JP6371501B2 - Probe unit - Google Patents
Probe unit Download PDFInfo
- Publication number
- JP6371501B2 JP6371501B2 JP2013154195A JP2013154195A JP6371501B2 JP 6371501 B2 JP6371501 B2 JP 6371501B2 JP 2013154195 A JP2013154195 A JP 2013154195A JP 2013154195 A JP2013154195 A JP 2013154195A JP 6371501 B2 JP6371501 B2 JP 6371501B2
- Authority
- JP
- Japan
- Prior art keywords
- contact
- probe
- metal
- inspection apparatus
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims description 172
- 229910052751 metal Inorganic materials 0.000 claims description 152
- 239000002184 metal Substances 0.000 claims description 152
- 238000007689 inspection Methods 0.000 claims description 125
- 239000004020 conductor Substances 0.000 claims description 80
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 230000002093 peripheral effect Effects 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 25
- 239000010410 layer Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- 238000007747 plating Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920003055 poly(ester-imide) Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000002320 enamel (paints) Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Measuring Leads Or Probes (AREA)
Description
本発明は、検査対象物の検査に使われるプローブユニットに関する。なお、検査対象物とは、ICパッケージ基板、プリント基板、液晶パネル基板、各種コネクタ、半導体ウェハー、パワー半導体等のように、導通検査が必要とされる素子又は電子部品をいう。 The present invention relates to a probe unit used for inspection of an inspection object. The inspection object refers to an element or electronic component that requires continuity inspection, such as an IC package substrate, a printed circuit board, a liquid crystal panel substrate, various connectors, a semiconductor wafer, and a power semiconductor.
近年では、携帯電話等に使用される高密度実装基板、又は、パソコン等に組み込まれるBGA(Ball Grid Array)やCSP(Chip Size Package)等のICパッケージ基板等、様々な回路基板が用いられている。このような回路基板は、実装の前後の工程で例えば直流抵抗値の測定や導通検査等が行われ、その電気的特性の良否が検査されている。電気的特性の良否の検査は、電気的特性を測定する検査装置に接続された導通検査治具(以下、「プローブユニット」という。)を用いて行われ、例えば、プローブユニットに装着されたプローブの回路基板側端部(第1端部という。)を、その回路基板(以下、「被測定体」ともいう。)の電極に接触させることにより行われている(例えば特許文献1を参照。)。 In recent years, various circuit boards have been used, such as high-density mounting boards used in mobile phones and the like, or IC package boards such as BGA (Ball Grid Array) and CSP (Chip Size Package) incorporated in personal computers. Yes. Such a circuit board is subjected to, for example, a measurement of a direct current resistance value or a continuity test in steps before and after mounting, and the electrical characteristics of the circuit board are inspected. The inspection of the electrical characteristics is performed using a continuity inspection jig (hereinafter referred to as a “probe unit”) connected to an inspection device that measures the electrical characteristics. For example, a probe mounted on the probe unit. The circuit board side end (referred to as a first end) is brought into contact with an electrode of the circuit board (hereinafter also referred to as “measurement object”) (see, for example, Patent Document 1). ).
図11は、従来のプローブユニットを用いて被測定体の電気的特性を検査する方法を説明するための模式断面図である。このプローブユニット100で用いるプローブ101は、ばね性を有した直線状の金属導体2の両端(102a,102b)以外の領域に絶縁被膜103が被覆されており、被測定体111の電極112に接触する第1端部102aと、検査装置側のリード線150に接触する第2端部102bとを有している。プローブユニット100は、複数本から数千本のプローブ101と、そのプローブ101の第2端部側を案内する第2端部側案内穴付きのガイド板130と、プローブ1の第1端部102aが被測定体111の電極112に接するようにプローブ101の第1端部側を案内する第1端部側案内穴付きのガイド板120とを少なくとも備えている。 FIG. 11 is a schematic cross-sectional view for explaining a method for inspecting the electrical characteristics of a measurement object using a conventional probe unit. The probe 101 used in this probe unit 100 is covered with an insulating film 103 in a region other than both ends (102a, 102b) of the linear metal conductor 2 having a spring property, and is in contact with the electrode 112 of the measured object 111. A first end portion 102a that contacts the lead wire 150 on the inspection apparatus side. The probe unit 100 includes a plurality of to several thousand probes 101, a guide plate 130 with a second end side guide hole for guiding the second end side of the probe 101, and a first end 102a of the probe 1. Includes at least a guide plate 120 having a first end side guide hole for guiding the first end side of the probe 101 so as to be in contact with the electrode 112 of the measurement object 111.
電気的特性の検査は、プローブユニット100又は被測定体111を相対的に上下させ、プローブ101の弾性力を利用して被測定体111の電極112にプローブ101の第1端部102aを所定の圧力で押し当てることにより行われる。このとき、電極112に押し当てられた力によって撓んだプローブ101は、第2端部102bをリード線150に強く接触させ、被測定体112からの電気信号がそのリード線150を通って検査装置(図示しない。)に送られる。なお、プローブユニット100を用いた電気的特性の検査では、プローブユニット100からのプローブ101の脱落防止は、図11(A)に示すように、ガイド板120に設けられた案内穴にプローブ101の絶縁被膜端部103aが当たることによって行われている。また、プローブユニット100へのプローブ101のセッティングは、ガイド板130に設けられた案内穴からプローブ101を挿入することにより行われる。 In the inspection of the electrical characteristics, the probe unit 100 or the measured object 111 is relatively moved up and down, and the first end 102a of the probe 101 is attached to the electrode 112 of the measured object 111 by using the elastic force of the probe 101. This is done by pressing with pressure. At this time, the probe 101 bent by the force pressed against the electrode 112 brings the second end 102 b into strong contact with the lead wire 150, and an electrical signal from the measured object 112 passes through the lead wire 150 and is inspected. Sent to a device (not shown). In the inspection of the electrical characteristics using the probe unit 100, the probe 101 is prevented from falling off from the probe unit 100 as shown in FIG. 11A in the guide hole provided in the guide plate 120. This is done by hitting the insulating coating end 103a. The setting of the probe 101 to the probe unit 100 is performed by inserting the probe 101 from a guide hole provided in the guide plate 130.
上記のように、電気的特性の検査では、図11(B)に示すように、プローブ101の第1端部102aが電極112に押し当たった力によってプローブ101が撓み、その撓んだプローブ101の弾性力によりプローブ101の第2端部102bがリード線150に強く正確に接触し、被測定体112からの電気信号がそのリード線150を通って検査装置に送られる。このとき、プローブ101の第1端部102aは、常に新しい検査対象物(電極112)に対して接触するが、プローブ101の第2端部102bは、常に同じリード線150の端面151に接触することになる。 As described above, in the inspection of the electrical characteristics, as shown in FIG. 11B, the probe 101 is bent by the force with which the first end 102a of the probe 101 is pressed against the electrode 112, and the bent probe 101 is bent. Due to this elastic force, the second end portion 102 b of the probe 101 comes into strong and accurate contact with the lead wire 150, and an electrical signal from the measured object 112 is sent to the inspection device through the lead wire 150. At this time, the first end 102a of the probe 101 is always in contact with a new inspection object (electrode 112), but the second end 102b of the probe 101 is always in contact with the end surface 151 of the same lead wire 150. It will be.
図12に示すように、通常、プローブ101の第2端部102bは半球形状であるので、リード線150の端面151は、図12(A)に示すように、半球形状の第2端部102bと点接触する。そのため、接触時の荷重が一点に集中してしまい、リード線150の端面151が塑性変形し、それが繰り返されることによって剔(えぐ)れるように摩耗する。その摩耗が進行すると、図12(B)(C)に示すように、リード線150の端面151が変形し、点接触から面接触になるおそれがあった。点接触から面接触への変化は、接触面積が増して接触圧力が減少し、プローブ101の第2端部102bとリード線150の端面151との接触抵抗の不安定さを招くおそれがある。 As shown in FIG. 12, the second end portion 102b of the probe 101 is usually hemispherical, and therefore the end surface 151 of the lead wire 150 is formed in the hemispherical second end portion 102b as shown in FIG. Point contact with. Therefore, the load at the time of contact is concentrated at one point, and the end surface 151 of the lead wire 150 is plastically deformed, and when it is repeated, it is worn so as to be wrinkled. As the wear progresses, as shown in FIGS. 12B and 12C, the end surface 151 of the lead wire 150 may be deformed, and there is a possibility that the point contact is changed to the surface contact. The change from point contact to surface contact may increase the contact area and decrease the contact pressure, leading to instability of contact resistance between the second end portion 102b of the probe 101 and the end surface 151 of the lead wire 150.
また、図12に示すように、リード線150の端面151に当たるまでの長さが、Δ1又はΔ2の分だけ長くなり、プローブ101の撓みが小さくなってリード線150の端面151への接触圧力が減少し、プローブ101の第2端部102bとリード線150の端面151との接触抵抗の上昇を招くおそれがある。また、リード線150の端面151が摩耗することによって発生する摩耗粉が、プローブ101の第2端部102bとの間の接触を不安定にさせる原因になったり、その摩耗粉がプローブ101の第1端部102a側の被測定体の汚染物になったりするおそれもある。 Further, as shown in FIG. 12, the length until the lead wire 150 hits the end surface 151 is increased by Δ1 or Δ2, the bending of the probe 101 is reduced, and the contact pressure to the end surface 151 of the lead wire 150 is reduced. The contact resistance between the second end portion 102b of the probe 101 and the end surface 151 of the lead wire 150 may increase. Further, the wear powder generated by the wear of the end surface 151 of the lead wire 150 may cause the contact with the second end portion 102b of the probe 101 to become unstable, or the wear powder may cause the first wear of the probe 101 to become unstable. There is also a possibility of becoming a contaminant of the measurement object on the one end 102a side.
本発明は、上記課題を解決するためになされたものであって、その目的は、プローブの第2端部とリード線の端面との接触を長期間安定に行うことができ、かつ摩耗や摩耗粉の発生を抑えることができるプローブユニットを提供することにある。 The present invention has been made in order to solve the above-described problems, and the object thereof is to enable stable contact between the second end portion of the probe and the end surface of the lead wire for a long period of time, and wear and wear. It is providing the probe unit which can suppress generation | occurrence | production of powder | flour.
上記課題を解決するための本発明に係るプローブユニットは、被測定体側の第1端部を該被測定体に接触させ且つ検査装置側の第2端部を検査装置接続用金属に接触させて、前記被測定体の電気的特性を前記検査装置で測定するための複数のプローブと、前記プローブの両端の側をガイドし且つ中間に空間を空けて配置された二組のガイド板と、前記検査装置側のガイド板でガイドされた前記プローブの第2端部に接触する検査装置接続用金属と、を有するプローブユニットにおいて、前記プローブが、金属導体と、該金属導体の少なくとも両端部以外の領域に設けられた絶縁被膜とを有し、前記プローブの前記第2端部の形状が、前記検査装置接続用金属に接触する平坦部を有し、前記第2端部と前記検査装置接続用金属とを、前記プローブを構成する前記金属導体の仮想軸線と前記検査装置接続用金属の法線との角度で0.5°以上5°以下の範囲で接触させることを特徴とする。 In order to solve the above problems, a probe unit according to the present invention has a first end on the measured object side in contact with the measured object, and a second end on the inspection apparatus side in contact with the inspection apparatus connecting metal. A plurality of probes for measuring the electrical characteristics of the object to be measured with the inspection device, two sets of guide plates arranged to guide the both end sides of the probe and leave a space in between, An inspection apparatus connecting metal that contacts the second end of the probe guided by a guide plate on the inspection apparatus side, wherein the probe is a metal conductor and at least other than both ends of the metal conductor. An insulating coating provided in the region, and the shape of the second end portion of the probe has a flat portion in contact with the inspection device connecting metal, and the second end portion and the inspection device connection Metal and the plow Wherein the contacting with the metal angular range of 0.5 ° to 5 ° with the virtual axis as a normal line of the test device connection metal conductors constituting the.
この発明によれば、プローブユニットを構成するプローブの第2端部が、平坦部を有し、この第2端部と検査装置接続用金属とを、プローブを構成する金属導体の仮想軸線と検査装置接続用金属の法線との角度で0.5°以上5°以下の範囲で接触させるので、第2端部の外周面と平坦部との間のエッヂが検査装置接続用金属に当たった場合に、撓んだプローブの第2端部と検査装置接続用金属との接触形態が、そのエッヂでの点接触から、平坦部での面接触に容易かつ瞬時に移行するため、接触に基づいた検査装置接続用金属の摩耗が大きくならない。その結果、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 According to this invention, the second end portion of the probe constituting the probe unit has a flat portion, and the second end portion and the inspection device connecting metal are inspected with the virtual axis of the metal conductor constituting the probe. Since the contact is made in the range of 0.5 ° to 5 ° with respect to the normal line of the device connecting metal, the edge between the outer peripheral surface of the second end and the flat portion hits the inspection device connecting metal. In this case, since the contact form between the second end of the bent probe and the metal for connecting the inspection apparatus easily and instantaneously shifts from the point contact at the edge to the surface contact at the flat part. In addition, wear of inspection equipment connecting metal does not increase. As a result, problems (decrease in contact pressure, instability of contact resistance) due to conventional point contact can be solved, stable contact can be realized for a long time, and increase in contact resistance and instability can be prevented. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
本発明に係るプローブユニットにおいて、前記第2端部の前記平坦部の直径dと前記金属導体の導体径Dとの比(d/D)は、Dが150μmで0.6〜1、Dが110μmで0.5〜0.9、Dが90μmで0.4〜0.8、Dが70μmで0.3〜0.6、Dが50μmで0.3〜0.6、Dが30μm〜15μmで0.7〜1の範囲であり、前記直径dと前記導体径Dとの関係は、前記導体径Dを横軸とし、前記d/Dを縦軸としたグラフで、前記各d/Dの下限値を結んだ線と前記各d/Dの上限値を結んだ線とで囲まれた範囲内を満たすことが好ましい。 In the probe unit according to the present invention, the ratio (d / D) between the diameter d of the flat portion of the second end portion and the conductor diameter D of the metal conductor is 0.6 to 1 when D is 150 μm. 110 μm 0.5 to 0.9, D 90 μm 0.4 to 0.8, D 70 μm 0.3 to 0.6, D 50 μm 0.3 to 0.6, D 30 μm The relationship between the diameter d and the conductor diameter D is a graph in which the conductor diameter D is the horizontal axis and the d / D is the vertical axis. It is preferable to satisfy a range surrounded by a line connecting the lower limit values of D and a line connecting the upper limit values of each d / D.
この発明によれば、プローブユニットを構成するプローブの第2端部の平坦部の直径dと、金属導体の導体径Dとが上記した関係を満たすので、この関係を満たすプローブの第2端部が検査装置接続用金属に当たった場合に、例えば100MPaを超えるような大きな圧力で接触するのを防ぐことができ、プローブの第2端部とリード線の端面との接触を長期間安定に行うことができる。その理由は、撓んだプローブの第2端部と検査装置接続用金属との接触形態が、局部的に応力が集中する点接触から、局部的に応力が集中しない面接触に容易かつ瞬時に移行するためであり、接触に基づいた検査装置接続用金属の摩耗が大きくならないためである。その結果、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 According to the present invention, since the diameter d of the flat portion of the second end portion of the probe constituting the probe unit and the conductor diameter D of the metal conductor satisfy the above relationship, the second end portion of the probe satisfying this relationship. Can be prevented from coming into contact with a large pressure exceeding 100 MPa, for example, and the contact between the second end of the probe and the end face of the lead wire can be performed stably for a long period of time. be able to. The reason is that the contact form between the second end of the bent probe and the metal for connecting the inspection apparatus is easily and instantly changed from a point contact where the stress is concentrated locally to a surface contact where the stress is not concentrated locally. This is because the wear of the metal for connecting the inspection device based on the contact does not increase. As a result, problems (decrease in contact pressure, instability of contact resistance) due to conventional point contact can be solved, stable contact can be realized for a long time, and increase in contact resistance and instability can be prevented. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
本発明に係るプローブユニットにおいて、前記第2端部の平坦部と前記検査装置接続用金属との接触圧力が25MPa以上100MPa以下になるように、前記検査装置側の第2端部を前記検査装置接続用金属に接触させる。 In the probe unit according to the present invention, the second end portion on the inspection device side is connected to the inspection device so that a contact pressure between the flat portion of the second end portion and the metal for connecting the inspection device is 25 MPa or more and 100 MPa or less. Contact the connecting metal.
この発明によれば、第2端部の平坦部と検査装置接続用金属との接触圧力が上記範囲になるように、検査装置側の第2端部を検査装置接続用金属に接触させるので、その範囲内の接触圧力は、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 According to this invention, since the second end portion on the inspection device side is brought into contact with the inspection device connection metal so that the contact pressure between the flat portion of the second end portion and the inspection device connection metal falls within the above range, The contact pressure within that range can solve the problems caused by conventional point contact (decrease in contact pressure, instability of contact resistance), achieve stable contact for a long period of time, and prevent increase in contact resistance and instability. be able to. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
本発明に係るプローブユニットによれば、第2端部が検査装置接続用金属に当たった場合に、撓んだプローブの第2端部と検査装置接続用金属との接触が、そのエッヂでの点接触から平坦部での面接触に容易かつ瞬時に移行するため、接触に基づいた検査装置接続用金属の摩耗が大きくならない。その結果、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 According to the probe unit of the present invention, when the second end hits the inspection device connecting metal, the contact between the bent second end of the probe and the inspection device connecting metal is at the edge. Since the transition from the point contact to the surface contact at the flat part easily and instantaneously, the wear of the inspection apparatus connecting metal based on the contact does not increase. As a result, problems (decrease in contact pressure, instability of contact resistance) due to conventional point contact can be solved, stable contact can be realized for a long time, and increase in contact resistance and instability can be prevented. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
以下、本発明に係るプローブユニット及びプローブについて、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。 Hereinafter, a probe unit and a probe according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
<プローブユニット>
本発明に係るプローブユニット10は、図1に示すように、複数のプローブ1と、プローブ1の両端部2a,2bの側をガイドし且つ中間に空間Sを空けて配置された二組のガイド板20,30と、検査装置側のガイド板30でガイドされたプローブ1の第2端部2bに接触する検査装置接続用金属50と、を有している。そして、そのプローブ1の第1端部2aを被測定体11に接触させ且つ検査装置側の第2端部2bを検査装置接続用金属50の端面51に接触させて、被測定体11の電気的特性を検査装置で測定するためのものである。
<Probe unit>
As shown in FIG. 1, the probe unit 10 according to the present invention guides a plurality of probes 1 and both ends 2a and 2b of the probe 1 and two sets of guides arranged with a space S in the middle. The plates 20 and 30 and the inspection apparatus connecting metal 50 that contacts the second end 2b of the probe 1 guided by the inspection apparatus side guide plate 30 are provided. Then, the first end 2a of the probe 1 is brought into contact with the measured object 11, and the second end 2b on the inspection apparatus side is brought into contact with the end surface 51 of the inspection apparatus connecting metal 50, whereby the electric power of the measured object 11 is measured. This is for measuring the physical characteristics with an inspection device.
このプローブユニット10では、図2に示すように、プローブ1の第2端部2bの形状が、検査装置接続用金属50に接触する平坦部2dを有し、第2端部2bと検査装置接続用金属50とが、図6に示すように、プローブ1を構成する金属導体2の仮想軸線a1と検査装置接続用金属50の法線a2との角度θで0.5°以上、5°以下の範囲で接触される。 In the probe unit 10, as shown in FIG. 2, the shape of the second end 2 b of the probe 1 has a flat portion 2 d that contacts the inspection device connecting metal 50, and the second end 2 b and the inspection device are connected. As shown in FIG. 6, the working metal 50 is 0.5 ° or more and 5 ° or less in the angle θ between the virtual axis a1 of the metal conductor 2 constituting the probe 1 and the normal line a2 of the inspection device connecting metal 50. In the range of contact.
以下、各構成について詳しく説明する。なお、図2において、符号2aは、被測定体側に配置されて被測定体11の電極12に接触する「第1端部」であり、符号2bは、検査装置側に配置されて検査装置(図示しない)のリード線(検査装置接続用金属)50に接触する「第2端部」である。 Hereinafter, each configuration will be described in detail. In FIG. 2, reference numeral 2 a is a “first end” disposed on the measured object side and in contact with the electrode 12 of the measured object 11, and reference numeral 2 b is disposed on the inspection apparatus side and is an inspection apparatus ( It is a “second end” that contacts a lead wire (not shown) (metal for inspection apparatus connection) 50.
[プローブ]
プローブ1は、被測定体側の第1端部2aを該被測定体11に接触させ、且つ、検査装置側の第2端部2bを、検査装置接続用金属50にプローブ1を構成する金属導体2の仮想軸線a1と検査装置接続用金属50の法線a2との角度θで0.5°以上、5°以下の範囲で接触させて被測定体の電気的特性を測定するために用いられるものである。
[probe]
The probe 1 has the first end 2a on the measured object side in contact with the measured object 11, and the second end 2b on the inspection apparatus side is a metal conductor constituting the probe 1 on the inspection apparatus connecting metal 50. 2 is used to measure the electrical characteristics of the object to be measured by bringing the angle θ between the virtual axis a1 of 2 and the normal line a2 of the inspection apparatus connecting metal 50 within a range of 0.5 ° to 5 °. Is.
プローブ1は、図2及び図3に示すように、金属導体2と、金属導体2の少なくとも両端部2a,2b以外の領域に設けられた絶縁被膜3とを有している。 As shown in FIGS. 2 and 3, the probe 1 includes a metal conductor 2 and an insulating coating 3 provided in a region other than at least both ends 2 a and 2 b of the metal conductor 2.
(金属導体)
金属導体2としては、高い導電性と高いばね性を有する金属線(「金属ばね線」ともいう。)が用いられる。金属導体2に用いられる金属としては、広い弾性域を持つ金属を挙げることができ、例えばベリリウム銅、りん青銅、銅銀合金等の銅合金、タングステン、レニウムタングステン、鋼(例えば高速度鋼:SKH)等を好ましく用いることができる。こうした金属導体2は、通常、上記の金属が所定の径の線状導体となるまで冷間又は熱間伸線等の塑性加工が施される。
(Metal conductor)
As the metal conductor 2, a metal wire (also referred to as “metal spring wire”) having high conductivity and high spring property is used. Examples of the metal used for the metal conductor 2 include metals having a wide elastic range, for example, copper alloys such as beryllium copper, phosphor bronze, copper silver alloy, tungsten, rhenium tungsten, steel (for example, high speed steel: SKH). Etc.) can be preferably used. Such metal conductor 2 is usually subjected to plastic working such as cold or hot wire drawing until the metal becomes a linear conductor of a predetermined diameter.
金属導体2は、プローブ1をプローブユニット10への装着し易さの観点から、真直度が高いことが好ましく、具体的には真直度が曲率半径Rで1000mm以上であることが好ましい。真直度の高い金属導体2は、通常、絶縁被膜3が設けられる前に予め直線矯正処理をすることにより得ることができる。ここでの直線矯正処理は、例えば回転ダイス式直線矯正装置等によって行われる。こうした真直度を持たせることにより、図1に示すように、プローブユニット10にプローブ1を装着する際に、プローブ1がガイド板20,30の案内穴に入り難くなることを防ぐことができる。 From the viewpoint of ease of mounting the probe 1 to the probe unit 10, the metal conductor 2 preferably has a high straightness. Specifically, the straightness is preferably 1000 mm or more in terms of the radius of curvature R. The metal conductor 2 having high straightness can be usually obtained by performing straightening treatment in advance before the insulating coating 3 is provided. The straightening process here is performed, for example, by a rotary die type straightening apparatus or the like. By providing such straightness, it is possible to prevent the probe 1 from entering the guide holes of the guide plates 20 and 30 when the probe 1 is attached to the probe unit 10 as shown in FIG.
金属導体2には、被測定体側の第1端部2aと検査装置側の第2端部2bとがあり、いずれも絶縁被膜3のない所定の長さA,Bの露出部を有している。 The metal conductor 2 has a first end 2a on the measured object side and a second end 2b on the inspection apparatus side, both of which have exposed portions of predetermined lengths A and B without the insulating coating 3. Yes.
第1端部2aの形状は特に限定されず、円錐形状、頂部に半球形状を有する円錐形状、頂部に平坦形状を有する円錐形状、等から選ばれるいずれかであればよい。ここでいう「半球形状」、「円錐形状」は、正確な半球や円錐を含むが、略円錐や略半球も含む。なお、電解研磨やエッチング処理で第1端部2aが処理される場合には、その先端又はエッヂ形状はやや丸みを帯びた形状となるが、こうした形状に必ずしも限定されない。 The shape of the first end 2a is not particularly limited and may be any one selected from a conical shape, a conical shape having a hemispherical shape at the top, a conical shape having a flat shape at the top, and the like. The “hemispherical shape” and “conical shape” here include an accurate hemisphere and a cone, but also include a substantially cone and a substantially hemisphere. In addition, when the 1st end part 2a is processed by electropolishing or an etching process, the front-end | tip or edge shape turns into a slightly round shape, However, It is not necessarily limited to such a shape.
第2端部2bは、検査装置接続用金属50に接触する平坦部2dを有し、検査装置接続用金属50に、金属導体2の仮想軸線a1と検査装置接続用金属の法線a2との角度θで0.5°以上、5°以下の範囲で接触される。本発明では、プローブ1の第2端部2bが、このような形状及び接触態様であることに特徴がある。この点については、後に詳述する。 The second end 2b has a flat portion 2d that contacts the inspection device connecting metal 50, and the inspection device connecting metal 50 has a virtual axis a1 of the metal conductor 2 and a normal line a2 of the inspection device connecting metal. Contact is made in the range of 0.5 ° or more and 5 ° or less at an angle θ. The present invention is characterized in that the second end 2b of the probe 1 has such a shape and contact mode. This will be described in detail later.
金属導体2の第1端部2a及び/又は第2端部2bには、金属導体2と被測定体11又は検査装置のリード線50との接触抵抗値の上昇を抑制するために、めっき層が設けられていてもよい。めっき層を構成する金属としては、ニッケル、金、ロジウム等の金属や金合金等の合金を挙げることができる。めっき層は、単層であってもよいし複層であってもよい。複層のめっき層としては、ニッケルめっき層上に金めっき層が形成されたものを好ましく挙げることができる。 The first end 2a and / or the second end 2b of the metal conductor 2 has a plating layer for suppressing an increase in the contact resistance value between the metal conductor 2 and the measured object 11 or the lead wire 50 of the inspection apparatus. May be provided. Examples of the metal constituting the plating layer include metals such as nickel, gold, and rhodium, and alloys such as gold alloys. The plating layer may be a single layer or a multilayer. Preferred examples of the multi-layered plating layer include those in which a gold plating layer is formed on a nickel plating layer.
(絶縁被膜)
絶縁被膜3は、所定の長さA,Bで露出する端部以外の金属導体2に設けられて、被測定体11の電気特性を検査する際のプローブ同士の接触を防いで短絡を防止するように作用する。絶縁被膜3は、金属導体2の外周上に長手方向に亘って設けられていればよく、直接設けられていてもよいし、他の層を介して設けられていてもよい。
(Insulation coating)
The insulating coating 3 is provided on the metal conductor 2 other than the end exposed at predetermined lengths A and B, and prevents the probes from contacting each other when inspecting the electrical characteristics of the measured object 11, thereby preventing a short circuit. Acts as follows. The insulating coating 3 may be provided on the outer periphery of the metal conductor 2 over the longitudinal direction, may be provided directly, or may be provided via another layer.
絶縁被膜3は、絶縁性を有する被膜であれば特に限定されないが、ポリウレタン樹脂、ナイロン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミド樹脂及びポリアミドイミド樹脂から選ばれるいずれか1種又は2種以上であることが好ましい。なお、通常は1種類の樹脂により形成される。また、1層でも2層以上でもよい。これらの樹脂からなる絶縁被膜3は耐熱性が異なるので、検査の際に発生する熱を考慮して任意に選択することができる。例えば、より耐熱性が要求される場合には、絶縁被膜3がポリエステルイミド樹脂、ポリアミドイミド樹脂等で形成されることが好ましい。なかでも、絶縁被膜3が焼付けエナメル被膜として形成されることが好ましい。焼付けエナメル被膜は、後述するように塗料の塗布と焼付けの繰り返しにより連続工程で形成されるので、生産性がよく、金属導体との間の密着性が高く且つ被膜強度をより高いものとすることができる。 The insulating coating 3 is not particularly limited as long as it is an insulating coating, but any one or two selected from polyurethane resin, nylon resin, polyester resin, epoxy resin, polyesterimide resin, polyamide resin and polyamideimide resin The above is preferable. Usually, it is formed of one kind of resin. One layer or two or more layers may be used. Since the insulating coating 3 made of these resins has different heat resistance, it can be arbitrarily selected in consideration of the heat generated during the inspection. For example, when more heat resistance is required, the insulating coating 3 is preferably formed of a polyesterimide resin, a polyamideimide resin, or the like. Especially, it is preferable that the insulating film 3 is formed as a baking enamel film. As will be described later, the baking enamel coating is formed in a continuous process by repeated coating and baking of the paint, so that the productivity is good, the adhesion between the metal conductor is high, and the coating strength is higher. Can do.
こうして構成されたプローブ1の長さは、その線径によっても異なるが、通常、10mm〜100mmである。また、第1端部2a側は、通常、2mm〜6mm程度の長さで絶縁被膜3が剥離され、第2端部2b側も、通常、0.1mm〜3.0mm程度の長さで絶縁被膜3が剥離されている。そうした剥離は、レーザー剥離等の種々の剥離手段で行われる。 The length of the probe 1 configured in this manner is usually 10 mm to 100 mm, although it varies depending on the wire diameter. Further, the insulating coating 3 is usually peeled off at a length of about 2 mm to 6 mm on the first end portion 2a side, and the insulating film 3 is also usually insulated at a length of about 0.1 mm to 3.0 mm on the second end portion 2b side. The coating 3 is peeled off. Such peeling is performed by various peeling means such as laser peeling.
(第2端部の形状)
本発明の特徴は、図6及び図8に示すように、プローブ1の第2端部2bが、検査装置接続用金属に接触する平坦部2dを有し、検査装置接続用金属50に、金属導体2の仮想軸線a1と検査装置接続用金属の法線a2との角度θで0.5°以上、5°以下の範囲で接触されることにある。
(Shape of the second end)
As shown in FIGS. 6 and 8, the feature of the present invention is that the second end 2b of the probe 1 has a flat portion 2d that comes into contact with the inspection apparatus connecting metal, and the inspection apparatus connecting metal 50 is made of metal. The contact between the virtual axis a1 of the conductor 2 and the normal line a2 of the inspection apparatus connecting metal is in the range of 0.5 ° or more and 5 ° or less.
こうした第2端部2bは、その外周面と平坦部2dとの間のエッヂが検査装置接続用金属50の端面51に当たった場合に、撓んだプローブ1の第2端部2bと検査装置接続用金属50との接触形態が、そのエッヂでの点接触から、平坦部2dでの面接触に容易かつ瞬時に移行するため、接触に基づいた検査装置接続用金属50の摩耗が大きくならない。その結果、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 When the edge between the outer peripheral surface and the flat portion 2d hits the end surface 51 of the inspection apparatus connecting metal 50, the second end section 2b and the inspection apparatus 2 are bent. Since the contact form with the connecting metal 50 easily and instantaneously shifts from the point contact at the edge to the surface contact at the flat portion 2d, the wear of the inspection apparatus connecting metal 50 based on the contact does not increase. As a result, problems (decrease in contact pressure, instability of contact resistance) due to conventional point contact can be solved, stable contact can be realized for a long time, and increase in contact resistance and instability can be prevented. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
第2端部2bの形状としては、平坦な先端面を有する形状であればよく、具体的には、図3及び図6に示すような円錐台形状、図8に示すような円筒形状等を挙げることができる。第2端部2bは、正確な円錐台、円筒等であってもよいし、図3(B)に示すように、これらの形状のエッヂがやや丸みを帯びた形状であってもよい。なお、電解研磨やエッチング処理で第2端部2bが処理される場合には、その平坦部2dのエッヂ形状はやや丸みを帯びた形状となる。 The shape of the second end 2b may be any shape having a flat tip surface, and specifically, a truncated cone shape as shown in FIGS. 3 and 6, a cylindrical shape as shown in FIG. Can be mentioned. The second end 2b may be an accurate truncated cone, cylinder, or the like, or may have a slightly rounded edge as shown in FIG. 3B. When the second end 2b is processed by electropolishing or etching, the edge shape of the flat portion 2d is a slightly rounded shape.
第2端部2bは、これらの形状のうち、特に、(1)その縦断面形状が、先端側にいくにしたがって幅が狭くなる台形状である形状、又は、(2)平坦部2dの直径dと、金属導体2の導体径Dとが、図4に示す関係を満たす形状であることが好ましい。 Among these shapes, the second end portion 2b is, in particular, (1) a shape in which the longitudinal cross-sectional shape is a trapezoid whose width becomes narrower toward the tip side, or (2) a diameter of the flat portion 2d. It is preferable that d and the conductor diameter D of the metal conductor 2 have a shape satisfying the relationship shown in FIG.
(1)その縦断面形状が先端側にいくにしたがって幅が狭くなる台形状である形状としては、円錐台形状、角錐台形状等を挙げることができる。第2端部2bを、このような形状にすることにより、平坦部2dから金属導体2の外周面までの斜面2cがなだらかになり、その斜面2cと平坦部2dとの間のエッヂが鈍角になる。そのため、図6に示すように、そのエッヂが検査装置接続用金属50の端面51に当たった場合に、撓んだプローブ1の第2端部2bと検査装置接続用金属50の端面51との接触が、そのエッヂでの点接触から平坦部2dでの面接触に容易且つ瞬時に移行する。その結果、荷重が集中する点接触とはならず、その接触に基づいた検査装置接続用金属50の端面51の摩耗が大きくならず、上記した作用効果をより一層有利なものとすることができる。 (1) Examples of the trapezoidal shape whose width becomes narrower as the longitudinal cross-sectional shape goes to the tip end side include a truncated cone shape and a truncated pyramid shape. By forming the second end 2b in such a shape, the slope 2c from the flat part 2d to the outer peripheral surface of the metal conductor 2 becomes smooth, and the edge between the slope 2c and the flat part 2d becomes an obtuse angle. Become. Therefore, as shown in FIG. 6, when the edge hits the end face 51 of the inspection apparatus connecting metal 50, the bent second end 2 b of the probe 1 and the end face 51 of the inspection apparatus connecting metal 50 are formed. The contact easily and instantaneously shifts from the point contact at the edge to the surface contact at the flat portion 2d. As a result, the point contact where the load is concentrated does not occur, the wear of the end face 51 of the inspection apparatus connecting metal 50 based on the contact does not increase, and the above-described effects can be made even more advantageous. .
