Nothing Special   »   [go: up one dir, main page]

JP6349078B2 - Heat source water and circulating water heat exchange system - Google Patents

Heat source water and circulating water heat exchange system Download PDF

Info

Publication number
JP6349078B2
JP6349078B2 JP2013249107A JP2013249107A JP6349078B2 JP 6349078 B2 JP6349078 B2 JP 6349078B2 JP 2013249107 A JP2013249107 A JP 2013249107A JP 2013249107 A JP2013249107 A JP 2013249107A JP 6349078 B2 JP6349078 B2 JP 6349078B2
Authority
JP
Japan
Prior art keywords
heat
water
heat exchange
heat source
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013249107A
Other languages
Japanese (ja)
Other versions
JP2015105807A (en
Inventor
健三 科野
健三 科野
定親 小川
定親 小川
孝男 横山
孝男 横山
Original Assignee
東北ボーリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北ボーリング株式会社 filed Critical 東北ボーリング株式会社
Priority to JP2013249107A priority Critical patent/JP6349078B2/en
Publication of JP2015105807A publication Critical patent/JP2015105807A/en
Application granted granted Critical
Publication of JP6349078B2 publication Critical patent/JP6349078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、熱源水及び循環水熱交換システムに係り、特に、熱源水の放熱装置と循環水の採熱装置とにより熱交換水槽にて熱源水と循環水とを熱交換させる熱源水及び循環水熱交換システムに関する。 The present invention relates to a heat source water and circulating water heat exchange system, and in particular, heat source water and circulation in which heat source water and circulating water are heat-exchanged in a heat exchange water tank by a heat source water radiator and a circulating water heat collecting device. It relates to a water heat exchange system.

地下水、河川水、工業排水等のいわゆる「低温熱源水」の熱エネルギを供給して融雪や消雪などに利用する技術が開発されている。この低温熱源水の熱エネルギの供給には2種類の方法がある。第1の熱エネルギ供給方法は、熱源水を融雪や消雪を行う道路や屋根などの負荷側に直接送り込む方法である。例えば、年間を通じて温度がほぼ一定であり、外気と比べて夏は冷たく冬は暖かい地下水や、豊富に湧き出る温泉水がこの方式で利用されている。例えば、特許文献1には、地下水を利用して効率よく融雪が行える融雪装置及び融雪方法が開示されている。ここでは、揚水ポンプによって井戸から汲み上げられた地下水が融雪槽内の散水管によって散水され、融雪槽内の雪が溶かされることが記載されている。   Technology has been developed to supply the thermal energy of so-called “low-temperature heat source water” such as groundwater, river water, industrial wastewater, etc. and use it for melting snow and snow removal. There are two methods for supplying thermal energy of the low-temperature heat source water. The first heat energy supply method is a method in which heat source water is directly fed to a load side such as a road or a roof where snow melting or snow removal is performed. For example, the temperature is almost constant throughout the year, and groundwater that is cooler in the summer and warmer in the winter than the outside air, and hot spring water that springs abundantly are used in this way. For example, Patent Document 1 discloses a snow melting apparatus and a snow melting method that can efficiently melt snow using groundwater. Here, it is described that the groundwater pumped up from the well by the pump is sprinkled by the water spray pipe in the snowmelt tank, and the snow in the snowmelt tank is melted.

第2の熱エネルギ供給方法は、ヒートポンプなどの熱交換器を介して間接的に熱エネルギを負荷側に送り込む方法である。この熱エネルギ供給方法は、外気と十分に温度差がない低温熱源水から熱を取り出すためにヒートポンプなどの熱交換器を用い、必要な熱エネルギを十分に負荷側に供給する方法である。例えば、特許文献2には地下水を利用したヒートポンプシステムが開示されている。ここでは、地下水及び地中から熱を吸熱し、さらに水−水熱交換器において地下水と熱交換して地下水から熱を吸熱することが記載されている。このように、外気と十分に温度差がない熱源水から熱エネルギを取り出すためにヒートポンプや水−水熱交換器などが用いられ、熱エネルギが間接供給される。   The second thermal energy supply method is a method of indirectly sending thermal energy to the load side through a heat exchanger such as a heat pump. This heat energy supply method is a method of sufficiently supplying necessary heat energy to the load side by using a heat exchanger such as a heat pump in order to extract heat from low temperature heat source water that does not have a sufficient temperature difference from the outside air. For example, Patent Document 2 discloses a heat pump system using groundwater. Here, it is described that heat is absorbed from groundwater and underground, and further heat is exchanged with groundwater in a water-water heat exchanger to absorb heat from the groundwater. In this way, a heat pump, a water-water heat exchanger, or the like is used to extract heat energy from heat source water that does not have a sufficient temperature difference from the outside air, and heat energy is indirectly supplied.

また、熱エネルギを利用する側に負荷変動がある場合には熱源装置の容量を大きくする必要があるが、それでは設備コストが嵩んでしまう。そこで蓄熱槽を設ける技術が採用されている。例えば、特許文献3には、充分な容量を持つ分散蓄熱槽を設置した地域熱供給システムが開示されている。ここでは、蓄熱槽を用い、地域センター内に設置された熱源プラントで製造される熱を周辺の熱受入側建物に供給して、その利用をはかる地域熱供給システムにおいて、この熱源プラントで製造された熱を蓄える蓄熱槽を各熱受入側建物に分散設置し、蓄熱槽と熱源プラントとの間を熱搬送管で接続することが記載されている。   In addition, when there is a load fluctuation on the side using heat energy, it is necessary to increase the capacity of the heat source device, but this increases the equipment cost. Therefore, a technique for providing a heat storage tank is employed. For example, Patent Document 3 discloses a district heat supply system in which a distributed heat storage tank having a sufficient capacity is installed. Here, in a district heat supply system that uses a heat storage tank and supplies the heat produced at the heat source plant installed in the regional center to the surrounding heat receiving side building and uses it, it is produced at this heat source plant. It is described that heat storage tanks that store heat are dispersedly installed in each heat receiving side building, and the heat storage tanks and the heat source plant are connected by a heat transfer pipe.

この蓄熱槽の蓄熱容量を増大させ、熱源装置を更に小型化して設備コストを低減する技術が開発されている。例えば、特許文献4には潜熱蓄熱材を熱交換器に使用した例として、無機性潜熱蓄熱材を用いた熱回収蓄熱システムが開示されている。ここでは、無機系潜熱蓄熱材をゲル化剤等によりゲル状にして、その中に過冷却防止剤や相分離防止剤を均一に分散し、それをカプセル材で包んだカプセル型潜熱媒体にし、その潜熱媒体を熱交換器に充填して河川水や下水と熱交換し、さらにその媒体を蓄熱槽に輸送して貯蔵することが記載されている。   A technology for increasing the heat storage capacity of the heat storage tank, further reducing the size of the heat source device, and reducing the equipment cost has been developed. For example, Patent Document 4 discloses a heat recovery heat storage system using an inorganic latent heat storage material as an example in which the latent heat storage material is used in a heat exchanger. Here, the inorganic latent heat storage material is gelled with a gelling agent or the like, and the supercooling prevention agent and the phase separation prevention agent are uniformly dispersed therein, and the capsule type latent heat medium wrapped with the capsule material is obtained. It is described that the latent heat medium is filled in a heat exchanger to exchange heat with river water and sewage, and further, the medium is transported to a heat storage tank and stored.

さらに、外気と十分に温度差がない低温熱源水の熱エネルギを利用するため、熱交換効率の高い熱交換器の技術が提案されている。例えば、特許文献5には、地中に埋設されて大地との間で熱交換を行う地中熱交換器が開示されている。ここでは、大地に形成された竪穴と、竪穴に配設された地中熱交換器と、竪穴に充填された充填材とを備え、地中熱交換器は、内管と外管の二重管で構成され、外管を流化する熱媒が最下端から内管を通って返送される循環方式を採用している。   Furthermore, in order to utilize the thermal energy of the low-temperature heat source water that does not have a sufficient temperature difference from the outside air, a heat exchanger technology with high heat exchange efficiency has been proposed. For example, Patent Document 5 discloses a ground heat exchanger that is buried in the ground and performs heat exchange with the ground. Here, it comprises a pothole formed in the earth, a ground heat exchanger disposed in the pothole, and a filler filled in the pothole. It is composed of pipes and adopts a circulation system in which the heat medium that circulates the outer pipe is returned from the bottom end through the inner pipe.

特開2010-159574号公報JP 2010-159574 A 特開2008-309382号公報JP 2008-309382 A 特開平8-270987号公報JP-A-8-270987 特開平6-159965号公報JP-A-6-159965 特開2008-96015号公報JP 2008-96015 A

第1の熱エネルギ供給方法である熱源水を直接負荷側に送り込む方法は、熱源水に含まれる、例えば鉄分等の含有物のスケールが、例えば配管等の設備機器、或いは、例えば路面等の熱エネルギの負荷側に赤錆などを発生させることから、粉塵などの公害の発生、景観上の問題、設備維持費用の高騰などの問題が生じる。また、この第1の熱エネルギ供給方法では、熱源水を熱資源として使用するだけであり水資源として有効に活用することができないという問題もある。   The method of feeding heat source water directly to the load side, which is the first heat energy supply method, is that the scale of inclusions such as iron contained in the heat source water is, for example, equipment such as piping, or heat such as road surfaces. Since red rust and the like are generated on the energy load side, problems such as the generation of pollution such as dust, landscape problems, and rising equipment maintenance costs arise. Moreover, in this 1st thermal energy supply method, only heat source water is used as a heat resource, and there also exists a problem that it cannot utilize effectively as a water resource.

また、第2の熱エネルギ供給方法である熱源水をヒートポンプなどの熱交換器等を介して間接的に負荷側に送り込む方法は上述した問題を解決する。しかし、ヒートポンプや水−水熱交換器などの設備機器を使用するため、設備に関する高価な設備設置コストが負担になるという問題がある。また、動力源として重油や電気などの化石燃料を使用するため維持管理コストが負担となるという問題もある。   Moreover, the method of sending the heat source water which is the second heat energy supply method indirectly to the load side via a heat exchanger such as a heat pump solves the above-described problem. However, since equipment such as a heat pump and a water-water heat exchanger is used, there is a problem that an expensive equipment installation cost related to the equipment becomes a burden. In addition, since fossil fuels such as heavy oil and electricity are used as a power source, there is a problem that the maintenance cost becomes a burden.

上述した設備費を低減する方法としては、外気と十分な温度差がない低温熱源水から簡易な方法で熱エネルギを取り出すために、蓄熱材などにより熱交換効率を向上させることが望まれる。しかし、蓄熱材により低温熱源水から熱エネルギを取り出すには、長期に亘り容器の破損や熱交換性能の劣化が発生しない蓄熱材の技術が要求される。また、低温熱源水を、特に、飲料水や工業用水などの水資源としても活用するには、蓄熱材が熱源水に漏れ出さない容器の設計施工技術が要求される。   As a method for reducing the facility cost described above, it is desired to improve heat exchange efficiency with a heat storage material or the like in order to extract heat energy from a low-temperature heat source water that does not have a sufficient temperature difference from the outside air. However, in order to extract thermal energy from the low-temperature heat source water using the heat storage material, a technology for the heat storage material that does not cause breakage of the container or deterioration of the heat exchange performance over a long period of time is required. In addition, in order to use low-temperature heat source water as water resources such as drinking water and industrial water in particular, design and construction techniques for containers in which the heat storage material does not leak into the heat source water are required.

本願の目的は、かかる課題を解決し、熱交換効率が高く簡易な熱交換システムにより熱エネルギの供給コストを低減し、安全性が高く維持管理が容易な蓄熱材により熱源水を熱資源及び水資源として有効に活用する熱源水及び循環水熱交換システムを提供することである。 The purpose of the present application is to solve such problems, reduce the supply cost of heat energy by a simple heat exchange system with high heat exchange efficiency, and use heat storage materials that are safe and easy to maintain as heat resources and water. It is to provide a heat source water and a circulating water heat exchange system that are effectively utilized as resources.

上記目的を達成するため、本発明に係る熱源水及び循環水の熱交換システムは、水槽内に供給された所定量の熱源水と、水槽内にループ状に巻かれて積み重ねられた循環水配管を流通する循環水と、を熱交換させる熱交換水槽と、熱交換水槽に連続的に供給した熱源水を熱資源として放熱させ、熱資源を熱交換水槽から回収後は、水資源として継続的に利用するか、又は直接排水する熱源水の放熱装置と、熱交換水槽を移動して採熱し、熱交換水槽から流出後は熱資源として放熱し、再度熱交換水槽に流入して循環する循環水の採熱装置と、を備えることを特徴とする。   In order to achieve the above object, a heat exchange system for heat source water and circulating water according to the present invention includes a predetermined amount of heat source water supplied into a water tank and a circulating water pipe wound in a loop and stacked in the water tank. The heat exchange water that circulates through the heat exchange water tank and the heat source water continuously supplied to the heat exchange water tank are dissipated as heat resources, and after the heat resources are recovered from the heat exchange water tank, they are continuously used as water resources. The heat source water radiating device that is used for or directly draining, and the heat exchange water tank is moved to collect heat, and after flowing out of the heat exchange water tank, the heat is dissipated as a heat resource, and then recirculated into the heat exchange water tank for circulation. And a water heat collecting device.

上記構成により、本熱交換システムは、熱交換水槽において熱源水と循環水との熱交換を行うことで、熱源水の熱エネルギを熱資源として活用し、熱交換水槽から回収後は水資源として継続的に利用できる。また、循環水は、採熱装置により循環され、熱源水からの採熱と熱資源としての放熱とを繰り返すことで熱エネルギを効率的に運搬できる。このようなシステムにより、熱交換水槽において熱源水と循環水とをヒートポンプなどの熱交換器を使用せずに、また例えば重油や電気などの動力を使用せずに熱交換させることができ簡易な設備により廉価な設備コストで熱交換システムが構築できる。   With the above configuration, this heat exchange system uses the heat energy of the heat source water as a heat resource by exchanging heat between the heat source water and the circulating water in the heat exchange water tank, and as a water resource after recovery from the heat exchange water tank Can be used continuously. Further, the circulating water is circulated by the heat collecting device, and heat energy can be efficiently conveyed by repeating the heat collecting from the heat source water and the heat radiation as the heat resource. With such a system, heat source water and circulating water can be exchanged without using a heat exchanger such as a heat pump in a heat exchange water tank, and without using power such as heavy oil or electricity. A heat exchange system can be constructed at a low equipment cost.

また、本熱交換システムでは、熱交換水槽内にループ状に巻かれた循環水配管が積み重ねられ、その配管内を循環水が流通する。すなわち、本熱交換システムでの熱交換には、市販の配管材料のみが使用されるが、この配管材料は、熱容量は小さいもののそれ自体蓄熱性能を有する。循環水配管は熱交換水槽内においてループ状に巻かれて積み重ねられることで熱源水と接触する表面積を十分に確保することができる。つまり、循環水配管は、小さな熱容量であっても接触面積が大きくなれば高い熱交換効率を発揮する実用的な蓄熱材となる。これにより、循環水配管は、循環水を流通させる機能と蓄熱性能を発揮する機能とを兼ね備え、施設設置コストを大幅に低減しつつ蓄熱材として機能することができる。   Moreover, in this heat exchange system, the circulating water piping wound by the loop shape is piled up in the heat exchange water tank, and circulating water distribute | circulates the inside of the piping. That is, although only a commercially available piping material is used for heat exchange in this heat exchange system, this piping material has its own heat storage performance although its heat capacity is small. Circulating water piping can be sufficiently secured in a surface area in contact with the heat source water by being wound in a loop shape and stacked in the heat exchange water tank. That is, the circulating water pipe becomes a practical heat storage material that exhibits high heat exchange efficiency if the contact area is large even if the heat capacity is small. Thereby, circulating water piping has the function to distribute | circulate circulating water, and the function which exhibits heat storage performance, and can function as a heat storage material, reducing facility installation cost significantly.

さらに、熱交換を行う循環水配管は、上水道に使用される配管をそのまま使用することで、長期間使用しても有害な成分が流出することは無く、安全性の高い熱交換システムとなる。また、循環水配管は、交換自在でありメンテナンスが容易な蓄熱材である。これにより、熱源水を問題なく熱資源及び水資源として有効に活用することができる。   Furthermore, the circulating water pipe for performing heat exchange uses the pipe used for the water supply as it is, so that harmful components do not flow out even when used for a long period of time, and the heat exchange system is highly safe. The circulating water pipe is a heat storage material that can be exchanged easily and is easily maintained. Thereby, heat source water can be effectively utilized as a heat resource and a water resource without a problem.

また、熱交換システムは、熱交換水槽には、潜熱蓄熱材が内部に封入され、耐腐食性を有する材料からなる複数の蓄放熱パイプを配置することが好ましい。これにより、熱交換水槽の熱容量が潜熱蓄熱材により増大し、熱源水から循環水への熱エネルギの交換が効率的に行われる。そして、蓄放熱パイプは、上水に用いられる樹脂製等の耐腐食性の配管材料を使用し、熱交換水槽内で浮遊させずに定位置に配置する。これにより、有害な成分が熱源水に漏れ出すことを防止できる。このように、熱交換水槽内の水質の安全性を確保し、熱源水を問題なく熱資源及び水資源として有効に活用できる。   In the heat exchange system, it is preferable that the heat exchange water tank is provided with a plurality of heat storage and radiation pipes made of a material having a corrosion resistance and a latent heat storage material enclosed therein. Thereby, the heat capacity of the heat exchange water tank is increased by the latent heat storage material, and the heat energy is efficiently exchanged from the heat source water to the circulating water. And the heat storage and heat radiation pipe uses a corrosion-resistant piping material such as resin used for clean water, and is arranged at a fixed position without floating in the heat exchange water tank. Thereby, it is possible to prevent harmful components from leaking into the heat source water. Thus, the safety | security of the water quality in a heat exchange water tank is ensured, and heat source water can be effectively utilized as a heat resource and a water resource without a problem.

また、熱交換システムは、熱交換水槽内には、複数の分室に区分けして熱源水の流路を形成させる仕切板を備え、潜熱蓄熱材が封入された複数の蓄放熱パイプが、熱源水の吐口付近の流路に集中又は分散して配置されることが好ましい。このように、熱交換水槽内に仕切板を設けることで熱源水の経路をより長くとることができ、熱源水から循環水への熱エネルギの交換を十分に行い、熱交換の効率を上げることができる。また、潜熱蓄熱材が封入された蓄放熱パイプを熱源水の吐口付近の流路に集中又は分散して配置することで、熱エネルギのより大きな状態で熱交換をさせ、熱交換の効率を上げることができる。   In addition, the heat exchange system includes a partition plate in the heat exchange water tank that is divided into a plurality of compartments to form a flow path of the heat source water, and the plurality of heat storage and radiating pipes in which the latent heat storage material is enclosed are the heat source water. It is preferable that they are arranged in a concentrated or dispersed manner in the flow path near the discharge port. In this way, by providing a partition plate in the heat exchange water tank, the path of the heat source water can be made longer, the heat energy from the heat source water to the circulating water can be sufficiently exchanged, and the efficiency of heat exchange can be increased. Can do. In addition, heat storage heat radiating pipes enclosing the latent heat storage material are concentrated or dispersed in the flow path near the outlet of the heat source water, so that heat can be exchanged with a larger amount of heat energy, and the efficiency of heat exchange can be increased. be able to.

また、熱交換システムは、熱交換水槽内の循環水配管が、熱交換水槽内の循環水配管は、分室ごとにループ状に巻かれて積み重ねられた複数のスパイラルを形成し、循環水の呑口から吐口まで、複数のスパイラルを形成しながら連結されることが好ましい。これにより、熱交換水槽内の循環水配管の経路をより長く取ることができ、熱交換効率を上げることができる。また、循環水配管は、熱交換水槽内においてループ状に巻かれて積み重ねられたスパイラルを形成するため、強制的な応力を受けることがない。これにより、破損などのダメージによる循環水の洩れ等の虞がない。   In addition, the heat exchange system has a circulating water pipe in the heat exchange water tank, and the circulating water pipe in the heat exchange water tank forms a plurality of spirals that are wound in a loop for each of the compartments. It is preferable to connect from the spout to the spout while forming a plurality of spirals. Thereby, the path | route of the circulating water piping in a heat exchange water tank can be taken longer, and heat exchange efficiency can be raised. Moreover, since the circulating water pipe forms a spiral that is wound in a loop shape and stacked in the heat exchange water tank, it does not receive a forced stress. Thereby, there is no possibility of leakage of circulating water due to damage such as breakage.

また、熱交換システムは、熱交換水槽内の循環水配管が、複数に並列分岐した呑口及び吐口にそれぞれ接続され、それぞれの連続した循環水配管は、複数の連続したスパイラルを形成することが好ましい。これにより、熱交換水槽内の循環水配管の経路が倍増されて熱源水との接触面積を増大させることができ、熱交換効率を上げることができる。   Further, in the heat exchange system, it is preferable that the circulating water pipes in the heat exchange water tank are respectively connected to a plurality of outlets and outlets branched in parallel, and each continuous circulating water pipe forms a plurality of continuous spirals. . Thereby, the path | route of the circulating water piping in a heat exchange water tank can be doubled, a contact area with heat source water can be increased, and heat exchange efficiency can be raised.

また、熱交換システムは、循環水配管のスパイラルが、口から吐口へと流れる熱源水の平面的な流路に対して循環水の平面的な流路が逆方向になるように配置されることが好ましい。これにより、熱源水の流れと、循環水配管内を流通する循環水の流れとが対向し、循環水配管内の循環水が熱源水から十分に熱エネルギを吸熱することができ、熱交換水槽の断熱性能を高め、熱交換の効率を向上させることができる。 The heat exchanger system, the spiral of the circulating water piping, planar flow path of the circulating water are arranged to be in the opposite direction to the planar flow path of the heat source water flowing into吐口from port It is preferable. As a result, the flow of the heat source water and the flow of the circulating water circulating in the circulating water pipe face each other, and the circulating water in the circulating water pipe can sufficiently absorb the heat energy from the heat source water. The heat insulation performance can be improved and the efficiency of heat exchange can be improved.

また、熱交換システムは、熱交換水槽が、上面、外壁面及び底面に生じた隙間がシール又はパッキンにより封止されて気密状態となることが好ましい。これにより、熱交換水槽の断熱性能を高め、熱交換の効率を向上させることができる。   Further, in the heat exchange system, it is preferable that the heat exchange water tank is in an airtight state in which gaps formed on the top surface, the outer wall surface, and the bottom surface are sealed with a seal or packing. Thereby, the heat insulation performance of a heat exchange water tank can be improved and the efficiency of heat exchange can be improved.

また、熱交換システムは、熱交換水槽の外壁面及び底面は断熱材で覆われ、熱交換水槽の一部又は全部が土中に埋設されることが好ましい。このように、断熱材で熱交換水槽の外壁面及び底面を覆うことにより、熱交換水槽の断熱性能を高め、熱交換の効率を向上させることができる。また、熱交換水槽の一部又は全部を土中に埋設させることで、外気温の変動の影響を減少させ、熱交換の効率を向上させることができる。   In the heat exchange system, it is preferable that the outer wall surface and the bottom surface of the heat exchange water tank are covered with a heat insulating material, and a part or all of the heat exchange water tank is embedded in the soil. Thus, by covering the outer wall surface and the bottom surface of the heat exchange water tank with the heat insulating material, the heat insulation performance of the heat exchange water tank can be improved and the efficiency of heat exchange can be improved. Moreover, by embedding a part or all of the heat exchange water tank in the soil, it is possible to reduce the influence of fluctuations in the outside air temperature and improve the efficiency of heat exchange.

さらに、熱交換システムは、熱交換水槽の上部には、少なくとも循環水移動のための送水装置、付属装置、及び分岐装置が収納可能な室が設けられることが好ましい。これにより、熱交換水槽の上部に装置を集約して設置でき、コンパクトな熱交換システムが実現できる。また、熱交換水槽の上部に装置を設置する室を設けることで、外気温の変動の影響を減少させ、熱交換の効率を向上させることができる。   Furthermore, in the heat exchange system, it is preferable that a chamber capable of storing at least a water supply device for moving circulating water, an accessory device, and a branch device is provided in the upper part of the heat exchange water tank. Thereby, an apparatus can be integrated and installed in the upper part of a heat exchange water tank, and a compact heat exchange system is realizable. In addition, by providing a chamber for installing the apparatus in the upper part of the heat exchange water tank, it is possible to reduce the influence of fluctuations in the outside air temperature and improve the efficiency of heat exchange.

以上のように、本発明に係る熱交換システムによれば、熱交換効率が高く簡易な熱交換システムにより熱エネルギの供給コストを低減し、安全性が高く維持管理が容易な蓄熱材により熱源水を熱資源及び水資源として有効に活用する熱源水及び循環水熱交換システムを提供することができる。 As described above, according to the heat exchange system according to the present invention, the heat source water is reduced by the heat storage material that reduces the heat energy supply cost by the simple heat exchange system with high heat exchange efficiency and is safe and easy to maintain. It is possible to provide a heat source water and circulating water heat exchanging system that effectively uses water as a heat resource and water resource.

本発明に係る熱源水及び循環水熱交換システムの1つの実施形態の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of one Embodiment of the heat source water which concerns on this invention, and a circulating water heat exchange system. 熱交換水槽及び設備室における熱源水及び循環水熱交換システムの構成を示す断面図である。It is sectional drawing which shows the structure of the heat source water and circulating water heat exchange system in a heat exchange water tank and an equipment room. 図1の熱交換水槽内の循環水配管のスパイラル配置に関する一つの実施例を示すA−A断面図である。It is AA sectional drawing which shows one Example regarding the spiral arrangement | positioning of the circulating water piping in the heat exchange water tank of FIG. 熱交換水槽内の熱源水及び循環水の配管回りを示す詳細図である。It is detail drawing which shows the surroundings of piping of the heat source water and circulating water in a heat exchange water tank. 蓄放熱パイプの構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of a thermal storage / radiation pipe. 図1の熱交換水槽内の蓄放熱パイプの配置に関する一つの実施例を示すB−B断面図である。It is BB sectional drawing which shows one Example regarding arrangement | positioning of the thermal storage / radiation pipe in the heat exchange water tank of FIG. 熱交換水槽の断熱手段を示す詳細図である。It is detail drawing which shows the heat insulation means of a heat exchange water tank.

(熱交換システムの構成)
以下に、図面を用いて本発明に係る熱源水及び循環水熱交換システム1の実施形態につき、詳細に説明する。図1に、本発明に係る熱交換システム1の1つの実施形態の概略構成を示す。本熱交換システム1は、熱源水6と循環水7とを熱交換させる熱交換水槽2、熱源水6を熱交換水槽2に供給して水資源として活用する熱減水放熱装置3、及び循環水7を循環させる循環水ポンプ11等の循環水7の採熱装置4から構成される。
(Configuration of heat exchange system)
Hereinafter, embodiments of the heat source water and circulating water heat exchange system 1 according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of one embodiment of a heat exchange system 1 according to the present invention. The heat exchange system 1 includes a heat exchange water tank 2 for exchanging heat between the heat source water 6 and the circulating water 7, a heat reducing water radiating device 3 for supplying the heat source water 6 to the heat exchange water tank 2 and utilizing it as a water resource, and circulating water. The heat collecting device 4 of the circulating water 7 such as the circulating water pump 11 that circulates 7 is configured.

熱交換水槽2は、熱交換水槽2内に供給された所定量の熱源水6と、熱交換水槽2内にループ状に巻かれて積み重ねられた循環水配管5内を流通する循環水7と、を熱交換させる容器である。本実施形態では、熱源水6として採水熱井戸8から汲み上げられた地下水を使用するが、これに限らず、例えば河川水、工場排水等であっても良い。これらの熱源水6は、ボイラーやヒートポンプ等により所定の温度に加熱された熱源水6に対して「低温熱源水」と呼ばれる。地下水は、年間を通じて変化の激しい外気温と比較して年間を通じて温度変化が少ないことを特徴とする。本発明に係る熱交換システム1は、この特徴を生かして、例えば冬季においては、循環水7よりも高温である地下水を熱源水6として汲み上げ、熱源水6の熱エネルギを放熱させて循環水7に吸熱させることで熱交換を行う。そして、ヒートソースとして熱エネルギを放熱した熱源水6は水資源として活用される。一方、循環水7は、吸熱した熱エネルギにより例えば、駐車場等の路面の積雪を融雪させるヒートシンクとしての融雪装置15などに活用する、というシステムである。   The heat exchange water tank 2 includes a predetermined amount of heat source water 6 supplied into the heat exchange water tank 2, and circulating water 7 that circulates in the circulating water pipe 5 that is wound around the heat exchange water tank 2 and stacked. , A container for heat exchange. In the present embodiment, the groundwater pumped from the water sampling heat well 8 is used as the heat source water 6, but is not limited thereto, and may be, for example, river water, factory drainage, or the like. These heat source waters 6 are called “low temperature heat source water” with respect to the heat source water 6 heated to a predetermined temperature by a boiler, a heat pump or the like. Groundwater is characterized by a small change in temperature throughout the year compared to the outside air temperature, which changes drastically throughout the year. The heat exchange system 1 according to the present invention takes advantage of this feature, for example, in the winter season, pumps ground water that is higher in temperature than the circulating water 7 as the heat source water 6, and dissipates the heat energy of the heat source water 6 to circulate the circulating water 7. Heat exchange is performed by absorbing heat. And the heat source water 6 which radiated the heat energy as a heat source is utilized as a water resource. On the other hand, the circulating water 7 is a system in which the heat energy absorbed is used in, for example, a snow melting device 15 as a heat sink that melts snow on a road surface such as a parking lot.

熱源水6の放熱装置3は、図1に示すように、採水熱井戸8から水中ポンプ27により汲み上げられた地下水を、熱交換水槽2に連続的に供給するものである。この熱源水6の供給は制御部32により制御される。熱源水放熱装置3は、熱交換水槽2内で熱源水6を熱資源として放熱させる。また、熱源水放熱装置3は、熱源水6の熱資源が熱交換水槽2において回収された後は熱源水6を貯水槽12に貯水する。そして、熱源水放熱装置3は、回収した熱源水6を生活用水、農業用水等の水資源として継続的に利用された後に排水されるか、或いは、利用されない熱源水6は水路20等に直接排水される。   As shown in FIG. 1, the heat radiating device 3 for the heat source water 6 continuously supplies the groundwater pumped up from the sampling water well 8 by the submersible pump 27 to the heat exchange water tank 2. The supply of the heat source water 6 is controlled by the control unit 32. The heat source water radiating device 3 radiates heat in the heat exchange water tank 2 using the heat source water 6 as a heat resource. Further, the heat source water radiator 3 stores the heat source water 6 in the water tank 12 after the heat resources of the heat source water 6 are collected in the heat exchange water tank 2. Then, the heat source water heat radiating device 3 is drained after the recovered heat source water 6 is continuously used as water resources such as domestic water and agricultural water, or the heat source water 6 that is not used is directly supplied to the water channel 20 or the like. Drained.

従来の熱利用システムでは、湧き出た温泉水を直接融雪に利用する場合等、熱源水6を熱資源としてのみ使用する場合がある。また、井戸水を飲料水として利用する場合等、熱源水6を水資源としてのみ使用する場合がある。本熱交換システム1は、熱源水6の熱エネルギを直接負荷側に供給するのではなく、熱交換水槽2おいて循環水7と熱交換させた後、負荷側に間接供給するシステムであり、地下水等の熱源水6をより有効に活用するシステムである。   In the conventional heat utilization system, the heat source water 6 may be used only as a heat resource, for example, when the hot spring water that springs up is directly used for melting snow. Moreover, when using well water as drinking water, the heat source water 6 may be used only as water resources. This heat exchange system 1 is a system that does not directly supply the heat energy of the heat source water 6 to the load side, but indirectly supplies it to the load side after heat exchange with the circulating water 7 in the heat exchange water tank 2. This is a system that makes more effective use of heat source water 6 such as groundwater.

また、循環水7の採熱装置4は、循環水ポンプ11により循環水7を熱交換水槽2内の循環水配管5に流通させ、循環水7に熱源水6からの熱エネルギを採熱させる。そして、循環水採熱装置4は、ヒートソースとしての熱交換水槽2から流出後は、循環水7を熱資源、すなわちヒートシンクとして活用される。例えば、駐車場等の路面に設けられた融雪装置15に誘導し、放熱させることで熱エネルギとして利用する。そして、循環水7を再度熱交換水槽2に流入させ、循環して熱エネルギを利用させる。   Further, the heat collecting device 4 for the circulating water 7 causes the circulating water 7 to flow through the circulating water pipe 5 in the heat exchange water tank 2 by the circulating water pump 11, and causes the circulating water 7 to collect the heat energy from the heat source water 6. . And the circulating water heat collecting apparatus 4 is utilized as a heat resource, ie, a heat sink, after flowing out from the heat exchange water tank 2 as a heat source. For example, it guides to a snow melting device 15 provided on a road surface such as a parking lot and dissipates heat to use it as thermal energy. And the circulating water 7 is made to flow into the heat exchange water tank 2 again, and it circulates and uses thermal energy.

(熱交換水槽及び設備室の構成)
図2に、熱交換水槽2及び設備室14における熱源水及び循環水熱交換システム1の構成を示す。また、図3に、図1の熱交換水槽2内の循環水配管5のスパイラル配置に関する一つの実施例を示す。熱交換水槽2は地下に設けられ、上部には設備室14が設けられる。設備室14は、天井面を鉄蓋33により覆われ、外壁面25には鉄枠39が設けられている。その鉄枠39の外側は断熱材30により覆われている。また、設備室14には、循環水ポンプ11が設置される。また、採水熱井戸8から汲み上げられた熱源水6は、熱交換水槽2の吐口22及び呑口21に接続される。また、循環水ポンプ11は循環水7の呑口19及び吐口18に接続される。
(Configuration of heat exchange water tank and equipment room)
FIG. 2 shows the configuration of the heat source water and circulating water heat exchange system 1 in the heat exchange water tank 2 and the equipment room 14. FIG. 3 shows an embodiment relating to the spiral arrangement of the circulating water pipe 5 in the heat exchange water tank 2 of FIG. The heat exchange water tank 2 is provided in the basement, and an equipment room 14 is provided in the upper part. The facility room 14 has a ceiling surface covered with an iron lid 33, and an iron frame 39 is provided on the outer wall surface 25. The outside of the iron frame 39 is covered with a heat insulating material 30. A circulating water pump 11 is installed in the equipment room 14. Further, the heat source water 6 pumped up from the sampling water well 8 is connected to the outlet 22 and the outlet 21 of the heat exchange water tank 2. Further, the circulating water pump 11 is connected to the spout 19 and the outlet 18 of the circulating water 7.

図2に示すように、熱交換水槽2の外壁面25及び底面26は、コンクリート壁31で囲まれている。また、このコンクリート壁31の外側は断熱材30により覆われている。そして、設備室14と熱交換水槽2とは、上蓋24により仕切られている。本実施形態では、熱交換水槽2内は、仕切板13a,13bにより複数の分室に区分けされ、熱源水6の流路が形成される。この仕切板13a,13bは「じゃま板」とも称され、本実施形態ではアクリル製の平板が用いられるが、それに限らない。そして、図3に示されるように、仕切板13a及び13bは、熱源水6の流路が蛇行するように熱交換水槽2の外壁面25に接続される。この熱源水6の流路は、図1中において矢印にて斜視により示す。   As shown in FIG. 2, the outer wall surface 25 and the bottom surface 26 of the heat exchange water tank 2 are surrounded by a concrete wall 31. Further, the outside of the concrete wall 31 is covered with a heat insulating material 30. The facility room 14 and the heat exchange water tank 2 are partitioned by an upper lid 24. In the present embodiment, the heat exchange water tank 2 is divided into a plurality of compartments by the partition plates 13a and 13b, and a flow path for the heat source water 6 is formed. The partition plates 13a and 13b are also referred to as “baffle plates”, and an acrylic flat plate is used in the present embodiment, but is not limited thereto. And as FIG. 3 shows, the partition plates 13a and 13b are connected to the outer wall surface 25 of the heat exchange water tank 2 so that the flow path of the heat source water 6 may meander. The flow path of the heat source water 6 is indicated by a perspective view with an arrow in FIG.

(スパイラルを形成する循環水配管)
図2に示す循環水配管5には、本実施形態では樹脂製ホース23が用いられる。この樹脂製ホース23は、循環水7の呑口19から吐口18までを連続的に接続し、循環水7を流通させる。これは、熱源水6の流路と循環水7の流路とを対向させ、効果的に熱交換させるためである。これにより、熱源水6は、熱交換後に水資源として継続的に利用することができる。また、本実施形態では、この樹脂製ホース23が熱交換水槽2内においてループ状に積み重ねられる。これは、循環水配管5の全長をより長くすることによって熱交換の効率を向上させるためである。このように樹脂製ホース23がループ状に積み重ねられることで、樹脂製ホース23の熱源水6との接触面積を容易に増加させて熱交換水槽2内に配置することができる。
(Circulating water piping forming a spiral)
In the present embodiment, a resin hose 23 is used for the circulating water pipe 5 shown in FIG. The resin hose 23 continuously connects the outlet 19 to the outlet 18 of the circulating water 7 to circulate the circulating water 7. This is to make the flow path of the heat source water 6 and the flow path of the circulating water 7 face each other and effectively exchange heat. Thereby, the heat source water 6 can be continuously used as a water resource after heat exchange. In the present embodiment, the resin hose 23 is stacked in a loop shape in the heat exchange water tank 2. This is to improve the efficiency of heat exchange by making the total length of the circulating water pipe 5 longer. Thus, the resin hose 23 is stacked in a loop shape, so that the contact area of the resin hose 23 with the heat source water 6 can be easily increased and disposed in the heat exchange water tank 2.

図3に、図1の熱交換水槽2内に配置された樹脂製ホース23に関する一つの実施例を示す。熱交換水槽2内の樹脂製ホース23は、ループ状に巻かれたスパイラルを形成しながら呑口19から吐口18に連続して接続される。本実施形態では、熱交換水槽2内は2枚の仕切板13a,13bにより3つの分室が形成された流路となり、各分室15に4個の樹脂製ホース23のスパイラルが配置される。1箇所のスパイラルで積み上げられた樹脂製ホース23は、一端下部まで下がって隣接するスパイラルに移動してループ状に積み上げられる。   FIG. 3 shows an embodiment relating to the resin hose 23 arranged in the heat exchange water tank 2 of FIG. The resin hose 23 in the heat exchange water tank 2 is continuously connected from the spout 19 to the spout 18 while forming a spiral wound in a loop. In the present embodiment, the heat exchange water tank 2 has a flow path in which three compartments are formed by two partition plates 13 a and 13 b, and spirals of four resin hoses 23 are arranged in each compartment 15. The resin hose 23 stacked in one spiral is lowered to the lower end of one end, moves to the adjacent spiral, and is stacked in a loop shape.

熱交換水槽2内の循環水配管5は、複数に並列分岐した呑口19及び吐口18に接続され、それぞれに連続した樹脂製ホース23は、個別のスパイラルを形成する。例えば、図3に示す実施例では、樹脂製ホース23aで表わされる循環水配管5の系列と、薄く塗られた樹脂製ホース23bで表わされる循環水配管5の系列とがそれぞれ連続して形成される。このように、熱交換水槽2内に循環水配管5を2系列としてループ状に積み上げることで、樹脂製ホース23の密度を高めて配置することができ、熱交換効率を向上させることができる。   The circulating water piping 5 in the heat exchange water tank 2 is connected to a plurality of parallel-branched spouts 19 and spouts 18, and the continuous resin hoses 23 form individual spirals. For example, in the embodiment shown in FIG. 3, a series of circulating water piping 5 represented by a resin hose 23a and a series of circulating water piping 5 represented by a thinly coated resin hose 23b are respectively formed continuously. The Thus, by stacking the circulating water pipes 5 in a loop shape in the heat exchange water tank 2, the density of the resin hose 23 can be increased and the heat exchange efficiency can be improved.

図2及び図3に示すように、樹脂製ホース23のスパイラルは、熱源水呑口22から熱源水吐口21へと流れる熱源水6の平面的な流路に対して循環水7の平面的な流路が逆方向になるように配置される。すなわち、図2の循環水配管5は、図面に向かって側に配置された循環水呑口18から図面に向かって側に配置された循環水吐口19へと接続された樹脂製ホース23内を流れる。一方、図2の熱源水6は、図面に向かって右側に配置された熱源水呑口22から図面に向かって左側に配置された熱源水吐口21へと流れる。図3でも同様に、循環水配管5は、図面の左下に配置された循環水呑口18から図面の右上に配置された循環水吐口19へと接続された樹脂製ホース23内を流れる。一方、図3の熱源水6は、図面の右上に配置された熱源水呑口22から図面左下に配置された熱源水吐口21へと流れる。このように、熱源水6の流れの方向と循環水配管5の配置の方向が逆方向になるようにそれぞれの呑口18,22及び吐口19,21が配置される。これにより、熱源水6の流れと、循環水配管5内を流通する循環水7の流れとが対向し、循環水配管5内の循環水7が熱源水6から十分に熱エネルギを採熱することができる。 As shown in FIGS. 2 and 3, the spiral of the resin hose 23 has a planar flow of the circulating water 7 with respect to the planar flow path of the heat source water 6 flowing from the heat source water outlet 22 to the heat source water outlet 21. The road is arranged in the opposite direction. That is, the circulating water pipe 5 in Figure 2, connected in the resin hose 23 from the circulation Mizunomi port 18 disposed on the left side to the drawings the circulation water吐口19 disposed on the right side to the accompanying drawings Flowing. On the other hand, the heat source water 6 in FIG. 2 flows from the heat source water outlet 22 arranged on the right side to the drawing to the heat source water outlet 21 arranged on the left side in the drawing. Similarly, in FIG. 3, the circulating water pipe 5 flows through the resin hose 23 connected to the circulating water outlet 19 disposed at the upper right of the drawing from the circulating water tap 18 disposed at the lower left of the drawing. On the other hand, the heat source water 6 in FIG. 3 flows from the heat source water outlet 22 arranged in the upper right of the drawing to the heat source water outlet 21 arranged in the lower left of the drawing. In this way, the respective outlets 18 and 22 and the outlets 19 and 21 are arranged so that the direction of flow of the heat source water 6 and the direction of arrangement of the circulating water pipe 5 are opposite to each other. Thereby, the flow of the heat source water 6 and the flow of the circulating water 7 flowing through the circulating water pipe 5 face each other, and the circulating water 7 in the circulating water pipe 5 sufficiently collects heat energy from the heat source water 6. be able to.

図4に、熱交換水槽2内の熱源水6及び循環水配管5回りの詳細を示す。ここでは、循環水吐口19及び熱源水呑口22の詳細を示す。本実施形態では、循環水配管5は2系列であるため、樹脂管が二股に分岐され、それぞれの吐口19に樹脂製ホース23が接続される。このように先端が二股に分岐される詳細は、循環水呑口18においても同様である。また、熱源水呑口22は、樹脂管が熱交換水槽2の下端部にまで降りて熱源水6を熱交換水槽2内に放水する。また、循環水吐口19及び熱源水呑口22は、それぞれ熱交換水槽2と設備室14とを仕切る上蓋24を貫通する。上蓋24は、透明な樹脂製であっても良い。上蓋24の貫通部には止水ジョイント41が設けられ、熱交換水槽2の内部が密閉される。   FIG. 4 shows details of the heat source water 6 and the circulation water pipe 5 around the heat exchange water tank 2. Here, details of the circulating water outlet 19 and the heat source water outlet 22 are shown. In this embodiment, since the circulating water piping 5 is of two series, the resin pipe is bifurcated, and the resin hose 23 is connected to each outlet 19. The details that the tip is bifurcated in this way are the same in the circulating water tap 18. Moreover, the heat source water well 22 discharges the heat source water 6 into the heat exchange water tank 2 by the resin tube descending to the lower end of the heat exchange water tank 2. Moreover, the circulating water outlet 19 and the heat source water outlet 22 penetrate the upper lid 24 that partitions the heat exchange water tank 2 and the equipment chamber 14, respectively. The upper lid 24 may be made of a transparent resin. A water stop joint 41 is provided in the penetrating portion of the upper lid 24, and the inside of the heat exchange water tank 2 is sealed.

(蓄放熱パイプ)
図5に、蓄放熱パイプ50の構成を断面図で示す。この蓄放熱パイプ50は、管状部材51及び封止蓋52a,52bから構成される。この管状部材51の内部には、潜熱蓄熱材53が充填される。また、管状部材51の両端部には潜熱蓄熱材53を管状部材51の内部に封止する封止蓋52a,52bが設けられる。図5(a)は、封止蓋52が管状部材51の内側に嵌め込まれる方式の封止蓋52aであり、図5(b)は、封止蓋52が管状部材51の外側から嵌め込まれる方式の封止蓋52bである。潜熱蓄熱材53は、蓄放熱材とも称される材料であり、管状部材51の内部で熱エネルギを貯蔵する。本発明では、潜熱蓄熱材53として管理温度が5℃から30℃の範囲内で求められる相変化温度帯を持つ材料、例えば無機塩を主成分とした溶液などが用いられる。また、本発明では管状部材51、及び封止蓋52には、例えば、塩化ビニール製などの樹脂製パイプが用いられるが、これに限らず、例えば、ガラス、セラミック、ステンレス鋼などの他の材料からなるパイプであっても良い。
(Storage heat dissipation pipe)
FIG. 5 is a cross-sectional view showing the configuration of the heat storage and radiation pipe 50. The heat storage / radiation pipe 50 includes a tubular member 51 and sealing lids 52a and 52b. The tubular member 51 is filled with a latent heat storage material 53. In addition, sealing lids 52 a and 52 b for sealing the latent heat storage material 53 inside the tubular member 51 are provided at both ends of the tubular member 51. FIG. 5A shows a sealing lid 52 a in which the sealing lid 52 is fitted inside the tubular member 51, and FIG. 5B shows a scheme in which the sealing lid 52 is fitted from the outside of the tubular member 51. The sealing lid 52b. The latent heat storage material 53 is a material also referred to as a heat storage / dissipation material, and stores thermal energy inside the tubular member 51. In the present invention, as the latent heat storage material 53, a material having a phase change temperature zone required for a management temperature in the range of 5 ° C. to 30 ° C., for example, a solution containing an inorganic salt as a main component is used. In the present invention, for the tubular member 51 and the sealing lid 52, for example, resin pipes such as vinyl chloride are used. However, the present invention is not limited thereto, and other materials such as glass, ceramic, stainless steel, and the like are used. It may be a pipe made of

図6に、熱交換水槽2内の蓄放熱パイプ50の配置に関する一つの実施例を示す。本蓄放熱パイプ50は、熱交換水槽2内に配置され、潜熱蓄熱材53による蓄熱により熱源水6及び循環水7の熱交換を促進する媒体の役割を担う。すなわち、蓄放熱パイプ50は、熱交換水槽2に供給された熱源水6に浸されることで熱源水6から熱エネルギを吸収して蓄熱し、それを循環水7に放熱することで熱源水6及び循環水7の熱交換を促進させる。図2及び図4に示されるように、本実施形態では、この蓄放熱パイプ50は熱源水6の吐口22付近に集中して配置される。すなわち、熱交換水槽2内に深く挿入された熱源水6の吐口22付近に複数の蓄放熱パイプ50が横置きで並べられる。これは、熱交換水槽2に放出された熱源水6からより初期の段階で熱エネルギを吸熱して蓄熱し、熱源水6及び循環水7の熱交換の効率を高めるためである。この蓄放熱パイプ50の径、全長、及び数量は、図2及び図4のサイズ又は本数に限らず、その熱交換水槽2における熱源水6及び循環水7の熱交換に必要な径、全長、又は本数が算出される。また、本実施形態では、蓄放熱パイプ50は、横置きに配置されるが、これに限らず、例えば、縦置き等の他の配置方法であっても良い。   In FIG. 6, one Example regarding arrangement | positioning of the thermal storage heat dissipation pipe 50 in the heat exchange water tank 2 is shown. The main heat storage and radiating pipe 50 is disposed in the heat exchange water tank 2 and serves as a medium for promoting heat exchange between the heat source water 6 and the circulating water 7 by heat storage by the latent heat storage material 53. That is, the heat storage / radiation pipe 50 is immersed in the heat source water 6 supplied to the heat exchange water tank 2 to absorb heat energy from the heat source water 6 to store heat, and dissipates it to the circulating water 7 to release heat to the heat source water. 6 and heat exchange of circulating water 7 are promoted. As shown in FIG. 2 and FIG. 4, in the present embodiment, the heat storage and radiating pipe 50 is concentrated in the vicinity of the outlet 22 of the heat source water 6. That is, a plurality of heat storage and release pipes 50 are arranged horizontally in the vicinity of the spout 22 of the heat source water 6 inserted deeply into the heat exchange water tank 2. This is because heat energy is absorbed from the heat source water 6 discharged to the heat exchange water tank 2 and stored in an earlier stage, and heat exchange efficiency of the heat source water 6 and the circulating water 7 is increased. The diameter, total length, and quantity of the heat storage / radiation pipe 50 are not limited to the size or number shown in FIGS. 2 and 4, and the diameter, total length, and length required for heat exchange of the heat source water 6 and the circulating water 7 in the heat exchange water tank 2. Alternatively, the number is calculated. Moreover, in this embodiment, although the heat storage / radiation pipe 50 is arrange | positioned horizontally, it is not restricted to this, For example, other arrangement methods, such as vertical installation, may be sufficient.

本蓄放熱パイプ50は、熱源水6を熱交換水槽2から回収後は水資源として継続的に利用する熱源水が満たされた熱交換水槽2内に配置される。つまり、本蓄放熱パイプ50は、飲料水、農業用水などにも活用される熱源水6に浸される。従って、蓄放熱パイプ50は、蓄放熱パイプ50の内部に充填された潜熱蓄熱材53が熱源水6に流出しないように封止蓋52が管状部材51に対して強固に嵌め込まれる接合方法が採用される。そして、蓄放熱パイプ50は、熱交換水槽2内に自重で床上に設置される。これにより、蓄放熱パイプ50の破損などのリスクが回避される。   The main heat storage and radiating pipe 50 is disposed in the heat exchange water tank 2 filled with heat source water that is continuously used as a water resource after the heat source water 6 is recovered from the heat exchange water tank 2. That is, the main heat storage and radiation pipe 50 is immersed in the heat source water 6 that is also used for drinking water, agricultural water, and the like. Accordingly, the heat storage / radiation pipe 50 employs a joining method in which the sealing lid 52 is firmly fitted to the tubular member 51 so that the latent heat storage material 53 filled in the heat storage / heat dissipation pipe 50 does not flow into the heat source water 6. Is done. The heat storage / radiation pipe 50 is installed on the floor under its own weight in the heat exchange water tank 2. Thereby, risks, such as a failure | damage of the thermal storage / radiation pipe 50, are avoided.

(熱交換水槽の断熱手段)
図7に、熱交換水槽2の断熱手段を詳細図で示す。熱交換水槽2には、熱源水6及び循環水7による熱交換効率を向上させるために数々の対策が講じられている。まず、熱交換水槽2は地中に埋設され、熱交換水槽2の上部には、少なくとも循環水7移動のための循環水ポンプ11、付属装置、及び分岐装置などが収納可能な設備室14が設けられる。例えば、地下5メートルを超える地中の深部は年間を通じて温度変化が少ない。そのため冬季には自然による保温効果が生じる。また、熱交換水槽2の上面の空間を設備室14として使用することで、土地の有効利用が計られ、さらに熱交換水槽2を設備室14により上面から断熱する効果が発揮される。
(Insulation means of heat exchange water tank)
In FIG. 7, the heat insulation means of the heat exchange water tank 2 is shown with a detailed figure. In the heat exchange water tank 2, various measures are taken in order to improve the heat exchange efficiency by the heat source water 6 and the circulating water 7. First, the heat exchange water tank 2 is buried in the ground, and at the top of the heat exchange water tank 2 there is an equipment room 14 that can accommodate at least a circulating water pump 11 for moving the circulating water 7, an accessory device, a branch device, and the like. Provided. For example, in the deep part of the ground over 5 meters underground, there is little temperature change throughout the year. For this reason, a natural warming effect occurs in winter. Moreover, by using the space of the upper surface of the heat exchange water tank 2 as the equipment room 14, the land can be effectively used, and further, the effect of insulating the heat exchange water tank 2 from the upper surface by the equipment room 14 is exhibited.

また、熱交換水槽2の内壁面25及び内底面26はコンクリート壁31で覆われているが、そのコンクリート壁31はさらに断熱材30で覆われている。この断熱材30により地中の土との熱交換が遮断され、熱交換水槽2内における熱源水6及び循環水7の熱交換効率を向上させている。また、断熱材30の内側には、アルミ蒸着マット38が貼られ、断熱材30の効果を向上させている。さらに、コンクリート壁31の内面側にはコンクリート塗布防水材35が塗布され、防水効果とともに、コンクリート壁31や断熱材30に雨水などが滲み込むことによる断熱性能の低下を防止している。   Further, the inner wall surface 25 and the inner bottom surface 26 of the heat exchange water tank 2 are covered with a concrete wall 31, and the concrete wall 31 is further covered with a heat insulating material 30. This heat insulating material 30 blocks heat exchange with the soil in the ground, improving the heat exchange efficiency of the heat source water 6 and the circulating water 7 in the heat exchange water tank 2. Moreover, the aluminum vapor deposition mat 38 is stuck inside the heat insulating material 30, and the effect of the heat insulating material 30 is improved. Further, a concrete-coated waterproofing material 35 is applied to the inner surface side of the concrete wall 31 to prevent a decrease in heat insulation performance due to rainwater and the like permeating into the concrete wall 31 and the heat insulating material 30 together with a waterproof effect.

熱交換水槽2の断熱手段は、接合詳細にも及んでいる。すなわち、熱交換水槽2は、上面24、内壁面25及び内底面26に生じた隙間がシール28又はパッキン29により封止されて気密状態となり、断熱効果が向上する。例えば、コンクリート壁31と鉄枠39との接合部にはシールパッキン36及びコーキング材37が設けられ、止水性を高めるとともにコンクリート壁31に水が滲み込むことによる断熱性能の低下を防止している。さらに、コンクリート壁31に上蓋24を固定するビスネジ34の頭部とワッシャとの間にはゴムパッキン40が挟まれ、止水性を高めるとともにコンクリート壁31に水が滲み込むことによる断熱性能の低下を防止している。このように、接合詳細にも断熱手段を積み重ねることで熱交換水槽2全体との断熱性能の向上に寄与することができる。   The heat insulation means of the heat exchange water tank 2 extends to the joining details. That is, in the heat exchange water tank 2, gaps generated in the upper surface 24, the inner wall surface 25, and the inner bottom surface 26 are sealed with the seal 28 or the packing 29, and the heat insulating effect is improved. For example, a seal packing 36 and a caulking material 37 are provided at the joint between the concrete wall 31 and the steel frame 39 to increase the water-stopping property and prevent the heat insulation performance from being deteriorated due to water permeating into the concrete wall 31. . Further, a rubber packing 40 is sandwiched between the head of the screw screw 34 that fixes the upper lid 24 to the concrete wall 31 and the washer, so that the waterproofing performance is increased and the heat insulation performance is reduced due to water permeating into the concrete wall 31. It is preventing. Thus, it can contribute to the improvement of the heat insulation performance with the heat exchange water tank 2 whole by accumulating heat insulation means also in the joining details.

上述したように熱交換水槽2は、各種の断熱手段により蓄熱槽としての機能を発揮する。すなわち、外気温の影響を極力排除して、熱源水6と循環水7との熱エネルギの交換を促進させる。また、熱交換水槽2内に発生した熱エネルギが外部に放熱するのを極力防止する。さらに、蓄放熱パイプ50の蓄熱性能が付加される。このように、簡易な装置を用いながらも、熱交換効率を高めた熱源水6及び循環水7の熱交換システム1が提供できる。   As above-mentioned, the heat exchange water tank 2 exhibits the function as a heat storage tank with various heat insulation means. That is, the influence of the outside air temperature is eliminated as much as possible, and the exchange of heat energy between the heat source water 6 and the circulating water 7 is promoted. Further, the heat energy generated in the heat exchange water tank 2 is prevented from radiating to the outside as much as possible. Furthermore, the heat storage performance of the heat storage and radiation pipe 50 is added. Thus, the heat exchange system 1 for the heat source water 6 and the circulating water 7 with improved heat exchange efficiency can be provided while using a simple device.

(熱源水及び循環水)熱交換システム、2 熱交換水槽,ヒートソース、3 (熱源水)放熱装置、4 (循環水)採熱装置,ヒートシンク、5 循環水配管、6 熱源水、7 循環水、8 採水熱井戸、11 循環水ポンプ、12 貯水槽、13,13a,13b 仕切板、14 設備室、15 融雪装置、16 バルブ、17 ヘッダ、18 循環水呑口、19 循環水吐口、 20 水路等、21 熱源水吐口、22 熱源水呑口、23,23a,23b 樹脂製ホース、24 上蓋、25 内壁面、26 内底面、27 水中ポンプ、30 断熱材、31 コンクリート壁、32 制御部、33 鉄蓋、34 ビスネジ、35 コンクリート塗布防水材、36 シールパッキン、37 コーキング材、38 アルミ蒸着マット、39 鉄枠、40 ゴムパッキン、41 止水ジョイント、43 樹脂管、50,50a,50b 蓄放熱パイプ、51 管状部材、52 封止蓋、53 潜熱蓄熱材。 1 (Heat source water and circulating water) Heat exchange system, 2 Heat exchange water tank, Heat source, 3 (Heat source water) Radiation device, 4 (Circulating water) Heat collecting device, Heat sink, 5 Circulating water piping, 6 Heat source water, 7 Circulation Water, 8 Water sampling heat well, 11 Circulating water pump, 12 Water tank, 13, 13a, 13b Partition plate, 14 Equipment room, 15 Snow melting device, 16 Valve, 17 Header, 18 Circulating water outlet, 19 Circulating water outlet, 20 21 water source outlet, 22 heat source outlet, 23, 23a, 23b resin hose, 24 top lid, 25 inner wall surface, 26 inner bottom surface, 27 submersible pump, 30 heat insulating material, 31 concrete wall, 32 control unit, 33 Iron cover, 34 Screw screw, 35 Concrete coated waterproofing material, 36 Seal packing, 37 Caulking material, 38 Aluminum vapor deposition mat, 39 Iron frame, 40 Rubber packing, 41 Water stop join , 43 resin tube, 50, 50a, 50b heat storage and release pipe, 51 the tubular member 52 sealing lid, 53 latent heat storage material.

Claims (7)

水槽内に供給された所定量の熱源水と、水槽内にループ状に巻かれて積み重ねられた循環水配管を流通する循環水と、を熱交換させる熱交換水槽と、
前記熱交換水槽に連続的に供給した前記熱源水を熱資源として放熱させ、前記熱資源を前記熱交換水槽から回収後は、水資源として継続的に利用するか、又は直接排水する前記熱源水の放熱装置と、
前記熱交換水槽を移動して採熱し、前記熱交換水槽から流出後は前記熱資源として放熱し、再度前記熱交換水槽に流入して循環する前記循環水の採熱装置と、を備え、
前記熱交換水槽内は、仕切板により複数の分室に区分けされて前記熱源水の流路が形成され、内部に潜熱蓄熱材が封入された複数の蓄放熱パイプは、前記熱源水の吐口が挿入された前記分室にのみ配置されることを特徴とする熱源水及び循環水熱交換システム。
A heat exchange water tank for exchanging heat between a predetermined amount of the heat source water supplied into the water tank and the circulating water circulating through the circulating water pipes wound in a loop in the water tank,
The heat source water that is continuously supplied to the heat exchange water tank as a heat resource after the heat source water continuously supplied to the heat exchange water tank is dissipated as a heat resource, or is continuously drained or directly drained as a water resource. Heat dissipation device,
The heat exchange water tank is moved to collect heat, and after flowing out of the heat exchange water tank, the heat is radiated as the heat resource, and the circulating water heat collecting device that flows into the heat exchange water tank again and circulates, and
The heat exchange water tank is divided into a plurality of compartments by a partition plate to form a flow path of the heat source water, and a plurality of heat storage and radiating pipes in which a latent heat storage material is sealed are inserted into outlets of the heat source water. A heat source water and circulating water heat exchange system, which is disposed only in the divided compartments.
請求項1に記載の熱源水及び循環水熱交換システムであって、前記熱交換水槽内の前記循環水配管は、分室ごとにループ状に巻かれて積み重ねられた複数のスパイラルを形成し、前記循環水の呑口から前記吐口まで、前記複数のスパイラルを形成しながら連結されることを特徴とする熱源水及び循環水熱交換システム。   2. The heat source water and circulating water heat exchange system according to claim 1, wherein the circulating water pipe in the heat exchange water tank forms a plurality of spirals wound and stacked in a loop shape for each compartment, A heat source water and circulating water heat exchange system, wherein the heat source water and the circulating water heat exchange system are connected from the outlet of circulating water to the outlet while forming the plurality of spirals. 請求項2に記載の熱源水及び循環水熱交換システムであって、前記熱交換水槽内の前記循環水配管は、複数に並列分岐した前記呑口及び前記吐口にそれぞれ接続され、それぞれの連続した前記循環水配管は、複数の連続したスパイラルを形成することを特徴とする熱源水及び循環水熱交換システム。   It is a heat source water and circulating water heat exchange system of Claim 2, Comprising: The said circulating water piping in the said heat exchange water tank is each connected to the said spout and the said outlet which branched in parallel, and each said said continuous The heat source water and the circulating water heat exchange system, wherein the circulating water pipe forms a plurality of continuous spirals. 請求項3に記載の熱源水及び循環水熱交換システムであって、前記循環水配管の前記スパイラルは、前記呑口から前記吐口へと流れる前記熱源水の平面的な流路に対して前記循環水の前記平面的な流路が逆方向になるように配置されることを特徴とする熱源水及び循環水熱交換システム。   4. The heat source water and circulating water heat exchange system according to claim 3, wherein the spiral of the circulating water pipe is connected to the planar flow path of the heat source water flowing from the spout to the outlet. The heat source water and the circulating water heat exchanging system are arranged so that the planar flow paths are in opposite directions. 請求項1乃至4のいずれか1項に記載の熱源水及び循環水熱交換システムであって、前記熱交換水槽は、上面、外壁面及び底面に生じた隙間がシール又はパッキンにより封止されて気密状態となることを特徴とする熱源水及び循環水熱交換システム。   The heat source water and circulating water heat exchange system according to any one of claims 1 to 4, wherein the heat exchange water tank has a gap formed on an upper surface, an outer wall surface, and a bottom surface sealed with a seal or packing. A heat source water and circulating water heat exchange system characterized by being in an airtight state. 請求項に記載の熱源水及び循環水熱交換システムであって、前記熱交換水槽の前記外壁面及び前記底面は断熱材で覆われ、前記熱交換水槽の一部又は全部が土中に埋設されることを特徴とする熱源水及び循環水熱交換システム。 The heat source water and circulating water heat exchange system according to claim 5 , wherein the outer wall surface and the bottom surface of the heat exchange water tank are covered with a heat insulating material, and a part or all of the heat exchange water tank is embedded in soil. A heat source water and circulating water heat exchange system. 請求項1乃至6のいずれか1項に記載の熱源水及び循環水熱交換システムであって、前記熱交換水槽の上部には、少なくとも前記循環水の移動のための送水装置、付属装置、及び分岐装置が収納可能な室が設けられることを特徴とする熱源水及び循環水熱交換システム。   The heat source water and circulating water heat exchange system according to any one of claims 1 to 6, wherein at least an upper part of the heat exchange water tank has a water supply device for moving the circulating water, an accessory device, and A heat source water and circulating water heat exchange system, characterized in that a chamber in which a branching device can be stored is provided.
JP2013249107A 2013-12-02 2013-12-02 Heat source water and circulating water heat exchange system Active JP6349078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249107A JP6349078B2 (en) 2013-12-02 2013-12-02 Heat source water and circulating water heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249107A JP6349078B2 (en) 2013-12-02 2013-12-02 Heat source water and circulating water heat exchange system

Publications (2)

Publication Number Publication Date
JP2015105807A JP2015105807A (en) 2015-06-08
JP6349078B2 true JP6349078B2 (en) 2018-06-27

Family

ID=53436009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249107A Active JP6349078B2 (en) 2013-12-02 2013-12-02 Heat source water and circulating water heat exchange system

Country Status (1)

Country Link
JP (1) JP6349078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924981B1 (en) * 2018-05-31 2019-02-22 장수영 Heating apparatus and heating system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578425U (en) * 1980-06-17 1982-01-16
JPS5714179A (en) * 1980-06-30 1982-01-25 Mitsubishi Rayon Eng Kk Recovering method of heat from hot waste water and heat exchanger therefor
JPH01114638A (en) * 1987-10-27 1989-05-08 Matsushita Electric Works Ltd Cold heat storage tank for heat pump
JPS6397074U (en) * 1987-12-10 1988-06-23
JPH0712767U (en) * 1993-06-30 1995-03-03 象印マホービン株式会社 Heat storage device
JP2001248984A (en) * 2000-03-03 2001-09-14 Energy Support Corp Heat storage device
JP4388253B2 (en) * 2002-02-20 2009-12-24 東邦瓦斯株式会社 Latent heat storage device
JP2004108761A (en) * 2002-08-29 2004-04-08 Kuraray Engineering Co Ltd Heat storage tank, heat storage system and heating or cooling method
US7631515B2 (en) * 2006-07-26 2009-12-15 Jacobi Robert W Thermal storage unit for air conditioning applications
JP2010169295A (en) * 2009-01-21 2010-08-05 Kameyama Tekkosho:Kk Tube for heat exchange, heat exchanger and heat exchanging system

Also Published As

Publication number Publication date
JP2015105807A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6109248B2 (en) Solar heat storage snow melting system and control method thereof.
JP5990652B2 (en) Operation method of fluid storage equipment
RU2421666C2 (en) Tube and system for using low-temperature energy
RU2429428C2 (en) System and distributing tank for low-temperature energy network
RU2561840C2 (en) Underground circuit in system of low temperature energy and method of its generation
JP2007333295A (en) Heat storage system
US20100193152A1 (en) Sawyer-singleton geothermal energy tank
JP2007333296A (en) Heat storage system
US10345051B1 (en) Ground source heat pump heat exchanger
US10900666B2 (en) Wall part, heat buffer and energy exchange system
KR101144890B1 (en) Freeze protection of fire extinuishing lines in tunnel and anti-icing of road surface using underground heat storage
JP6349078B2 (en) Heat source water and circulating water heat exchange system
JP2008304141A (en) Heat storage snow melting system using solar heat
KR101996552B1 (en) Pile and Slab complex type ground heat exchanger
US11022345B1 (en) Ground source heat pump heat exchanger
JP5914768B2 (en) Thermal energy storage including expansion space
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
KR102131934B1 (en) Geothermal heating and cooling system
KR101097910B1 (en) The heat of the earth exchanger of enemy number of layers pyeong style structure
KR101637529B1 (en) Geothermy used a hot water supply device
KR101092058B1 (en) A method for controlling uniform flow amounts of Geothermal heat exchanger
KR20150081739A (en) Thermal storage container and transport-type thermal storage system using thereof
KR20140088936A (en) Pile Assembly for Heat Storage
KR101166332B1 (en) Applicable heat-exchanging circulation water terminal pool system for large quantity requirement of seawater heat and/or geothermal heating and warm water supply, and it's effective operation method
KR101637528B1 (en) Device to supply hot water by collecting terrestrialheat

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250