Nothing Special   »   [go: up one dir, main page]

JP6372422B2 - Steel pipe joint structure - Google Patents

Steel pipe joint structure Download PDF

Info

Publication number
JP6372422B2
JP6372422B2 JP2015113377A JP2015113377A JP6372422B2 JP 6372422 B2 JP6372422 B2 JP 6372422B2 JP 2015113377 A JP2015113377 A JP 2015113377A JP 2015113377 A JP2015113377 A JP 2015113377A JP 6372422 B2 JP6372422 B2 JP 6372422B2
Authority
JP
Japan
Prior art keywords
tube
grout
pipe
axis direction
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015113377A
Other languages
Japanese (ja)
Other versions
JP2016223251A (en
Inventor
俊輔 宇佐美
俊輔 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015113377A priority Critical patent/JP6372422B2/en
Publication of JP2016223251A publication Critical patent/JP2016223251A/en
Application granted granted Critical
Publication of JP6372422B2 publication Critical patent/JP6372422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

本発明は、風力発電設備等において採用される、径の異なる2つの鋼管を鋼管同士のすき間にグラウトを充填することにより接合する鋼管接合構造に関する。   The present invention relates to a steel pipe joining structure that is employed in a wind power generation facility or the like and joins two steel pipes having different diameters by filling a grout between the steel pipes.

日本国内において、再生可能エネルギーとしての風力発電が注目されてきている。風力発電には陸上風力と洋上風力の2種類があり、洋上風力は陸上風力と比べて大規模な用地が確保でき、安定した風が得られるという利点がある。国内でも洋上風力に関する実証研究が行われており、実用化されつつある。   In Japan, wind power generation as a renewable energy has attracted attention. There are two types of wind power generation: onshore wind power and offshore wind power. Offshore wind power has an advantage that a large-scale site can be secured and stable wind can be obtained compared with onshore wind power. In Japan, empirical research on offshore wind has been conducted and is being put to practical use.

洋上風力発電設備は海上に設置され、基礎構造形式には、着定式と浮体式の2種類がある。着底式の構造として、重力式、ジャケット式、モノパイル式(単杭式)といった構造が挙げられる。   Offshore wind power generation facilities are installed on the sea, and there are two types of foundation structures: stationary and floating. Examples of the bottoming type structure include a gravity type, a jacket type, and a monopile type (single pile type).

図3は、モノパイル式の基礎構造を備えた洋上風力発電設備を示すものである。図3に示すように、この洋上風力発電設備10は、まず、モノパイルと呼ばれる単杭の鋼管杭11を海底地盤に打設し、その後、鋼管杭(モノパイル)11よりも大きな径を有するトランジッションピースと呼ばれる鋼管12を鋼管杭(モノパイル)11に被せる。鋼管杭(モノパイル)11と鋼管(トランジッションピース)12の間にはすき間があるため、グラウト(ここでは図示せず)を充填することで、両者を一体化させる(以下、グラウト接合部と呼ぶ)。そして、鋼管12の上端には、タワー15とブレード16を設置する。   FIG. 3 shows an offshore wind power generation facility having a monopile basic structure. As shown in FIG. 3, this offshore wind power generation facility 10 first places a single pile steel pipe pile 11 called monopile on the seabed ground, and then has a transition piece having a diameter larger than that of the steel pipe pile (monopile) 11. Is covered with a steel pipe pile (monopile) 11. Since there is a gap between the steel pipe pile (monopile) 11 and the steel pipe (transition piece) 12, both are integrated by filling with grout (not shown here) (hereinafter referred to as a grout joint). . A tower 15 and a blade 16 are installed at the upper end of the steel pipe 12.

これによって、洋上風力発電設備10はブレード16で風力を受け、その力がタワー15から鋼管12に伝わり、グラウト接合部を介して鋼管杭11に伝達される。   As a result, the offshore wind power generation facility 10 receives wind power from the blade 16, and the force is transmitted from the tower 15 to the steel pipe 12 and is transmitted to the steel pipe pile 11 through the grout joint.

その際に、洋上風力発電設備10は絶えず風や波による振動を受ける構造であり、設計では応力の振動回数を供用期間20年で約2億回と想定している。荷重伝達を行うグラウト接合部にはこの繰り返し荷重が作用することにより、疲労が蓄積する。特にグラウト接合部の下端部におけるグラウトの発生応力が高いことが図4に示されている。ちなみに、図4の縦軸はグラウト接合部最下端の高さ位置を0とした高さ方向位置を示している。   At that time, the offshore wind power generation facility 10 has a structure that is constantly subjected to vibrations caused by wind and waves, and the design assumes that the number of stress vibrations is about 200 million times in a service period of 20 years. Fatigue accumulates due to this repeated load acting on the grout joint that transmits the load. FIG. 4 shows that the stress generated by the grout is particularly high at the lower end of the grout joint. Incidentally, the vertical axis | shaft of FIG. 4 has shown the height direction position which made the height position of the grout junction lowest end zero.

図5は、そのような、径の異なる2つの鋼管を鋼管同士のすき間にグラウトを充填することにより接合する鋼管接合構造(グラウト接合部)を管軸方向に軸心位置で切断した縦断面図である。   FIG. 5 is a longitudinal sectional view of a steel pipe joint structure (grouting joint) for joining two steel pipes having different diameters by filling the gap between the steel pipes with a grout at the axial position in the pipe axis direction. It is.

図5に示すように、内管1(図3における鋼管杭11に相当)が外管2(図3における鋼管12に相当)の内部に軸心を一致させて所定長さだけ挿入され、内管1と外管2の間にグラウト3が充填されることによって、グラウト接合部4が形成されている。   As shown in FIG. 5, the inner pipe 1 (corresponding to the steel pipe pile 11 in FIG. 3) is inserted into the outer pipe 2 (corresponding to the steel pipe 12 in FIG. 3) with the axial center aligned by a predetermined length, A grout joint 4 is formed by filling the grout 3 between the tube 1 and the outer tube 2.

しかし、図5に示したような鋼管接合構造の場合、外管2から内管1への荷重伝達は鋼管(内管1、外管2)とグラウト3との表面摩擦のみに期待することになり、長期間の供用中に鋼管(内管1、外管2)とグラウト3との表面摩擦力が減少して、外管2から内管1への荷重伝達が円滑に行われなくなり、外管2が鉛直方向下方(管軸方向下方)にずれるおそれがある。   However, in the case of the steel pipe joint structure as shown in FIG. 5, the load transmission from the outer pipe 2 to the inner pipe 1 is expected only from the surface friction between the steel pipe (the inner pipe 1 and the outer pipe 2) and the grout 3. Therefore, the surface friction force between the steel pipe (inner pipe 1 and outer pipe 2) and the grout 3 is reduced during long-term service, and load transmission from the outer pipe 2 to the inner pipe 1 is not smoothly performed. There is a possibility that the tube 2 may shift downward in the vertical direction (downward in the tube axis direction).

そこで、長期間の供用でも外管2から内管1への荷重伝達が円滑に行われるようにするために、図6に示すように、グラウト接合部4において、内管1の外面と外管2の内面にシアキー(せん断力伝達部材)9が取り付けられることがある(非特許文献1参照)。このようにシアキー9を取り付けることは、外管2の鉛直方向下方へのずれを防ぐのに効果的である。   Therefore, in order to smoothly transmit the load from the outer tube 2 to the inner tube 1 even in a long-term service, as shown in FIG. 6, the outer surface of the inner tube 1 and the outer tube at the grout joint 4. A shear key (shearing force transmission member) 9 may be attached to the inner surface of 2 (see Non-Patent Document 1). Mounting the shear key 9 in this manner is effective in preventing the outer tube 2 from shifting downward in the vertical direction.

しかし、シアキー9は溶接によって取り付けられるため、入熱により溶接部に引張残留応力が存在し、疲労強度が低下する。また、溶接止端部の形状が急変するような場合は応力集中を伴い、さらに疲労強度が低下する。よって、シアキー9を設置しない鋼管接合構造が採用されるのが一般的になっている。   However, since the shear key 9 is attached by welding, there is a tensile residual stress in the weld due to heat input, and the fatigue strength decreases. In addition, when the shape of the weld toe portion changes suddenly, stress concentration occurs and the fatigue strength further decreases. Therefore, it is common to adopt a steel pipe joint structure in which the shear key 9 is not installed.

これに対して、特許文献1では、グラウト接合部における外管の内径または内管の外径のいずれかを管軸方向に変化させて、グラウトの管軸方向の断面を外管側または内管側が斜めになった楔状にする鋼管接合構造が開示されており、シアキーを取り付けることなく、外管2の鉛直方向下方へのずれを防止できると記載されている。   On the other hand, in Patent Document 1, either the inner diameter of the outer tube or the outer diameter of the inner tube at the grout junction is changed in the tube axis direction, and the cross section in the tube axis direction of the grout is changed to the outer tube side or the inner tube. A steel pipe joining structure having a wedge shape with an inclined side is disclosed, and it is described that the downward displacement of the outer pipe 2 in the vertical direction can be prevented without attaching a shear key.

また、特許文献2では、外管の内面と内管の外面に突起付き帯状鋼板を溶接した鋼管接合構造が開示されており、シアキーを溶接する場合に比べて、入熱による残留応力が低減でき、疲労性能を改善させた上で、十分なせん断耐力を確保することができると記載されている。   Further, Patent Document 2 discloses a steel pipe joint structure in which band-shaped steel plates with protrusions are welded to the inner surface of the outer tube and the outer surface of the inner tube, and the residual stress due to heat input can be reduced as compared with the case where a shear key is welded. In addition, it is described that sufficient shear strength can be ensured after improving fatigue performance.

特開2013−53425号公報JP2013-53425A 特許第5136726号公報Japanese Patent No. 5136726

2011 DNV−OS−J101 Design of Offshore Wind Turbine Structures Sec.9−Page 1432011 DNV-OS-J101 Design of Offshore Wind Turbine Structures Sec. 9-Page 143

上記の特許文献1では、内管と外管との管軸方向のずれを防止するために、グラウト接合部における外管の内径または内管の外径のいずれかを管軸方向に変化させて、グラウトの管軸方向の断面を外管側または内管側が斜めになった楔状にしているが、外管側または内管側のいずれか一方が斜めになった楔状のグラウト接合部では、内管と外管との管軸方向のずれを防止するには必ずしも十分とは言えない。   In the above-mentioned Patent Document 1, in order to prevent the displacement between the inner tube and the outer tube in the tube axis direction, either the inner diameter of the outer tube or the outer diameter of the inner tube at the grout joint is changed in the tube axis direction. The cross section in the tube axis direction of the grout has a wedge shape in which the outer tube side or the inner tube side is slanted, but in the wedge-shaped grout joint in which either the outer tube side or the inner tube side is slanted, It is not always sufficient to prevent the displacement of the tube and the outer tube in the tube axis direction.

また、上記の特許文献2では、内管と外管との管軸方向のずれを防止するために、外管の内面と内管の外面に突起付き帯状鋼板を溶接しているが、多数の突起付き帯状鋼板を突合せ溶接するなどの手間の掛かる工程が必要となる。   Further, in the above-mentioned Patent Document 2, in order to prevent the displacement of the inner tube and the outer tube in the tube axis direction, the strip-shaped steel plates with protrusions are welded to the inner surface of the outer tube and the outer surface of the inner tube. A time-consuming process such as butt welding the band-shaped steel sheet with protrusions is required.

本発明は、上記のような事情に鑑みてなされたものであり、内管が外管の内部に挿入され、内管と外管の間にグラウトが充填されることによって、グラウト接合部が形成されている鋼管接合構造として、内管と外管との管軸方向のずれを的確かつ効率的に防止することができる鋼管接合構造を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and the inner tube is inserted into the outer tube, and the grout is filled between the inner tube and the outer tube, thereby forming a grout joint. It is an object of the present invention to provide a steel pipe joint structure that can accurately and efficiently prevent the displacement of the inner pipe and the outer pipe in the pipe axis direction.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]内管が外管の内部に軸心を一致させて所定長さだけ挿入され、内管と外管の間にグラウトが充填されることによって、グラウト接合部が形成されている鋼管接合構造であって、グラウト接合部において、内管の外径が管軸方向で変化し、外管の内径が管軸方向で変化していることを特徴とする鋼管接合構造。   [1] A steel pipe joint in which the inner pipe is inserted into the outer pipe by a predetermined length with the axial center aligned, and the grout is filled between the inner pipe and the outer pipe, thereby forming a grout joint. A steel pipe joint structure, wherein the outer diameter of the inner pipe changes in the pipe axis direction and the inner diameter of the outer pipe changes in the pipe axis direction in the grout joint.

[2]グラウト接合部において、管軸方向端部のグラウト幅が管軸方向中間部のグラウト幅に比べて大きいことを特徴とする前記[1]に記載の鋼管接合構造。   [2] The steel pipe joint structure according to [1], wherein a grout width at an end portion in the tube axis direction is larger than a grout width at an intermediate portion in the tube axis direction in the grout joint portion.

[3]グラウト接合部において、管軸方向中間部のグラウト幅が一定であることを特徴とする前記[2]に記載の鋼管接合構造。   [3] The steel pipe joint structure according to the above [2], wherein the grout width of the intermediate part in the pipe axis direction is constant in the grout joint part.

本発明においては、内管が外管の内部に挿入され、内管と外管の間にグラウトが充填されることによって、グラウト接合部が形成されている鋼管接合構造として、内管と外管との管軸方向のずれを的確かつ効率的に防止することができる。   In the present invention, the inner pipe and the outer pipe are formed as a steel pipe joining structure in which the inner pipe is inserted into the outer pipe and the grout is filled between the inner pipe and the outer pipe to form a grout joint. Can be prevented accurately and efficiently.

本発明の実施形態1に係る鋼管接合構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the steel pipe joining structure which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る鋼管接合構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the steel pipe joining structure which concerns on Embodiment 2 of this invention. モノパイル式の洋上風力発電設備を示す図である。It is a figure which shows a monopile type offshore wind power generation installation. グラウト接合部の応力分布を示す図である。It is a figure which shows the stress distribution of a grout junction part. 従来の鋼管接合部構造を示す図である(シアキー無し)。It is a figure which shows the conventional steel pipe junction structure (there is no shear key). 従来の鋼管接合部構造を示す図である(シアキー有り)。It is a figure which shows the conventional steel pipe junction structure (with a shear key).

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1は、本発明の実施形態1に係る鋼管接合構造を管軸方向に軸心位置で切断した縦断面図である。
[Embodiment 1]
FIG. 1 is a longitudinal sectional view of a steel pipe joint structure according to Embodiment 1 of the present invention cut at an axial center position in the pipe axis direction.

図1に示すように、この実施形態1に係る鋼管接合構造は、内管1が外管2の内部に軸心を一致させて所定長さだけ挿入され、内管1と外管2の間にグラウト3が充填されることによって、グラウト接合部4が形成されている。   As shown in FIG. 1, in the steel pipe joint structure according to the first embodiment, the inner pipe 1 is inserted into the outer pipe 2 by a predetermined length with the axial center aligned, and between the inner pipe 1 and the outer pipe 2. The grout joint 4 is formed by being filled with the grout 3.

そして、グラウト接合部4において、内管1の外径が管軸方向の一部で変化(拡径)し、外管2の内径が管軸方向の一部で変化(縮径)している。   In the grout joint 4, the outer diameter of the inner tube 1 changes (expands) in part in the tube axis direction, and the inner diameter of the outer tube 2 changes (reduces diameter) in part in the tube axis direction. .

すなわち、図1において、1aが内管1の外径が拡径した内管外径拡径部1aであり、2aが外管2の内径が縮径した外管内径縮径部2aである。   That is, in FIG. 1, 1a is an inner tube outer diameter enlarged portion 1a in which the outer diameter of the inner tube 1 is increased, and 2a is an outer tube inner diameter reduced portion 2a in which the inner diameter of the outer tube 2 is reduced.

なお、グラウト接合部4において、内管1の内径と外管2の外径は管軸方向で一定になっている。   In the grout joint 4, the inner diameter of the inner tube 1 and the outer diameter of the outer tube 2 are constant in the tube axis direction.

これによって、この実施形態1に係る鋼管接合構造においては、グラウド3が内管側(内管外径拡径部1a)と外管側(外管内径縮径部2a)の両方で管軸方向に強固な摩擦力を獲得できるので、特許文献1に比べて、内管1と外管2との管軸方向のずれを的確に防止することができる。   Thus, in the steel pipe joint structure according to the first embodiment, the groove 3 is in the pipe axis direction on both the inner tube side (inner tube outer diameter enlarged portion 1a) and the outer tube side (outer tube inner diameter reduced portion 2a). Therefore, it is possible to accurately prevent the displacement of the inner tube 1 and the outer tube 2 in the tube axis direction as compared with Patent Document 1.

また、このような、管軸方向の一部で外径が拡径し、管軸方向で内径が一定である内管1と、管軸方向の一部で内径が縮径し、管軸方向で外径が一定である外管2は、片面で長手方向に厚さが変化している片面差厚鋼板を用いて製造した鋼管を利用すればよいので、特許文献2に比べて、内管1と外管2との管軸方向のずれを効率的に防止することができる。   Moreover, the outer diameter is increased in part in the tube axis direction and the inner tube 1 has a constant inner diameter in the tube axis direction, and the inner diameter is reduced in part in the tube axis direction. In the outer tube 2 having a constant outer diameter, a steel tube manufactured using a single-sided difference thickness steel plate whose thickness is changed in the longitudinal direction on one side may be used. It is possible to efficiently prevent the displacement of 1 and the outer tube 2 in the tube axis direction.

なお、ここで、グラウト接合部4の管軸方向端部を、グラウト接合部4の管軸方向最先端(図1におけるグラウト接合部4の最上端と最下端)を起点にして管軸方向に300〜1000mmまでの部分とし、グラウト接合部4の管軸方向中間部を、グラウト接合部4の管軸方向でグラウト接合部4の管軸方向端部を除いた部分とする。   Here, the tube axis direction end of the grout joint 4 is set in the tube axis direction starting from the foremost end of the grout joint 4 in the tube axis direction (the top end and the bottom end of the grout joint 4 in FIG. 1). It is set as a part to 300-1000 mm, and let the pipe-axis direction intermediate part of the grout junction part 4 be a part except the pipe-axis direction edge part of the grout junction part 4 in the pipe-axis direction of the grout joint part 4.

その際に、図1において、グラウト3の管径方向の厚さ(グラウト幅)Wについては、グラウト接合部4の管軸方向端部のグラウト幅がグラウト接合部4の管軸方向中間部のグラウト幅より大きくすることが好ましい。これによって、グラウト接合部4の管軸方向端部におけるグラウト3への応力集中を軽減することができる。   At that time, in FIG. 1, regarding the thickness (grout width) W of the grout 3 in the tube radial direction, the grout width at the end in the tube axis direction of the grout joint 4 is the middle of the grout joint 4 in the tube axis direction. It is preferable to make it larger than the grout width. As a result, the stress concentration on the grout 3 at the end in the tube axis direction of the grout joint 4 can be reduced.

また、グラウト接合部4の管軸方向中間部のグラウト幅は均一にすることが好ましい。これによって、外管2と内管1の間の応力伝達がより円滑になされるようになる。   Moreover, it is preferable that the grout width of the intermediate portion in the tube axis direction of the grout joint 4 is uniform. As a result, the stress transmission between the outer tube 2 and the inner tube 1 is made smoother.

なお、管軸方向中間部のグラウト幅が均一とは、管軸方向中間部のグラウト幅の平均値に対して80〜120%の範囲に収まっていることである。あるいは、管軸方向中間部のグラウト幅の目標値を定めていき、その目標値に対して80〜120%の範囲に収まることでもよい。   In addition, the fact that the grout width in the intermediate portion in the tube axis direction is uniform means that the grout width in the intermediate portion in the tube axis direction is within a range of 80 to 120% with respect to the average value of the grout width in the intermediate portion in the tube axis direction. Alternatively, the target value of the grout width at the intermediate portion in the tube axis direction may be determined, and may be within a range of 80 to 120% with respect to the target value.

逆に言えば、内管外径拡径部1aの外径拡径量や外管内径縮径部2aの内径縮径が過剰に大きかったり、内管外径拡径部1aと外管内径縮径部2aとが管軸方向でラップするなどして、部分的にグラウト幅が極端に小さくなる個所(例えば、管軸方向中間部のグラウト幅の平均値または目標値に対して30%以下になる個所)が生じるのは好ましくない。   In other words, the outer diameter expansion amount of the inner pipe outer diameter expanded portion 1a and the inner diameter decreased diameter of the outer tube inner diameter decreased diameter portion 2a are excessively large, or the inner tube outer diameter expanded portion 1a and the outer tube inner diameter decreased. A portion where the grout width becomes extremely small, for example, by wrapping with the diameter portion 2a in the tube axis direction (for example, 30% or less of the average value or the target value of the grout width in the tube axis direction intermediate portion) It is not preferable that this occurs.

また、図1では、内管拡径部1aと外管縮径部2aを1個所ずつ設けているが、いずれか一方または両方を複数個所設けてもよい。   Further, in FIG. 1, one inner tube diameter-enlarged portion 1a and one outer tube diameter-reduced portion 2a are provided, but one or both of them may be provided at a plurality.

[実施形態2]
図2は、本発明の実施形態2に係る鋼管接合構造を管軸方向に軸心位置で切断した縦断面図である。
[Embodiment 2]
FIG. 2 is a longitudinal sectional view of a steel pipe joint structure according to Embodiment 2 of the present invention cut at the axial center position in the pipe axis direction.

図2に示すように、この実施形態2に係る鋼管接合構造は、上記の実施形態1に係る鋼管接合構造と基本的な構成は同じであり、グラウト接合部4において、内管1の外径が管軸方向の一部で変化(拡径)し、外管2の内径が管軸方向の一部で変化(縮径)している。   As shown in FIG. 2, the steel pipe joint structure according to the second embodiment has the same basic configuration as the steel pipe joint structure according to the first embodiment, and the outer diameter of the inner pipe 1 is the grout joint 4. However, the inner diameter of the outer tube 2 is changed (reduced diameter) in a part in the tube axis direction.

すなわち、図2において、1aが内管1の外径が拡径した内管外径拡径部1aであり、2aが外管2の内径が縮径した外管外径縮径部2aである。   That is, in FIG. 2, 1a is an inner tube outer diameter enlarged portion 1a in which the outer diameter of the inner tube 1 is increased, and 2a is an outer tube outer diameter reduced portion 2a in which the inner diameter of the outer tube 2 is reduced. .

それに加えて、この実施形態2に係る鋼管接合構造では、内管外径拡径部1aにおいて、内管1の内径が縮径し、外管内径縮径部2aにおいて、外管2の外径が拡径している。   In addition, in the steel pipe joint structure according to the second embodiment, the inner diameter of the inner pipe 1 is reduced in the inner pipe outer diameter enlarged portion 1a, and the outer diameter of the outer pipe 2 is reduced in the outer pipe inner diameter reduced portion 2a. Is expanded.

これによって、この実施形態2に係る鋼管接合構造においても、グラウド3が内管側(内管外径拡径部1a)と外管側(外管内径縮径部2a)の両方で管軸方向に強固な摩擦力を獲得できるので、特許文献1に比べて、内管1と外管2との管軸方向のずれを的確に防止することができる。   Thereby, also in the steel pipe joint structure according to the second embodiment, the groove 3 is arranged in the pipe axis direction on both the inner tube side (inner tube outer diameter enlarged portion 1a) and the outer tube side (outer tube inner diameter reduced portion 2a). Therefore, it is possible to accurately prevent the displacement of the inner tube 1 and the outer tube 2 in the tube axis direction as compared with Patent Document 1.

また、このような、管軸方向の一部で外径が拡径し、内径が縮径している内管1と、管軸方向の一部で内径が縮径し、外径が拡径している外管2は、両面で長手方向に厚さが変化している両面差厚鋼板を用いて製造した鋼管を利用すればよいので、特許文献2に比べて、内管1と外管2との管軸方向のずれを効率的に防止することができる。   In addition, the inner tube 1 whose outer diameter is increased in part in the tube axis direction and whose inner diameter is reduced, and the inner diameter is reduced in part in the tube axis direction, and the outer diameter is increased. Since the outer pipe 2 that is used may be a steel pipe manufactured using a double-sided difference thickness steel plate whose thickness changes in the longitudinal direction on both sides, the inner pipe 1 and the outer pipe are compared with Patent Document 2. 2 can be effectively prevented from shifting in the tube axis direction.

[実施形態3]
上述した本発明の実施形態1、2では、グラウト接合部4において、内管1の外径が拡径した個所(内管外径拡径部)と、外管2の内径が縮径した個所(外管内径縮径部)とを設けているが、本発明の実施形態3は、それに加えて、さらに、内管1の外径が縮径する個所(内管外径縮径部)や、外管2の内径が拡径する個所(外管内径拡径部)を設けた鋼管接合構造である。
[Embodiment 3]
In the first and second embodiments of the present invention described above, in the grout joint 4, the location where the outer diameter of the inner tube 1 is increased (the inner diameter of the outer diameter of the inner tube) and the location where the inner diameter of the outer tube 2 is reduced. (Outer pipe inner diameter reduced diameter part) In addition to this, the third embodiment of the present invention further includes a part where the outer diameter of the inner pipe 1 is reduced (inner pipe outer diameter reduced diameter part) and The steel pipe joining structure is provided with a portion (outer pipe inner diameter enlarged portion) where the inner diameter of the outer pipe 2 is increased.

例えば、内管外径拡径部と外管内径縮径部を設ける場合、内管外径縮径部と外管内径拡径部を設ける場合、内管外径縮径部と外管内径縮径部を設ける場合、内管外径拡径部と外管内径拡径部と内管外径縮径部と外管内径縮径部を設ける場合などである。   For example, when an inner tube outer diameter enlarged portion and an outer tube inner diameter reduced portion are provided, when an inner tube outer diameter reduced portion and an outer tube inner diameter enlarged portion are provided, an inner tube outer diameter reduced portion and an outer tube inner diameter reduced portion are provided. For example, when the diameter portion is provided, the inner tube outer diameter enlarged portion, the outer tube inner diameter enlarged portion, the inner tube outer diameter reduced portion, and the outer tube inner diameter reduced portion are provided.

なお、内管外径縮径部や外管内径拡径部では、そのままでは内管あるいは外管の管厚が薄くなるので、同じ管軸方向位置に、内管外径縮径部に対して内管内径縮径部を設け、外管内径拡径部に対して外管外径拡径部を設けることが好ましい。   In the inner tube outer diameter reduced diameter part and the outer pipe inner diameter enlarged diameter part, since the tube thickness of the inner tube or the outer pipe is reduced as it is, the inner tube outer diameter reduced diameter part is located in the same position in the tube axis direction. It is preferable to provide an inner tube inner diameter reduced portion and an outer tube outer diameter enlarged portion with respect to the outer tube inner diameter enlarged portion.

1 内管
2 外管
3 グラウト
4 グラウト接合部
9 シアキー
10 洋上風力発電設備
11 鋼管杭(モノパイル)
12 鋼管(トランジッションピース)
15 タワー
16 ブレード
DESCRIPTION OF SYMBOLS 1 Inner pipe 2 Outer pipe 3 Grout 4 Grout joint part 9 Shear key 10 Offshore wind power generation equipment 11 Steel pipe pile (monopile)
12 Steel pipe (transition piece)
15 tower 16 blade

Claims (2)

内管が外管の内部に軸心を一致させて所定長さだけ挿入され、内管と外管の間にグラウトが充填されることによって、グラウト接合部が形成されている鋼管接合構造であって、グラウト接合部において、内管の外径が管軸方向で変化し、外管の内径が管軸方向で変化しているとともに、グラウト接合部において、管軸方向端部を除いた管軸方向中間部全体のグラウト幅が均一であることを特徴とする鋼管接合構造。 It is a steel pipe joint structure in which the inner pipe is inserted into the outer pipe by a predetermined length with the axial center aligned, and the grout is filled between the inner pipe and the outer pipe to form a grout joint. In the grout joint, the outer diameter of the inner tube changes in the tube axis direction, and the inner diameter of the outer tube changes in the tube axis direction. A steel pipe joint structure characterized in that the grout width of the entire direction intermediate portion is uniform . グラウト接合部において、管軸方向端部のグラウト幅が管軸方向中間部のグラウト幅に比べて大きいことを特徴とする請求項1に記載の鋼管接合構造。   2. The steel pipe joint structure according to claim 1, wherein a grout width at an end portion in the tube axis direction is larger than a grout width at an intermediate portion in the tube axis direction in the grout joint portion.
JP2015113377A 2015-06-03 2015-06-03 Steel pipe joint structure Active JP6372422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113377A JP6372422B2 (en) 2015-06-03 2015-06-03 Steel pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113377A JP6372422B2 (en) 2015-06-03 2015-06-03 Steel pipe joint structure

Publications (2)

Publication Number Publication Date
JP2016223251A JP2016223251A (en) 2016-12-28
JP6372422B2 true JP6372422B2 (en) 2018-08-15

Family

ID=57747796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113377A Active JP6372422B2 (en) 2015-06-03 2015-06-03 Steel pipe joint structure

Country Status (1)

Country Link
JP (1) JP6372422B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339937A (en) * 1992-06-12 1993-12-21 Nippon Steel Corp Joint structure of hollow pipe
JPH09168822A (en) * 1995-12-21 1997-06-30 Nkk Corp Threaded joint steel pipe and manufacturing method thereof
DK2576927T3 (en) * 2010-05-25 2016-09-05 Siemens Ag Segmented mantle structure, especially to a foundation for a wind turbine plant
JP5136726B2 (en) * 2011-03-02 2013-02-06 新日鐵住金株式会社 Monopile foundation for structures that generate vibration.
JP2013053425A (en) * 2011-09-02 2013-03-21 Jfe Steel Corp Connection structure of different-diameter steel pipes
JP6226176B2 (en) * 2013-09-10 2017-11-08 清水建設株式会社 Steel pipe joint structure

Also Published As

Publication number Publication date
JP2016223251A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
EP2672012B1 (en) A mono-pile type foundation structure for connecting steel pipe pile and steel sleeve pipe
EP2910686B1 (en) In-line connection for an offshore onstruction; offshore construction; method for installing
US7975438B2 (en) Joining device for hybrid wind turbine towers
EP3178996B1 (en) Pile for an offshore monopile foundation
TWI673432B (en) Offshore support structure
KR20130012106A (en) Transition piece and momopile connection structure of offshore wind turbine
EP2615226B1 (en) Steel pipe column structure and method for producing same
EP2662495B1 (en) Wind turbine foundation
CN112739908A (en) Assembly including first and second members and connectors and method of assembling the assembly
KR101697630B1 (en) Hybrid wind turbine tower having a composite and steel section
JP4865111B1 (en) Steel pipe with welded flange
JP6927165B2 (en) How to remove joint structures, pile-type structures and pile-type structures
US20110146192A1 (en) Stayed connection for wind turbine
KR101515347B1 (en) Pile with reinforced tip
JP2013053425A (en) Connection structure of different-diameter steel pipes
CN112049145A (en) Post-fabricated ice-resistant steel offshore wind power monopile foundation structure and its construction method
JP6372422B2 (en) Steel pipe joint structure
JP5919675B2 (en) Composite foundation pile and construction method of composite foundation pile
KR101549194B1 (en) The mounting structure and method of offshore wind power generator mono file type
JP2019100070A (en) Foundation structure of offshore wind power generation facility, and construction method of the same
KR101378621B1 (en) Driven piles with circular plate around
JP2013023978A (en) Method for reinforcing foundation for small-scale building
JP5321492B2 (en) Joint structure between segments, segments and tunnel lining
Zhou et al. Failure case study of reinforced-concrete foundations of wind turbine towers
CN117702795B (en) Pile foundation capable of preventing anchor chain from being stretched and seabed groove from being formed and implementation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250