また、(2)平坦部2dの直径dと、金属導体2の導体径Dとが、図4に示す関係を満たす形状とは、平坦部2dの直径dと金属導体2の導体径Dとの比(d/D)が、Dが150μmのとき0.6〜1、Dが110μmのとき0.5〜0.9、Dが90μmのとき0.4〜0.8、Dが70μmのとき0.3〜0.6、Dが50μmのとき0.3〜0.6、Dが30μm〜15μmのとき0.7〜1の範囲であり、その直径dと導体径Dとの関係が、図4に示すように、導体径Dを横軸とし、d/Dを縦軸としたグラフで、各d/Dの下限値を結んだ線と各d/Dの上限値を結んだ線とで囲まれた範囲Rを満たす形状である。第2端部2bを、このような形状にすることにより、検査装置接続用金属50に対する接触圧力が適正な範囲になり、従来の点接触による問題を解消することができる。この効果について、図5に示す実験結果に基づいて説明する。 Further, (2) the shape in which the diameter d of the flat portion 2d and the conductor diameter D of the metal conductor 2 satisfy the relationship shown in FIG. 4 is the diameter d of the flat portion 2d and the conductor diameter D of the metal conductor 2 When the ratio (d / D) is 0.6 to 1 when D is 150 μm, 0.5 to 0.9 when D is 110 μm, 0.4 to 0.8 when D is 90 μm, and D is 70 μm 0.3 to 0.6, 0.3 to 0.6 when D is 50 μm, 0.7 to 1 when D is 30 to 15 μm, and the relationship between the diameter d and the conductor diameter D is As shown in FIG. 4, in a graph with the conductor diameter D as the horizontal axis and d / D as the vertical axis, a line connecting the lower limit value of each d / D and a line connecting the upper limit value of each d / D It is a shape satisfying the range R surrounded by. By making the 2nd end part 2b into such a shape, the contact pressure with respect to the test | inspection apparatus connection metal 50 becomes an appropriate range, and the problem by the conventional point contact can be eliminated. This effect will be described based on the experimental results shown in FIG.
図4に示す範囲Rは、図5に示す結果から導かれたものである。図5は、金属導体2の導体径Dと金属導体2の第2端部2bの平坦部2dの直径dとが異なる種々のプローブ1を用いたときの、その平坦部2dと検査装置接続用金属との接触圧力を示すグラフである。図5に示すように、各導体径Dのプローブ1は、平坦部2dの直径dが小さくなるほど接触圧力が増し、平坦部2dの直径dが大きくなって導体径Dに近づくほど接触圧力が低下した。そして、その第2端部2bが押し当たる検査装置接続用金属50の端面51の接触後の形態を観察したところ、接触圧力が25MPa以上100MPa以下のときに、端面51の形態に顕著な異常は見られなかった。一方、接触圧力が100MPaを超えたときには、端面51の形態に顕著な異常が起こりやすく、えぐれた形態が見られることがあった。また、接触圧力が25MPa未満の場合は、端面51の形態に顕著な異常は見られないものの、接触が不十分で、接触抵抗が大きくなることがあった。 The range R shown in FIG. 4 is derived from the results shown in FIG. FIG. 5 shows the connection between the flat portion 2d and the inspection apparatus when various probes 1 having a different conductor diameter D of the metal conductor 2 and a diameter d of the flat portion 2d of the second end 2b of the metal conductor 2 are used. It is a graph which shows a contact pressure with a metal. As shown in FIG. 5, in the probe 1 having each conductor diameter D, the contact pressure increases as the diameter d of the flat portion 2d decreases, and the contact pressure decreases as the diameter d of the flat portion 2d increases and approaches the conductor diameter D. did. And when the form after the contact of the end face 51 of the inspection apparatus connecting metal 50 against which the second end 2b is pressed is observed, when the contact pressure is 25 MPa or more and 100 MPa or less, there is a remarkable abnormality in the form of the end face 51. I couldn't see it. On the other hand, when the contact pressure exceeds 100 MPa, a noticeable abnormality is likely to occur in the form of the end face 51, and an ugly form may be seen. Further, when the contact pressure is less than 25 MPa, although no remarkable abnormality is seen in the form of the end face 51, the contact is insufficient and the contact resistance may increase.
このように、本発明では、第2端部2bの平坦部2dと検査装置接続用金属50の端面51との接触圧力が25MPa以上100MPa以下になるように、検査装置側の第2端部2bを検査装置接続用金属50の端面51に押し当てることが好ましく、それにより、その範囲内での接触圧力は、従来の点接触による問題(接触圧力の減少、接触抵抗の不安定さ)を解消でき、長期間安定な接触を実現でき、接触抵抗の上昇や不安定さを防ぐことができる。また、点接触の場合に生じやすい摩耗や摩耗粉の発生を抑えることができる。 Thus, in the present invention, the second end 2b on the inspection device side is set so that the contact pressure between the flat portion 2d of the second end 2b and the end surface 51 of the inspection device connecting metal 50 is 25 MPa or more and 100 MPa or less. Is preferably pressed against the end face 51 of the inspection device connecting metal 50, so that the contact pressure within that range eliminates the problems caused by conventional point contact (reduction of contact pressure, instability of contact resistance). It is possible to achieve stable contact over a long period of time, and to prevent an increase in contact resistance and instability. In addition, it is possible to suppress wear and wear powder that are likely to occur in the case of point contact.
なお、図5に示す関係は、種々の先端幅(平坦部2dの直径d)を持つ各導体径Dのプローブ1を検査装置接続用金属50の端面51に接触させた後、さらに0.2mm押し込むように設計されたプローブユニットを用いて得た結果である。用いたプローブ1の長さは10〜30mmであり、押し込まれた0.2mmの長さ分だけプローブ1はたわみ、その第2端部2bは検査装置接続用金属50の端面51に各接触圧力で押し当てられる。このときの接触圧力は、精密万能試験機(株式会社島津製作所製、型番:AG−I)で測定した荷重をプローブ1の第2端部2bの平坦部の面積で除算して得られた結果である。 Note that the relationship shown in FIG. 5 is that the probe 1 with each conductor diameter D having various tip widths (the diameter d of the flat portion 2d) is brought into contact with the end face 51 of the inspection apparatus connecting metal 50 and then 0.2 mm. It is the result obtained using the probe unit designed to push in. The length of the probe 1 used is 10 to 30 mm, the probe 1 bends by the length of 0.2 mm that has been pushed in, and the second end 2 b of each contact pressure is applied to the end face 51 of the inspection apparatus connecting metal 50. It is pressed by. The contact pressure at this time was obtained by dividing the load measured by a precision universal testing machine (manufactured by Shimadzu Corporation, model number: AG-I) by the area of the flat portion of the second end 2b of the probe 1. It is.
以上説明したように、上記した関係を満たすプローブ1は、第2端部2bが検査装置接続用金属50の端面51に当たった場合に、例えば100MPaを超えるような大きな圧力で接触するのを防ぐことができ、プローブ1の第2端部2bとリード線の端面51との接触を長期間安定に行うことができる。その理由は、撓んだプローブ1の第2端部2bと検査装置接続用金属50との接触形態が、局部的に応力が集中する点接触から、局部的に応力が集中しない面接触に容易かつ瞬時に移行するためであり、接触に基づいた検査装置接続用金属50の摩耗が大きくならないためである。 As described above, the probe 1 satisfying the above relationship prevents contact with a large pressure exceeding, for example, 100 MPa when the second end 2b hits the end surface 51 of the inspection apparatus connecting metal 50. Therefore, the contact between the second end 2b of the probe 1 and the end surface 51 of the lead wire can be performed stably for a long period of time. The reason is that the contact form between the bent second end 2b of the probe 1 and the inspection apparatus connecting metal 50 is easily changed from a point contact where the stress is concentrated locally to a surface contact where the stress is not concentrated locally. This is because the transition is instantaneous, and the wear of the inspection apparatus connecting metal 50 based on the contact does not increase.
(ガイド板)
ガイド板(先端側案内穴21付きのガイド板)20及びガイド板(第2端部側案内穴31付きのガイド板)30は、図1に示すように、空間Sを開けて配置されている。
(Guide plate)
As shown in FIG. 1, the guide plate (guide plate with the front end side guide hole 21) 20 and the guide plate (guide plate with the second end side guide hole 31) 30 are arranged with a space S therebetween. .
先端側案内穴21付きのガイド板20は、プローブ1の第1端部2aが被測定体11の電極12に接するようにプローブ1の下部側を案内するものであり、第2端部側案内穴31付きのガイド板30は、プローブ1の上部側を案内するものである。各ガイド板20,30は、一枚のプレートから構成されていてもよいし、本実施形態のように複数枚のプレートから構成されていてもよい。 The guide plate 20 with the distal end side guide hole 21 guides the lower side of the probe 1 so that the first end 2 a of the probe 1 is in contact with the electrode 12 of the measured object 11, and the second end side guide The guide plate 30 with the hole 31 guides the upper side of the probe 1. Each guide plate 20, 30 may be composed of a single plate, or may be composed of a plurality of plates as in this embodiment.
各ガイド板20,30には、微小ピッチで多数の案内穴21,31が開けられており、ガイド板20,30を重ねたとき、上下の案内穴21,31同士で、平面視での位置が平行方向に僅かにずれるように設計されている。 Each guide plate 20, 30 has a large number of guide holes 21, 31 opened at a minute pitch. When the guide plates 20, 30 are stacked, the upper and lower guide holes 21, 31 are positioned in plan view. Are designed to be slightly displaced in the parallel direction.
各ガイド板20,30の多数の案内穴21,31には、それぞれ1本ずつプローブ1が挿入されている。ガイド板20,30に挿入されたプローブ1は、各ガイド板20,30の上下の案内穴21,31同士で、平面視での位置が平行方向に僅かにずれていることにより、プローブ1の第2端部2bが検査装置接続用金属50の端面51に接触したとき、プローブ1を構成する金属導体2の仮想軸線a1と、検査装置接続用金属50の法線a2との角度θが0.5°以上5°以下となるように傾斜している。なお、各ガイド板20,30に装着するプローブ1の本数は、被測定体11に応じて適宜選択することができ、通常は複数本から数千本である。 One probe 1 is inserted into each of the guide holes 21 and 31 of each guide plate 20 and 30. The probe 1 inserted into the guide plates 20 and 30 is slightly displaced in the parallel direction between the upper and lower guide holes 21 and 31 of the respective guide plates 20 and 30. When the second end 2b comes into contact with the end face 51 of the inspection apparatus connecting metal 50, the angle θ between the virtual axis a1 of the metal conductor 2 constituting the probe 1 and the normal line a2 of the inspection apparatus connecting metal 50 is 0. Inclined to be 5 ° or more and 5 ° or less. The number of probes 1 attached to each guide plate 20 and 30 can be appropriately selected according to the measurement object 11, and is usually from a plurality to several thousands.
このプローブユニット10による電気的特性の検査は、プローブユニット10又は被測定体11を相対的に上下させ、プローブ1の弾性力を利用して被測定体11の電極12にプローブ1を所定の圧力で押し当てることにより行われる。このとき、電極12に押し当てられた力によって撓んだプローブ1の第2端部2bはリード線50に強く接触し、被測定体11からの電気信号がそのリード線50を通って検査装置(図示しない。)に送られる。プローブユニット10を用いた電気的特性の検査において、プローブユニット10からのプローブ1の脱落防止は、図1に示すように、ガイド板20に設けられた案内穴21にプローブ1の絶縁被膜端部3aが当たることによって行われている。また、プローブユニット10へのプローブ1のセッティングは、ガイド板30に設けられた案内穴31からプローブ1を挿入することにより行われる。なお、図1中、符号40はリード線用の保持板を示している。 In the inspection of the electrical characteristics by the probe unit 10, the probe unit 10 or the measured object 11 is relatively moved up and down, and the probe 1 is applied to the electrode 12 of the measured object 11 with a predetermined pressure by using the elastic force of the probe 1. It is done by pressing with. At this time, the second end 2b of the probe 1 bent by the force pressed against the electrode 12 makes strong contact with the lead wire 50, and an electrical signal from the measured object 11 passes through the lead wire 50 and the inspection device. (Not shown). In the inspection of the electrical characteristics using the probe unit 10, the probe 1 is prevented from falling off from the probe unit 10 as shown in FIG. 1 in the guide hole 21 provided in the guide plate 20 in the end portion of the insulating film of the probe 1. This is done by hitting 3a. The setting of the probe 1 to the probe unit 10 is performed by inserting the probe 1 from the guide hole 31 provided in the guide plate 30. In FIG. 1, reference numeral 40 denotes a lead wire holding plate.
(接触態様)
プローブユニット10では、図6及び図8に示すように、プローブ1の第2端部2bと検査装置接続用金属50の端面51とを、プローブ1を構成する金属導体2の仮想軸線a1と、検査装置接続用金属50の法線a2との角度θで0.5°以上5°以下の範囲で接触させるように構成する。
(Contact mode)
In the probe unit 10, as shown in FIGS. 6 and 8, the second end 2 b of the probe 1 and the end surface 51 of the inspection device connecting metal 50 are connected to the virtual axis a 1 of the metal conductor 2 constituting the probe 1, and The inspection device connecting metal 50 is configured to contact within a range of 0.5 ° or more and 5 ° or less at an angle θ with the normal line a2.
この範囲の角度θで接触させることにより、第2端部2bが検査装置接続用金属50の端面51に当たった場合、撓んだプローブ1の第2端部2bと検査装置接続用金属50の端面51との接触を、その第2端部2bのエッヂでの点接触から平坦部2dでの面接触に容易且つ瞬時に移行させることができる。その結果、荷重が集中する点接触とはならず、その接触に基づいた検査装置接続用金属50の端面51の摩耗が大きくならないようにすることができる。なお、こうした角度θは、プローブユニット10の上下2つのガイド板20,30の一方を、平行方向に僅かにずらしてシフトさせることにより調整できる。 When the second end 2b comes into contact with the end face 51 of the inspection apparatus connecting metal 50 by making contact at an angle θ in this range, the second end 2b of the bent probe 1 and the inspection apparatus connecting metal 50 are not bent. The contact with the end surface 51 can be easily and instantaneously shifted from the point contact at the edge of the second end 2b to the surface contact at the flat portion 2d. As a result, the point contact where the load is concentrated does not occur, and wear of the end face 51 of the inspection apparatus connecting metal 50 based on the contact can be prevented from increasing. Such an angle θ can be adjusted by shifting one of the upper and lower guide plates 20 and 30 of the probe unit 10 while slightly shifting in the parallel direction.
角度θが0.5°未満では、プローブの撓む方向がランダムとなり、隣接するプローブ同士が干渉しあうという欠点が生じやすい。一方、角度θが5°を超えると、第2端部2bと検査装置接続用金属50の端面51との接触が、点接触から面接触への移行が瞬時に行われず、点接触時の荷重の集中が大きくなり、検査装置接続用金属50の端面51の変形やダメージが大きくなり、その後に面接触に移行したときの接触抵抗が上昇や変動して不安定になることがある。角度θの好ましい範囲は、1°以上3°未満である。この範囲とすることにより、上記した効果をより安定したものとすることができる。 If the angle θ is less than 0.5 °, the direction in which the probe bends is random, and the adjacent probes tend to interfere with each other. On the other hand, when the angle θ exceeds 5 °, the contact between the second end 2b and the end surface 51 of the inspection apparatus connecting metal 50 is not instantaneously changed from point contact to surface contact, and the load at the time of point contact Concentration increases, deformation or damage of the end face 51 of the inspection apparatus connecting metal 50 increases, and the contact resistance at the time of transition to surface contact thereafter increases or fluctuates and may become unstable. A preferable range of the angle θ is 1 ° or more and less than 3 °. By setting it as this range, the above-mentioned effect can be made more stable.
図7は、プローブ1の第2端部2bが繰り返し接触した後の検査装置接続用金属50の端面51の表面形態の模式図である。図7(A)は、第2端部2bの先端に平坦部2dを持つ本発明に係るプローブ1を用いた例であり、図7(B)は、第2端部2bの先端に平坦部2dを持たず、丸い先端部を持つ従来のプローブ1を用いた例である。図7(A)に示すように、本発明のプローブ1を用いた場合は、第2端部2bのエッヂが端面51の接触部52に高い接触圧力で点接触する。しかし、点接触の後は瞬時に面接触に移行し、第2端部2bの平坦部2dと端面51とが広い面積で面接触するので、端面51が変形したり凹んだりして摩耗することはなく、接触抵抗が高くならず、安定した導通を実現できる。 FIG. 7 is a schematic view of the surface form of the end face 51 of the inspection apparatus connecting metal 50 after the second end 2b of the probe 1 has repeatedly contacted. FIG. 7A is an example using the probe 1 according to the present invention having a flat portion 2d at the tip of the second end 2b, and FIG. 7B shows a flat portion at the tip of the second end 2b. This is an example using the conventional probe 1 that does not have 2d and has a round tip. As shown in FIG. 7A, when the probe 1 of the present invention is used, the edge of the second end portion 2b makes point contact with the contact portion 52 of the end surface 51 with a high contact pressure. However, after the point contact, the surface transition is instantaneously made, and the flat portion 2d of the second end portion 2b and the end surface 51 are in surface contact with each other over a wide area, so that the end surface 51 is deformed or dented and wears. There is no contact resistance, and stable conduction can be realized.
一方、図7(B)に示すように、丸い先端部を持つ従来のプローブを用いた場合は、第2端部2bの丸い半球状の先端が端面51の接触部52に高い接触圧力で点接触する。点接触時の荷重は一点に集中し、端面51が塑性変形し、それが繰り返されて剔(えぐ)れるように摩耗する。その摩耗が進行すると、例えば図7(B)及び図12(B)(C)に示すように、端面51が変形し、点接触から面接触になるおそれがあった。点接触から面接触への変化は、接触面積が増して接触圧力が減少するとともに、発生した磨耗粉がプローブ1の第2端部2bとリード線50の端面51との間に介在し、接触抵抗の不安定さを招くおそれがあった。 On the other hand, as shown in FIG. 7B, when a conventional probe having a rounded tip is used, the rounded hemispherical tip of the second end 2b is pointed at a high contact pressure on the contact 52 of the end surface 51. Contact. The load at the time of point contact is concentrated at one point, and the end face 51 is plastically deformed, and is worn so that it is repeatedly bent. As the wear progresses, for example, as shown in FIGS. 7B, 12B, and 12C, the end face 51 may be deformed, and there is a possibility that the point contact is changed to the surface contact. The change from the point contact to the surface contact is that the contact area is increased and the contact pressure is decreased, and the generated wear powder is interposed between the second end 2b of the probe 1 and the end surface 51 of the lead wire 50. There was a risk of instability of resistance.
なお、第2端部2bと検査装置接続用金属50の端面51とを、こうした角度θで接触させることにより、図11(B)に示すような撓みの方向が不均一にならず、必ず一定の方向に揃って撓むようになる。その結果、プローブ1間のピッチを狭くしたプローブユニット10を構成でき、その場合であっても、プローブ1の撓む方向が乱れず、安定した検査を長期間安定に行うことができ、かつ摩耗や摩耗粉の発生を抑えることができる。 Note that by bringing the second end 2b and the end face 51 of the inspection apparatus connecting metal 50 into contact with each other at such an angle θ, the direction of bending as shown in FIG. Will bend in the same direction. As a result, the probe unit 10 with a narrow pitch between the probes 1 can be configured. Even in this case, the bending direction of the probe 1 is not disturbed, stable inspection can be performed stably for a long period of time, and wear. And generation of wear powder can be suppressed.
なお、第2端部2bの平坦部2dと検査装置接続用金属50の端面51との接触抵抗は特に限定されないが、例えば、プローブの導体抵抗と接触抵抗の和は100Ω以下程度、好ましくは30Ω以下程度である。本発明のプローブユニット10では、繰り返し接触させた場合であっても接触抵抗が高くならず、安定させることができる。 The contact resistance between the flat portion 2d of the second end 2b and the end surface 51 of the inspection apparatus connecting metal 50 is not particularly limited. For example, the sum of the conductor resistance and the contact resistance of the probe is about 100Ω or less, preferably 30Ω. It is about the following. In the probe unit 10 of the present invention, even when repeatedly contacted, the contact resistance does not increase and can be stabilized.
以下、実施例と比較例により本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[実施例1]
金属導体2として、予め真直度が曲率半径Rで1500mmに直線矯正された長尺の真直タングステン線(直径D:0.070mm)を用いた。この金属導体2上に、厚さ10μmのポリウレタン絶縁被膜3を連続的に焼付け、絶縁被膜付き真直タングステン線(以下、絶縁真直タングステン線と略記する)を作製した。次に、定尺切断装置で前記絶縁真直タングステン線を30mm長さに切断し、その後、その後端を研削加工装置により台形状に研磨してd=50μmの平坦部2dを持つ台形状(テーパー角30°)の第2端部2bを形成し、第1端部2aも半球状に研磨した。なお、研磨加工は、エメリー紙を貼った回転円盤上に定尺切断した絶縁真直タングステン線の後端を押し当てて行った。次に、レーザー装置にて、B=2mm、A=3mmとなるように第2端部2bと第1端部2aの絶縁被膜3を剥離した。最後に、金属導体2が露出した第1端部2aと第2端部2bにニッケルめっき層(膜厚1μm)及び金めっき層(膜厚0.1μm)からなる2層めっきを施し、実施例1のプローブ1(図3参照)を5本作製した。このプローブ全体の直径Doは0.090mmであった。
[Example 1]
As the metal conductor 2, a long straight tungsten wire (diameter D: 0.070 mm) whose straightness was straightened to 1500 mm with a radius of curvature R in advance was used. A polyurethane insulating coating 3 having a thickness of 10 μm was continuously baked on the metal conductor 2 to produce a straight tungsten wire with an insulating coating (hereinafter abbreviated as an insulating straight tungsten wire). Next, the insulating straight tungsten wire is cut into a length of 30 mm with a standard cutting device, and then the rear end thereof is polished into a trapezoid shape with a grinding device and has a trapezoidal shape (taper angle) with a flat portion 2d of d = 50 μm. 30 °) of the second end 2b was formed, and the first end 2a was also hemispherically polished. The polishing process was performed by pressing the rear end of an insulating straight tungsten wire cut on a rotating disk with emery paper. Next, the insulating coating 3 of the 2nd end part 2b and the 1st end part 2a was peeled with the laser apparatus so that it might become B = 2mm and A = 3mm. Finally, two-layer plating consisting of a nickel plating layer (film thickness 1 μm) and a gold plating layer (film thickness 0.1 μm) is applied to the first end 2a and the second end 2b where the metal conductor 2 is exposed. Five probes 1 (see FIG. 3) were prepared. The diameter Do of the entire probe was 0.090 mm.
[実施例2]
実施例1において、直径Dが0.015mm、0.030mm、0.050mm、0.070mm、0.090mm、0.110mm、0.150mmの各タングステン線を金属導体2とし、平坦部2dの直径を種々変えた第2端部2bを形成した。それ以外は、実施例1と同様にして、それぞれのプローブ1を作製した。
[Example 2]
In Example 1, each tungsten wire having a diameter D of 0.015 mm, 0.030 mm, 0.050 mm, 0.070 mm, 0.090 mm, 0.110 mm, and 0.150 mm is used as the metal conductor 2, and the diameter of the flat portion 2d. The 2nd end part 2b which changed variously was formed. Other than that was carried out similarly to Example 1, and produced each probe 1. FIG.
[比較例1]
実施例1において、第2端部2bの形状を半球状にした他は、実施例1と同様にして、比較例1のプローブ1を5本作製した。
[Comparative Example 1]
In Example 1, five probes 1 of Comparative Example 1 were produced in the same manner as Example 1 except that the shape of the second end 2b was hemispherical.
[評価1]
図9は、角度θが2°、接触後の押し込み長さ0.2mmで座屈荷重3gfの条件の下、実施例1のプローブ1の5つのサンプルでを用い、20万回の繰り返し接触を行った後の検査装置接続用金属50の端面51の顕微鏡写真である。いずれの場合であっても、変色部分はあるものの、端面51には塑性変形等のダメージは見られなかった。
[Evaluation 1]
FIG. 9 shows a case where repeated contact is performed 200,000 times using five samples of the probe 1 of Example 1 under the conditions of an angle θ of 2 °, an indentation length of 0.2 mm after contact, and a buckling load of 3 gf. It is a microscope picture of the end surface 51 of the inspection apparatus connection metal 50 after performing. In either case, although there was a discolored portion, the end face 51 was not damaged by plastic deformation or the like.
同時に電気抵抗値を5箇所の端面51で測定した。各接触回数での電気抵抗値を表1に、電気抵抗値の平均値及び標準偏差を表2に示した。表1、2から、実施例1のプローブは、比較例1のプローブに比べて接触抵抗値の増加量が小さく、電気抵抗値が安定していることがわかった。 At the same time, the electric resistance value was measured at five end faces 51. Table 1 shows the electrical resistance value at each contact number, and Table 2 shows the average value and standard deviation of the electrical resistance values. From Tables 1 and 2, it was found that the probe of Example 1 had a smaller increase in contact resistance value than the probe of Comparative Example 1, and the electrical resistance value was stable.
[評価2]
図10は、角度θが2°、接触後の押し込み長さ0.2mmで座屈荷重3gfの条件の下、比較例1のプローブで20万回の繰り返し接触を行った後の検査装置接続用金属50の端面51の顕微鏡写真である。いずれの端面51にも塑性変形等のダメージが見られた。
[Evaluation 2]
FIG. 10 shows an inspection apparatus connection after repeated contact 200,000 times with the probe of Comparative Example 1 under the conditions of an angle θ of 2 °, an indentation length of 0.2 mm after contact, and a buckling load of 3 gf. 2 is a photomicrograph of an end face 51 of a metal 50. Any end face 51 was damaged by plastic deformation or the like.
[評価3]
図5は、金属導体2の導体径Dと金属導体2の第2端部2bの平坦部2dの直径dとが異なる実施例2の種々のプローブを用いたときの、その平坦部2dと検査装置接続用金属との接触圧力を示すグラフである。この結果を基に、接触圧力が25MPa以上100MPa以下の範囲になる金属導体の導体径Dと金属導体の第2端部の平坦部2dの直径dとの関係を図4に示した。この図4では、平坦部2dの直径dと金属導体2の導体径Dとの比(d/D)が、Dが150μmのとき0.6〜1、Dが110μmのとき0.5〜0.9、Dが90μmのとき0.4〜0.8、Dが70μmのとき0.3〜0.6、Dが50μmのとき0.3〜0.6、Dが30μm〜15μmのとき0.7〜1の範囲であった。
[Evaluation 3]
FIG. 5 shows the flat portion 2d and the inspection when various probes of Example 2 in which the conductor diameter D of the metal conductor 2 and the diameter d of the flat portion 2d of the second end 2b of the metal conductor 2 are different are used. It is a graph which shows a contact pressure with the metal for apparatus connection. Based on this result, the relationship between the conductor diameter D of the metal conductor in which the contact pressure is in the range of 25 MPa to 100 MPa and the diameter d of the flat portion 2d at the second end of the metal conductor is shown in FIG. In FIG. 4, the ratio (d / D) between the diameter d of the flat portion 2d and the conductor diameter D of the metal conductor 2 is 0.6 to 1 when D is 150 μm, and 0.5 to 0 when D is 110 μm. .9, 0.4 to 0.8 when D is 90 μm, 0.3 to 0.6 when D is 70 μm, 0.3 to 0.6 when D is 50 μm, 0 when D is 30 μm to 15 μm It was in the range of 7-1.
1 プローブ
2 金属導体
2a 第1端部
2b 第2端部
2c 斜面
2d 平坦面
3 絶縁被膜
3a 絶縁被膜端部
10 プローブユニット
11 被測定体
12 電極
20 被測定体側のガイド板
30 検査装置側のガイド板
40 検査装置接続用金属用の保持板
50 検査装置接続用金属(リード線)
51 検査装置接続用金属(リード線)の端面
52 本発明に係るプローブの第2端部の接触部
52’ 従来のプローブの第2端部の接触部
53 本発明に係るプローブの第2端部の平坦部の接触箇所
53’ 従来のプローブの第2端部の接触箇所
DESCRIPTION OF SYMBOLS 1 Probe 2 Metal conductor 2a 1st edge part 2b 2nd edge part 2c Slope 2d Flat surface 3 Insulation film 3a Insulation film edge part 10 Probe unit 11 Measured object 12 Electrode 20 Guide plate of measured object side 30 Guide on inspection apparatus side Plate 40 Metal holding plate for inspection device connection 50 Metal for inspection device connection (lead wire)
51 End face of inspection apparatus connecting metal (lead wire) 52 Contact portion of second end portion of probe according to the present invention 52 ′ Contact portion of second end portion of conventional probe 53 Second end portion of probe according to the present invention 53 'Contact point of the flat part 53' Contact point of the second end of the conventional probe
A 第1端部側で露出する金属導体領域の長さ
B 第2端部側で露出する金属導体領域の長さ
b 第2端部の先端から金属導体の外径面までの軸線方向距離
d 第2端部の平坦部の直径
d’ 第2端部の平坦部が検査装置接続用金属に接触する部分の直径
Do プローブ全体の直径
D 金属導体の直径
L プローブの長さ
a1 プローブを構成する金属導体の仮想軸線
a2 検査装置接続用金属の法線
θ 金属導体の仮想軸線と検査装置接続用金属の法線との角度
S ガイド板間の空間
Δ1,Δ2 検査装置接続用金属に当たるまでの長さの変化分
R 範囲
A Length of the metal conductor region exposed on the first end side B Length of the metal conductor region exposed on the second end side b Distance in the axial direction from the tip of the second end portion to the outer diameter surface of the metal conductor d Diameter of flat portion of second end d ′ Diameter of portion where flat portion of second end contacts metal for inspection apparatus connection Diameter of entire probe D Diameter of metal conductor L Length of probe a1 Configure probe Virtual axis of metal conductor a2 Normal of metal for inspection device connection θ Angle between virtual axis of metal conductor and normal of metal for inspection device S Space between guide plates Δ1, Δ2 Length until contact with metal for inspection device connection Change in length R range
Claims (3)
前記プローブが、金属導体と、該金属導体の少なくとも両端部以外の領域に設けられた絶縁被膜とを有し、前記プローブの前記第2端部の形状が、前記検査装置接続用金属に接触する平坦部を有し、
前記平坦部は、前記第2端部の外周面と前記平坦部との間のエッヂが前記検査装置接続用金属に当たった場合に、撓んだ前記プローブの第2端部と前記検査装置接続用金属との接触形態が、その前記エッヂでの点接触から、前記平坦部での面接触に容易かつ瞬時に移行するよう、前記検査装置側のガイド板から前記検査装置接続用金属に向けて突出しており、
前記第2端部と前記検査装置接続用金属とを、前記プローブを構成する前記金属導体の仮想軸線と前記検査装置接続用金属の法線との角度で0.5°以上5°以下の範囲で接触させることを特徴とするプローブユニット。 The first end on the measured object side is brought into contact with the measured object, and the second end on the inspection apparatus side is brought into contact with the metal for connecting the inspection apparatus, and the electrical characteristics of the measured object are measured with the inspection apparatus. A plurality of probes, a pair of guide plates arranged to guide both ends of the probe and spaced in the middle, and a second of the probes guided by the guide plate on the inspection apparatus side In a probe unit having an inspection device connecting metal that repeatedly contacts an end,
The probe includes a metal conductor and an insulating coating provided in a region other than at least both ends of the metal conductor, and the shape of the second end of the probe contacts the inspection apparatus connecting metal. Has a flat part,
When the edge between the outer peripheral surface of the second end portion and the flat portion hits the inspection device connecting metal, the flat portion is connected to the inspection device connection with the second end portion of the probe that is bent. From the point contact at the edge to the surface contact at the flat part, the form of contact with the inspection metal is easily and instantaneously shifted from the guide plate on the inspection apparatus side toward the inspection apparatus connection metal. Protruding,
The second end portion and the inspection device connecting metal are in a range of 0.5 ° to 5 ° in an angle between a virtual axis of the metal conductor constituting the probe and a normal line of the inspection device connecting metal. A probe unit that is brought into contact with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013154195A JP6371501B2 (en) | 2013-07-25 | 2013-07-25 | Probe unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013154195A JP6371501B2 (en) | 2013-07-25 | 2013-07-25 | Probe unit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018132102A Division JP6600387B2 (en) | 2018-07-12 | 2018-07-12 | Probe and probe contact method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015025697A JP2015025697A (en) | 2015-02-05 |
JP6371501B2 true JP6371501B2 (en) | 2018-08-08 |
Family
ID=52490469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013154195A Active JP6371501B2 (en) | 2013-07-25 | 2013-07-25 | Probe unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6371501B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6832661B2 (en) * | 2016-09-28 | 2021-02-24 | 株式会社日本マイクロニクス | Probe card and contact inspection device |
IT201700021400A1 (en) * | 2017-02-24 | 2018-08-24 | Technoprobe Spa | Measuring head with vertical probes with improved frequency properties |
TW201942581A (en) * | 2018-03-30 | 2019-11-01 | 日商日本電產理德股份有限公司 | Inspection jig, and inspecting device provided with same |
JP7471148B2 (en) | 2020-06-01 | 2024-04-19 | 株式会社Totoku | Probe needle and probe unit |
JP2023161934A (en) * | 2022-04-26 | 2023-11-08 | 株式会社Totoku | Contact probe |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3222179B2 (en) * | 1992-02-06 | 2001-10-22 | 電気化学工業株式会社 | Circuit measuring terminal and method of manufacturing the same |
US6160412A (en) * | 1998-11-05 | 2000-12-12 | Wentworth Laboratories, Inc. | Impedance-matched interconnection device for connecting a vertical-pin integrated circuit probing device to integrated circuit test equipment |
JP2001356135A (en) * | 2000-06-13 | 2001-12-26 | Sumitomo Electric Ind Ltd | Probe head and its manufacturing method |
JP2003084047A (en) * | 2001-06-29 | 2003-03-19 | Sony Corp | Measuring jig for semiconductor device |
JP2005030790A (en) * | 2003-07-08 | 2005-02-03 | Renesas Technology Corp | Probe card |
JP3791689B2 (en) * | 2004-01-09 | 2006-06-28 | 日本電子材料株式会社 | Probe card |
JP2007322369A (en) * | 2006-06-05 | 2007-12-13 | Totoku Electric Co Ltd | Contact probe and its manufacturing method |
-
2013
- 2013-07-25 JP JP2013154195A patent/JP6371501B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015025697A (en) | 2015-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6305754B2 (en) | Contact probe unit | |
JP6371501B2 (en) | Probe unit | |
JP5144997B2 (en) | Contact probe unit and manufacturing method thereof | |
JP2009198238A (en) | Probe needle and method of manufacturing the same | |
JP2007322369A (en) | Contact probe and its manufacturing method | |
WO2007146186A2 (en) | Knee probe having increased scrub motion | |
JP2008196905A (en) | Contact probe, its using method, and its manufacturing method | |
JP6600387B2 (en) | Probe and probe contact method | |
JP5192899B2 (en) | Probe needle and manufacturing method thereof | |
JP4611822B2 (en) | Probe needle with insulating coating and method for manufacturing the same | |
JP2009210443A (en) | Contact probe and method for manufacturing the same | |
JP7471148B2 (en) | Probe needle and probe unit | |
JP7008541B2 (en) | Probe needle | |
JP2015212622A (en) | Probe card pin and manufacturing method of the same | |
JP7496716B2 (en) | Probe unit and method for producing same | |
JP7390115B2 (en) | probe unit | |
JP2006017455A (en) | Probe needle and its manufacturing method | |
JP2016011925A (en) | Contact probe and contact probe unit | |
JPWO2006068156A1 (en) | Kelvin probe | |
JP7008529B2 (en) | Lead wires for inspection equipment, lead wire mounting parts, and inspection jigs | |
JP2006098066A (en) | Probe needle, using method therefor, and manufacturing method for probe needle | |
WO2022074888A1 (en) | Contact probe | |
JP2019152541A (en) | Probe needle | |
JP2006010588A (en) | Contact probe and its manufacturing method | |
JP7557965B2 (en) | Probe needle and probe unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180619 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6371501 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |