending direction is not particularly limited and can be appropriately set depending on the material used.

第1光反射部材の断面の外側の形状は、円状に限定されるものではなく、用いる発光素子の形状や発光装置の特性によって適宜設定することができる。例えば、断面形状が四角形、特に、正方形又は長方形であることが好ましい。これにより、平面視で正方形又は長方形の発光素子を用いる場合に、効率的に光を取り出すことが可能である。
その断面の外径(直径)は、用いる発光素子のサイズ、形成する発光装置のサイズ等によって、適宜変更することができる。第1光反射部材の外径は、発光素子の上面よりも大きいことが好ましい。これにより、発光装置の見切り性を確保しやすい。第1光反射部材の外径は、形成される発光装置の実装基板の外縁以下の大きさであることが好ましい。これにより、後述する発光装置ごとに分離する工程において、分離しやすい。第1光反射部材の外径は延長方向に変化していてもよいが、一定であることが好ましい。外径は、例えば、数十μm〜数mm程度が挙げられる。内径は、例えば、十数μm〜数百μm程度が挙げられる。
The outer shape of the cross section of the first light reflecting member is not limited to a circular shape, and can be appropriately set depending on the shape of the light emitting element used and the characteristics of the light emitting device. For example, the cross-sectional shape is preferably a quadrangle, particularly a square or a rectangle. Thereby, when using a square or rectangular light emitting element by planar view, it is possible to extract light efficiently.
The outer diameter (diameter) of the cross section can be changed as appropriate depending on the size of the light emitting element to be used, the size of the light emitting device to be formed, and the like. The outer diameter of the first light reflecting member is preferably larger than the upper surface of the light emitting element. Thereby, it is easy to ensure the parting property of the light emitting device. The outer diameter of the first light reflecting member is preferably smaller than the outer edge of the mounting substrate of the light emitting device to be formed. Thereby, in the process isolate | separated for every light-emitting device mentioned later, it is easy to isolate | separate. The outer diameter of the first light reflecting member may change in the extending direction, but is preferably constant. The outer diameter is, for example, about several tens of μm to several mm. The inner diameter is, for example, about ten to several hundred μm.

第1光反射部材の肉厚は、筒状の形態を確保することができ、かつ後述する透光性樹脂の充填及び硬化後も形状を維持することができる強度を有している限り、延長方向において一定であってもよいし、変化していてもよい。例えば、図2Aに示すように、第1光反射部材の延長方向において、その内側に幅狭又は幅広と変化するテーパ形状が連続して配置されており、内径が変化していてもよい。その変化する形状のピッチは、後述するように、透光部材前駆体を切断して個片化する場合の1片に相当する長さ(厚み)とすることが好ましい。例えば、数十μm〜数百μm程度、特に50〜300μm程度が好ましい。   The thickness of the first light reflecting member is extended as long as it has a strength capable of ensuring a cylindrical shape and capable of maintaining the shape even after filling and curing with a translucent resin described later. The direction may be constant or may change. For example, as shown in FIG. 2A, in the extending direction of the first light reflecting member, a taper shape that changes narrowly or widely is continuously arranged on the inner side, and the inner diameter may change. As will be described later, the pitch of the changing shape is preferably set to a length (thickness) corresponding to one piece when the light transmitting member precursor is cut into pieces. For example, about several tens of μm to several hundreds of μm, particularly about 50 to 300 μm is preferable.

個片化後に発光素子の上面に配置される側の第1光反射部材の内径は、発光素子の上面と同じか、大きいことが好ましい。これにより、発光素子の光を効率的に出射可能な透光部材を形成することができる。従って、図2Aのように第1光反射部材の内径が変化する場合、最も幅狭となる第1光反射部材の内径は、発光素子の上面と同じか、大きいことが好ましい。
第1光反射部材の内側の形状は、例えば、凹凸、曲面を有する形状としてもよい。個片化後に発光素子の上面に配置される側の第1光反射部材の内径は、発光素子の上面よりも小さくてもよい。
筒状の第1光反射部材の肉厚、つまり、1光反射部材の内径と外径とが一定の場合には、第1光反射部材を容易に形成できるため好ましい。
It is preferable that the inner diameter of the first light reflecting member on the side disposed on the upper surface of the light emitting element after separation is the same as or larger than the upper surface of the light emitting element. Thereby, the translucent member which can radiate | emit the light of a light emitting element efficiently can be formed. Therefore, when the inner diameter of the first light reflecting member changes as shown in FIG. 2A, the inner diameter of the first light reflecting member that is the narrowest is preferably the same as or larger than the upper surface of the light emitting element.
The inner shape of the first light reflecting member may be, for example, a shape having unevenness and a curved surface. The inner diameter of the first light reflecting member on the side disposed on the upper surface of the light emitting element after separation may be smaller than the upper surface of the light emitting element.
When the thickness of the cylindrical first light reflecting member, that is, the inner diameter and the outer diameter of the one light reflecting member are constant, it is preferable because the first light reflecting member can be easily formed.

第1光反射部材は、発光素子の光を遮光できる部材であればよい。発光素子の光を吸収しにくい材料で形成されることが好ましい。特に、発光素子から出射される光に対する反射率が60%以上、70%以上、80%以上又は90%以上の材料によって形成されていることが好ましい。
第1光反射部材は、例えば、二酸化チタン、二酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムライト、酸化ニオブ、酸化亜鉛、硫酸バリウム、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム)等の光反射性物質を含むことができる。
The 1st light reflection member should just be a member which can light-shield the light of a light emitting element. It is preferable that the light-emitting element is formed using a material that hardly absorbs light. In particular, it is preferable that the reflectance with respect to the light emitted from the light-emitting element is made of a material having 60% or more, 70% or more, 80% or more, or 90% or more.
Examples of the first light reflecting member include titanium dioxide, silicon dioxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, niobium oxide, zinc oxide, barium sulfate, and various rare earth oxides (for example, yttrium oxide). , Gadolinium oxide) and the like.

このような光反射性物質は、例えば、樹脂又はセラミックス等の母材と混合され、筒状に延長した形状に成形することができる。
樹脂としては、熱硬化性樹脂、熱可塑性樹脂、これらの変性樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等などが挙げられる。具体的には、エポキシ樹脂、変性エポキシ樹脂(シリコーン変性エポキシ樹脂等)、シリコーン樹脂、変性シリコーン樹脂(エポキシ変性シリコーン樹脂等)、ハイブリッドシリコーン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、変性ポリイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリシクロヘキサンテレフタレート樹脂、ポリフタルアミド(PPA)、ポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂、ユリア樹脂、BTレジン、ポリウレタン樹脂等が挙げられる。
Such a light-reflective material can be mixed with a base material such as resin or ceramics and formed into a cylindrical shape.
Examples of the resin include thermosetting resins, thermoplastic resins, modified resins thereof, or hybrid resins containing one or more of these resins. Specifically, epoxy resin, modified epoxy resin (silicone modified epoxy resin, etc.), silicone resin, modified silicone resin (epoxy modified silicone resin, etc.), hybrid silicone resin, unsaturated polyester resin, polyimide resin, modified polyimide resin, polyamide Resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycyclohexane terephthalate resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT resin, Examples include urea resin, BT resin, and polyurethane resin.

第1光反射部材を、光反射性物質と樹脂とによって構成する場合、光反射性物質は、第1光反射部材の全重量において、10〜95重量%程度、20〜80重量%程度、30〜60重量%程度、20〜60重量%程度で用いることが好ましく、30〜50重量%程度がより好ましい。このような組成とすることにより、光反射率を高めつつ、成形性を高めることができる。また、強度を確保することができる。さらに、後述する透光性樹脂の充填及び硬化等における温度変化においても十分な耐性を確保することができる。   When the first light reflecting member is composed of a light reflecting material and a resin, the light reflecting material is about 10 to 95% by weight, about 20 to 80% by weight, 30% based on the total weight of the first light reflecting member. It is preferably used at about ˜60% by weight or about 20% to 60% by weight, more preferably about 30% to 50% by weight. By setting it as such a composition, a moldability can be improved, improving a light reflectivity. Moreover, strength can be ensured. Furthermore, sufficient resistance can be ensured even in a temperature change in filling and curing of a translucent resin, which will be described later.

第1光反射部材は、さらに、フィラー、光散乱材及び着色材等を含んでいてもよい。例えば、ガラス、酸化マグネシウム、ワラストナイト等の無機フィラー、蛍光体等の波長変換部材を含んでいてもよい。   The first light reflecting member may further contain a filler, a light scattering material, a coloring material, and the like. For example, wavelength conversion members, such as inorganic fillers, such as glass, magnesium oxide, and a wollastonite, and fluorescent substance, may be included.

第1光反射部材は、例えば、射出成形、押出成形、ブロー成形、圧縮成形等、プラスチックの成形加工の分野で公知の方法により成形することができる。予め、レジスト等の可溶性樹脂の成形物を形成し、その周りに第1光反射部材を構成する材料をコート(例えば、ポッティング、スプレー、塗布等)し、その後、成形物を溶解させて除去することにより形成してもよい。特に、延長方向において、内側の形状が変化する第1光反射部材を形成する場合、金型を用いて、第1光反射部材を延長方向に例えば半分に切断した形状の成形体を作製し、それらを張り合わせることで形成することができる。あるいは、上述した公知の成形方法で筒状の第1光反射部材を形成した後又は形成する際に、プレス等の外力を負荷してその内側の形状を変形させてもよい。棒状の第1光反射部材を形成し、その中心を第1光反射部材の延長方向にくり抜くことによって形成してもよい。   The first light reflecting member can be molded by a method known in the field of plastic molding, such as injection molding, extrusion molding, blow molding, compression molding, and the like. A molded product of a soluble resin such as a resist is formed in advance, and a material constituting the first light reflecting member is coated around the molded product (for example, potting, spraying, coating, etc.), and then the molded product is dissolved and removed. May be formed. In particular, when forming the first light reflecting member whose inner shape changes in the extending direction, a molded body having a shape obtained by cutting the first light reflecting member in the extending direction, for example, in half, is formed using a mold. It can be formed by bonding them together. Or after forming the cylindrical 1st light reflection member with the well-known shaping | molding method mentioned above, when forming, you may load external force, such as a press, and may change the inner shape. You may form by forming a rod-shaped 1st light reflection member and hollowing out the center to the extension direction of a 1st light reflection member.

第1光反射部材の内側には、反射膜を形成してもよい。反射膜は、第1光反射部材の成形後に、内側を被覆するように形成してもよいし、上述の可溶性樹脂の成形物上に形成し、その上に第1光反射部材をコートし、成形物を除去することで形成してもよい。反射膜は、反射性の材料、例えば、銀、アルミニウム、銅、酸化チタン等を用いて形成することができる。反射膜は、スパッタ等の公知の方法で形成することができる。反射膜を有することで、発光素子からの光をさらに効率的に出射可能な透光部材を形成することができる。   A reflective film may be formed inside the first light reflecting member. The reflective film may be formed so as to cover the inner side after the molding of the first light reflecting member, or formed on the above-mentioned soluble resin molding, and the first light reflecting member is coated thereon, You may form by removing a molding. The reflective film can be formed using a reflective material such as silver, aluminum, copper, or titanium oxide. The reflective film can be formed by a known method such as sputtering. By having the reflective film, it is possible to form a light transmissive member that can emit light from the light emitting element more efficiently.

・第2の工程
第2の工程において、透光性樹脂の準備、充填及び硬化を行う。透光性樹脂は、透光性を有するものであればよく、例えば、発光素子から出射される光に対する透過率が60%以上、70%以上、80%以上、又は90%以上の材料によって形成されていることが好ましい。
-2nd process In a 2nd process, preparation, filling, and hardening of translucent resin are performed. The light-transmitting resin is not particularly limited as long as it has light-transmitting properties. For example, the light-transmitting resin is formed of a material having a transmittance of 60% or more, 70% or more, 80% or more, or 90% or more with respect to light emitted from the light emitting element. It is preferable that

透光性樹脂としては、熱硬化性樹脂、熱可塑性樹脂、これらの変性樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等など、上述の第1光反射部材の母材として挙げられる樹脂と同様のものが挙げられる。ここで用いる透光性樹脂は、上述した第1光反射部材を構成する樹脂と同じ樹脂を選択することにより、両者の密着性を確保することができ、透光部材を安定的に作製することができる。   As the translucent resin, the same as the resin exemplified as the base material of the first light reflecting member, such as a thermosetting resin, a thermoplastic resin, a modified resin thereof, or a hybrid resin containing one or more of these resins. Can be mentioned. The translucent resin used here can ensure the adhesion between the two by selecting the same resin as the resin constituting the first light reflecting member described above, and stably produce the translucent member. Can do.

透光性樹脂には、発光素子の光を所望の波長に変換するため、蛍光体等の波長変換部材を含有させることが好ましい。   The translucent resin preferably contains a wavelength conversion member such as a phosphor in order to convert light of the light emitting element into a desired wavelength.

蛍光体としては、当該分野で公知のものを使用することができる。例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al23−SiO2)系蛍光体、ユウロピウムで賦活されたシリケート((Sr,Ba)2SiO4)系蛍光体、βサイアロン蛍光体、CASN系又はSCASN系蛍光体等の窒化物系蛍光体、KSF系蛍光体(K2SiF6:Mn)、硫化物系蛍光体などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば、白色系)を出射する発光装置、紫外光の一次光に励起されて可視波長の二次光を出射する発光装置とすることができる。 As the phosphor, those known in the art can be used. For example, yttrium-aluminum-garnet (YAG) phosphors activated with cerium, lutetium-aluminum-garnet (LAG) activated with cerium, nitrogen-containing calcium aluminosilicate (CaO- activated with europium and / or chromium) Al 2 O 3 —SiO 2 ) -based phosphor, europium-activated silicate ((Sr, Ba) 2 SiO 4 ) -based phosphor, β-sialon phosphor, CASN-based or SCASN-based phosphor, etc. Body, KSF phosphor (K 2 SiF 6 : Mn), sulfide phosphor and the like. As a result, a light emitting device that emits mixed light (for example, white) of primary light and secondary light having a visible wavelength, and a light emitting device that emits secondary light having a visible wavelength when excited by the primary light of ultraviolet light are used. Can do.

蛍光体は、例えば、中心粒径が50μm以下、30μm以下、10μm以下であるものが好ましい。中心粒径は、は、F.S.S.S.No(Fisher Sub Sieve Sizer’s No)における空気透過法で得られる粒径を指す。
波長変換部材は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。これらの材料としては、半導体材料、例えば、II−VI族、III−V族、IV−VI族半導体、具体的には、CdSe、コアシェル型のCdSxSe1-x/ZnS、GaP等のナノサイズの高分散粒子が挙げられる。
The phosphor preferably has, for example, a center particle diameter of 50 μm or less, 30 μm or less, and 10 μm or less. The median particle size is F.R. S. S. S. It refers to the particle size obtained by the air permeation method in No (Fisher Sub Sieve Sizer's No).
The wavelength conversion member may be, for example, a so-called nanocrystal or a luminescent material called a quantum dot. These materials include semiconductor materials such as II-VI group, III-V group, and IV-VI group semiconductors. Specifically, CdSe, core-shell type CdS x Se 1-x / ZnS, GaP, etc. Examples include highly dispersed particles of size.

透光性樹脂には、さらに、充填材(例えば、拡散剤、着色剤等)を含有させてもよい。これらは、上述したものと同様のものを用いることができる。透光性樹脂に波長変換部材及び/又は充填材を含有させる場合、波長変換部材及び/又は充填材は、例えば、これらの合計重量の10〜80重量%程度とすることが好ましい。   The translucent resin may further contain a filler (for example, a diffusing agent, a colorant, etc.). These can be the same as those described above. When the translucent resin contains a wavelength conversion member and / or a filler, the wavelength conversion member and / or the filler is preferably about 10 to 80% by weight of the total weight, for example.

筒状に延長した第1光反射部材内に透光性樹脂を充填する方法は、特に限定されるものではなく、プラスチックの成形加工の分野において公知の方法を利用することができる。例えば、粘度又は流動性を調整しながら、筒状の第1光反射部材内に流し込む方法、金型を利用する射出法等が挙げられる。   The method for filling the first light reflecting member extending in a cylindrical shape with the translucent resin is not particularly limited, and a known method can be used in the field of plastic molding. For example, a method of pouring into a cylindrical first light reflecting member while adjusting viscosity or fluidity, an injection method using a mold, and the like can be mentioned.

透光性樹脂の硬化は、プラスチックの成形加工の分野において公知の方法を利用することができる。硬化方法としては、用いる樹脂の種類等によって適宜選択することができ、例えば、加熱する方法、所定時間静置又は放置する方法、冷気を吹き付ける方法、放射線(X線、紫外線等)を照射する方法等が挙げられる。第1光反射部材に充填された透光性樹脂を硬化することで、硬化した透光性樹脂22を含む第1光反射部材11、つまり、透光部材前駆体30を得ることができる。   For the curing of the translucent resin, a method known in the field of plastic molding can be used. The curing method can be appropriately selected depending on the type of resin to be used. For example, a heating method, a method of standing or leaving for a predetermined time, a method of blowing cool air, a method of irradiating radiation (X-rays, ultraviolet rays, etc.) Etc. By curing the translucent resin filled in the first light reflecting member, the first light reflecting member 11 containing the cured translucent resin 22, that is, the translucent member precursor 30 can be obtained.

上述した第1の工程及び第2の工程は、この順に行うことが好ましいが、これらの工程を同時に行ってもよい。例えば、第1光反射部材を成形するための材料を準備し、透光性樹脂を準備し、これらを共押出する又は同時に上述した構成となるように射出成形等する方法を利用してもよい。このような方法を利用することにより、簡便かつ高精度に成形することができる。   Although the first step and the second step described above are preferably performed in this order, these steps may be performed simultaneously. For example, a method for preparing a material for molding the first light reflecting member, preparing a translucent resin, and coextruding them or simultaneously performing injection molding so as to have the above-described configuration may be used. . By using such a method, it can be easily and accurately molded.

・第3の工程
第2の工程後、第2の工程によって得られた透光部材前駆体30の個片化を行う。この場合、硬化した透光性樹脂の略全周囲に第1光反射部材が配置される形態であれば、どのような形態に切断してもよい。これにより、発光装置の配光特性、特に見切り性を改善することができる。本来、発光素子からの光は拡散して放射状に出射されるため、発光面側に配置される透光部材の第1光反射部材で縁取られることで集約され、発光領域となる透光性樹脂から出射される光が明瞭に区切られる。従って、得られた第1光反射部材の切断は、第1光反射部材が延長する方向に交差する方向、特に、直交する方向に切断することが好ましい。これにより、透光部材において透光性樹脂の上面と下面の位置を一致させやすく、発光装置の見切り性を高めることができる透光部材を形成することができる。
-3rd process After the 2nd process, the translucent member precursor 30 obtained by the 2nd process is separated into pieces. In this case, as long as the first light reflecting member is disposed around substantially the entire periphery of the cured translucent resin, it may be cut into any shape. Thereby, the light distribution characteristic of the light emitting device, particularly the parting ability can be improved. Originally, the light from the light emitting element is diffused and emitted radially, so that the light transmissive resin is aggregated by being edged by the first light reflecting member of the light transmitting member disposed on the light emitting surface side and becomes a light emitting region The light emitted from is clearly separated. Therefore, it is preferable that the obtained first light reflecting member is cut in a direction intersecting with a direction in which the first light reflecting member extends, in particular, in a direction orthogonal thereto. Thereby, in the translucent member, it is easy to make the positions of the upper surface and the lower surface of the translucent resin coincide with each other, and it is possible to form the translucent member that can improve the parting performance of the light emitting device.

切断方法としては、その切断面を平坦とできる方法を利用することがより好ましい。これにより、硬化した透光性樹脂の上面と第1光反射部材の上面とが略同一面上に形成されるため、透光部材によって発光装置の見切り性をより向上させることができる。このような切断方法は、当該分野で公知の方法を利用することができる。例えば、ブレードダイシング、レーザダイシング等が挙げられる。
切断は、個片化された透光部材が均一な厚みとなるように行うことが好ましい。例えば、個片化された透光部材の厚みは、数μm〜数mm程度、10〜1000μm程度、10〜500μm程度、さらに50〜300μm程度が挙げられる。個片化した後、研磨等を行って、所望の厚みとしてもよい。
得られた第1光反射部材を連続して切断する場合、各切断は、互いに平行に行うことが好ましく、同じ間隔(厚み)で行うことが好ましい。
As a cutting method, it is more preferable to use a method capable of flattening the cut surface. Thereby, since the upper surface of the cured translucent resin and the upper surface of the first light reflecting member are formed on substantially the same plane, the light-emitting device can be further improved by the translucent member. As such a cutting method, a method known in the art can be used. Examples thereof include blade dicing and laser dicing.
The cutting is preferably performed so that the individual translucent members have a uniform thickness. For example, the thickness of the singulated translucent member is about several μm to several mm, about 10 to 1000 μm, about 10 to 500 μm, and further about 50 to 300 μm. After separating into pieces, polishing or the like may be performed to obtain a desired thickness.
When continuously cutting the obtained 1st light reflection member, it is preferable to perform each cutting | disconnection in parallel mutually, and it is preferable to carry out with the same space | interval (thickness).

上述した工程を行うことにより、貫通孔を有する板状体の第1光反射部材に、波長変換部材を含有する透光性樹脂を備え、第1光反射部材及び透光性樹脂の上面が略同一面上にある透光部材を形成することができる。これにより、高精度に、簡便かつ容易に発光装置の見切り性を良好にできる透光部材を製造することができる。   By performing the above-described steps, the first light reflecting member of the plate-like body having the through hole is provided with a light transmitting resin containing a wavelength conversion member, and the upper surfaces of the first light reflecting member and the light transmitting resin are substantially A translucent member on the same plane can be formed. Thereby, the translucent member which can improve the parting property of a light-emitting device easily and easily with high precision can be manufactured.

〔発光装置の製造方法〕
発光装置は、第4の工程において、上述した透光部材を、発光素子の上面に固定し、第5の工程において、発光素子の側面を、第2光反射部材で被覆することによって形成することができる。ただし、後述するように、第4の工程と第5の工程は、この順に行うことが好ましいが、必ずしもこの順に行わなくてもよく、これらの工程を同時に又は逆の順序で行ってもよい。
第4の工程の前後、特に第4の工程の前に、発光素子を実装基板上に搭載することが好ましい。これにより、発光素子を実装基板に精度よく実装しやすい。1つの発光素子を1つの実装基板上に搭載してもよいし、複数の発光素子を複数の実装基板上に搭載してもよいし、複数の発光素子を1つの実装基板上に搭載してもよい。複数の発光素子を1つの実装基板上に搭載する場合、第5の工程の後に、発光装置ごとに分離する工程を行ってもよい。
[Method of manufacturing light emitting device]
In the fourth step, the light emitting device is formed by fixing the above-described translucent member to the upper surface of the light emitting element, and in the fifth step, the side surface of the light emitting element is covered with the second light reflecting member. Can do. However, as will be described later, the fourth step and the fifth step are preferably performed in this order, but may not necessarily be performed in this order, and these steps may be performed simultaneously or in the reverse order.
Before and after the fourth step, in particular, before the fourth step, it is preferable to mount the light emitting element on the mounting substrate. Thereby, it is easy to mount the light emitting element on the mounting substrate with high accuracy. One light emitting element may be mounted on one mounting substrate, a plurality of light emitting elements may be mounted on a plurality of mounting substrates, or a plurality of light emitting elements may be mounted on one mounting substrate. Also good. When a plurality of light emitting elements are mounted on one mounting substrate, a step of separating each light emitting device may be performed after the fifth step.

・第4の工程
第4の工程において、透光部材を発光素子上に固定する。つまり、発光装置における光取り出し面側に透光部材を配置する。
ここで用いる透光部材は、1つでもよいし、複数でもよい。ここで用いる発光素子は、1つでもよいし、複数でもよい。つまり、実施形態において製造する発光装置は、発光素子を1つのみ含むものであってもよいし、複数含むものであってもよい。
特に、発光装置の見切り性を確保するという観点から、1つの透光部材を1つの発光素子の上に固定することが好ましい。
-4th process In a 4th process, a translucent member is fixed on a light emitting element. That is, the translucent member is disposed on the light extraction surface side of the light emitting device.
The translucent member used here may be one or plural. The light emitting element used here may be one or plural. That is, the light emitting device manufactured in the embodiment may include only one light emitting element or a plurality of light emitting elements.
In particular, it is preferable to fix one translucent member on one light emitting element from the viewpoint of securing the parting ability of the light emitting device.

ここで用いる発光素子は、当該分野で一般的に用いられている発光素子を用いることができる。例えば、青色、緑色の発光素子としては、ZnSe、窒化物系半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)、GaPなどの半導体層を用いたもの、赤色の発光素子としては、GaAlAs、AlInGaPなどの半導体層を用いたものが挙げられる。
発光素子は、サファイア等の絶縁性の半導体成長用の基板上に半導体層が積層されて形成されることがあるが、最終的に、この半導体成長用の基板が除去されたものであってもよい。
発光素子は、半導体層の反対側に電極が配置されているもの(両面電極)であってもよいが、同じ側に電極が配置されているものが好ましい。これによって、実装基板に対して電極を接合するフリップチップ実装することができる。発光素子をフリップチップ実装すると、発光素子の上面に透光部材を配置させやすいため好ましい。
As the light-emitting element used here, a light-emitting element generally used in this field can be used. For example, as blue and green light emitting elements, those using semiconductor layers such as ZnSe, nitride-based semiconductors (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), GaP, etc. Examples of the red light emitting element include those using a semiconductor layer such as GaAlAs and AlInGaP.
A light emitting element may be formed by laminating a semiconductor layer on an insulating semiconductor growth substrate such as sapphire, but even if the semiconductor growth substrate is finally removed. Good.
The light emitting element may be one in which an electrode is disposed on the opposite side of the semiconductor layer (double-sided electrode), but one in which an electrode is disposed on the same side is preferable. Thus, flip chip mounting in which electrodes are bonded to the mounting substrate can be performed. It is preferable to flip-chip mount the light-emitting element because a light-transmitting member can be easily disposed on the top surface of the light-emitting element.

発光素子は、平面視において、透光部材(詳述すると第1光反射部材)の外縁、より好ましくは透光性樹脂の外縁よりも小さいものを用いることが好ましい。これにより、発光素子から出射される光を透光性樹脂に効率的に導入することができ、発光装置の光の取り出しを向上させることができる。ただし、発光素子は、平面視で透光性樹脂の外縁又は透光部材(第1光反射部材)の外縁よりも大きいものを用いてもよい。平面視で透光性樹脂の外縁よりも大きく、透光部材の外縁よりも小さい発光素子を用いる場合、少なくとも発光素子の側面及び透光部材の下面を後述の第2光反射部材で被覆することにより、見切りの良い発光装置を形成することができる。平面視で透光部材の外縁よりも大きい発光素子を用いる場合は、発光素子の側面だけでなく、発光素子の上面及び透光部材の側面を第2光反射部材で被覆することにより、見切りの良い発光装置を形成することができる。平面視で透光部材の外縁と略同じ大きさの発光素子を用いてもよい。
このように、本実施形態では、発光素子の上面の大きさにかかわらず、透光部材の透光性樹脂の平面視の大きさによって、発光装置の発光面の大きさが決定される。
It is preferable to use a light emitting element that is smaller than the outer edge of the translucent member (specifically, the first light reflecting member), more preferably the outer edge of the translucent resin, in plan view. Thereby, the light emitted from the light emitting element can be efficiently introduced into the translucent resin, and the light extraction of the light emitting device can be improved. However, the light emitting element may be larger than the outer edge of the translucent resin or the outer edge of the translucent member (first light reflecting member) in plan view. When using a light emitting element that is larger than the outer edge of the translucent resin in plan view and smaller than the outer edge of the translucent member, cover at least the side surface of the light emitting element and the lower surface of the translucent member with a second light reflecting member described later. Thus, a light-emitting device with good parting can be formed. When using a light emitting element larger than the outer edge of the translucent member in plan view, not only the side surface of the light emitting element but also the upper surface of the light emitting element and the side surface of the translucent member are covered with the second light reflecting member. A good light-emitting device can be formed. You may use the light emitting element of the magnitude | size substantially the same as the outer edge of a translucent member by planar view.
Thus, in the present embodiment, the size of the light emitting surface of the light emitting device is determined by the size of the translucent resin of the light transmitting member in plan view regardless of the size of the upper surface of the light emitting element.

発光素子の上面への透光部材の固定は、例えば、透光性の接着部材によって行うことができる。接着部材は、特に限定されるものではなく、透光性を有し、かつ、発光素子に透光部材を固定し得るものであればよい。   The translucent member can be fixed to the upper surface of the light emitting element by, for example, a translucent adhesive member. The adhesive member is not particularly limited as long as it has translucency and can fix the translucent member to the light emitting element.

接着部材は、平面視で透光部材よりも外縁の小さい発光素子を用いる場合、例えば、発光素子上面の外縁から透光部材下面の外縁方向へ広がるフィレット形状に形成することができる。また、平面視で透光部材の外縁よりも大きい発光素子を用いる場合、例えば、透光部材下面の外縁から発光素子上面の外縁方向へ広がるフィレット形状の接着部材を形成することができる。ここで、見切りの良い発光装置を形成するという観点から、接着部材の外縁は、透光部材外縁よりも内側に配置することが好ましい。しかし、接着部材の外縁が第2光反射部材で被覆される場合は、これに限らない。   In the case where a light emitting element having a smaller outer edge than the translucent member in plan view is used, the adhesive member can be formed in a fillet shape that extends from the outer edge of the upper surface of the light emitting element toward the outer edge of the lower surface of the translucent member. Moreover, when using a light emitting element larger than the outer edge of the translucent member in plan view, for example, a fillet-shaped adhesive member that extends from the outer edge of the lower surface of the translucent member toward the outer edge of the upper surface of the light emitting element can be formed. Here, from the viewpoint of forming a light-emitting device with good parting, it is preferable that the outer edge of the adhesive member is disposed on the inner side of the outer edge of the translucent member. However, the case where the outer edge of the adhesive member is covered with the second light reflecting member is not limited thereto.

上述したように、発光素子は、実装基板上に搭載されることが好ましい。ここでの実装基板は特に限定されず、1つの発光素子を搭載するための、いわゆる正負一対の端子を有する実装基板であってもよいし、複数の発光素子を搭載するための配線パターンを有する実装基板であってもよい。
いずれの実装基板であっても、例えば、絶縁性の基材と、その表面に形成された導電性の端子又は配線パターンを有する。基材及び端子又は配線パターンを形成する材料、形状、大きさ等は、所望の発光装置の形態によって適宜選択することができる。
As described above, the light emitting element is preferably mounted on the mounting substrate. The mounting substrate here is not particularly limited, and may be a mounting substrate having a pair of positive and negative terminals for mounting one light emitting element, or having a wiring pattern for mounting a plurality of light emitting elements. It may be a mounting board.
Any mounting substrate has, for example, an insulating base material and conductive terminals or wiring patterns formed on the surface thereof. The material, shape, size, and the like for forming the base material and the terminal or the wiring pattern can be appropriately selected depending on the desired form of the light emitting device.

発光素子は、発光素子の半導体層側(電極形成面と反対側)を実装基板上に接合させるフェイスアップ実装でもよい。フェイスアップ実装する場合、例えば、上述の樹脂等の接着部材を、発光素子上に配置させることにより、ワイヤの一部を埋設し、その上に透光部材を配置させることができる。また、透光部材を、発光素子の電極とワイヤとの接続部を避けるような形状とし、発光素子上に固定することができる。例えば、個片化された透光部材に孔を設けてもよいし、発光素子の電極の位置を発光素子の上端部とすることで、孔を有さない形状としてもよい。   The light-emitting element may be a face-up mounting in which the semiconductor layer side (the side opposite to the electrode formation surface) of the light-emitting element is bonded onto the mounting substrate. When the face-up mounting is performed, for example, by arranging an adhesive member such as the above-described resin on the light emitting element, a part of the wire can be embedded and the light transmitting member can be disposed thereon. Further, the translucent member can be shaped so as to avoid the connection portion between the electrode of the light emitting element and the wire, and can be fixed on the light emitting element. For example, a hole may be provided in an individual light-transmitting member, or a shape without a hole may be obtained by setting the position of the electrode of the light-emitting element as the upper end portion of the light-emitting element.

発光素子の実装基板への搭載は、通常、ダイボンド材を介して行われる。ダイボンド材としては、例えば、錫−ビスマス系、錫−銅系、錫−銀系、金−錫系などの半田、AuとSnとを主成分とする合金、AuとSiとを主成分とする合金、AuとGeとを主成分とする合金等の共晶合金、あるいは、銀、金、パラジウムなどの導電性ペースト、バンプ、異方性導電材、低融点金属のろう材、上述の樹脂等が挙げられる。   The mounting of the light emitting element on the mounting substrate is usually performed via a die bond material. Examples of the die bond material include tin-bismuth, tin-copper, tin-silver, gold-tin, and the like, alloys containing Au and Sn as main components, and Au and Si as main components. Alloys, eutectic alloys such as alloys mainly composed of Au and Ge, or conductive pastes such as silver, gold and palladium, bumps, anisotropic conductive materials, brazing materials of low melting point metals, the above-mentioned resins, etc. Is mentioned.

複数の発光素子を1つ又は複数の実装基板上に搭載する場合には、第4の工程の前に、複数の透光部材を1つの支持体上に配列することができる。支持体としては、特に限定されるものではなく、剥離型の粘着テープ又はシートを用いることが好ましい。このような支持体の利用によって、複数の発光素子に対して、複数の透光部材を同時に載置し、固定することができる。その結果、製造工程の簡略化を図ることができる。   When a plurality of light emitting elements are mounted on one or a plurality of mounting substrates, a plurality of light transmitting members can be arranged on one support body before the fourth step. The support is not particularly limited, and it is preferable to use a peelable adhesive tape or sheet. By using such a support, a plurality of translucent members can be placed and fixed simultaneously on a plurality of light emitting elements. As a result, the manufacturing process can be simplified.

・第5の工程
第5の工程において、発光素子の側面を第2光反射部材で被覆する。発光素子が複数配置されている場合には、隣接する発光素子(及び透光部材)間を充填するように第2光反射部材を設ける。これにより、見切り性の良い発光装置を形成することができる。さらに、発光素子が隣接して配置される場合における、非点灯の発光素子の微小発光現象を防止することが可能となり、また、発光装置の配光を精度よく制御することができる。第2光反射部材は、直接的に、つまり発光素子の側面と接触するように配置することが好ましい。第2光反射部材は、透光部材との接着性等との観点から、第1光反射部材を構成する材料と同じ材料、特に同じ樹脂を含むことが好ましい。上述した反射膜のなかから選択したもので形成してもよい。複数の層で構成されていてもよい。
-5th process In a 5th process, the side surface of a light emitting element is coat | covered with a 2nd light reflection member. When a plurality of light emitting elements are arranged, the second light reflecting member is provided so as to fill between adjacent light emitting elements (and light transmitting members). Thereby, a light-emitting device with good parting ability can be formed. Further, when the light emitting elements are arranged adjacent to each other, it is possible to prevent a minute light emission phenomenon of the non-lighting light emitting elements, and the light distribution of the light emitting device can be controlled with high accuracy. The second light reflecting member is preferably arranged directly, that is, in contact with the side surface of the light emitting element. The second light reflecting member preferably includes the same material as the material constituting the first light reflecting member, particularly the same resin, from the viewpoint of adhesiveness with the light transmissive member, and the like. You may form by selecting from the reflecting films mentioned above. It may be composed of a plurality of layers.

このように第2光反射部材で発光素子の側面を被覆することにより、より効率的に、発光素子から出射される光を特定の方向に配光することができる。被覆する発光素子の側面は、一部であってもよいが、全側面であることが好ましい。ここでの発光素子の側面とは、主に発光素子を構成する半導体層の側面や半導体成長用の基板の側面を意味するが、電極が配置されている場合には、電極の側面にわたって配置されていてもよい。   Thus, by covering the side surface of the light emitting element with the second light reflecting member, light emitted from the light emitting element can be more efficiently distributed in a specific direction. A part of the side surface of the light emitting element to be coated may be a part, but it is preferable that the side surface is the entire side surface. Here, the side surface of the light emitting element mainly means the side surface of the semiconductor layer constituting the light emitting element or the side surface of the substrate for semiconductor growth, but when the electrode is disposed, it is disposed over the side surface of the electrode. It may be.

上述したように、通常、発光素子は第4の工程の前に実装基板上に搭載されるため、発光素子の側面から実装基板の表面にわたって、第2光反射部材で被覆することが好ましい。発光素子と実装基板との間に空間がある場合には、その空間が第2光反射部材で充填(埋設)されていることが好ましい。これらの全ての部位(発光素子側面、電極側面及び発光素子と実装基板との間)において、第2光反射部材として同じ材料を用いてもよいし、異なる材料を用いてもよい。   As described above, since the light emitting element is usually mounted on the mounting substrate before the fourth step, it is preferable to cover the light emitting element from the side surface of the light emitting element to the surface of the mounting substrate with the second light reflecting member. When there is a space between the light emitting element and the mounting substrate, the space is preferably filled (embedded) with the second light reflecting member. In all these parts (light emitting element side surface, electrode side surface, and between the light emitting element and the mounting substrate), the same material may be used as the second light reflecting member, or different materials may be used.

第2光反射部材として、上述した第1光反射部材を構成する材料と同じ材料を用いる場合、ポッティング、トランスファーモールド、コンプレッションモールド等を利用することにより、発光素子の側面を被覆することができる。これらの方法によって、発光素子の側面の被覆を簡便に行うことができる。また、第2光反射部材を、透光部材の下方にのみ、簡便かつ確実に、精度よく配置することができる。特に、第5の工程を第4の工程の後に実行する場合には、第2光反射部材の上面を透光部材の下面と容易かつ確実に一致させるように、発光素子の側面を被覆することができる。また、複数の発光素子が配列されている実装基板上において、これらの複数の発光素子を、一体的に一括で第2光反射部材によって、簡便に被覆することができる。   When the same material as the material constituting the first light reflecting member described above is used as the second light reflecting member, the side surface of the light emitting element can be covered by using potting, transfer mold, compression mold or the like. By these methods, the side surface of the light emitting element can be easily coated. In addition, the second light reflecting member can be easily and reliably arranged with high accuracy only below the light transmitting member. In particular, when the fifth step is performed after the fourth step, the side surface of the light emitting element is covered so that the upper surface of the second light reflecting member is easily and reliably aligned with the lower surface of the light transmitting member. Can do. In addition, on the mounting substrate on which the plurality of light emitting elements are arranged, the plurality of light emitting elements can be easily and collectively covered with the second light reflecting member.

予め実装基板上に第2光反射部材を形成し、その後、透光部材が固定された発光素子を第2光反射部材上に配置し、発光素子の電極と実装基板の配線とが接するように押圧してもよい。この場合、第2光反射部材として、光反射性物質を含有したACP等の異方性導電部材を用いることができる。これにより、発光素子の側面の被覆を簡便に行うことができるとともに、第2光反射部材を、透光部材の下方にのみ(つまり、透光部材の側面を被覆することなく)、簡便かつ確実に、精度よく配置することができる。また、第2光反射部材の上面を透光部材の下面と容易かつ確実に一致させることができる。   The second light reflecting member is formed on the mounting substrate in advance, and then the light emitting element to which the light transmitting member is fixed is disposed on the second light reflecting member so that the electrode of the light emitting element and the wiring of the mounting substrate are in contact with each other. You may press. In this case, an anisotropic conductive member such as ACP containing a light reflecting substance can be used as the second light reflecting member. Accordingly, the side surface of the light emitting element can be easily covered, and the second light reflecting member can be simply and reliably only below the light transmitting member (that is, without covering the side surface of the light transmitting member). In addition, it can be arranged with high accuracy. In addition, the upper surface of the second light reflecting member can be easily and reliably aligned with the lower surface of the light transmitting member.

1つの実装基板上に複数の発光素子が搭載されている場合、複数の発光素子の上に1つの透光部材が固定されている場合など、その必要に応じて、第5の工程の後、1つの発光素子ごと又は1群の発光素子ごとに、透光部材、第2光反射部材及び/又は実装基板等を分離してもよいし、分離しなくてもよい。これによって、所望の配向性、輝度、大きさ等の発光装置を得ることができる。分離は、ブレードダイシング、レーザダイシング等を利用して透光部材、第2光反射部材及び/又は実装基板等を切断することで行うことができる。   When a plurality of light emitting elements are mounted on one mounting substrate, when one light-transmitting member is fixed on the plurality of light emitting elements, etc., as necessary, after the fifth step, For each light emitting element or group of light emitting elements, the light transmitting member, the second light reflecting member, and / or the mounting substrate may be separated or may not be separated. As a result, a light emitting device having desired orientation, luminance, size, and the like can be obtained. Separation can be performed by cutting the translucent member, the second light reflecting member, and / or the mounting substrate using blade dicing, laser dicing, or the like.

透光部材は、第1光反射部材の側面が、さらに透光性または光反射性の部材で被覆されていてもよい。透光性の部材は、透光性樹脂と同じ材料でもよいし、異なる材料でもよい。例えば、透光性樹脂と同じ樹脂を用いて、含有させる波長変換部材等を変更することにより、所望の発光を有する発光装置を形成することができる。光反射性の部材は、例えば、上述の反射膜と同じ材料で形成することができる。これにより、発光素子の光を効率的に出射可能な透光部材を形成することができる。第1光反射部材と同様の方法で、第1光反射部材の外縁よりも大きい空洞を有する光反射性の部材を準備し、透光部材前駆体を囲むように配置させ、透光部材前駆体と光反射性の部材との隙間に透光性の部材を充填させて硬化することにより、透光部材の外側にさらに透光性の部材及び光反射性の部材を有するように形成してもよい。   In the translucent member, the side surface of the first light reflecting member may be further covered with a translucent or light reflecting member. The translucent member may be the same material as the translucent resin or may be a different material. For example, a light-emitting device having desired light emission can be formed by changing the wavelength conversion member to be contained using the same resin as the light-transmitting resin. The light reflective member can be formed of, for example, the same material as the reflective film described above. Thereby, the translucent member which can radiate | emit the light of a light emitting element efficiently can be formed. A light-reflective member having a cavity larger than the outer edge of the first light-reflecting member is prepared in the same manner as the first light-reflecting member, and is arranged so as to surround the light-transmitting member precursor. By filling the gap between the light-reflective member with a light-transmitting member and curing it, the light-transmitting member may be further formed to have a light-transmitting member and a light-reflecting member outside. Good.

以下に、透光部材の製造方法及び発光装置の製造方法の実施例を図面に基づいて詳細に説明する。   Below, the Example of the manufacturing method of a translucent member and the manufacturing method of a light-emitting device is described in detail based on drawing.

〔実施例1:透光部材の製造方法〕
図1Aに示すように、第1の工程において、筒状に延長した第1光反射部材11を準備する。第1光反射部材11は、シリコーン樹脂に、60重量%の光反射性物質であるTiO2を含有させて成形したものを用いることができる。そのサイズは、例えば、延長方向に垂直な断面の外径1300×400μm、肉厚50μm、延長方向の長さ200mmとすることができる。本実施例の第1光反射部材11は、その延長方向に垂直な断面において、外形が矩形であり、その中心に矩形の貫通孔を有する。すなわち、矩形の環状である。本実施例の第1光反射部材11の内側の形状は、延長方向において一定であり、第1光反射部材11の肉厚は略一定である。
[Example 1: Method for producing translucent member]
As shown to FIG. 1A, in the 1st process, the 1st light reflection member 11 extended in the cylinder shape is prepared. First light reflecting member 11, the silicone resin can be used after molding contain a TiO 2 is 60% by weight of the light reflecting material. The size can be, for example, an outer diameter of 1300 × 400 μm, a thickness of 50 μm, and a length of 200 mm in the extending direction in a cross section perpendicular to the extending direction. The first light reflecting member 11 of the present embodiment has a rectangular outer shape in a cross section perpendicular to the extending direction thereof, and has a rectangular through hole at the center thereof. That is, it is a rectangular ring. The inner shape of the first light reflecting member 11 of the present embodiment is constant in the extending direction, and the thickness of the first light reflecting member 11 is substantially constant.

第2の工程において、図1Bに示すように、筒状の第1光反射部材内に、透光性樹脂12aを流し込んで充填し、硬化させる。透光性樹脂12aは、例えば、シリコーン樹脂に5〜70重量%のYAG蛍光体を含有させたものを用いることができる。透光性樹脂12aの硬化は、用いる樹脂の種類にもよるが、25〜200℃に加熱したオーブン中で1〜360分間加熱することにより行うことができる。これにより、硬化した透光性樹脂12を含む第1光反射部材11である透光部材前駆体30を得る。   In the second step, as shown in FIG. 1B, the translucent resin 12a is poured into the cylindrical first light reflecting member, filled and cured. As the translucent resin 12a, for example, a silicone resin containing 5 to 70% by weight of YAG phosphor can be used. Although hardening of translucent resin 12a is based also on the kind of resin to be used, it can carry out by heating for 1-360 minutes in the oven heated at 25-200 degreeC. Thereby, the translucent member precursor 30 that is the first light reflecting member 11 including the cured translucent resin 12 is obtained.

第3の工程において、図1Cに示すように、透光部材前駆体30を、第1光反射部材11が延長する方向に直交する方向Aで切断して個片化し、図1Dに示す透光部材13を形成する。ここで、切断はダイサー等によって行うことができる。これにより、例えば、平面視で外径1300×400μm、厚み100μmの透光部材13を形成することができる。   In the third step, as shown in FIG. 1C, the light transmitting member precursor 30 is cut into pieces by cutting in a direction A perpendicular to the direction in which the first light reflecting member 11 extends, and the light transmitting shown in FIG. 1D. The member 13 is formed. Here, the cutting can be performed by a dicer or the like. Thereby, for example, the translucent member 13 having an outer diameter of 1300 × 400 μm and a thickness of 100 μm can be formed in plan view.

〔実施例2:透光部材の製造方法〕
実施例2に示される透光部材は、内側にテーパ形状が連続して配置される図2Aに示す第1光反射部材21を用いた以外は、実施例1と略同様の構成及び製造方法で形成される。
この第1光反射部材21は、例えば、射出成形によって筒状に成形された第1光反射部材を冷却する際に内側からプレスすることにより、内側にのみテーパ形状を複数形成することができる。このような形状は、予めレジスト等の可溶性の成形物を形成し、その周りに第1光反射部材を形成し、その後に成形物を溶解させて除去することによっても、形成可能である。つまり、テーパ形状を複数有する成形物を準備し、その側面に第1光反射部材を形成し、成形物を溶解させて除去することにより、図2Aに示される第1光反射部材を形成することができる。
透光部材前駆体30は、図2Aに示すように、幅狭及び幅広の部位の境界Bにおいて切断することにより、図2Bに示す透光部材23を得ることができる。
[Example 2: Manufacturing method of translucent member]
The translucent member shown in Example 2 has substantially the same configuration and manufacturing method as Example 1 except that the first light reflecting member 21 shown in FIG. 2A in which the tapered shape is continuously arranged is used. It is formed.
The first light reflecting member 21 can be formed with a plurality of tapered shapes only on the inner side by, for example, pressing from the inner side when cooling the first light reflecting member formed into a cylindrical shape by injection molding. Such a shape can also be formed by previously forming a soluble molded product such as a resist, forming the first light reflecting member around it, and then dissolving and removing the molded product. That is, the first light reflecting member shown in FIG. 2A is formed by preparing a molded product having a plurality of tapered shapes, forming the first light reflecting member on the side surface, and dissolving and removing the molded product. Can do.
As shown in FIG. 2A, the translucent member precursor 30 is cut at the boundary B between the narrow and wide portions, whereby the translucent member 23 shown in FIG. 2B can be obtained.

得られた透光部材23は、第1光反射部材21の内面が傾斜しており、その個片化された上下の切断面において、透光性樹脂22の大きさが異なっている以外は、実質的に実施例1で得られた透光部材と同様の構成を有する。この透光部材23は、第1光反射部材21の内面が傾斜していることでリフレクタの役割を果たし、より一層良好な配光性を与えることができる。   The obtained translucent member 23 is such that the inner surface of the first light reflecting member 21 is inclined, and the size of the translucent resin 22 is different on the upper and lower cut surfaces that are separated. It has the structure substantially the same as the translucent member obtained in Example 1. The translucent member 23 serves as a reflector because the inner surface of the first light reflecting member 21 is inclined, and can provide even better light distribution.

〔実施例3:発光装置の製造方法〕
まず、第4の工程において、図3Aに示される実装基板に実装された発光素子14に、実施例1で得られた透光部材13を、透光性の接着部材等を介して発光素子14の上面に載置し、図3Bに示すように固定する。
[Example 3: Manufacturing method of light-emitting device]
First, in the fourth step, the light-emitting element 14 obtained in Example 1 is attached to the light-emitting element 14 mounted on the mounting substrate shown in FIG. 3A by using a light-transmitting adhesive member or the like. And fixed as shown in FIG. 3B.

発光素子14は、そのサイズが、例えば、平面視1100×300μm、高さ200μmであるものを用いる。発光素子14の上面の外形は、透光部材13の透光性樹脂12の外形と同等か若干小さい。従って、透光部材13を、透光部材13の透光性樹脂12の外縁が、発光素子14の外縁と一致するか、外縁より若干外側に配置するように、発光素子14上に載置し、固定する。発光素子14は、予め、実装基板16にダイボンド材である半田を用いてフリップチップ実装によって搭載することができる。   The light emitting element 14 has a size of, for example, 1100 × 300 μm in plan view and 200 μm in height. The outer shape of the upper surface of the light emitting element 14 is equal to or slightly smaller than the outer shape of the translucent resin 12 of the translucent member 13. Therefore, the translucent member 13 is placed on the light emitting element 14 such that the outer edge of the translucent resin 12 of the translucent member 13 is aligned with the outer edge of the light emitting element 14 or slightly outside the outer edge. , Fix. The light emitting element 14 can be mounted on the mounting substrate 16 in advance by flip chip mounting using solder as a die bond material.

第5の工程において、図3Cに示すように、発光素子14の全側面を、第2光反射部材15で被覆する。第2光反射部材15は、例えば、シリコーン樹脂に、シリカと、酸化チタンとを、それぞれ、2〜2.5重量%及び40〜50重量%で含有させて形成されたものを用いることができる。第2光反射部材15を、透光部材13の下方に吐出することにより、その流動性を利用して、発光素子14の全側面を被覆する。
第2光反射部材15は、透光部材13の下方にのみ配置しており、その上面が、透光部材13の下面と一致している。発光素子14と実装基板16との空間にも、第2光反射部材15が充填される。これによって、発光素子14から出射される光を、透光部材13に効率的に導入することができる。その結果、配光性及び見切り性の良好な発光装置を得ることができる。
In the fifth step, as shown in FIG. 3C, the entire side surface of the light emitting element 14 is covered with the second light reflecting member 15. As the second light reflecting member 15, for example, a material formed by containing silica and titanium oxide in a silicone resin at 2 to 2.5 wt% and 40 to 50 wt%, respectively, can be used. . By discharging the second light reflecting member 15 below the translucent member 13, the entire side surface of the light emitting element 14 is covered by utilizing its fluidity.
The second light reflecting member 15 is disposed only below the translucent member 13, and the upper surface thereof coincides with the lower surface of the translucent member 13. The space between the light emitting element 14 and the mounting substrate 16 is also filled with the second light reflecting member 15. Thereby, the light emitted from the light emitting element 14 can be efficiently introduced into the translucent member 13. As a result, a light emitting device with good light distribution and parting properties can be obtained.

〔実施例4:発光装置の製造方法〕
実施形態1で得られた透光部材13に代えて、実施例2で得られた透光部材23を用いて、実施例3と同様にして発光装置を製造する。透光部材23における第1光反射部材21の外形は、図4に示すように、実施例1の透光部材13と同じであるが、透光性樹脂22の側面及び第1光反射部材の内側が、その上面から下面に幅広となっている。透光性樹脂22の下面の外縁は、発光素子の外縁の外側に配置される。このような形状によって、発光素子14から出射された光は、効率的に透光性樹脂22を通り、かつ、第1光反射部材21の内面がリフレクタの役割を果たすことで、より一層良好に発光装置から取り出される。
[Example 4: Manufacturing method of light-emitting device]
A light emitting device is manufactured in the same manner as in Example 3 using the translucent member 23 obtained in Example 2 instead of the translucent member 13 obtained in Embodiment 1. As shown in FIG. 4, the outer shape of the first light reflecting member 21 in the light transmitting member 23 is the same as that of the light transmitting member 13 of Example 1, but the side surface of the light transmitting resin 22 and the first light reflecting member. The inside is wide from the upper surface to the lower surface. The outer edge of the lower surface of the translucent resin 22 is disposed outside the outer edge of the light emitting element. With such a shape, light emitted from the light emitting element 14 efficiently passes through the translucent resin 22, and the inner surface of the first light reflecting member 21 serves as a reflector, so that the light is further improved. It is taken out from the light emitting device.

〔実施例5:発光装置の製造方法〕
図5Aに示すように、複数の発光素子14を1つの実装基板36上に、規則的に配列して搭載する。また、図5Bに示すように、支持体37として剥離型の粘着シート上に、実装基板36上に配列した発光素子14にそれぞれ対応する位置に、複数の透光部材13を規則的に配列する。
第4の工程において、図5Cに示すように、平面視において、透光部材13の透光性樹脂12の外縁が、発光素子14の外縁より外側にそれぞれ配置するように、透光部材13を発光素子14上に一括して載置し、固定する。
第5の工程において、図5Dに示すように、透光部材13と支持体37とを固定したまま、第2光反射部材15を、透光部材13の下方に吐出することにより、その流動性を利用して、複数の発光素子14のそれぞれの全ての側面を一体的に被覆する。その後、図5Eに示すように、透光部材13から支持体37を剥離する。これにより、支持体37が第2光反射部材15のマスクとなり、第2光反射部材15を、主に、透光部材13の下方に配置することができる。
図5Fに示すように、発光素子14間の第2光反射部材15である切断位置Cで、ダイサーを用いて、実装基板36及び第2光反射部材15を切断することで、発光装置を得ることができる。
上記以外は、実質的に実施例3と同様の方法で製造することができる。
このような発光装置においても、実施例2の発光装置と同様の効果が得られる。
[Example 5: Manufacturing method of light-emitting device]
As shown in FIG. 5A, a plurality of light emitting elements 14 are regularly arranged and mounted on one mounting substrate 36. Further, as shown in FIG. 5B, a plurality of translucent members 13 are regularly arranged at positions corresponding to the light emitting elements 14 arranged on the mounting substrate 36 on a peelable adhesive sheet as the support 37. .
In the fourth step, as shown in FIG. 5C, the translucent member 13 is arranged so that the outer edge of the translucent resin 12 of the translucent member 13 is arranged outside the outer edge of the light emitting element 14 in a plan view. It is placed on the light emitting element 14 at a time and fixed.
In the fifth step, as shown in FIG. 5D, the second light reflecting member 15 is discharged below the light transmitting member 13 while the light transmitting member 13 and the support 37 are fixed. Is used to integrally cover all the side surfaces of each of the plurality of light emitting elements 14. Thereafter, as shown in FIG. 5E, the support 37 is peeled off from the translucent member 13. Thus, the support 37 serves as a mask for the second light reflecting member 15, and the second light reflecting member 15 can be disposed mainly below the light transmitting member 13.
As shown in FIG. 5F, the mounting substrate 36 and the second light reflecting member 15 are cut using a dicer at a cutting position C that is the second light reflecting member 15 between the light emitting elements 14 to obtain a light emitting device. be able to.
Other than the above, it can be produced in substantially the same manner as in Example 3.
Even in such a light emitting device, the same effect as that of the light emitting device of Example 2 can be obtained.

上述したような製造方法によって、高精度かつ簡便に透光部材及び発光装置を製造することができる。また、見切り性が良好な発光装置を得ることが可能となる。
さらに、複数の発光装置が搭載される発光装置であっても、個々の発光素子をそれぞれ独立に点灯制御する際に、点灯した発光素子の光が、隣接する非点灯の発光素子方向に出射しにくく、非点灯の発光素子の微小発光を阻止することができる。
By the manufacturing method as described above, a light-transmitting member and a light-emitting device can be manufactured with high accuracy and ease. In addition, it is possible to obtain a light emitting device with good parting performance.
Furthermore, even in a light-emitting device equipped with a plurality of light-emitting devices, when the individual light-emitting elements are controlled to be turned on independently, the light of the light-emitting elements that are lit is emitted in the direction of the adjacent non-light-emitting light-emitting elements. It is difficult to prevent minute light emission of a non-light-emitting light-emitting element.

実施形態の透光部材の製造方法及び発光装置の製造方法は、各種表示装置の光源、照明用光源、各種インジケーター用光源、車載用光源、ディスプレイ用光源、液晶のバックライト用光源、信号機、車載部品、看板用チャンネルレターなど、種々の光源の製造に利用することができる。   The manufacturing method of the translucent member and the manufacturing method of the light emitting device of the embodiment are as follows: light source of various display devices, illumination light source, various indicator light sources, in-vehicle light source, display light source, liquid crystal backlight light source, traffic light, in-vehicle It can be used for the production of various light sources such as parts and signboard channel letters.

11、21 第1光反射部材
12a 透光性樹脂
12、22 硬化した透光性樹脂
30 透光部材前駆体
13、23 透光部材
14 発光素子
15 第2光反射部材
16、36 実装基板
37 支持体
DESCRIPTION OF SYMBOLS 11, 21 1st light reflection member 12a Translucent resin 12, 22 Cured translucent resin 30 Translucent member precursor 13, 23 Translucent member 14 Light emitting element 15 2nd light reflective member 16, 36 Mounting board 37 Support body

Claims (16)

筒状に延長する第1光反射部材を準備する第1の工程と、
該第1光反射部材内に、透光性樹脂を充填して硬化させ、透光部材前駆体を得る第2の工程と、
前記透光部材前駆体を、前記第1光反射部材が延長する方向に交差する方向で切断して個片化する第3の工程とを有することを特徴とする透光部材の製造方法。
A first step of preparing a first light reflecting member extending in a cylindrical shape;
A second step of filling the first light reflecting member with a translucent resin and curing it to obtain a translucent member precursor;
And a third step of cutting the translucent member precursor into a piece by cutting the translucent member precursor in a direction crossing the extending direction of the first light reflecting member.
前記第2の工程において、前記透光性樹脂に波長変換部材を含有させる請求項1に記載の透光部材の製造方法。   The manufacturing method of the translucent member of Claim 1 which makes the said translucent resin contain a wavelength conversion member in a said 2nd process. 前記第1の工程において、前記第1光反射部材を、光反射性物質及び樹脂により形成する請求項1又は2に記載の透光部材の製造方法。   The manufacturing method of the translucent member of Claim 1 or 2 which forms a said 1st light reflection member with a light-reflective substance and resin in a said 1st process. 前記第3の工程において、前記透光部材前駆体を、前記第1光反射部材の延長する方向に直交する方向で切断する請求項1〜3のいずれか1つに記載の透光部材の製造方法。   The said translucent member precursor is cut | disconnected in the direction orthogonal to the direction where the said 1st light reflection member extends in a said 3rd process, The manufacture of the translucent member as described in any one of Claims 1-3. Method. 前記第1光反射部材を構成する前記樹脂に、前記透光性樹脂と同じものを用いる請求項3又は請求項3に従属する請求項4に記載の透光部材の製造方法。 The manufacturing method of the translucent member of Claim 3 which depends on Claim 3 or Claim 3 which uses the same thing as the said translucent resin for the said resin which comprises the said 1st light reflection member. 請求項1〜5のいずれか1つの製造方法によって得られた透光部材を、発光素子の上面に固定する第4の工程と、
前記発光素子の側面を、第2光反射部材で被覆する第5の工程とを有することを特徴とする発光装置の製造方法。
A fourth step of fixing the translucent member obtained by the manufacturing method according to any one of claims 1 to 5 to the upper surface of the light emitting element;
And a fifth step of covering a side surface of the light emitting element with a second light reflecting member.
前記第4の工程において、平面視、前記透光性樹脂の外縁よりも小さい前記発光素子を用い、前記透光性樹脂の外縁を、前記発光素子の外縁よりも外側に配置し、前記透光部材を前記発光素子に固定する請求項6に記載の発光装置の製造方法。   In the fourth step, the light emitting element smaller than the outer edge of the translucent resin is used in plan view, the outer edge of the translucent resin is disposed outside the outer edge of the light emitting element, and the light transmitting element The method for manufacturing a light emitting device according to claim 6, wherein a member is fixed to the light emitting element. 前記第4の工程において、平面視、前記透光部材の外縁よりも大きい前記発光素子を用い、前記透光部材の外縁を、前記発光素子の外縁よりも内側に配置し、前記透光部材を前記発光素子に固定し、
前記第5の工程において、さらに、前記発光素子の上面及び前記透光部材の側面を、前記第2光反射部材で被覆する請求項6に記載の発光装置の製造方法。
In the fourth step, the light emitting element larger than the outer edge of the light transmissive member is used in plan view, the outer edge of the light transmissive member is disposed inside the outer edge of the light emitting element, and the light transmissive member is disposed. Fixed to the light emitting element,
The method of manufacturing a light emitting device according to claim 6, wherein in the fifth step, the upper surface of the light emitting element and the side surface of the light transmitting member are further covered with the second light reflecting member.
前記第4の工程の前又は後に、前記発光素子を実装基板上に搭載し、
前記第5の工程において、前記第2光反射部材を、前記発光素子の側面から前記基板の表面にわたって被覆する請求項6又は7に記載の発光装置の製造方法。
Before or after the fourth step, the light emitting element is mounted on a mounting substrate,
The method of manufacturing a light emitting device according to claim 6 or 7, wherein, in the fifth step, the second light reflecting member is covered from a side surface of the light emitting element to a surface of the substrate.
前記第4の工程の前又は後に、前記発光素子を実装基板上に搭載し、
前記第5の工程において、前記第2光反射部材を、前記透光部材の側面から前記実装基板の表面にわたって被覆する請求項6〜8のいずれか1つに記載の発光装置の製造方法。
Before or after the fourth step, the light emitting element is mounted on a mounting substrate,
The method for manufacturing a light emitting device according to claim 6, wherein, in the fifth step, the second light reflecting member is covered from a side surface of the light transmitting member to a surface of the mounting substrate.
前記第4の工程の前又は後に、
複数の前記発光素子を、1つの実装基板上に搭載する請求項6〜10のいずれか1つに記載の発光装置の製造方法。
Before or after the fourth step,
The manufacturing method of the light-emitting device as described in any one of Claims 6-10 which mounts the said several light emitting element on one mounting board | substrate.
前記第4の工程の前に、複数の前記透光部材を1つの支持体上に配列し、
前記第4の工程において、前記発光素子を前記支持体上の前記透光部材に配置してそれぞれ固定する請求項6〜11のいずれか1つに記載の発光装置の製造方法。
Prior to the fourth step, a plurality of the translucent members are arranged on one support,
The method for manufacturing a light emitting device according to any one of claims 6 to 11, wherein, in the fourth step, the light emitting element is disposed and fixed to the light transmissive member on the support.
前記第5の工程の後、前記発光装置ごとに分離する請求項11又は12に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 11 or 12, wherein the light-emitting device is separated for each of the light-emitting devices after the fifth step. 前記第5の工程において、第2光反射部材として、光反射性物質及び前記透光性樹脂を用いる請求項6〜13のいずれか1つに記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 6, wherein in the fifth step, a light-reflecting substance and the translucent resin are used as the second light-reflecting member. 前記第5の工程において、前記第2光反射部材の上面を前記透光部材の下面と一致させる請求項に記載の発光装置の製造方法。 The method of manufacturing a light emitting device according to claim 6 , wherein in the fifth step, the upper surface of the second light reflecting member is made to coincide with the lower surface of the light transmitting member. 前記第5の工程において、前記第2光反射部材の上面を前記透光部材の上面と一致させる請求項に記載の発光装置の製造方法。 The method of manufacturing a light emitting device according to claim 6 , wherein in the fifth step, the upper surface of the second light reflecting member is made to coincide with the upper surface of the light transmitting member.
JP2014201255A 2014-09-30 2014-09-30 Method for manufacturing translucent member and method for manufacturing light emitting device Active JP6387773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201255A JP6387773B2 (en) 2014-09-30 2014-09-30 Method for manufacturing translucent member and method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201255A JP6387773B2 (en) 2014-09-30 2014-09-30 Method for manufacturing translucent member and method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2016072466A JP2016072466A (en) 2016-05-09
JP6387773B2 true JP6387773B2 (en) 2018-09-12

Family

ID=55867257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201255A Active JP6387773B2 (en) 2014-09-30 2014-09-30 Method for manufacturing translucent member and method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP6387773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6711021B2 (en) 2016-03-02 2020-06-17 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP7108182B2 (en) * 2018-09-26 2022-07-28 日亜化学工業株式会社 Light emitting device and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056296A1 (en) * 2006-11-06 2008-05-15 Koninklijke Philips Electronics N.V. Wavelength converting elements with reflective edges
JP5148126B2 (en) * 2007-02-09 2013-02-20 スタンレー電気株式会社 Color conversion light emitting device and manufacturing method thereof
JP2009177106A (en) * 2007-12-28 2009-08-06 Panasonic Corp Ceramic member for semiconductor light-emitting apparatus, method of manufacturing ceramic member for semiconductor light-emitting apparatus, semiconductor light-emitting apparatus, and display
US8262257B2 (en) * 2008-05-07 2012-09-11 Koninklijke Philips Electronics N.V. Illumination device with LED with a self-supporting grid containing luminescent material and method of making the self-supporting grid
JP5482378B2 (en) * 2009-04-20 2014-05-07 日亜化学工業株式会社 Light emitting device
US9006763B2 (en) * 2009-05-22 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Semiconductor light-emitting device and light source device using the same
US8724054B2 (en) * 2009-05-27 2014-05-13 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
JP5612298B2 (en) * 2009-11-20 2014-10-22 株式会社小糸製作所 Light emitting module and vehicle lamp
JP2012094741A (en) * 2010-10-28 2012-05-17 Nippon Electric Glass Co Ltd Wavelength conversion element and light source having the same
WO2012066881A1 (en) * 2010-11-18 2012-05-24 日本電気硝子株式会社 Wavelength conversion element and light source provided with same
JP5553741B2 (en) * 2010-12-22 2014-07-16 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP6005953B2 (en) * 2012-03-02 2016-10-12 スタンレー電気株式会社 Light emitting device
JP5965162B2 (en) * 2012-03-08 2016-08-03 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2013207049A (en) * 2012-03-28 2013-10-07 Nec Corp Light emitting device using wavelength conversion body

Also Published As

Publication number Publication date
JP2016072466A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6459354B2 (en) Translucent member and method for manufacturing the same, light emitting device and method for manufacturing the same
US9660151B2 (en) Method for manufacturing light emitting device
US9640734B2 (en) Light emitting device
JP6519311B2 (en) Light emitting device
JP6337859B2 (en) Light emitting device
JP5395761B2 (en) LIGHT EMITTING DEVICE COMPONENT, LIGHT EMITTING DEVICE, AND ITS MANUFACTURING METHOD
CN114188460A (en) Light emitting device
JP2007073825A (en) Semiconductor light emitting device
JP6458793B2 (en) Method for manufacturing light emitting device
JP4617761B2 (en) Method for manufacturing light emitting device
JP7014948B2 (en) Manufacturing method of light emitting device and light emitting device
JP2017034160A (en) Method for manufacturing light-emitting device
JP4771800B2 (en) Semiconductor light emitting device and manufacturing method thereof
US10439097B2 (en) Method for manufacturing light emitting device
JP6387773B2 (en) Method for manufacturing translucent member and method for manufacturing light emitting device
JP6582827B2 (en) Substrate, light emitting device, and method of manufacturing light emitting device
JP2006269778A (en) Optical device
JP5919753B2 (en) Light emitting device and method for manufacturing light emitting device
JP6928290B2 (en) Manufacturing method of light emitting device
JP4608966B2 (en) Method for manufacturing light emitting device
JP2019057627A (en) Method of manufacturing light-emitting device
JP6721033B2 (en) Method for manufacturing light emitting device
JP6760350B2 (en) Light emitting device
JP2022016624A (en) Manufacturing method for light-emitting device and light-emitting device
JP2014131075A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6387773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250