JP6354684B2 - Plastic working method - Google Patents
Plastic working method Download PDFInfo
- Publication number
- JP6354684B2 JP6354684B2 JP2015136195A JP2015136195A JP6354684B2 JP 6354684 B2 JP6354684 B2 JP 6354684B2 JP 2015136195 A JP2015136195 A JP 2015136195A JP 2015136195 A JP2015136195 A JP 2015136195A JP 6354684 B2 JP6354684 B2 JP 6354684B2
- Authority
- JP
- Japan
- Prior art keywords
- punch
- plate material
- workpiece
- sintered body
- inner punch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000000463 material Substances 0.000 claims description 48
- 238000005242 forging Methods 0.000 claims description 17
- 238000003825 pressing Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 description 24
- 229910052761 rare earth metal Inorganic materials 0.000 description 19
- 150000002910 rare earth metals Chemical class 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Landscapes
- Forging (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、一対のパンチでワークを挟み、パンチを押圧してワークを塑性加工する塑性加工方法に関するものである。 The present invention relates to a plastic processing method in which a workpiece is sandwiched between a pair of punches and the punch is pressed to plastically process the workpiece.
ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。 Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.
この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の磁気特性を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。 Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.
希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石がある。 As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. is there.
希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して微粉末(磁石用粉末)を製作し、ダイとダイの内部で摺動する上パンチおよび下パンチとから構成された成形型のキャビティに磁石用粉末を充填し、加圧成形しながら成形体を製造する。次いで、成形体を高温雰囲気下で圧縮し、緻密化させて焼結体を製造し、この焼結体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法である。なお、この熱間塑性加工には、後方押出し加工や前方押出し加工といった押出し加工や、据え込み加工(鍛造加工)などが適用されている。 An example of a rare earth magnet manufacturing method is outlined. For example, a Nd-Fe-B metal melt is rapidly solidified to produce a fine powder (magnet powder), and an upper punch that slides inside the die and the lower die. A mold body is manufactured while filling a mold cavity constituted by a punch with magnet powder and press-molding it. Next, the compact is compressed in a high temperature atmosphere and densified to produce a sintered body, which is subjected to hot plastic processing to impart magnetic anisotropy to the rare earth magnet (orientated magnet). It is a method of manufacturing. In addition, extrusion processing such as backward extrusion processing and forward extrusion processing, upsetting processing (forging processing), and the like are applied to the hot plastic processing.
上記する熱間塑性加工として鍛造加工を適用して焼結体(ワーク)に加工歪を導入するに当たり、焼結体に導入される加工歪が焼結体の場所ごとに異なり、不均一になるといった問題がある。これは、焼結体とパンチの間に発生する摩擦力によるものであり、パンチに接する焼結体の表面は摩擦力によってその塑性変形が拘束される一方で、焼結体の内部はパンチからの直接的な拘束がないことから比較的自由に塑性変形する結果、焼結体に加工歪の分布が生じるというものである。 When the forging process is applied as the hot plastic processing described above to introduce processing strain into the sintered body (work), the processing strain introduced into the sintered body differs depending on the location of the sintered body and becomes non-uniform. There is a problem. This is due to the frictional force generated between the sintered body and the punch. The surface of the sintered body in contact with the punch is restrained from plastic deformation by the frictional force, while the inside of the sintered body is from the punch. As a result of plastic deformation relatively freely since there is no direct constraint, processing strain distribution occurs in the sintered body.
このように加工歪分布が生じることで、熱間塑性加工にて形成された希土類磁石の配向度は低くなり、残留磁化等の磁気特性の低下に繋がる。 As the processing strain distribution is generated in this way, the degree of orientation of the rare earth magnet formed by hot plastic processing is lowered, leading to a decrease in magnetic characteristics such as residual magnetization.
ところで、上記する加工歪分布を解消する技術が特許文献1に開示されている。ここで開示される温間加工磁石の製造方法は、R-T-B系永久磁石用の磁性粉末を温間で緻密化と塑性加工によって温間加工磁石を製造するに当たり、事実上避けられないバルジ現象(ワークの端縁部が樽型に変形する現象)を予め考慮した上で緻密体(焼結体)の段階で形状を調整する製造方法である。
By the way, the technique which eliminates the above-mentioned process distortion distribution is disclosed by
より具体的には、緻密化工程で予め緻密体形状の上下ダイスに接する面に含まれるコーナー部を除く直線または曲線部が最終塑性加工後の製品形状の相似形より上記する直線もしくは曲線部の長さに対して15%以下凹になる形状とし、その他の緻密体側面が緻密体の中心に向けて圧縮方向に対して平行もしくは側面の高さに対して15%以下凹になる形状に成形した後、塑性加工をおこなうものである。 More specifically, in the densification step, the straight line or the curved part excluding the corner part included in the surface in contact with the upper and lower dies of the dense body shape in advance is more similar to the straight line or curved part than the similar shape of the product shape after the final plastic working. Molded into a shape that is 15% or less concave with respect to the length, and the other dense body has a side that is parallel to the compression direction toward the center of the dense body or 15% or less with respect to the height of the side. After that, plastic working is performed.
この製造方法によれば、ほぼ均一に塑性変形することができ、割れのない磁気特性の良好な磁石を提供できるとしている。しかしながら、熱間塑性加工(鍛造加工)前の焼結体(ワーク)の形状を極めて特殊な形状に加工する必要があることから、加工が容易でなく、加工効率が悪く、現実的な方策とは言い難い。 According to this manufacturing method, it is possible to provide a magnet that can be plastically deformed substantially uniformly and has good magnetic properties without cracks. However, since it is necessary to process the shape of the sintered body (work) before hot plastic processing (forging) into a very special shape, the processing is not easy, the processing efficiency is poor, Is hard to say.
本発明は上記する問題に鑑みてなされたものであり、一対のパンチでワークを挟み、パンチを押圧してワークを塑性加工するに当たり、効率的にワークに対して略均等に加工歪を導入することのできる塑性加工方法を提供することを目的とする。 The present invention has been made in view of the above-described problems. When a workpiece is sandwiched between a pair of punches and the workpiece is plastically processed by pressing the punch, a processing strain is efficiently and substantially uniformly introduced into the workpiece. It is an object of the present invention to provide a plastic working method that can be used.
前記目的を達成すべく、本発明による塑性加工方法は、アウターパンチと、アウターパンチの中空内を摺動するインナーパンチとを有し、一対のアウターパンチおよびインナーパンチから構成される成形型において、アウターパンチとインナーパンチの端面に板材が配設され、板材はアウターパンチの端面に固定されており、インナーパンチが中空内で摺動してアウターパンチに対してインナーパンチが相対的に移動した際に板材のインナーパンチに対応する箇所が塑性変形してインナーパンチの移動に追随する、成形型を用意する第1のステップ、一対のインナーパンチの間にワークを配設し、一対のインナーパンチを押圧してワークを鍛造することにより、ワークが側方へ塑性変形するとともに、板材のインナーパンチの端面に対応する箇所も側方へ塑性変形する第2のステップからなるものである。 In order to achieve the above object, a plastic working method according to the present invention includes an outer punch and an inner punch that slides in the hollow of the outer punch, and a molding die composed of a pair of outer punch and inner punch. When the outer punch and the inner punch are provided with plate material on the end surface, and the plate material is fixed to the outer punch end surface, the inner punch slides in the hollow and the inner punch moves relative to the outer punch. The first step of preparing a molding die in which the portion corresponding to the inner punch of the plate material is plastically deformed to follow the movement of the inner punch, the work is disposed between the pair of inner punches, and the pair of inner punches By pressing and forging the workpiece, the workpiece plastically deforms to the side and corresponds to the end face of the inner punch of the plate material Where also is made of the second step of plastic deformation to the side.
本発明の塑性加工方法では、アウターパンチに対してインナーパンチが摺動自在に構成され、これらアウターパンチとインナーパンチが対となっている成形型を使用し、この使用に際して、アウターパンチとインナーパンチの端面(一対の各アウターパンチとインナーパンチの他方に対向する端面)に板材を配し、これをアウターパンチに固定した成形型を使用する点に一つの特徴を有するものである。したがって、ワークはその上下の一対のインナーパンチではなく、上下一対の板材に直接挟まれることになる。 In the plastic working method of the present invention, a molding die in which the inner punch is configured to be slidable with respect to the outer punch and the outer punch and the inner punch are paired is used. One feature is that a plate material is disposed on the end surface (the end surface facing the other of the pair of outer punches and the inner punch), and a molding die in which the plate material is fixed to the outer punch is used. Therefore, the work is directly sandwiched between the pair of upper and lower plate members, not the pair of upper and lower inner punches.
そして、この板材は、アウターパンチに対してインナーパンチを摺動させ、アウターパンチに対してインナーパンチを相対的に移動させてワークを鍛造し、ワークを側方へ塑性変形させた際に、この板材も側方へ塑性変形するような変形性能や剛性を備えている。 And when this plate material slides the inner punch with respect to the outer punch, moves the inner punch relative to the outer punch to forge the workpiece, and plastically deforms the workpiece to the side, The plate material also has deformation performance and rigidity that cause plastic deformation to the side.
ここで、「板材はアウターパンチの端面に固定され」とは、アウターパンチとインナーパンチの端面に亘って配設された板材のうち、アウターパンチの端面とは固定され、インナーパンチの端面とは固定されないことを意味している。このような構成とすることで、アウターパンチに対して相対的にインナーパンチが移動してアウターパンチから突出した際に、板材のアウターパンチの端面に対応する箇所は側方に塑性変形し、突出したインナーパンチの側面(アウターパンチから突出した側面)と端面に亘る長さに延びることができる。 Here, “the plate material is fixed to the end surface of the outer punch” means that the plate material disposed between the outer punch and the end surface of the inner punch is fixed to the end surface of the outer punch, and the end surface of the inner punch is It means not fixed. By adopting such a configuration, when the inner punch moves relative to the outer punch and protrudes from the outer punch, the portion corresponding to the end surface of the outer punch of the plate material is plastically deformed laterally and protruded. The inner punch can extend to a length extending from the side surface (side surface protruding from the outer punch) to the end surface.
このように、ワークの側方への塑性変形に応じて板材がワークと接触する箇所(板材のインナーパンチの端面に対応する箇所)も側方へ塑性変形することで、ワークと板材の間の摩擦力がワークの塑性変形に与える影響を格段に低下させることができる。 In this way, the location where the plate material comes into contact with the workpiece according to the plastic deformation to the side of the workpiece (the location corresponding to the end face of the inner punch of the plate material) is also plastically deformed to the side, so that between the workpiece and the plate material. The influence of the frictional force on the plastic deformation of the workpiece can be greatly reduced.
そして、ワークの側方への塑性変形の際にワークが板材から受ける摩擦力の影響が極めて低くなることで、ワークが板材と接する表面部の加工歪量と、ワークの内部の加工歪量の差が少なくなり、ワーク全体に可及的に均等な加工歪を導入することが可能になる。 In addition, since the influence of the frictional force that the workpiece receives from the plate material during plastic deformation to the side of the workpiece becomes extremely low, the amount of processing strain on the surface portion where the workpiece contacts the plate material and the amount of processing strain inside the workpiece The difference is reduced, and it is possible to introduce machining strain that is as uniform as possible throughout the workpiece.
ここで、インナーパンチの移動によって塑性変形する板材としては、金属製の板材が適用でき、たとえばSUS製の板材を適用できる。 Here, as the plate material that is plastically deformed by the movement of the inner punch, a metal plate material can be applied, and for example, a SUS plate material can be applied.
また、第2のステップにおいて、ワークが側方へ塑性変形する際の流動速度に対し、板材が側方へ塑性変形する際の流動速度が近づくようにインナーパンチの移動速度を制御するのが望ましい。 In the second step, it is desirable to control the moving speed of the inner punch so that the flow speed when the workpiece is plastically deformed laterally approaches the flow speed when the workpiece is plastically deformed laterally. .
仮にインナーパンチの移動速度が遅過ぎると、板材の側方への塑性変形がワークの側方への塑性変形に追い付かず、結果として、塑性変形するワークに対する板材からの摩擦力の影響が大きくなる。 If the moving speed of the inner punch is too slow, the plastic deformation to the side of the plate does not catch up with the plastic deformation to the side of the workpiece, and as a result, the influence of the frictional force from the plate on the plastic deforming workpiece increases. .
そこで、ワークの素材(剛性、変形性能)や形状ごとにインナーパンチの移動速度を種々変化させながらワークを押圧し、ワークの側方への塑性変形の際に板材の側方への塑性変形が追随するインナーパンチの移動速度を特定し、この特定された移動速度でインナーパンチを押圧するのがよい。 Therefore, the workpiece is pressed while varying the moving speed of the inner punch for each workpiece material (rigidity, deformation performance) and shape, and the plastic deformation to the side of the plate material occurs during plastic deformation to the side of the workpiece. It is preferable that the moving speed of the following inner punch is specified, and the inner punch is pressed at the specified moving speed.
また、ワークは特に限定されるものではないが、ワークの実施の形態として希土類磁石前駆体である焼結体を挙げることができる。 Moreover, although a workpiece | work is not specifically limited, The sintered compact which is a rare earth magnet precursor can be mentioned as embodiment of a workpiece | work.
焼結体は、磁石用粉末を成形型に充填し、加圧成形することで製造され、この製造された成形体を高温雰囲気下で圧縮し、緻密化させることで焼結体が製造される。この焼結体に熱間塑性加工を施して加工歪を導入し、磁気的異方性を付与して希土類磁石を製造するに当たり、この熱間塑性加工(鍛造加工)に本発明の塑性加工方法が適用されるものである。 The sintered body is manufactured by filling a molding die with magnet powder and press-molding, and the sintered body is manufactured by compressing and densifying the manufactured molded body in a high-temperature atmosphere. . When the sintered body is subjected to hot plastic working to introduce processing strain and impart magnetic anisotropy to produce a rare earth magnet, the hot plastic working (forging) is applied to the plastic working method of the present invention. Applies.
本発明の塑性加工方法によって焼結体に磁気的異方性が付与されて形成された希土類磁石は、希土類磁石の全体に可及的均等に加工歪が導入され、配向度が高くなっていることから、残留磁化に代表される磁気特性に優れた希土類磁石となる。 The rare earth magnet formed by imparting magnetic anisotropy to the sintered body by the plastic working method of the present invention introduces processing strain as evenly as possible to the entire rare earth magnet and has a high degree of orientation. For this reason, it becomes a rare earth magnet excellent in magnetic characteristics represented by residual magnetization.
以上の説明から理解できるように、本発明の塑性加工方法によれば、アウターパンチに対してインナーパンチが摺動自在に構成され、これらアウターパンチとインナーパンチが対となっている成形型を使用し、この使用に際して、アウターパンチとインナーパンチの端面に板材を配してアウターパンチに固定し、一対のインナーパンチの間にワークを配設し、一対のインナーパンチを押圧してワークを鍛造する。この方法により、ワークを側方へ塑性変形させた際にこの板材も側方へ塑性変形することで、ワークの塑性変形の際にワークと板材の間の摩擦力の影響が極めて低くなり、ワーク全体に対して可及的に均等な加工歪を導入することができる。 As can be understood from the above description, according to the plastic working method of the present invention, the inner punch is configured to be slidable with respect to the outer punch, and a molding die in which the outer punch and the inner punch are paired is used. In this use, a plate material is arranged on the end surfaces of the outer punch and the inner punch and fixed to the outer punch, a work is disposed between the pair of inner punches, and the work is forged by pressing the pair of inner punches. . By this method, when the workpiece is plastically deformed to the side, the plate material is also plastically deformed to the side, so that the influence of the frictional force between the workpiece and the plate material becomes extremely low during the plastic deformation of the workpiece. It is possible to introduce as much processing strain as possible to the whole.
以下、図面を参照して本発明の塑性加工方法の実施の形態を説明する。なお、図示例は、ワークに希土類磁石前駆体である焼結体を適用したものであるが、ワークが焼結体に限定されるものでないことは勿論のことである。 Hereinafter, embodiments of the plastic working method of the present invention will be described with reference to the drawings. In the illustrated example, a sintered body, which is a rare earth magnet precursor, is applied to the workpiece. However, it goes without saying that the workpiece is not limited to the sintered body.
(塑性加工方法の実施の形態)
図1は本発明の塑性加工方法の第1のステップを説明した模式図であり、図2は塑性加工方法の第2のステップを説明した模式図である。
(Embodiment of plastic working method)
FIG. 1 is a schematic diagram explaining the first step of the plastic working method of the present invention, and FIG. 2 is a schematic diagram explaining the second step of the plastic working method.
図示する成形型10は、一対のアウターパンチ1とインナーパンチ2から構成され、アウターパンチ1の中空内でインナーパンチ2が摺動自在に構成されている。なお、成形型10の稼働に際しては、アウターパンチ1が不動でインナーパンチ2のみが摺動する形態や、アウターパンチ1も移動し、インナーパンチ2がアウターパンチ1よりもより速い速度で移動(摺動)する形態などがあり、成形型10の稼働制御は適宜選定できる。
The illustrated
図示例では、稼働前の状態において、アウターパンチ1の端面に対してインナーパンチ2の端面が対向するインナーパンチ2側に突出した状態となっている。
In the illustrated example, in a state before operation, the end surface of the
アウターパンチ1とインナーパンチ2の端面には、SUS製の板材4が配設され、板材4はアウターパンチ1の端面には押さえ部材3にて固定されており、インナーパンチ2の端面には固定されることなく、接しているのみである。
A
このように板材4を端面に備えたアウターパンチ1、インナーパンチ2からなる成形型10を用意する(第1のステップ)。
In this way, a
そして、一対のインナーパンチ2,2の間にワークである焼結体Sを配設する。この焼結体Sは希土類磁石前駆体であり、磁石用粉末を加圧成形して製造されたものである。
And the sintered compact S which is a workpiece | work is arrange | positioned between a pair of
ここで、磁石用粉末の製作方法を概説すると、まず、50kPa以下に減圧した不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールに噴射して急冷薄帯(急冷リボン)を製作する。次に、製作された急冷薄帯を粗粉砕して磁石用粉末を製作するものである。なお、磁石用粉末の粒径範囲は75〜300μmの範囲となるように調整される。 Here, the production method of the magnet powder is outlined. First, in a furnace (not shown) whose pressure is reduced to 50 kPa or less, the alloy ingot is melted at a high frequency by a melt spinning method using a single roll, and a molten metal having a composition that gives a rare earth magnet is prepared. Quenching thin ribbon (quenching ribbon) by spraying on copper roll. Next, the rapidly quenched ribbon is roughly pulverized to produce magnet powder. The particle size range of the magnet powder is adjusted to be in the range of 75 to 300 μm.
焼結体Sの組織構造は、ナノ結晶組織のNd-Fe-B系の主相(平均粒径が300nm以下で、たとえば50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相を備えたものである。そして、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。 The microstructure of the sintered body S consists of a Nd-Fe-B main phase (average grain size of 300 nm or less, for example, a crystal grain size of about 50 nm to 200 nm) having a nanocrystalline structure and Nd around the main phase. -X alloy (X: metal element) grain boundary phase. The Nd—X alloy constituting the grain boundary phase is composed of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, Nd— One of Co—Fe and Nd—Co—Fe—Ga, or a mixture of two or more of these, is in an Nd-rich state.
次に、図2で示すように、一対のインナーパンチ2,2を押圧して(X1方向、X2方向)焼結体Sを鍛造することにより、焼結体Sは側方に塑性変形し(変形:δ1)、この塑性変形によって焼結体Sに磁気的異方性が付与されて希土類磁石Jが製造される。
Next, as shown in FIG. 2, by pressing the pair of
この鍛造加工において、焼結体Sが側方へ塑性変形する際に、板材4も塑性変形する。具体的には、板材4のインナーパンチ2の端面に対応する箇所(焼結体Sを挟んでいる箇所)は焼結体Sと同様に側方へ塑性変形し(変形:δ2)、板材4のアウターパンチ1に対して突出したインナーパンチ2の側面に対応する箇所はインナーパンチ2の突出方向に塑性変形する(変形:δ3)。すなわち、板材4は張出し成形の状態となる。
In this forging process, when the sintered body S is plastically deformed to the side, the
このように、焼結体Sの側方への塑性変形に応じて板材4が焼結体Sと接触する箇所(板材4のインナーパンチ2の端面に対応する箇所)も側方へ塑性変形することで、焼結体Sと板材4の間の摩擦力が焼結体Sの塑性変形に与える影響を格段に低下させることができる。
As described above, the portion where the
したがって、焼結体Sを塑性変形させた際に導入される加工歪は、板材4から摩擦力を受ける焼結体Sの表面も、板材4からの摩擦力を直接受けない焼結体Sの内部も同程度となり、塑性変形後の希土類磁石の配向度は高くなり、磁気特性に優れたものとなる。
Accordingly, the processing strain introduced when the sintered body S is plastically deformed is that the surface of the sintered body S that receives the frictional force from the
ここで、焼結体Sが側方へ塑性変形する際の流動速度に対し、板材4が側方へ塑性変形する際の流動速度が近づくようにインナーパンチ2の移動速度を制御するのが望ましい。
Here, it is desirable to control the moving speed of the
仮にインナーパンチ2の移動速度が遅過ぎると、板材4の側方への塑性変形が焼結体Sの側方への塑性変形に追い付かず、結果として、塑性変形する焼結体Sに対する板材4からの摩擦力の影響が大きくなる。そこで、焼結体Sの素材(剛性、変形性能)や形状ごとにインナーパンチ2の移動速度を種々変化させながら焼結体Sを押圧し、焼結体Sの側方への塑性変形の際に板材4の側方への塑性変形が追随するインナーパンチ2の移動速度を予め特定しておき、この特定された移動速度でインナーパンチ2を押圧するのがよい。
If the moving speed of the
(CAE解析とその結果)
本発明者等は、塑性変形自在な板材を介して焼結体を鍛造加工した際の効果を検証する解析をおこなった。ここで、図3(a)は板材を具備しない比較例の解析モデルのうち、1/4の部分を示したモデル図であり、図3(b)は板材を具備する実施例の1/4解析モデルを示した図である。
(CAE analysis and results)
The present inventors conducted an analysis to verify the effect when forging a sintered body through a plastically deformable plate material. Here, FIG. 3A is a model diagram showing a quarter of the analysis model of the comparative example that does not include a plate material, and FIG. 3B is a quarter of the embodiment that includes the plate material. It is the figure which showed the analysis model.
比較例では、焼結体に対し、インナーパンチを押し込み速度0.75mm/secで押し込んで鍛造した。なお、焼結体とインナーパンチの間の界面にはグラファイト潤滑剤を塗布するものとし、摩擦係数は0.1とした。 In the comparative example, forging was performed by pressing the inner punch into the sintered body at a pressing speed of 0.75 mm / sec. A graphite lubricant was applied to the interface between the sintered body and the inner punch, and the friction coefficient was set to 0.1.
一方、実施例は、焼結体とインナーパンチの間にSUS304製の板材を介在させ、板材の端部はダイスと押え板で固定し、ダイスには50000Nの力を付与し、インナーパンチと押え板をともに0.75mm/secで押し込んで鍛造した。なお、インナーパンチと板材の間の摩擦係数は0.01とした。 On the other hand, in the example, a plate made of SUS304 is interposed between the sintered body and the inner punch, the end of the plate is fixed with a die and a holding plate, a force of 50000 N is applied to the die, and the inner punch and the holding plate are pressed. Both plates were forged by pressing at 0.75 mm / sec. The coefficient of friction between the inner punch and the plate material was 0.01.
解析結果を図4,5に示す。ここで、図4は比較例、実施例の鍛造前後の焼結体のメッシュモデル図を示したものであり、図5は比較例、実施例の測定点における圧縮歪量を比較した図である。 The analysis results are shown in FIGS. Here, FIG. 4 shows a mesh model diagram of the sintered body before and after forging of the comparative example and the example, and FIG. 5 is a diagram comparing the amount of compressive strain at the measurement points of the comparative example and the example. .
図4より、鍛造後の比較例では、測定点A,Bでつぶれ具合に大きな差があることが分かる。 FIG. 4 shows that in the comparative example after forging, there is a large difference in the degree of crushing at the measurement points A and B.
一方、鍛造後の実施例では、板材が横に延びることで、測定点A,Bでつぶれ具合は同程度になっていることが分かる。 On the other hand, in the example after forging, it can be seen that the crushing condition is approximately the same at the measurement points A and B because the plate material extends sideways.
実際には、図5より、比較例の鍛造前後の圧縮歪量は摩擦力の影響を受ける測定点Aで0.59、摩擦力の影響を受け難い測定点Bで1.07となり、双方の値には大きな乖離がある。 Actually, from FIG. 5, the amount of compressive strain before and after forging in the comparative example is 0.59 at the measurement point A affected by the frictional force and 1.07 at the measurement point B hardly affected by the frictional force. There is a gap.
対して、実施例の鍛造前後の圧縮歪量は、測定点Aで0.65、測定点Bで0.84と双方の値は格段に近接していることが分かる。 In contrast, the amount of compressive strain before and after forging in the example is 0.65 at measurement point A and 0.84 at measurement point B, indicating that both values are very close.
この解析結果より、塑性変形可能な板材を介して焼結体を鍛造加工することにより、板材と焼結体の間の摩擦力の影響が少なくなり、焼結体の全域で可及的均等な加工歪量を導入できることが分かった。 From this analysis result, by forging the sintered body through a plastically deformable plate material, the influence of the frictional force between the plate material and the sintered body is reduced, and as uniform as possible in the entire area of the sintered body. It was found that the amount of processing strain can be introduced.
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
1…アウターパンチ、2…インナーパンチ、3…押さえ部材、4…板材、10…成形型、S…焼結体(ワーク)、J…希土類磁石
DESCRIPTION OF
Claims (1)
一対のインナーパンチの間にワークを配設し、一対のインナーパンチを押圧してワークを鍛造することにより、ワークが側方へ塑性変形するとともに、板材のインナーパンチの端面に対応する箇所も側方へ塑性変形する第2のステップからなる、塑性加工方法。 In a mold having an outer punch and an inner punch that slides in the hollow of the outer punch, and comprising a pair of outer punch and inner punch, a plate material is disposed on the end surface of the outer punch and the inner punch, and the plate material Is fixed to the end face of the outer punch, and when the inner punch slides in the hollow and the inner punch moves relative to the outer punch, the portion corresponding to the inner punch of the plate material is plastically deformed and the inner punch moves. A first step of preparing a mold that follows the movement of the punch;
By placing the workpiece between the pair of inner punches and forging the workpiece by pressing the pair of inner punches, the workpiece is plastically deformed to the side, and the portion corresponding to the end face of the inner punch of the plate is also on the side A plastic working method comprising a second step of plastically deforming in the direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015136195A JP6354684B2 (en) | 2015-07-07 | 2015-07-07 | Plastic working method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015136195A JP6354684B2 (en) | 2015-07-07 | 2015-07-07 | Plastic working method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017018962A JP2017018962A (en) | 2017-01-26 |
JP6354684B2 true JP6354684B2 (en) | 2018-07-11 |
Family
ID=57887369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015136195A Expired - Fee Related JP6354684B2 (en) | 2015-07-07 | 2015-07-07 | Plastic working method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6354684B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02250920A (en) * | 1989-03-25 | 1990-10-08 | Kobe Steel Ltd | Production of rare earth element-transition element -b magnet by forging |
JPH03290906A (en) * | 1990-04-06 | 1991-12-20 | Hitachi Metals Ltd | Warm-worked magnet and its manufacture |
JPH0754261Y2 (en) * | 1990-04-25 | 1995-12-18 | 大和田カーボン工業株式会社 | Press cylinder of high temperature high pressure press |
JP2001163724A (en) * | 1999-12-10 | 2001-06-19 | Kao Corp | Method for producing cosmetic |
US10207312B2 (en) * | 2010-06-14 | 2019-02-19 | Ati Properties Llc | Lubrication processes for enhanced forgeability |
-
2015
- 2015-07-07 JP JP2015136195A patent/JP6354684B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017018962A (en) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI466141B (en) | Manufacture of rare earth magnets | |
KR101513824B1 (en) | Method producing rare earth magnet | |
US10062504B2 (en) | Manufacturing method of rare-earth magnet | |
WO2014080852A1 (en) | Method for manufacturing rare-earth magnet | |
KR101813427B1 (en) | Method of manufacturing rare earth magnet | |
JP2013098485A (en) | Manufacturing apparatus and manufacturing method for rare earth magnet | |
JP6102881B2 (en) | Rare earth magnet manufacturing method | |
CN107851506B (en) | Mold and method for forming permanent magnets from preforms and thermal deformation system | |
CN105312574A (en) | Manufacturing method for sintered compact | |
JP2015093312A (en) | Forward extrusion forging device and forward extrusion forging method | |
JP6168090B2 (en) | Mold | |
JP6354684B2 (en) | Plastic working method | |
JP6428523B2 (en) | Forging machine | |
JP5704186B2 (en) | Rare earth magnet manufacturing method | |
JP6112084B2 (en) | Rare earth magnet manufacturing method | |
JP6036648B2 (en) | Rare earth magnet manufacturing method | |
CN108242334B (en) | Method for manufacturing rare earth magnet | |
JP6287684B2 (en) | Rare earth magnet manufacturing method | |
JP6424754B2 (en) | Method of manufacturing molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180515 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180528 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6354684 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |