JP6223785B2 - Polishing liquid composition for hard and brittle materials - Google Patents
Polishing liquid composition for hard and brittle materials Download PDFInfo
- Publication number
- JP6223785B2 JP6223785B2 JP2013234189A JP2013234189A JP6223785B2 JP 6223785 B2 JP6223785 B2 JP 6223785B2 JP 2013234189 A JP2013234189 A JP 2013234189A JP 2013234189 A JP2013234189 A JP 2013234189A JP 6223785 B2 JP6223785 B2 JP 6223785B2
- Authority
- JP
- Japan
- Prior art keywords
- silica particles
- polishing
- particle size
- mass
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims description 266
- 239000000203 mixture Substances 0.000 title claims description 136
- 239000000463 material Substances 0.000 title claims description 115
- 239000007788 liquid Substances 0.000 title claims description 72
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 378
- 239000002245 particle Substances 0.000 claims description 267
- 239000011164 primary particle Substances 0.000 claims description 45
- 238000007667 floating Methods 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 33
- 239000000377 silicon dioxide Substances 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000011800 void material Substances 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 17
- 239000011148 porous material Substances 0.000 claims description 15
- 239000012736 aqueous medium Substances 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 14
- 238000005119 centrifugation Methods 0.000 claims description 9
- 239000002612 dispersion medium Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 description 42
- 239000010980 sapphire Substances 0.000 description 42
- 239000000758 substrate Substances 0.000 description 36
- 229910004298 SiO 2 Inorganic materials 0.000 description 32
- 239000006185 dispersion Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000011049 filling Methods 0.000 description 14
- 239000008119 colloidal silica Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- 239000012798 spherical particle Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- -1 salt compound Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、硬脆材料用研磨液組成物及びそれを用いた硬脆材料の製造方法に関する。 The present invention relates to a polishing liquid composition for hard and brittle materials and a method for producing hard and brittle materials using the same.
サファイア、窒化ガリウム、炭化珪素、タンタル酸リチウム等の硬脆材料は、光学材料、電子材料又は機械材料として必要不可欠である。 Hard and brittle materials such as sapphire, gallium nitride, silicon carbide, and lithium tantalate are indispensable as optical materials, electronic materials, and mechanical materials.
例えば、人工サファイア板は、集積回路基盤、赤外線探知用レンズ、時計等のさまざまな用途の材料として用いられている。特に、LED照明の急速な普及に伴い、その基板材料として利用されるサファイア基板の需要が急増している。LEDは、サファイア基板上に窒化ガリウム(GaN)層をエピタキシャル成長させた後、更に発光層を積層させることにより製造されているが、サファイア基板の表面平滑性がLEDの性能に大きく影響する。 For example, artificial sapphire plates are used as materials for various applications such as integrated circuit boards, infrared detection lenses, watches, and the like. In particular, with the rapid spread of LED lighting, the demand for a sapphire substrate used as the substrate material is rapidly increasing. An LED is manufactured by epitaxially growing a gallium nitride (GaN) layer on a sapphire substrate, and further laminating a light emitting layer, but the surface smoothness of the sapphire substrate greatly affects the performance of the LED.
サファイア基板等の硬脆材料の表面平滑性を満足させるために、シリカ粒子を含む研磨液組成物を用いた仕上げ研磨が行われている。サファイア(α−アルミナ、モース硬度9)基板よりも低硬度であるシリカ(モース硬度7)粒子を砥粒に用いることにより、サファイア基板表面にピットやスクラッチが発生しないようにしている。しかしながら、サファイアは、機械的、化学的、熱的安定性に優れてはいるものの、シリカ粒子を用いた仕上げ研磨において、研磨速度が低いという問題がある。 In order to satisfy the surface smoothness of hard and brittle materials such as a sapphire substrate, final polishing using a polishing liquid composition containing silica particles is performed. By using silica (Mohs hardness 7) particles having a lower hardness than that of a sapphire (α-alumina, Mohs hardness 9) substrate as abrasive grains, pits and scratches are prevented from occurring on the surface of the sapphire substrate. However, although sapphire is excellent in mechanical, chemical, and thermal stability, there is a problem that the polishing rate is low in finish polishing using silica particles.
この問題に対し、例えば、特許文献1には、研磨液組成物のpHを制御してシリカ粒子とサファイア基板とのゼータ電位を反対符号にすることにより、研磨速度が向上することが開示されている。特許文献2には、塩基性pHを有する研磨液組成物中に塩化合物を溶解させることにより、シリカ粒子とサファイア基板との静電的反発を低減し、研磨速度が向上することが開示されている。また、特許文献3には、サファイア基板用の研磨液組成物ではなく、タンタル酸リチウム単結晶材料又はニオブ酸リチウム単結晶材料からなる硬脆材料を精密研磨加工するための組成物が開示されているが、平均粒径が異なる複数のコロイダルシリカを組み合わせることにより研磨速度が向上することが開示されている。 For this problem, for example, Patent Document 1 discloses that the polishing rate is improved by controlling the pH of the polishing composition so that the zeta potentials of the silica particles and the sapphire substrate have opposite signs. Yes. Patent Document 2 discloses that by dissolving a salt compound in a polishing liquid composition having a basic pH, electrostatic repulsion between silica particles and a sapphire substrate is reduced, and the polishing rate is improved. Yes. Patent Document 3 discloses a composition for precisely polishing a hard and brittle material made of a lithium tantalate single crystal material or a lithium niobate single crystal material, not a polishing liquid composition for a sapphire substrate. However, it is disclosed that the polishing rate is improved by combining a plurality of colloidal silicas having different average particle diameters.
しかし、いずれの従来技術でも、サファイア基板等の硬脆材料の研磨速度は不十分であり、硬脆材料の生産性が低い。 However, in any conventional technique, the polishing rate of hard and brittle materials such as sapphire substrates is insufficient, and the productivity of hard and brittle materials is low.
本発明は、研磨速度が高く、硬脆材料の生産性向上を可能とする、硬脆材料用研磨液組成物、及びそれを用いた硬脆材料の製造方法並びに硬脆材料の研磨方法を提供する。 The present invention provides a polishing composition for hard and brittle materials, a method for producing hard and brittle materials using the same, and a polishing method for hard and brittle materials, which has a high polishing rate and can improve the productivity of hard and brittle materials. To do.
本発明の硬脆材料用研磨液組成物は、
平均一次粒径が80〜500nmである大粒径シリカ粒子(成分A)と、平均一次粒径が5〜70nmである小粒径シリカ粒子(成分B)と、水系媒体(成分C)とを混合してなり、
前記大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)が、0.6〜1.4であり、
前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記大粒径シリカ粒子の質量の割合が55〜95質量%である。
The polishing composition for hard and brittle materials of the present invention is
A large particle size silica particle (component A) having an average primary particle size of 80 to 500 nm, a small particle size silica particle (component B) having an average primary particle size of 5 to 70 nm, and an aqueous medium (component C). Mixed,
The ratio (D / P) of the pore size (P) between the dry particles of the large particle size silica particles (component A) and the average primary particle size (D) of the small particle size silica particles (component B) is 0.6. ~ 1.4,
The ratio of the mass of the large particle size silica particles to the total mass of the large particle size silica particles and the small particle size silica particles is 55 to 95% by mass.
また、本発明の硬脆材料用研磨液組成物は、
流体密度が1.0g/cm3、流体粘度が1cpsの分散媒中に分散された、粒子密度が2.2g/cm3、粒子径が80nm以上の粒子を沈殿可能とする遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子と、前記遠心条件で遠心分離を行っても沈殿しない浮遊シリカ粒子と、水系媒体とを含み、
前記沈殿シリカ粒子の乾燥粒子間空隙径(p)と前記浮遊シリカ粒子の分散粒径(d)との比(d/p)が、0.50〜1.05であり、
前記沈殿シリカ粒子と前記浮遊シリカ粒子との質量の合計に対する前記沈殿シリカ粒子の質量の割合が55〜95質量%である。
Moreover, the polishing composition for hard and brittle materials of the present invention comprises:
Centrifugation under centrifugal conditions enabling precipitation of particles having a particle density of 2.2 g / cm 3 and a particle diameter of 80 nm or more dispersed in a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps Including precipitated silica particles that precipitate when performed, suspended silica particles that do not precipitate even when centrifuged under the centrifugal conditions, and an aqueous medium,
The ratio (d / p) between the inter-dry particle void diameter (p) of the precipitated silica particles and the dispersed particle diameter (d) of the floating silica particles is 0.50 to 1.05,
The ratio of the mass of the precipitated silica particles to the total mass of the precipitated silica particles and the floating silica particles is 55 to 95% by mass.
本発明の硬脆材料の製造方法は、本発明の硬脆材料用研磨液組成物を用いて被研磨硬脆材料を研磨する工程を含む。 The manufacturing method of the hard-brittle material of this invention includes the process of grind | polishing a to-be-polished hard-brittle material using the polishing liquid composition for hard-brittle materials of this invention.
本発明の硬脆材料の研磨方法は、本発明の硬脆材料用研磨液組成物を用いて被研磨硬脆材料を研磨する工程を含む、硬脆材料の製造方法。 The method for polishing a hard and brittle material according to the present invention is a method for producing a hard and brittle material, including a step of polishing a hard and brittle material to be polished using the polishing composition for a hard and brittle material according to the present invention.
本発明によれば、研磨速度が高く、硬脆材料の生産性向上を可能とする、硬脆材料用研磨液組成物、及びそれを用いた硬脆材料の製造方法並びに硬脆材料の研磨方法を提供できる。 According to the present invention, a polishing composition for a hard and brittle material that has a high polishing rate and can improve the productivity of a hard and brittle material, a method for producing a hard and brittle material using the same, and a polishing method for a hard and brittle material Can provide.
本発明において、大粒径シリカ粒子とは、小粒径シリカ粒子よりも平均一次粒径が相対的に大きいシリカ粒子を意味し、小粒径シリカ粒子とは、大粒径シリカ粒子よりも平均一次粒径が相対的に小さいシリカ粒子を意味する。 In the present invention, the large particle size silica particles mean silica particles having an average primary particle size relatively larger than the small particle size silica particles, and the small particle size silica particles mean an average particle size larger than that of the large particle size silica particles. This means silica particles having a relatively small primary particle size.
本発明において、「流体密度が1.0g/cm3、流体粘度が1cpsの分散媒中に分散された、粒子密度が2.2g/cm3、粒子径が80nm以上の粒子を沈殿可能とする遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子」とは、流体密度が1.0g/cm3、流体粘度が1cpsの分散媒と、当該分散媒中に分散され、粒子密度が2.2g/cm3、粒子径が80nm以上の粒子とを含む、仮想の粒子分散液において、粒子径が80nm以上の粒子のみを遠心分離により、沈殿させることができる条件と同じ遠心条件で、水系媒体と当該水系媒体に分散されたシリカ粒子とを含む硬脆材料用研磨液組成物に対して遠心分離を行った場合に沈殿するシリカ粒子を意味する。これに対して浮遊シリカ粒子とは、前記遠心条件で遠心分離を行っても沈殿しないシリカ粒子を意味する。 In the present invention, “a particle having a particle density of 2.2 g / cm 3 and a particle diameter of 80 nm or more dispersed in a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps can be precipitated. “Precipitated silica particles that precipitate when centrifugation is performed under centrifugal conditions” means a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps, dispersed in the dispersion medium, and having a particle density of 2 In a hypothetical particle dispersion containing 2 g / cm 3 and particles having a particle diameter of 80 nm or more, an aqueous system is used under the same centrifugal conditions as those in which only particles having a particle diameter of 80 nm or more can be precipitated by centrifugation. It means silica particles that precipitate when the hard liquid material polishing slurry composition containing the medium and the silica particles dispersed in the aqueous medium is centrifuged. On the other hand, the floating silica particles mean silica particles that do not precipitate even when the centrifugal separation is performed under the centrifugal conditions.
水中に分散されたシリカ粒子を乾燥させて得られる乾燥凝集体は、乾燥凝集体を構成する一次粒子間に複数の細孔を有しており、本発明において、シリカ粒子の「乾燥粒子間空隙径」とは、当該乾燥凝集体における、粒子間空隙の大きさであって、前記細孔径を意味する。その値は、後述する実施例に記載の方法で求めることができる。硬脆材料用研磨液組成物を被研磨硬脆材料と研磨パッドとの間に供給し、被研磨硬脆材料と研磨パッドとを接触させながら、研磨パッド及び/又は被研磨硬脆材料を動かすことにより被研磨硬脆材料を研磨する最中、被研磨硬脆材料と研磨パッドとの間では、硬脆材料用研磨液組成物に荷重がかかってシリカ粒子濃度が高くなっている。このような状態のシリカ粒子は、乾燥凝集体と同様に、隣り合うシリカ粒子同士が接した状態になっており、粒子間空隙径も乾燥粒子間空隙径に近い値となっているものと推察される。 A dry aggregate obtained by drying silica particles dispersed in water has a plurality of pores between primary particles constituting the dry aggregate. The “diameter” is the size of the interparticle void in the dry aggregate and means the pore diameter. The value can be obtained by the method described in Examples described later. The polishing liquid composition for hard and brittle material is supplied between the hard brittle material to be polished and the polishing pad, and the polishing pad and / or the hard brittle material to be polished is moved while contacting the hard brittle material to be polished and the polishing pad. Thus, during polishing of the hard brittle material to be polished, a load is applied to the polishing composition for the hard brittle material between the hard brittle material to be polished and the polishing pad, and the silica particle concentration is high. The silica particles in such a state are in a state where adjacent silica particles are in contact with each other like the dry aggregate, and it is assumed that the interparticle void diameter is close to the dry interparticle void diameter. Is done.
本発明は、平均一次粒径が80〜500nmである大粒径シリカ粒子(成分A)と、平均一次粒径が5〜70nmである小粒径シリカ粒子(成分B)と、水系媒体(成分C)とを混合してなり、前記大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)が、0.6〜1.4であり、前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記大粒径シリカ粒子の質量の割合が55〜95質量%であることにより、研磨速度が向上するという知見に基づく。また、本発明は、流体密度が1.0g/cm3、流体粘度が1cpsの分散媒中に分散された、粒子密度が2.2g/cm3、粒子径が80nm以上の粒子を沈殿可能とする遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子と、前記遠心条件で遠心分離を行っても沈殿しない浮遊シリカ粒子と、水系媒体とを含み、前記沈殿シリカ粒子の乾燥粒子間空隙径(p)と前記浮遊シリカ粒子の分散粒径(d)との比(d/p)が、0.50〜1.05であり、前記沈殿シリカ粒子と前記浮遊シリカ粒子との質量の合計に対する前記沈殿シリカ粒子の質量の割合が55〜95質量%であることにより、研磨速度が向上するという知見に基づく。 The present invention comprises a large particle size silica particle (component A) having an average primary particle size of 80 to 500 nm, a small particle size silica particle (component B) having an average primary particle size of 5 to 70 nm, and an aqueous medium (component). C), and the ratio of the pore size (P) between the dry particles of the large particle size silica particles (component A) to the average primary particle size (D) of the small particle size silica particles (component B) ( D / P) is 0.6 to 1.4, and the ratio of the mass of the large particle size silica particles to the total mass of the large particle size silica particles and the small particle size silica particles is 55 to 95% by mass. This is based on the knowledge that the polishing rate is improved. In addition, the present invention is capable of precipitating particles having a particle density of 2.2 g / cm 3 and a particle diameter of 80 nm or more dispersed in a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps. Including precipitated silica particles that precipitate when centrifuged under a centrifuging condition, floating silica particles that do not precipitate even when centrifuged under the centrifuging condition, and an aqueous medium, and a void between the dry particles of the precipitated silica particles The ratio (d / p) of the diameter (p) to the dispersed particle size (d) of the floating silica particles is 0.50 to 1.05, and the total mass of the precipitated silica particles and the floating silica particles It is based on the knowledge that the polishing rate is improved when the ratio of the mass of the precipitated silica particles to 55 to 95 mass%.
各々が特定の構造を持つ2種のシリカ粒子を特定の量だけ混合することにより研磨速度が向上する理由は定かではないが、以下のように推察される。 The reason why the polishing rate is improved by mixing two types of silica particles each having a specific structure by a specific amount is not clear, but is presumed as follows.
一般に、粒径が異なる複数種のシリカ粒子を混合し粒径分布を広げることにより、シリカ粒子の充填率が向上し、シリカ粒子と被研磨対象物との接触面積が向上する結果、研磨速度が向上すると考えられている。一方、シリカ粒子よりも高硬度な硬脆材料を研磨する場合においては、小粒径(浮遊)のシリカ粒子単独では、切削力が弱く研磨速度が低いため、充填率を向上させるために小粒径シリカ粒子の割合を増やしすぎると、逆に研磨速度が低下してしまう。すなわち、硬脆材料の研磨速度を向上させるためには、大粒径のシリカ粒子の構造に適した特定の構造を持つ小粒径シリカ粒子を最適な量だけ混合する必要がある。 In general, by mixing a plurality of types of silica particles having different particle sizes and widening the particle size distribution, the packing rate of the silica particles is improved, and the contact area between the silica particles and the object to be polished is improved, resulting in a higher polishing rate. It is thought to improve. On the other hand, when polishing hard and brittle materials that are harder than silica particles, small particles (floating) of silica particles alone have a low cutting force and a low polishing rate. If the ratio of the diameter silica particles is increased too much, the polishing rate is decreased. That is, in order to improve the polishing rate of the hard and brittle material, it is necessary to mix a small particle size silica particle having a specific structure suitable for the structure of the large particle size silica particle in an optimum amount.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)が、0.6〜1.4であれば、研磨の最中に、大粒径シリカ粒子の粒子間空隙に小粒径シリカ粒子が効率良く充填されて、シリカ粒子全体の充填率が向上するため、シリカ粒子と被研磨対象物との総接触面積が増大し、その結果、研磨速度が向上したと推察される。また、単一球状粒子の最密充填率は理論的に76%である。そのため、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合が55〜95質量%、全シリカ粒子に対する小粒径シリカ粒子(成分B)の割合が5〜45質量%であれば、研磨の最中に、大粒径シリカ粒子の粒子間空隙に小粒径シリカ粒子が過不足無く充填され、シリカ粒子全体の充填率が向上するため、研磨機の動力エネルギーを研磨面に効率よく伝達することができ、研磨速度が向上したと推察される。 The ratio (D / P) between the dry interparticle void size (P) of the large particle size silica particles (component A) and the average primary particle size (D) of the small particle size silica particles (component B) is 0.6 to In the case of 1.4, since the small particle size silica particles are efficiently filled in the inter-particle voids of the large particle size silica particles during polishing and the filling rate of the entire silica particles is improved, the silica particles and the coated particles are improved. It is presumed that the total contact area with the object to be polished increased, and as a result, the polishing rate was improved. Further, the closest packing ratio of single spherical particles is theoretically 76%. Therefore, if the ratio of the large particle size silica particles (component A) to the total silica particles is 55 to 95% by mass and the ratio of the small particle size silica particles (component B) to the total silica particles is 5 to 45% by mass, polishing is performed. During the process, the small particle size silica particles are filled in the gap between the large particle size silica particles without excess and deficiency, and the filling rate of the entire silica particles is improved, so the power energy of the polishing machine is efficiently transmitted to the polishing surface. It is speculated that the polishing rate was improved.
また、本発明の硬脆材料用研磨液組成物に対して特定の遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子(成分X)の乾燥粒子間空隙(p)と浮遊シリカ粒子(成分Y)の分散粒径(d)との比(d/p)が、0.50〜1.05であれば、研磨の最中に、沈殿シリカ粒子の粒子間空隙に浮遊シリカ粒子が効率良く充填され、シリカ粒子全体の充填率が向上するため、研磨速度が向上したと推察される。また、単一球状粒子の最密充填率は理論的に76%である。そのため、全シリカ粒子に対する沈殿シリカ粒子(成分X)の割合が55〜95質量%、全シリカ粒子に対する浮遊シリカ粒子(成分Y)の割合が5〜45質量%であれば、研磨の最中に、沈殿シリカ粒子の粒子間空隙に浮遊シリカ粒子が過不足無く充填され、シリカ粒子全体の充填率が向上するため、研磨速度が向上したと推察される。 In addition, the dry inter-particle voids (p) of the precipitated silica particles (component X) and the floating silica particles (component X) that precipitate when the polishing composition for hard and brittle materials of the present invention is centrifuged under specific centrifugal conditions. If the ratio (d / p) of the component Y) to the dispersed particle size (d) is 0.50 to 1.05, during the polishing, the floating silica particles are efficiently contained in the interparticle voids of the precipitated silica particles. It is presumed that the polishing rate was improved because it was well packed and the filling rate of the entire silica particles was improved. Further, the closest packing ratio of single spherical particles is theoretically 76%. Therefore, if the ratio of the precipitated silica particles (component X) to the total silica particles is 55 to 95% by mass and the ratio of the floating silica particles (component Y) to the total silica particles is 5 to 45% by mass, during the polishing. It is speculated that the polishing rate was improved because the interstitial voids of the precipitated silica particles were filled with the floating silica particles without excess and deficiency, and the filling rate of the entire silica particles was improved.
但し、本発明はこれらの推定に限定されるものではない。 However, the present invention is not limited to these estimations.
<シリカ粒子>
本発明の硬脆材料用研磨液組成物(以下「本発明の研磨液組成物」と略称する場合もある。)に含まれる大粒径シリカ粒子(成分A)及び小粒径シリカ粒子(成分B)はともに、砥粒として作用するシリカ粒子である。これらのシリカ粒子としては、コロイダルシリカ、フュームドシリカ等が挙げられるが、研磨された被研磨対象物の平滑性向上の観点から、コロイダルシリカがより好ましい。
<Silica particles>
Large particle size silica particles (component A) and small particle size silica particles (components) contained in the polishing composition for hard and brittle materials of the present invention (hereinafter sometimes abbreviated as “the polishing composition of the present invention”) Both B) are silica particles that act as abrasive grains. Examples of these silica particles include colloidal silica and fumed silica, and colloidal silica is more preferable from the viewpoint of improving the smoothness of the polished object.
前記シリカ粒子の使用形態としては、操作性の観点からスラリー状が好ましい。本発明の研磨液組成物に含まれるシリカ粒子がコロイダルシリカである場合、製造容易性及び経済性の観点から、コロイダルシリカは、水ガラスやアルコキシシランの加水分解物から得たものであることが好ましく、水ガラスから得たものであることがより好ましい。水ガラスから得られるシリカ粒子は、従来から公知の方法によって作製できる。 The use form of the silica particles is preferably a slurry from the viewpoint of operability. When the silica particles contained in the polishing composition of the present invention are colloidal silica, from the viewpoint of ease of production and economy, the colloidal silica may be obtained from a hydrolyzate of water glass or alkoxysilane. Preferably, it is obtained from water glass. Silica particles obtained from water glass can be produced by a conventionally known method.
前記シリカ粒子は、粒子表面をシランカップリング剤等で表面処理されたシリカ粒子であってもよいが、研磨速度向上の観点から、表面処理されていないシリカ粒子が好ましい。前記シリカ粒子には、AlやZr等のSi以外の無機元素が含まれていても良いが、研磨速度向上の観点から、固形分の主成分がSiO2であると好ましく、無水酸化物換算でSiO2が90質量%以上であると好ましく、95質量%以上であるとより好ましく、99質量%以上であると更に好ましい。 The silica particles may be silica particles whose surface is treated with a silane coupling agent or the like, but silica particles that are not surface-treated are preferable from the viewpoint of improving the polishing rate. The said silica particles, may be contained an inorganic element other than Si, such as Al and Zr, but from the viewpoint of increasing the polishing rate, preferably the major component of the solids is a SiO 2, with no hydroxide terms SiO 2 is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 99% by mass or more.
本発明の研磨液組成物中の前記全シリカ粒子(大粒径シリカ粒子(成分A)と小粒径シリカ粒子(成分B)の合計)の濃度は、研磨速度向上の観点から、SiO2換算濃度で、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい。また、本発明の研磨液組成物中の前記全シリカ粒子の濃度は、研磨液組成物のコスト低減及び保存安定性の向上の観点から、SiO2換算濃度で、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更に好ましい。 The concentration of all the silica particles (the total of the large particle size silica particles (component A) and the small particle size silica particles (component B)) in the polishing liquid composition of the present invention is converted to SiO 2 from the viewpoint of improving the polishing rate. The concentration is preferably 1% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more. In addition, the concentration of all the silica particles in the polishing composition of the present invention is preferably 40% by mass or less in terms of SiO 2 from the viewpoint of cost reduction and improvement of storage stability of the polishing composition. More preferably, it is more preferably 25% by mass or less.
本発明の研磨液組成物中の前記全シリカ粒子の分散粒径は、研磨速度向上の観点から、10nm以上が好ましく、50nm以上がより好ましく、100nm以上が更に好ましく、研磨された被研磨対象物の平滑性向上の観点から、500nm以下が好ましく、300nm以下がより好ましく、200nm以下が更に好ましい。 From the viewpoint of improving the polishing rate, the dispersed particle diameter of all the silica particles in the polishing liquid composition of the present invention is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, and a polished object to be polished. From the viewpoint of improving the smoothness, 500 nm or less is preferable, 300 nm or less is more preferable, and 200 nm or less is still more preferable.
本発明の研磨液組成物中の前記全シリカ粒子のBET比表面積は、研磨速度向上の観点から10m2/g以上が好ましく、20m2/g以上がより好ましく、40m2/g以上が更に好ましく、同様の観点から、200m2/g以下が好ましく、100m2/g以下がより好ましく、60m2/g以下が更に好ましい。 BET specific surface area of the entire silica grain in the polishing composition of the present invention is preferably 10 m 2 / g or more from the viewpoint of improving the polishing rate, more preferably at least 20 m 2 / g, more preferably not less than 40 m 2 / g from the same viewpoint, preferably 200 meters 2 / g or less, more preferably 100m 2 / g, 60m 2 / g or less is more preferable.
[大粒径シリカ粒子(成分A)]
本発明の研磨液組成物中の前記全シリカ粒子の質量(大粒径シリカ粒子と小粒径シリカ粒子の質量の合計)に対する大粒径シリカ粒子の質量の割合は、研磨速度向上の観点から、55質量%以上であり、60質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上が更に好ましく、同様の観点から、95質量%以下であり、85質量%以下が好ましい。
[Large particle size silica particles (component A)]
The ratio of the mass of the large particle size silica particles to the mass of all the silica particles in the polishing liquid composition of the present invention (the total mass of the large particle size silica particles and the small particle size silica particles) is from the viewpoint of improving the polishing rate. 55 mass% or more, preferably 60 mass% or more, more preferably 70 mass% or more, further preferably 75 mass% or more, and from the same viewpoint, it is 95 mass% or less, and preferably 85 mass% or less.
大粒径シリカ粒子の乾燥粒子間空隙径(P)は、充填率を高めて研磨速度を向上させる観点から、5nm以上が好ましく、10nm以上がより好ましく、15nm以上が更に好ましく、同様の観点から、100nm以下が好ましく、80nm以下がより好ましく、50nm以下が更に好ましく、30nm以下が更により好ましい。尚、大粒径シリカ粒子の乾燥粒子間空隙径は水銀圧入法によって得ることができる平均的な空隙部分の大きさを示す。 From the viewpoint of increasing the filling rate and improving the polishing rate, the pore size (P) between the dry particles of the large particle size silica particles is preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, and the same viewpoint. , 100 nm or less is preferable, 80 nm or less is more preferable, 50 nm or less is more preferable, and 30 nm or less is even more preferable. In addition, the space | gap diameter between the dry particles of a large particle size silica particle shows the magnitude | size of the average space | gap part which can be obtained by the mercury intrusion method.
本発明の研磨液組成物の製造に用いられる大粒径シリカ粒子(成分A)の平均一次粒径は、研磨された基板表面の平滑性向上の観点から、500nm以下であり、300nm以下が好ましく、200nm以下がより好ましく、150nm以下が更に好ましく、大きい研磨速度を担保する観点から、80nm以上であり、100nm以上が好ましい。尚、本発明の研磨液組成物の製造に用いられる大粒径シリカ粒子(成分A)の平均一次粒径は、後述する実施例に記載のとおり、電子顕微鏡(TEM)観察画像において円相当径として求められる粒子径の数平均である。 The average primary particle size of the large particle size silica particles (component A) used in the production of the polishing composition of the present invention is 500 nm or less, preferably 300 nm or less, from the viewpoint of improving the smoothness of the polished substrate surface. 200 nm or less is more preferable, 150 nm or less is more preferable, and from the viewpoint of ensuring a high polishing rate, it is 80 nm or more, and preferably 100 nm or more. In addition, the average primary particle diameter of the large particle diameter silica particles (component A) used in the production of the polishing liquid composition of the present invention is equivalent to a circle equivalent diameter in an electron microscope (TEM) observation image as described in Examples described later. It is the number average of the particle diameter calculated | required as.
大粒径シリカ粒子の平均一次粒径の下記変動係数は、充填率を高めて研磨速度を向上させる観点から、1〜50%であると好ましく、1〜30%であるとより好ましく、1〜10%であると更に好ましい。
変動係数=(標準偏差/平均一次粒径)
The following coefficient of variation of the average primary particle size of the large particle size silica particles is preferably 1 to 50%, more preferably 1 to 30%, from the viewpoint of increasing the filling rate and improving the polishing rate. More preferably, it is 10%.
Coefficient of variation = (standard deviation / average primary particle size)
本発明の研磨液組成物に含まれる大粒径シリカ粒子(成分A)の粒子形状は、球状、金平糖型、会合型等の異形形状等いずれでもよいが、研磨速度向上の観点から、球状又は金平糖型が好ましく、金平糖型がより好ましい。 The particle shape of the large particle size silica particles (component A) contained in the polishing liquid composition of the present invention may be any of spherical shape, irregular shape such as gold flat sugar type, association type, etc. From the viewpoint of improving the polishing rate, The confetti type is preferred, and the confetti type is more preferred.
[小粒径シリカ粒子(成分B)]
本発明の研磨液組成物中の前記全シリカ粒子の質量(大粒径シリカ粒子と小粒径シリカ粒子の質量の合計)に対する小粒径シリカ粒子の質量の割合は、研磨速度向上の観点から、5質量%以上であり、15質量%以上が好ましく、同様の観点から、45質量%以下であり、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更により好ましい。
[Small particle size silica particles (component B)]
The ratio of the mass of the small particle size silica particles to the mass of the total silica particles in the polishing composition of the present invention (the total mass of the large particle size silica particles and the small particle size silica particles) is from the viewpoint of improving the polishing rate. 5% by mass or more, preferably 15% by mass or more, and from the same viewpoint, it is 45% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. .
本発明の研磨液組成物の製造に用いられる小粒径シリカ粒子(成分B)の平均一次粒径(D)は、充填率を高めて研磨速度を向上させる観点から、5nm以上であり、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、同様の観点から、70nm以下であり、50nm以下が好ましく、40nm以下がより好ましく、30nm以下が更に好ましい。尚、本発明の研磨液組成物の製造に用いられる小粒径シリカ粒子(成分B)の平均一次粒径(D)は、後述する実施例に記載のとおり、電子顕微鏡(TEM)観察画像において円相当径として求められる粒子径の数平均である。 The average primary particle size (D) of the small particle size silica particles (component B) used in the production of the polishing composition of the present invention is 5 nm or more from the viewpoint of increasing the filling rate and improving the polishing rate, and is 10 nm. The above is preferable, 15 nm or more is more preferable, 20 nm or more is more preferable, and from the same viewpoint, it is 70 nm or less, 50 nm or less is preferable, 40 nm or less is more preferable, and 30 nm or less is still more preferable. In addition, the average primary particle diameter (D) of the small particle diameter silica particles (component B) used in the production of the polishing liquid composition of the present invention is an electron microscope (TEM) observation image as described in Examples described later. It is the number average of the particle diameter calculated | required as an equivalent circle diameter.
小粒径シリカ粒子の平均一次粒径(D)の変動係数は、充填率を高めて研磨速度を向上させる観点から、1〜50%であると好ましく、1〜30%であるとより好ましく、1〜10%であると更に好ましい。 The coefficient of variation of the average primary particle size (D) of the small particle size silica particles is preferably 1 to 50%, more preferably 1 to 30% from the viewpoint of increasing the filling rate and improving the polishing rate. More preferably, it is 1 to 10%.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)は、大粒径シリカ粒子の粒子間空隙に小粒径シリカ粒子を効率良く充填させ、シリカ粒子全体の充填率を向上させる観点から、0.6以上であり、0.7以上であると好ましい。また、同様の観点から、(D/P)は、1.4以下であり、1.3以下であると好ましい。 The ratio (D / P) of the pore size (P) between the dry particles of the large particle size silica particles (component A) and the average primary particle size (D) of the small particle size silica particles (component B) is: From the viewpoint of efficiently filling the interparticle voids of the particles with small-diameter silica particles and improving the filling rate of the entire silica particles, it is 0.6 or more and preferably 0.7 or more. From the same viewpoint, (D / P) is 1.4 or less and preferably 1.3 or less.
<水系媒体(成分C)>
本発明の研磨液組成物に含まれる水系媒体(成分C)としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。本発明の成分Cが、水と溶媒との混合媒体である場合、成分Cである混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましく、100質量%が更により好ましい。
<Aqueous medium (component C)>
Examples of the aqueous medium (component C) contained in the polishing liquid composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent. Examples of the solvent include water and A miscible solvent (for example, an alcohol such as ethanol) is preferred. As the aqueous medium, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable. When Component C of the present invention is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium as Component C is not particularly limited, but is 95% by mass or more from the viewpoint of economy. Is preferable, 98 mass% or more is more preferable, substantially 100 mass% is still more preferable, and 100 mass% is still more preferable.
本発明の研磨液組成物における水系媒体の含有量は、特に限定されるわけではなく、成分A、成分B及び後述する任意成分の残余であってよい。 The content of the aqueous medium in the polishing liquid composition of the present invention is not particularly limited, and may be the remainder of Component A, Component B, and optional components described below.
本発明の研磨液組成物の25℃におけるpHは、被研磨対象物のアルカリ加水分解が進行して研磨速度を向上させる観点から、8以上が好ましく、9以上がより好ましく、9.5以上が更に好ましい。また、本発明の研磨液組成物の25℃におけるpHは、シリカ粒子(成分A)のアルカリ溶解を抑制して、シリカ粒子を砥粒として被研磨対象物に十分作用させて研磨速度を向上させる観点から、12以下が好ましく、11.5以下がより好ましく、11以下が更に好ましい。 The pH of the polishing composition of the present invention at 25 ° C. is preferably 8 or more, more preferably 9 or more, and 9.5 or more from the viewpoint of improving the polishing rate by the progress of alkali hydrolysis of the object to be polished. Further preferred. In addition, the pH at 25 ° C. of the polishing composition of the present invention suppresses alkali dissolution of silica particles (component A) and causes the silica particles as abrasive grains to sufficiently act on the object to be polished to improve the polishing rate. From the viewpoint, it is preferably 12 or less, more preferably 11.5 or less, and still more preferably 11 or less.
本発明の研磨液組成物は、その使用用途に応じて、従来から公知の任意成分を更に含んでいてもよい。本発明の研磨液組成物が、例えば、半導体素子等の電子部品用サファイア基板用研磨液組成物(例えば、LED用サファイア基板用研磨液組成物)である場合は、本発明の研磨液組成物は、界面活性剤、防錆剤、分散剤、pH調整剤等を更に含んでいてもよい。 The polishing composition of the present invention may further contain conventionally known optional components depending on the intended use. When the polishing liquid composition of the present invention is, for example, a polishing liquid composition for sapphire substrates for electronic components such as semiconductor elements (for example, a polishing liquid composition for sapphire substrates for LEDs), the polishing liquid composition of the present invention. May further contain a surfactant, a rust inhibitor, a dispersant, a pH adjuster and the like.
[研磨液組成物の調製方法]
本発明の研磨液組成物は、各成分を公知の方法で混合することにより、調製することができる。研磨液組成物は、経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。前記研磨液組成物は、そのまま使用してもよいし、濃縮液であれば希釈して使用すればよい。濃縮液を希釈する場合、その希釈倍率は、特に制限されず、前記濃縮液における各成分の濃度(研磨材の含有量等)や研磨条件等に応じて適宜決定できる。
[Method for preparing polishing liquid composition]
The polishing liquid composition of this invention can be prepared by mixing each component by a well-known method. The polishing composition is usually produced as a concentrated solution from the viewpoint of economy, and it is often diluted at the time of use. The polishing composition may be used as it is, or diluted if it is a concentrated solution. When diluting the concentrate, the dilution ratio is not particularly limited, and can be appropriately determined according to the concentration of each component in the concentrate (abrasive content, etc.), polishing conditions, and the like.
前記[研磨液組成物の調製方法]により得られた本発明の研磨液組成物の一例の構成成分は、下記遠心条件で遠心分離を行うことにより、研磨液組成物自体から特定することもできる。 The constituent components of an example of the polishing liquid composition of the present invention obtained by the above [Method for preparing polishing liquid composition] can also be specified from the polishing liquid composition itself by performing centrifugation under the following centrifugal conditions. .
[遠心条件]
本発明の研磨液組成物の一例に適用される前記遠心条件として、流体密度が1.0g/cm3、流体粘度が1cpsの分散媒と、当該分散媒中に分散され、粒子密度が2.2g/cm3、粒子径が80nm(8×10-5cm)以上の粒子とを含む、仮想の粒子分散液において、粒子径が80nm以上の粒子のみを遠心分離により沈殿させることができる遠心力及び遠心時間を採用する。遠心力と遠心時間は、遠心分離に使用する遠心分離機のスペック(最大遠心力、遠沈管の容量)や遠沈管におけるシリカ粒子分散液の液面の高さに左右されるが、所定値の遠心力を粒子分散液の遠心分離に適用する場合、下記のストークスの式から、粒子の沈降速度vsを決定できるので、当該沈降速度vsと遠沈管におけるシリカ粒子分散液の液面の高さから遠心時間を決定できる。
[Centrifuge conditions]
The centrifugal conditions applied to an example of the polishing composition of the present invention include a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps, dispersed in the dispersion medium, and a particle density of 2. Centrifugal force capable of precipitating only particles having a particle size of 80 nm or more in a hypothetical particle dispersion containing 2 g / cm 3 and particles having a particle size of 80 nm (8 × 10 −5 cm) or more. And the centrifugation time is adopted. Centrifugal force and centrifugation time depend on the specs of the centrifuge used for centrifugation (maximum centrifugal force, capacity of the centrifuge tube) and the liquid level of the silica particle dispersion in the centrifuge tube. when applying the centrifugal force in the centrifugal separation of the particle dispersion, the Stokes equation below, it is possible to determine the sedimentation rate v s of the particles, the liquid surface of the silica particle dispersion in a centrifuge tube with the sedimentation velocity v s high From this, the centrifugation time can be determined.
Dp:粒子径[cm]
ρp:粒子密度[g/cm3]
ρf:流体密度[g/cm3]
g:重力加速度[cm/s2]
η:流体粘度[Pa・s]
D p : particle diameter [cm]
ρ p : particle density [g / cm 3 ]
ρ f : Fluid density [g / cm 3 ]
g: Gravity acceleration [cm / s 2 ]
η: Fluid viscosity [Pa · s]
尚、粒子径(Dp)80nmは、本発明の研磨液組成物の調製に用いられる大粒径シリカ粒子の平均一次粒径の下限と等しく、前記遠心条件で遠心分離を行えば、沈殿シリカ粒子と浮遊シリカ粒子とをきれいに分離できる。 The particle size (Dp) of 80 nm is equal to the lower limit of the average primary particle size of the large particle size silica particles used in the preparation of the polishing liquid composition of the present invention. And floating silica particles can be separated cleanly.
本発明の研磨液組成物の一例は、下記の遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子と、前記遠心条件で遠心分離を行っても沈殿しない浮遊シリカ粒子と、水系媒体とを含む。
(遠心条件)
前記研磨液組成物を容量50mlの遠沈管内に液面高さが10cmになるまでいれ、当該遠沈管内の研磨液組成物に対して、遠心力2150G(回転速度3500rpm)で3時間遠心分離を行う。
An example of the polishing composition of the present invention includes precipitated silica particles that precipitate when centrifuged under the following centrifugal conditions, floating silica particles that do not precipitate even when centrifuged under the centrifugal conditions, an aqueous medium, including.
(Centrifuge conditions)
The polishing liquid composition is placed in a centrifuge tube having a capacity of 50 ml until the liquid level reaches 10 cm, and the polishing liquid composition in the centrifuge tube is centrifuged at a centrifugal force of 2150 G (rotation speed: 3500 rpm) for 3 hours. I do.
前記沈殿シリカ粒子と前記浮遊シリカ粒子はともにシリカ粒子であり、粒子の密度も同じであるため、沈殿シリカ粒子は浮遊シリカ粒子よりも、その粒径が相対的に大きく、故にBET比表面積は小さい。 Since the precipitated silica particles and the floating silica particles are both silica particles and the density of the particles is the same, the precipitated silica particles have a relatively larger particle size than the floating silica particles, and therefore have a small BET specific surface area. .
前記沈殿シリカ粒子及び浮遊シリカ粒子を含む研磨液組成物中の前記全シリカ粒子の濃度は、研磨速度向上の観点から、SiO2換算濃度で、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい。また、前記研磨液組成物中の前記全シリカ粒子の濃度は、研磨液組成物のコスト低減及び保存安定性の向上の観点から、SiO2換算濃度で、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更に好ましい。 From the viewpoint of improving the polishing rate, the concentration of the total silica particles in the polishing liquid composition containing the precipitated silica particles and the floating silica particles is preferably 1% by mass or more, more preferably 5% by mass or more in terms of SiO 2 conversion. Preferably, 10 mass% or more is more preferable. Further, the concentration of all the silica particles in the polishing liquid composition is preferably 40% by mass or less, and preferably 30% by mass in terms of SiO 2 , from the viewpoint of cost reduction and improvement in storage stability of the polishing liquid composition. The following is more preferable, and 25 mass% or less is still more preferable.
[沈殿シリカ粒子]
沈殿シリカ粒子の乾燥粒子間空隙径(p)は、充填率を高めて研磨速度を向上させる観点から、5nm以上が好ましく、10nm以上がより好ましく、15nm以上が更に好ましく、同様の観点から、100nm以下が好ましく、80nm以下がより好ましく、50nm以下が更に好ましく、30nm以下が更により好ましい。沈殿シリカ粒子の乾燥粒子間空隙径(p)は、大粒径シリカ粒子の乾燥粒子間空隙径(P)の測定方法と同じ方法で測定できる。
[Precipitated silica particles]
From the viewpoint of increasing the filling rate and improving the polishing rate, the pore size (p) between the dried silica particles is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and from the same viewpoint, 100 nm. The following is preferable, 80 nm or less is more preferable, 50 nm or less is further preferable, and 30 nm or less is still more preferable. The void size (p) between the dry particles of the precipitated silica particles can be measured by the same method as the method for measuring the void size (P) between the dry particles of the large particle size silica particles.
沈殿シリカ粒子のBET比表面積は、研磨速度向上の観点から、10m2/g以上が好ましく、20m2/g以上がより好ましく、30m2/g以上が更に好ましく、同様の観点から、100m2/g以下が好ましく、80m2/g以下がより好ましく、50m2/g以下が更に好ましく、40m2/g以下が更により好ましい。 BET specific surface area of precipitated silica particles, from the viewpoint of improving the polishing rate is preferably at least 10 m 2 / g, more preferably at least 20 m 2 / g, more preferably not less than 30 m 2 / g, from the same viewpoint, 100 m 2 / the following are preferred g, more preferably not more than 80m 2 / g, 50m 2 / g more preferably less, 40 m 2 / g or less is even more preferred.
前記沈殿シリカ粒子及び浮遊シリカ粒子を含む研磨液組成物中の前記全シリカ粒子の質量(沈殿シリカ粒子と浮遊シリカ粒子の質量の合計)に対する沈殿シリカ粒子の質量の割合は、研磨速度向上の観点から、55質量%以上であり、60質量%以上が好ましく、70質量%以上がより好ましく、75質量%以上が更に好ましく、研磨速度向上の観点から、95質量%以下であり、85質量%以下が好ましい。 The ratio of the mass of the precipitated silica particles to the mass of the total silica particles in the polishing liquid composition containing the precipitated silica particles and the floating silica particles (the total mass of the precipitated silica particles and the floating silica particles) is a viewpoint for improving the polishing rate. Thus, it is 55% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 75% by mass or more, and 95% by mass or less and 85% by mass or less from the viewpoint of improving the polishing rate. Is preferred.
[浮遊シリカ粒子]
前記沈殿シリカ粒子及び浮遊シリカ粒子を含む研磨液組成物中の前記全シリカ粒子の質量(沈殿シリカ粒子と浮遊シリカ粒子の質量の合計)に対する浮遊シリカ粒子の質量の割合は、研磨速度向上の観点から、5質量%以上であり、15質量%以上が好ましく、同様の観点から、45質量%以下であり、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更により好ましい。
[Floating silica particles]
The ratio of the mass of the floating silica particles to the mass of the total silica particles in the polishing liquid composition containing the precipitated silica particles and the floating silica particles (the total mass of the precipitated silica particles and the floating silica particles) is a viewpoint for improving the polishing rate. From the same viewpoint, it is 45% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. preferable.
前記沈殿シリカ粒子及び浮遊シリカ粒子を含む研磨液組成物中の浮遊シリカ粒子の分散粒径(d)は、充填率を高めて研磨速度を向上させる観点から、70nm以下であり、50nm以下が好ましく、40nm以下がより好ましく、30nm以下が更に好ましく、同様の観点から、5nm以上であり、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更にこのましい。尚、浮遊シリカ粒子の分散粒径は、後述する実施例に記載のとおり、動的光散乱粒度分布計を用いて測定した体積換算平均粒径である。 The dispersed particle size (d) of the floating silica particles in the polishing composition containing the precipitated silica particles and the floating silica particles is 70 nm or less, preferably 50 nm or less, from the viewpoint of increasing the filling rate and improving the polishing rate. 40 nm or less, more preferably 30 nm or less, and from the same viewpoint, it is 5 nm or more, preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. In addition, the dispersion | distribution particle diameter of a floating silica particle is a volume conversion average particle diameter measured using the dynamic light-scattering particle size distribution meter as described in the Example mentioned later.
沈殿シリカ粒子の乾燥粒子間空隙径(p)と浮遊シリカ粒子の分散粒径(d)との比(d/p)は、研磨最中において、沈殿シリカ粒子の粒子間空隙に浮遊シリカ粒子を効率良く充填させシリカ粒子全体の充填率を向上させる観点から、0.50以上であるとより好ましく、0.87以上であると更に好ましい。また、同様の観点から、(d/p)は、1.05以下であり、1.03以下であると好ましい。 The ratio (d / p) between the void size (p) between the dry particles of the precipitated silica particles and the dispersed particle size (d) of the suspended silica particles is determined by the ratio of the suspended silica particles to the voids between the precipitated silica particles during polishing. From the viewpoint of efficiently filling and improving the filling rate of the entire silica particles, it is more preferably 0.50 or more, and further preferably 0.87 or more. From the same viewpoint, (d / p) is 1.05 or less and preferably 1.03 or less.
次に、本発明の研磨液組成物を用いた、本発明の硬脆材料の製造方法の一例、及び本発明の硬脆材料の研磨方法の一例について説明する。 Next, an example of the manufacturing method of the hard and brittle material of the present invention using the polishing liquid composition of the present invention and an example of the polishing method of the hard and brittle material of the present invention will be described.
[被研磨硬脆材料]
本発明の硬脆材料の製造方法及び本発明の硬脆材料の研磨方法における被研磨硬脆材料(被研磨対象物)としては、例えば、サファイア基板が挙げられる。被研磨対象の形状について特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状のみならず、レンズ等の曲面部を有する形状であってもよい。また、前記被研磨対象物は、集積回路基盤、赤外線探知用レンズ、時計等に用いられるサファイアガラス、LED用サファイア基板等さまざまであるが、本発明の研磨液組成物は、中でも、高い平滑性が要求される半導体素子等の電子部品用サファイア基板、さらには、LED用サファイア基板の製造方法の研磨工程で使用される研磨液組成物として適している。
[Polished hard and brittle materials]
Examples of the hard brittle material to be polished (the object to be polished) in the hard brittle material manufacturing method of the present invention and the hard brittle material polishing method of the present invention include a sapphire substrate. The shape of the object to be polished is not particularly limited, and for example, it may be a shape having a curved surface portion such as a lens as well as a shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape. The object to be polished is various, such as an integrated circuit board, an infrared detection lens, a sapphire glass used for a watch, a sapphire substrate for LED, etc. Among them, the polishing liquid composition of the present invention has a high smoothness. Is suitable as a polishing composition used in the polishing step of a method for producing a sapphire substrate for an electronic component such as a semiconductor element or the like, or a sapphire substrate for LED.
故に、本発明の硬脆材料の製造方法の一例は、半導体素子等の電子部品用サファイア基板の製造方法であって、本発明の硬脆材料用研磨液組成物を用いて被研磨サファイア基板を研磨する工程を含む。また、本発明の硬脆材料の研磨方法一例は、半導体素子等の電子部品用サファイア基板の研磨方法であって、本発明の硬脆材料用研磨液組成物を用いて被研磨サファイア基板を研磨する工程を含む。 Therefore, an example of the manufacturing method of the hard and brittle material of the present invention is a method of manufacturing a sapphire substrate for electronic parts such as semiconductor elements, and the sapphire substrate to be polished is prepared using the polishing composition for hard and brittle material of the present invention. A step of polishing. An example of the method for polishing a hard and brittle material according to the present invention is a method for polishing a sapphire substrate for electronic parts such as a semiconductor element, and the sapphire substrate to be polished is polished using the polishing composition for a hard and brittle material according to the present invention. The process of carrying out is included.
前記被研磨サファイア基板を研磨する工程は、サファイア単結晶インゴットを薄円板状にスライスして得たウェーハを平面化する第一研磨工程(粗研磨工程)と粗研磨されたウェーハをエッチングした後、ウェーハ表面を鏡面化する第二研磨工程(仕上げ研磨)に分かれるが、本発明の研磨液組成物は、第一研磨工程及び第二研磨工程のいずれにも使用できる。しかし、本発明の研磨液組成物は、サファイア基板の表面平滑性及び生産性の観点から、第二研磨工程に使用するのが好ましい。 The step of polishing the sapphire substrate is a first polishing step (rough polishing step) for planarizing a wafer obtained by slicing a sapphire single crystal ingot into a thin disc shape, and after etching the rough polished wafer. The polishing composition of the present invention can be used in both the first polishing step and the second polishing step, although it is divided into a second polishing step (finish polishing) for mirror-finishing the wafer surface. However, the polishing composition of the present invention is preferably used in the second polishing step from the viewpoint of surface smoothness and productivity of the sapphire substrate.
本発明の硬脆材料の製造方法の一例(「本発明の製造方法の一例」と略称する場合もある。)及び本発明の硬脆材料の研磨方法の一例(「本発明の研磨方法の一例」と略称する場合もある。)で用いる研磨装置としては、特に制限はなく、被研磨硬脆材料(被研磨サファイア板)を保持する冶具(キャリア:アラミド製等)と研磨布(研磨パッド)とを備える研磨装置を用いることができ、両面研磨装置及び片面研磨装置のいずれであってもよい。 An example of a manufacturing method of a hard and brittle material of the present invention (sometimes abbreviated as “an example of a manufacturing method of the present invention”) and an example of a polishing method of a hard and brittle material of the present invention (“an example of a polishing method of the present invention”). Is not particularly limited, and a jig (carrier: made of aramid, etc.) and a polishing cloth (polishing pad) for holding a hard and brittle material to be polished (polished sapphire plate). And any of a double-side polishing apparatus and a single-side polishing apparatus may be used.
前記研磨パッドは、特に制限されず、従来公知のものが使用できる。研磨パッドの材質としては、有機高分子等が挙げられ、前記有機高分子としては、ポリウレタン等が挙げられる。前記研磨パッドの形状は、不織布状が好ましい。例えば、不織布研磨パッドとしてSUBA800(ニッタハース製)が好適に用いられる。 The polishing pad is not particularly limited, and a conventionally known polishing pad can be used. Examples of the material for the polishing pad include organic polymers, and examples of the organic polymer include polyurethane. The shape of the polishing pad is preferably a nonwoven fabric. For example, SUBA800 (manufactured by Nitta Haas) is suitably used as the nonwoven fabric polishing pad.
該研磨装置を用いる、本発明の硬脆材料の製造方法の一例及び本発明の硬脆材料の研磨方法の一例では、被研磨硬脆材料(例えば、被研磨サファイア基板)をキャリアで保持し研磨パッドを貼り付けた研磨定盤で挟み込み、本発明の研磨液組成物を研磨パッドと被研磨硬脆材料(例えば、被研磨サファイア基板)との間に供給し、被研磨硬脆材料(例えば、被研磨サファイア基板)と前記研磨パッドとを接触させながら、研磨パッド及び/又は被研磨硬脆材料(例えば、被研磨サファイア基板)を動かすことにより、被研磨硬脆材料を研磨する工程を含む。 In an example of the manufacturing method of the hard and brittle material of the present invention and the example of the polishing method of the hard and brittle material of the present invention using the polishing apparatus, the polished hard and brittle material (for example, the polished sapphire substrate) is held by a carrier and polished. The polishing composition of the present invention is sandwiched between polishing pads with a pad attached thereto, and supplied between a polishing pad and a hard brittle material to be polished (for example, a sapphire substrate to be polished). A step of polishing the hard brittle material to be polished by moving the polishing pad and / or the hard brittle material to be polished (for example, the sapphire substrate to be polished) while bringing the polishing pad into contact with the polishing pad.
本発明の製造方法の一例及び研磨方法一例における研磨荷重は、研磨速度向上の観点から、50g/cm2以上が好ましく、100g/cm2以上がより好ましく、150g/cm2以上が更に好ましく、200g/cm2以上が更により好ましい。また、前記研磨荷重は、装置、パッド等の耐久性を考慮すると、400g/cm2以下が好ましく、350g/cm2以下がより好ましい。前記研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。研磨荷重は、研磨時に被研磨サファイア板の研磨面に加えられる定盤の圧力を意味する。 One example and a polishing load in the polishing process an example of a manufacturing method of the present invention, from the viewpoint of increasing the polishing rate, 50 g / cm 2 or more is preferable, 100 g / cm 2 or more, and more preferably from 150 g / cm 2 or more, 200 g Even more preferable is / cm 2 or more. Further, the polishing load, device, considering the durability of the pad or the like is preferably 400 g / cm 2 or less, 350 g / cm 2 or less being more preferred. The polishing load can be adjusted by applying air pressure or weight to the surface plate or the substrate. The polishing load means the pressure of the surface plate applied to the polishing surface of the polished sapphire plate during polishing.
本発明の研磨液組成物の供給方法は、予め研磨液組成物の構成成分が十分に混合された状態で研磨パッドと被研磨硬脆材料の間にポンプ等で供給する方法、研磨の直前の供給ライン内等で前記構成成分を混合して供給する方法、大粒径シリカ粒子を含む大粒径シリカスラリーと小粒径シリカ粒子を含む小粒径シリカスラリーとを別々に研磨装置に供給する方法等を用いることができる。研磨速度向上の観点及び装置負荷低減の観点から、予め研磨液組成物の構成成分が十分に混合された状態で、研磨液組成物を、研磨パッドと被研磨硬脆材料の間にポンプ等で供給する方法が好ましい。 The method of supplying the polishing liquid composition of the present invention is a method of supplying a polishing pad between a polishing pad and a hard and brittle material to be polished with a pump or the like in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance. A method of mixing and supplying the above components in a supply line or the like, and supplying a large particle size silica slurry containing large particle size silica particles and a small particle size silica slurry containing small particle size silica particles separately to the polishing apparatus A method or the like can be used. From the viewpoint of improving the polishing rate and reducing the load on the apparatus, with the components of the polishing liquid composition sufficiently mixed in advance, the polishing liquid composition is pumped between the polishing pad and the hard brittle material to be polished with a pump or the like. The supply method is preferred.
研磨液組成物の供給速度は、コスト低減の観点から、被研磨硬脆材料1cm2あたり20mL/分以下が好ましく、10mL/分以下がより好ましく、5mL/分以下が更に好ましい。また、前記供給速度は、研磨速度向上の観点から、被研磨硬脆材料1cm2あたり0.01mL/分以上が好ましく、0.1mL/分以上がより好ましく、0.5mL/分以上が更に好ましい。 From the viewpoint of cost reduction, the supply rate of the polishing composition is preferably 20 mL / min or less per 1 cm 2 of the hard and brittle material to be polished, more preferably 10 mL / min or less, and even more preferably 5 mL / min or less. The supply rate is preferably 0.01 mL / min or more, more preferably 0.1 mL / min or more, and further preferably 0.5 mL / min or more from 1 cm 2 of the hard brittle material to be polished, from the viewpoint of improving the polishing rate. .
本発明の製造方法の一例及び本発明の研磨方法の一例では、本発明の研磨液組成物を用いているので、被研磨サファイア板等の被研磨硬脆材料の研磨速度が速く、硬脆材料の生産性を高めることができる。 In one example of the production method of the present invention and one example of the polishing method of the present invention, since the polishing liquid composition of the present invention is used, the polishing speed of the hard brittle material to be polished such as the sapphire plate to be polished is high, and the hard brittle material Can increase productivity.
本発明は、更に以下<1>〜<25>を開示する。 The present invention further discloses the following <1> to <25>.
<1> 平均一次粒径が80〜500nmである大粒径シリカ粒子(成分A)と、平均一次粒径が5〜70nmである小粒径シリカ粒子(成分B)と、水系媒体(成分C)とを混合してなり、
前記大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)が、0.6〜1.4であり、
前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記大粒径シリカ粒子の質量の割合が55〜95質量%である、硬脆材料用研磨液組成物。
<2>前記比(D/P)は、0.6以上、好ましくは0.7以上、より好ましくは1.0以上、更に好ましくは1.1以上であり、1.4以下、好ましくは1.3以下である、<1>に記載の硬脆材料用研磨液組成物。
<3> 前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記大粒径シリカ粒子の質量の割合は、55質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上であり、95質量%以下、好ましくは85質量%以下である、<1>又は<2>に記載の硬脆材料用研磨液組成物。
<4> 前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記小粒径シリカ粒子の質量の割合は、5質量%以上、好ましくは15質量%以上であり、45質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である、<1>〜<3>のいずれかに記載の硬脆材料用研磨液組成物。
<5> 前記大粒径シリカ粒子が、好ましくは金平糖型シリカ粒子である、<1>〜<4>のいずれかに記載の硬脆材料用研磨液組成物。
<6> 前記大粒径シリカ粒子の乾燥粒子間空隙径(P)は、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上であり、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは50nm以下、更により好ましくは30nm以下である、<1>〜<5>のいずれかに記載の硬脆材料用研磨液組成物。
<7> 前記大粒径シリカ粒子(成分A)の平均一次粒径は、500nm以下、好ましくは300nm以下、より好ましくは200nm以下、更に好ましくは150nm以下であり、80nm以上、好ましくは100nm以上である、<1>〜<6>のいずれかに記載の硬脆材料用研磨液組成物。
<8> 前記大粒径シリカ粒子の平均一次粒径の変動係数は、好ましくは1〜50%、より好ましくは1〜30%、更に好ましくは1〜10%である、<7>に記載の硬脆材料用研磨液組成物。
<9> 前記小粒径シリカ粒子(成分B)の平均一次粒径(D)は、5nm以上、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは20nm以上であり、70nm以下、好ましくは50nm以下、より好ましくは40nm以下、更に好ましくは30nm以下である、<1>〜<8>のいずれかに記載の硬脆材料用研磨液組成物。
<10> 前記小粒径シリカ粒子の平均一次粒径(D)の変動係数は、好ましくは1〜50%、より好ましくは1〜30%、更に好ましくは1〜10%である、<9>に記載の硬脆材料用研磨液組成物。
<11> 25℃におけるpHは、好ましくは8以上、より好ましくは9以上、更に好ましくは9.5以上であり、好ましくは12以下、より好ましくは11.5以下、更に好ましくは11以下である、<1>〜<10>のいずれかに記載の硬脆材料用研磨液組成物。
<12> 前記硬脆材料用研磨液組成物中の前記全シリカ粒子(大粒径シリカ粒子と小粒径シリカ粒子の合計)の濃度は、SiO2換算濃度で、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である、<1>〜<11>のいずれかに記載の硬脆材料用研磨液組成物。
<13> 前記硬脆材料用研磨液組成物中の全シリカ粒子の分散粒径は、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上であり、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下である、<1>〜<12>のいずれかに記載の硬脆材料用研磨液組成物。
<14> 前記硬脆材料用研磨液組成物中の全シリカ粒子のBET比表面積は、好ましくは10m2/g以上、より好ましくは20m2/g以上、更に好ましくは40m2/g以上であり、好ましくは200m2/g以下、より好ましくは100m2/g以下、更に好ましくは60m2/g以下である、<1>〜<13>のいずれかに記載の硬脆材料用研磨液組成物。
<15> 流体密度が1.0g/cm3、流体粘度が1cpsの分散媒中に分散された、粒子密度が2.2g/cm3、粒子径が80nm以上の粒子を沈殿可能とする遠心条件で遠心分離を行った場合に沈殿する沈殿シリカ粒子と、前記遠心条件で遠心分離を行っても沈殿しない浮遊シリカ粒子と、水系媒体とを含み、
前記沈殿シリカ粒子の乾燥粒子間空隙径(p)と前記浮遊シリカ粒子の分散粒径(d)との比(d/p)が、0.5〜1.05であり、
前記沈殿シリカ粒子と前記浮遊シリカ粒子との質量の合計に対する前記沈殿シリカ粒子の質量の割合が55〜95質量%である、硬脆材料用研磨液組成物。
<16> 前記沈殿シリカ粒子と前記浮遊シリカ粒子との質量の合計に対する前記沈殿シリカ粒子の質量の割合が、55質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは75質量%以上であり、95質量%以下、好ましくは85質量%以下である、<15>に記載の硬脆材料用研磨液組成物。
<17> 前記沈殿シリカ粒子Xと前記浮遊シリカ粒子Yとの質量の合計に対する前記浮遊シリカ粒子Yの質量の割合が、5質量%以上、好ましくは15質量%以上であり、45質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である、<15>又は<16>に記載の硬脆材料用研磨液組成物。
<18> 前記沈殿シリカ粒子の乾燥粒子間空隙径(p)は、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上であり、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは50nm以下、更により好ましくは30nm以下である、<15>〜<17>のいずれかに記載の硬脆材料用研磨液組成物。
<19> 前記沈殿シリカ粒子のBET比表面積は、好ましくは10m2/g以上、より好ましくは20m2/g以上、更に好ましくは30m2/g以上であり、好ましくは100m2/g以下、より好ましくは80m2/g以下、更に好ましくは50m2/g以下、更により好ましくは40m2/g以下である、<15>〜<18>のいずれかに記載の硬脆材料用研磨液組成物。
<20> 前記浮遊シリカ粒子の分散粒径(d)は、好ましくは70nm以下、より好ましくは50nm以下、更に好ましくは40nm以下、更により好ましくは30nm以下であり、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは15nm以上、更により好ましくは20nm以上である、<15>〜<19>のいずれかに記載の硬脆材料用研磨液組成物。
<21> 前記比(d/p)は、0.50以上、好ましくは0.8以上、より好ましくは0.85以上、更に好ましくは0.87以上であり、1.05以下、好ましくは1.03以下である、<15>〜<20>のいずれかに記載の硬脆材料用研磨液組成物。
<22> 前記<1>〜<21>のいずれかに記載の硬脆材料用研磨液組成物を用いて被研磨硬脆材料を研磨する工程を含む、硬脆材料の製造方法。
<23>前記硬脆材料が、好ましくは電子部品用サファイア基板であり、さらに好ましくはLED用サファイア基板である、前記<22>に記載の硬脆材料の製造方法。
<24> 前記<1>〜<21>のいずれかに記載の硬脆材料用研磨液組成物を用いて被研磨硬脆材料を研磨する工程を含む、硬脆材料の研磨方法。
<25>前記硬脆材料が、好ましくは電子部品用サファイア基板であり、さらに好ましくはLED用サファイア基板である、前記<24>に記載の硬脆材料の研磨方法。
<1> Large particle size silica particles (component A) having an average primary particle size of 80 to 500 nm, small particle size silica particles (component B) having an average primary particle size of 5 to 70 nm, and an aqueous medium (component C) )
The ratio (D / P) of the pore size (P) between the dry particles of the large particle size silica particles (component A) and the average primary particle size (D) of the small particle size silica particles (component B) is 0.6. ~ 1.4,
The polishing liquid composition for hard-brittle materials whose ratio of the mass of the said large particle size silica particle with respect to the sum total of the mass of the said large particle size silica particle and the said small particle size silica particle is 55-95 mass%.
<2> The ratio (D / P) is 0.6 or more, preferably 0.7 or more, more preferably 1.0 or more, still more preferably 1.1 or more, and 1.4 or less, preferably 1 The polishing composition for hard and brittle materials according to <1>, which is .3 or less.
<3> The ratio of the mass of the large particle size silica particles to the total mass of the large particle size silica particles and the small particle size silica particles is 55% by mass or more, preferably 60% by mass or more, more preferably 70% by mass. % Polishing composition for hard and brittle materials according to <1> or <2>, which is 95% by weight or less, preferably 85% by weight or less.
<4> The ratio of the mass of the small particle size silica particles to the total mass of the large particle size silica particles and the small particle size silica particles is 5% by mass or more, preferably 15% by mass or more, and 45% by mass. The polishing composition for hard and brittle materials according to any one of <1> to <3>, preferably 40% by mass or less, more preferably 30% by mass or less, and still more preferably 25% by mass or less.
<5> The polishing composition for hard and brittle materials according to any one of <1> to <4>, wherein the large-diameter silica particles are preferably confetti-type silica particles.
<6> The inter-dry particle void diameter (P) of the large-diameter silica particles is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, preferably 100 nm or less, more preferably 80 nm or less. The polishing composition for hard and brittle materials according to any one of <1> to <5>, further preferably 50 nm or less, and still more preferably 30 nm or less.
<7> The average primary particle size of the large particle size silica particles (component A) is 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm or less, and 80 nm or more, preferably 100 nm or more. The polishing composition for hard and brittle materials according to any one of <1> to <6>.
<8> The coefficient of variation of the average primary particle size of the large particle size silica particles is preferably 1 to 50%, more preferably 1 to 30%, and even more preferably 1 to 10%, according to <7>. Polishing liquid composition for hard and brittle materials.
<9> The average primary particle size (D) of the small particle size silica particles (component B) is 5 nm or more, preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, preferably 70 nm or less, preferably The polishing composition for hard and brittle materials according to any one of <1> to <8>, which is 50 nm or less, more preferably 40 nm or less, and still more preferably 30 nm or less.
<10> The coefficient of variation of the average primary particle size (D) of the small particle size silica particles is preferably 1 to 50%, more preferably 1 to 30%, and even more preferably 1 to 10%. <9> A polishing composition for hard and brittle materials as described in 1.
<11> The pH at 25 ° C. is preferably 8 or more, more preferably 9 or more, still more preferably 9.5 or more, preferably 12 or less, more preferably 11.5 or less, and even more preferably 11 or less. <1>-<10> The polishing liquid composition for hard-brittle materials in any one of.
<12> The concentration of all the silica particles (total of large particle size silica particles and small particle size silica particles) in the polishing composition for hard and brittle materials is a SiO 2 equivalent concentration, preferably 1% by mass or more, More preferably 5% by mass or more, further preferably 10% by mass or more, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, <1> to <11>. The polishing liquid composition for hard and brittle materials according to any one of the above.
<13> The dispersed particle diameter of all silica particles in the polishing composition for hard and brittle materials is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 500 nm or less, more preferably The polishing composition for hard and brittle materials according to any one of <1> to <12>, which is 300 nm or less, more preferably 200 nm or less.
<14> The BET specific surface area of all silica particles in the polishing composition for hard and brittle materials is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and further preferably 40 m 2 / g or more. The polishing composition for hard and brittle materials according to any one of <1> to <13>, preferably 200 m 2 / g or less, more preferably 100 m 2 / g or less, and still more preferably 60 m 2 / g or less. .
<15> Centrifugal conditions that enable precipitation of particles having a particle density of 2.2 g / cm 3 and a particle diameter of 80 nm or more dispersed in a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps Including precipitated silica particles that precipitate when subjected to centrifugal separation, floating silica particles that do not precipitate even when centrifuged under the centrifugal conditions, and an aqueous medium,
The ratio (d / p) between the inter-dry particle void diameter (p) of the precipitated silica particles and the dispersed particle diameter (d) of the floating silica particles is 0.5 to 1.05,
The polishing liquid composition for hard-brittle materials whose ratio of the mass of the said precipitated silica particle with respect to the sum total of the mass of the said precipitated silica particle and the said floating silica particle is 55-95 mass%.
<16> The mass ratio of the precipitated silica particles to the total mass of the precipitated silica particles and the floating silica particles is 55% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably. Is 75 mass% or more, 95 mass% or less, Preferably it is 85 mass% or less, Polishing liquid composition for hard-brittle materials as described in <15>.
<17> The ratio of the mass of the floating silica particles Y to the total mass of the precipitated silica particles X and the floating silica particles Y is 5% by mass or more, preferably 15% by mass or more, and 45% by mass or less. The polishing composition for hard and brittle materials according to <15> or <16>, preferably 40% by mass or less, more preferably 30% by mass or less, and still more preferably 25% by mass or less.
<18> The pore size (p) between the dry particles of the precipitated silica particles is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, preferably 100 nm or less, more preferably 80 nm or less, still more preferably. Is a polishing composition for hard and brittle materials according to any one of <15> to <17>, which is 50 nm or less, more preferably 30 nm or less.
<19> BET specific surface area of the precipitated silica particles are preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, still more preferably 30 m 2 / g or more, preferably 100 m 2 / g or less, more The polishing composition for hard and brittle materials according to any one of <15> to <18>, preferably 80 m 2 / g or less, more preferably 50 m 2 / g or less, and even more preferably 40 m 2 / g or less. .
<20> The dispersion particle size (d) of the floating silica particles is preferably 70 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, still more preferably 30 nm or less, preferably 5 nm or more, more preferably The polishing composition for hard and brittle materials according to any one of <15> to <19>, which is 10 nm or more, more preferably 15 nm or more, and even more preferably 20 nm or more.
<21> The ratio (d / p) is 0.50 or more, preferably 0.8 or more, more preferably 0.85 or more, further preferably 0.87 or more, 1.05 or less, preferably 1 The polishing composition for hard and brittle materials according to any one of <15> to <20>, which is 0.03 or less.
<22> A method for producing a hard and brittle material, comprising a step of polishing a hard and brittle material to be polished using the polishing composition for hard and brittle material according to any one of <1> to <21>.
<23> The method for producing a hard and brittle material according to <22>, wherein the hard and brittle material is preferably a sapphire substrate for electronic components, and more preferably a sapphire substrate for LED.
<24> A method for polishing a hard and brittle material, comprising a step of polishing a hard and brittle material to be polished using the polishing composition for a hard and brittle material according to any one of <1> to <21>.
<25> The method for polishing a hard and brittle material according to <24>, wherein the hard and brittle material is preferably a sapphire substrate for electronic components, and more preferably a sapphire substrate for LED.
以下、実施例により本発明の一例をより具体的に説明する。 Hereinafter, an example of the present invention will be described more specifically with reference to examples.
<実施例1>
室温下、大粒径シリカ粒子(成分A)の供給源として、コロイダルシリカ水分散液(カタロイドCO−80A、SiO2=40質量%、平均一次粒径130nm、変動係数5%、粒子形状金平糖、日揮触媒化成製)400g、小粒径シリカ粒子(成分B)の供給源として、コロイダルシリカ水分散液(カタロイドSI−40W、SiO2=40質量%、平均一次粒径23nm、変動係数8%、粒子形状球状、日揮触媒化成製)100g、を混合し、更に水(超純水)500gで希釈することにより研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.3)を製造した。全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合は80質量%、小粒径シリカ粒子(成分B)の割合は20質量%であった。
<Example 1>
As a supply source of large particle size silica particles (component A) at room temperature, colloidal silica aqueous dispersion (cataloid CO-80A, SiO 2 = 40% by mass, average primary particle size 130 nm, coefficient of variation 5%, particle shape confetti, As a supply source of 400 g of JGC Catalysts & Chemicals Co., Ltd., small particle size silica particles (component B), colloidal silica aqueous dispersion (cataloid SI-40W, SiO 2 = 40% by mass, average primary particle size 23 nm, coefficient of variation 8%, 100 g of spherical particle shape, manufactured by JGC Catalysts & Chemicals, and further diluted with 500 g of water (ultra pure water), the polishing composition (concentration of all silica particles (SiO 2 equivalent concentration) 20 mass%, pH 10. 3) was produced. The ratio of the large particle diameter silica particles (component A) to the total silica particles was 80 mass%, and the ratio of the small particle diameter silica particles (component B) was 20 mass%.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)は20nmであり、小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)は、1.2であった。 The pore size (P) between the dry particles of the large particle size silica particles (component A) is 20 nm, and the ratio (D / P) to the average primary particle size (D) of the small particle size silica particles (component B) is: 1.2.
<実施例2>
実施例1において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を90質量%、小粒径シリカ粒子(成分B)の割合を10質量%としたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.5)を製造した。
<Example 2>
Example 1 is the same as Example 1 except that the ratio of the large particle size silica particles (component A) to 90% by mass and the ratio of the small particle size silica particles (component B) to 10% by mass with respect to the total silica particles. In the same manner, a polishing composition (concentration of all silica particles (concentration of SiO 2 ) 20% by mass, pH 10.5) was produced.
<実施例3>
実施例1において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を70質量%、小粒径シリカ粒子(成分B)の割合を30質量%としたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.1)を製造した。
<Example 3>
Example 1 is the same as Example 1 except that the ratio of the large particle size silica particles (component A) to 70% by mass and the ratio of the small particle size silica particles (component B) to 30% by mass with respect to the total silica particles. In the same manner, a polishing liquid composition (concentration of total silica particles (concentration of SiO 2 ) 20% by mass, pH 10.1) was produced.
<実施例4>
実施例1において、小粒径シリカ粒子(成分B)の供給源として、コロイダルシリカ水分散液(カタロイドSI−30W、SiO2=30質量%、平均一次粒径16nm、変動係数10%、粒子形状球状、日揮触媒化成製)を用いたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.4)を製造した。
<Example 4>
In Example 1, as a supply source of small particle size silica particles (component B), colloidal silica aqueous dispersion (cataloid SI-30W, SiO 2 = 30% by mass, average primary particle size 16 nm, coefficient of variation 10%, particle shape A polishing liquid composition (concentration of all silica particles (concentration of SiO 2 ) of 20% by mass, pH 10.4) was produced in the same manner as in Example 1 except that spherical shape and JGC Catalysts & Chemicals were used.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=20nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=16nm)との比(D/P)は、0.8であった。 The ratio (D / P) between the dry interparticle void size (P = 20 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 16 nm) of the small particle size silica particles (component B) is: 0.8.
<実施例5>
実施例1において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を60質量%、小粒径シリカ粒子(成分B)の割合を40質量%としたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.0)を製造した。
<Example 5>
Example 1 is the same as Example 1 except that the ratio of the large particle size silica particles (component A) to the total silica particles is 60% by mass and the ratio of the small particle size silica particles (component B) is 40% by mass. In the same manner, a polishing liquid composition (concentration of all silica particles (concentration of SiO 2 ) 20% by mass, pH 10.0) was produced.
<比較例1>
実施例1において、小粒径シリカ粒子(成分B)を混合せず、大粒径シリカ粒子(成分A)の含有量を増やしたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.6)を製造した。
<Comparative Example 1>
In Example 1, the polishing liquid composition (in the same manner as in Example 1) except that the small particle size silica particles (component B) were not mixed and the content of the large particle size silica particles (component A) was increased. A concentration of all silica particles (SiO 2 equivalent concentration: 20% by mass, pH 10.6) was produced.
<比較例2>
実施例1において、大粒径シリカ粒子(成分A)を混合せず、小粒径シリカ粒子(成分B)の含有量を増やしたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.4)を製造した。
<Comparative example 2>
In Example 1, the polishing liquid composition (in the same manner as in Example 1) except that the large particle size silica particles (component A) were not mixed and the content of the small particle size silica particles (component B) was increased. A concentration of all silica particles (SiO 2 equivalent concentration) 20 mass%, pH 9.4) was produced.
<比較例3>
実施例4において、大粒径シリカ粒子(成分A)を混合せず、小粒径シリカ粒子(成分B)の含有量を増やしたこと以外は、実施例4と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.4)を製造した。
<Comparative Example 3>
In Example 4, the polishing composition (in the same manner as in Example 4) except that the large particle size silica particles (component A) were not mixed and the content of the small particle size silica particles (component B) was increased. A concentration of all silica particles (SiO 2 equivalent concentration) 20 mass%, pH 9.4) was produced.
<比較例4>
実施例1において、小粒径シリカ粒子(成分B)の供給源として、コロイダルシリカ水分散液(カタロイドSI−22PW、SiO2=40質量%、平均一次粒径30nm、変動係数8%、粒子形状球状、日揮触媒化成製)を用いたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.3)を製造した。
<Comparative Example 4>
In Example 1, colloidal silica aqueous dispersion (cataloid SI-22PW, SiO 2 = 40 mass%, average primary particle diameter 30 nm, variation coefficient 8%, particle shape as a supply source of small particle diameter silica particles (component B) A polishing liquid composition (concentration of all silica particles (concentration of SiO 2 ) of 20% by mass, pH 10.3) was produced in the same manner as in Example 1 except that spherical shape and JGC Catalysts & Chemicals were used.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=20nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=30nm)との比(D/P)は、1.5であった。 The ratio (D / P) of the void size between the dry particles (P = 20 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 30 nm) of the small particle size silica particles (component B) is: 1.5.
<比較例5>
実施例1において、小粒径シリカ粒子(成分B)の供給源として、コロイダルシリカ水分散液(カタロイドSI−550W、SiO2=20質量%、平均一次粒径8nm、変動係数15%、粒子形状球状、日揮触媒化成製)を用いたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.7)を製造した。
<Comparative Example 5>
In Example 1, colloidal silica aqueous dispersion (cataloid SI-550W, SiO 2 = 20 mass%, average primary particle diameter 8 nm, coefficient of variation 15%, particle shape as a supply source of small particle diameter silica particles (component B) A polishing liquid composition (concentration of all silica particles (concentration of SiO 2 ) of 20% by mass, pH 10.7) was produced in the same manner as in Example 1 except that spherical shape and JGC Catalysts & Chemicals were used.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=20nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=8nm)との比(D/P)は、0.4であった。 The ratio (D / P) of the inter-dry particle void size (P = 20 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 8 nm) of the small particle size silica particles (component B) is: 0.4.
<実施例6>
実施例1において、大粒径シリカ粒子(成分A)の供給源として、コロイダルシリカ水分散液(カタロイドSI−80PW、SiO2=40質量%、平均一次粒径110nm、変動係数5%、粒子形状球状、日揮触媒化成製)を用いたこと以外は、実施例1と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.8)を製造した。
<Example 6>
In Example 1, a colloidal silica aqueous dispersion (cataloid SI-80PW, SiO 2 = 40% by mass, average primary particle size 110 nm, coefficient of variation 5%, particle shape as a source of large particle size silica particles (component A) A polishing composition (concentration of all silica particles (concentration of SiO 2 ) of 20% by mass, pH 9.8) was produced in the same manner as in Example 1 except that spherical shape and JGC Catalysts & Chemicals were used.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=18nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=23nm)との比(D/P)は、1.3であった。 The ratio (D / P) of the inter-dry particle void size (P = 18 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 23 nm) of the small particle size silica particles (component B) is: 1.3.
<実施例7>
実施例6において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を90質量%、小粒径シリカ粒子(成分B)の割合を10質量%としたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.9)を製造した。
<Example 7>
Example 6 is the same as Example 6 except that the ratio of the large particle size silica particles (component A) to 90% by mass and the ratio of the small particle size silica particles (component B) to 10% by mass with respect to the total silica particles. In the same manner, a polishing liquid composition (concentration of all silica particles (concentration of SiO 2 ) 20% by mass, pH 9.9) was produced.
<実施例8>
実施例6において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を70質量%、小粒径シリカ粒子(成分B)の割合を30質量%としたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.8)を製造した。
<Example 8>
Example 6 is the same as Example 6 except that the ratio of the large particle size silica particles (component A) to 70% by mass and the ratio of the small particle size silica particles (component B) to 30% by mass with respect to the total silica particles. In the same manner, a polishing composition (concentration of all silica particles (concentration as SiO 2 ) of 20% by mass, pH 9.8) was produced.
<実施例9>
実施例6において、全シリカ粒子に対する大粒径シリカ粒子(成分A)の割合を60質量%、小粒径シリカ粒子(成分B)の割合を40質量%としたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.7)を製造した。
<Example 9>
Example 6 is the same as Example 6 except that the ratio of the large particle size silica particles (component A) to the total silica particles is 60% by mass and the ratio of the small particle size silica particles (component B) is 40% by mass. In the same manner, a polishing composition (concentration of all silica particles (SiO 2 equivalent concentration) 20 mass%, pH 9.7) was produced.
<比較例6>
実施例6において、小粒径シリカ粒子(成分B)を混合せず、大粒径シリカ粒子(成分A)の含有量を増やしたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.1)を製造した。
<Comparative Example 6>
In Example 6, the polishing liquid composition (in the same manner as in Example 6) except that the small particle size silica particles (component B) were not mixed and the content of the large particle size silica particles (component A) was increased. A concentration of all silica particles (SiO 2 equivalent concentration: 20% by mass, pH 10.1) was produced.
<比較例7>
実施例6において、小粒径シリカ粒子(成分B)の供給源として、比較例4に記載の小粒径シリカ粒子を用いたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH9.9)を製造した。
<Comparative Example 7>
In Example 6, a polishing liquid composition (all the same as in Example 6) except that the small particle size silica particles described in Comparative Example 4 were used as the supply source of the small particle size silica particles (component B). A silica particle concentration (SiO 2 equivalent concentration) 20 mass%, pH 9.9) was produced.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=18nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=30nm)との比(D/P)は、1.7であった。 The ratio (D / P) between the dry interparticle void size (P = 18 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 30 nm) of the small particle size silica particles (component B) is: 1.7.
<比較例8>
実施例6において、小粒径シリカ粒子(成分B)の供給源として、比較例5に記載の小粒径シリカ粒子を用いたこと以外は、実施例6と同様にして研磨液組成物(全シリカ粒子の濃度(SiO2換算濃度)20質量%、pH10.3)を製造した。
<Comparative Example 8>
In Example 6, the polishing liquid composition (all the same as in Example 6) except that the small particle size silica particles described in Comparative Example 5 were used as the supply source of the small particle size silica particles (component B). Silica particle concentration (SiO 2 equivalent concentration) 20 mass%, pH 10.3) was produced.
大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P=18nm)と小粒径シリカ粒子(成分B)の平均一次粒径(D=8nm)との比(D/P)は、0.4であった。 The ratio (D / P) of the inter-dry particle void size (P = 18 nm) of the large particle size silica particles (component A) and the average primary particle size (D = 8 nm) of the small particle size silica particles (component B) is: 0.4.
<粒子の形状、平均一次粒径の測定>
シリカ粒子の形状は、一又は複数の実施形態において、透過型電子顕微鏡(TEM)の観察写真及びそれを用いた分析で判別されうる分類である。「金平糖型シリカ粒子」とは、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう。金平糖型シリカ粒子は、一又は複数の実施形態において、粒径が5倍以上異なる2つ以上の粒子が凝集又は融着した形状の粒子をいう。「球状シリカ粒子」とは、真球に近い球形状の粒子(一般的に市販されているコロイダルシリカ)をいう。
<Measurement of particle shape and average primary particle size>
In one or a plurality of embodiments, the shape of the silica particles is a classification that can be discriminated by a transmission electron microscope (TEM) observation photograph and analysis using the photograph. “Konpeira type silica particles” refers to silica particles having unique ridge-like projections on the surface of spherical particles. In one or a plurality of embodiments, the confetti type silica particles refer to particles having a shape in which two or more particles different in particle size by 5 times or more are aggregated or fused. “Spherical silica particles” refers to spherical particles (generally commercially available colloidal silica) that are nearly spherical.
前記平均一次粒径は、下記の通り、電子顕微鏡(TEM)観察画像において測定される円相当径として求められる粒子径の数平均である。シリカ粒子を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM-2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF(Ver.3.6)」(販売元:三谷商事)を用いて1000〜2000個のシリカ粒子データについて1個1個のシリカ粒子の円相当径として求められる粒子径を求め、数平均により平均一次粒径及び変動係数を求めた。 The average primary particle diameter is a number average of particle diameters determined as an equivalent circle diameter measured in an electron microscope (TEM) observation image as described below. Photos of silica particles observed with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times) are captured as image data with a scanner on a personal computer, and analysis software “WinROOF (Ver .3.6) "(distributor: Mitani Corporation), the particle diameter obtained as the equivalent circle diameter of each silica particle is determined for 1000 to 2000 silica particle data, and the average primary particle diameter and The coefficient of variation was determined.
<乾燥粒子間空隙径の測定>
シリカ粒子の乾燥粒子間空隙径は、100℃で24時間乾燥させた粉末サンプルについて、細孔径測定装置(マイクロメリティック自動ポロシメーター オートポアIV9500、島津製作所製)を用いて、水銀圧入法により、1.5〜60000psiの圧力範囲での乾燥粒子間空隙径の分布を得、当該分布のピークを乾燥粒子間空隙径とした。
<Measurement of pore size between dry particles>
The void size between the dry particles of the silica particles was determined by the mercury intrusion method using a pore diameter measuring device (Micromeritic automatic porosimeter Autopore IV9500, manufactured by Shimadzu Corporation) on a powder sample dried at 100 ° C. for 24 hours. A distribution of void diameters between dry particles in a pressure range of 5 to 60000 psi was obtained, and the peak of the distribution was defined as the void diameter between dry particles.
<BET比表面積の測定>
シリカ粒子の比表面積は、100℃で24時間乾燥させた粉末サンプルについて、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に200℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
<Measurement of BET specific surface area>
The specific surface area of the silica particles is about 0.1 g of the measurement sample in a measurement cell with a precision of 4 digits after the decimal point and dried in a 200 ° C. atmosphere just before the measurement of the specific surface area. After drying for 30 minutes, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III 2305, manufactured by Shimadzu Corporation).
<分散粒径の測定>
実施例1〜9、比較例1〜8の研磨組成物中のシリカ粒子の分散粒径、及び上澄み液中の浮遊シリカ粒子の分散粒径は、動的光散乱(DLS)粒度分布計(マルバーン社製、ゼータサイザーナノS)を用い、溶媒:水(屈折率1.333)、粒子:コロイダルシリカ(屈折率1.45、減衰係数0.02)、測定温度:25℃の条件で測定し、体積換算平均粒径を分散粒径として求めた。
<Measurement of dispersed particle size>
The dispersion particle size of the silica particles in the polishing compositions of Examples 1 to 9 and Comparative Examples 1 to 8 and the dispersion particle size of the floating silica particles in the supernatant liquid were determined by a dynamic light scattering (DLS) particle size distribution meter (Malvern). Zeta Sizer Nano S) manufactured by KK, solvent: water (refractive index 1.333), particles: colloidal silica (refractive index 1.45, attenuation coefficient 0.02), measurement temperature: 25 ° C. The volume-converted average particle size was determined as the dispersed particle size.
<研磨液組成物のpH測定>
pHメーター(東亜電波工業社製、HM−30G)を用い、25℃にて研磨液組成物のpHを測定した。
<Measurement of pH of polishing composition>
The pH of the polishing composition was measured at 25 ° C. using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., HM-30G).
<研磨液組成物の遠心分離法による分析>
水希釈した研磨液組成物(SiO2=5質量%)に対して下記のとおり遠心分離を行って、沈殿シリカ粒子と浮遊シリカ粒子とを分離した。遠沈管(旭硝子製、イワキ2345−050、容量50mL)に水希釈した研磨液組成物(SiO2=5質量%)を液面高さ10cmまで入れ密栓後、卓上遠心分離機(コクサン製、H−28F、ローターRF−120)を用いて3500rpm(2150G)で3時間遠心分離を行った。デカンテーションにより、沈殿シリカ粒子(X)を含んだ沈殿物と浮遊シリカ粒子(Y)を含んだ上澄み液とを分離した後、各々を、すぐに80℃で3日間乾燥させ、沈殿物中の沈殿シリカ粒子(X)の濃度及び上澄み液中の浮遊シリカ粒子(Y)の濃度を求めた後、求めた各濃度から沈殿シリカ粒子(X)と浮遊シリカ粒子(Y)の質量の合計に対する沈殿シリカ粒子(X)の質量割合、沈殿シリカ粒子(X)と浮遊シリカ粒子(Y)の質量の合計に対する浮遊シリカ粒子(Y)の質量割合を求め、表1及び表2に示した。
<Analysis by polishing method of polishing composition>
The water-diluted polishing composition (SiO 2 = 5% by mass) was centrifuged as described below to separate precipitated silica particles and floating silica particles. A centrifuge tube (made by Asahi Glass Co., Ltd., Iwaki 2345-050, volume 50 mL) is filled with a polishing composition (SiO 2 = 5% by mass) diluted with water to a liquid level height of 10 cm, and after sealing tightly, a desktop centrifuge (manufactured by Kokusan, H -28F, rotor RF-120), and centrifuged at 3500 rpm (2150G) for 3 hours. After separating the precipitate containing the precipitated silica particles (X) and the supernatant liquid containing the floating silica particles (Y) by decantation, each was immediately dried at 80 ° C. for 3 days. After determining the concentration of precipitated silica particles (X) and the concentration of floating silica particles (Y) in the supernatant, precipitation with respect to the total mass of precipitated silica particles (X) and floating silica particles (Y) from the determined concentrations. Table 1 and Table 2 show the mass ratio of the floating silica particles (Y) to the mass ratio of the silica particles (X) and the total mass of the precipitated silica particles (X) and the floating silica particles (Y).
また、沈殿シリカ粒子(X)の、乾燥粒子間空隙径(p)、BET比表面積、及び上澄み液中の浮遊シリカ粒子(Y)の分散粒径(d)は、上記<乾燥粒子間空隙径の測定>、<BET比表面積の測定>、<分散粒径の測定>の各々に記載の方法により測定し、表1及び表2に示した。 In addition, the pore size (p) between the dry particles of the precipitated silica particles (X), the BET specific surface area, and the dispersed particle size (d) of the suspended silica particles (Y) in the supernatant liquid are < Measurement>, <measurement of BET specific surface area>, and <measurement of dispersed particle size>, and are shown in Table 1 and Table 2.
<研磨評価>
2インチのサファイア基板(c面)に対して下記の研磨条件で、実施例1〜9、比較例1〜8の研磨液組成物を用いて、3時間循環研磨を行った。そして、サファイア基板の研磨前後の重量変化を求め、サファイア密度(3.98g/cm3)、サファイア基板面積(20.3cm2)から研磨速度(μm/h)を算出し、表1及び表2に示した。
<Polishing evaluation>
Circulating polishing was performed for 3 hours on the 2-inch sapphire substrate (c-plane) using the polishing liquid compositions of Examples 1 to 9 and Comparative Examples 1 to 8 under the following polishing conditions. Then, the weight change before and after polishing of the sapphire substrate was determined, and the polishing rate (μm / h) was calculated from the sapphire density (3.98 g / cm 3 ) and the sapphire substrate area (20.3 cm 2 ). It was shown to.
(研磨条件)
片面研磨機(テクノライズ製TR15M−TRK1、定盤径38cm)
不織布研磨パッド(ニッタハース製SUBA800)
研磨荷重300g/cm2
定盤回転数120rpm
キャリア回転数120rpm
研磨液流量80mL/min(循環)
(Polishing conditions)
Single-side polishing machine (TR15M-TRK1, made by Technolize, platen diameter 38cm)
Nonwoven polishing pad (Nitta Haas SUBA800)
Polishing load 300g / cm 2
Plate rotation speed 120rpm
Carrier rotation speed 120rpm
Polishing fluid flow rate 80mL / min (circulation)
表1に示されるように、実施例1〜5の研磨液組成物は、比較例1〜5の研磨液組成物を用いた場合もよりも、研磨速度が速いことが確認できた。また、表2に示されるように、実施例6〜9の研磨液組成物は、比較例6〜8の研磨液組成物を用いた場合もよりも、研磨速度が速いことが確認できた。更に、表1〜表2に示されるように、大粒径シリカ粒子として、金平糖型シリカ粒子を用いた方が球状シリカ粒子を用いる場合よりも研磨速度が速いことが確認できた。 As shown in Table 1, it was confirmed that the polishing liquid compositions of Examples 1 to 5 had a higher polishing rate than when the polishing liquid compositions of Comparative Examples 1 to 5 were used. Moreover, as Table 2 showed, it has confirmed that the polishing liquid composition of Examples 6-9 was quicker than the case where the polishing liquid composition of Comparative Examples 6-8 was used. Further, as shown in Tables 1 and 2, it was confirmed that the polishing rate was faster when the squirrel sugar type silica particles were used as the large particle size silica particles than when the spherical silica particles were used.
以上説明したとおり、本発明の研磨液組成物を用いた被研磨硬脆材料の研磨において、研磨速度が速い。したがって、本発明の研磨液組成物を用いれば、電子部品用サファイア基板等の硬脆材料の生産性が向上する。 As explained above, in the polishing of hard and brittle materials to be polished using the polishing composition of the present invention, the polishing rate is high. Therefore, if the polishing liquid composition of the present invention is used, the productivity of hard and brittle materials such as sapphire substrates for electronic parts is improved.
Claims (7)
前記大粒径シリカ粒子(成分A)の乾燥粒子間空隙径(P)と小粒径シリカ粒子(成分B)の平均一次粒径(D)との比(D/P)が、0.6〜1.4であり、
前記大粒径シリカ粒子と前記小粒径シリカ粒子の質量の合計に対する前記大粒径シリカ粒子の質量の割合が55〜95質量%である、硬脆材料用研磨液組成物。 A large particle size silica particle (component A) having an average primary particle size of 80 to 500 nm, a small particle size silica particle (component B) having an average primary particle size of 5 to 70 nm, and an aqueous medium (component C). Mixed,
The ratio (D / P) of the pore size (P) between the dry particles of the large particle size silica particles (component A) and the average primary particle size (D) of the small particle size silica particles (component B) is 0.6. ~ 1.4,
The polishing liquid composition for hard-brittle materials whose ratio of the mass of the said large particle size silica particle with respect to the sum total of the mass of the said large particle size silica particle and the said small particle size silica particle is 55-95 mass%.
前記沈殿シリカ粒子の乾燥粒子間空隙径(p)と前記浮遊シリカ粒子の分散粒径(d)との比(d/p)が、0.50〜1.05であり、
前記沈殿シリカ粒子と前記浮遊シリカ粒子との質量の合計に対する前記沈殿シリカ粒子の質量の割合が55〜95質量%である、硬脆材料用研磨液組成物。 Centrifugation is performed under a centrifugal condition in which only particles having a particle density of 2.2 g / cm 3 and a particle diameter of 80 nm or more dispersed in a dispersion medium having a fluid density of 1.0 g / cm 3 and a fluid viscosity of 1 cps can be precipitated. Including precipitated silica particles that precipitate when separation is performed, floating silica particles that are not precipitated even when centrifuged under the centrifugal conditions, and an aqueous medium,
The ratio (d / p) between the inter-dry particle void diameter (p) of the precipitated silica particles and the dispersed particle diameter (d) of the floating silica particles is 0.50 to 1.05,
The polishing liquid composition for hard-brittle materials whose ratio of the mass of the said precipitated silica particle with respect to the sum total of the mass of the said precipitated silica particle and the said floating silica particle is 55-95 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013234189A JP6223785B2 (en) | 2013-11-12 | 2013-11-12 | Polishing liquid composition for hard and brittle materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013234189A JP6223785B2 (en) | 2013-11-12 | 2013-11-12 | Polishing liquid composition for hard and brittle materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015093931A JP2015093931A (en) | 2015-05-18 |
JP6223785B2 true JP6223785B2 (en) | 2017-11-01 |
Family
ID=53196567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013234189A Active JP6223785B2 (en) | 2013-11-12 | 2013-11-12 | Polishing liquid composition for hard and brittle materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6223785B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016155900A (en) * | 2015-02-23 | 2016-09-01 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method and method for manufacturing crustaceous material substrate |
JP6536208B2 (en) * | 2015-06-22 | 2019-07-03 | 日立化成株式会社 | Polishing solution, storage solution and polishing method |
JP6515702B2 (en) * | 2015-06-22 | 2019-05-22 | 日立化成株式会社 | Polishing solution, storage solution and polishing method |
JP6582600B2 (en) * | 2015-06-22 | 2019-10-02 | 日立化成株式会社 | Polishing liquid, storage liquid and polishing method |
JP6582601B2 (en) * | 2015-06-22 | 2019-10-02 | 日立化成株式会社 | Polishing liquid, storage liquid and polishing method |
JP6436018B2 (en) * | 2015-08-28 | 2018-12-12 | 住友金属鉱山株式会社 | Polishing slurry for oxide single crystal substrate and method for producing the same |
CN114068919A (en) * | 2020-08-06 | 2022-02-18 | 比亚迪股份有限公司 | Lithium iron phosphate positive electrode active material, preparation method thereof, positive plate and battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4156175B2 (en) * | 2000-05-31 | 2008-09-24 | 山口精研工業株式会社 | Precision polishing composition for lithium tantalate / lithium niobate single crystal materials |
JP5137521B2 (en) * | 2006-10-12 | 2013-02-06 | 日揮触媒化成株式会社 | Konpira sugar-like sol and process for producing the same |
CN103459089A (en) * | 2011-04-11 | 2013-12-18 | 旭硝子株式会社 | Polishing agent and polishing method |
US20140302753A1 (en) * | 2011-11-08 | 2014-10-09 | Fujimi Incorporated | Polishing composition |
JP2013227168A (en) * | 2012-04-25 | 2013-11-07 | Nippon Chem Ind Co Ltd | Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same |
-
2013
- 2013-11-12 JP JP2013234189A patent/JP6223785B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015093931A (en) | 2015-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6223785B2 (en) | Polishing liquid composition for hard and brittle materials | |
JP6223786B2 (en) | Polishing liquid composition for hard and brittle materials | |
CN102190962B (en) | Polishing composition and utilize the finishing method of said composition | |
CN104559798B (en) | A kind of alumina base chemical mechanical polishing liquid | |
TW200848205A (en) | Sapphire substrates and methods of making same | |
CN107987732B (en) | Polishing solution for sapphire plane polishing and preparation method thereof | |
TWI440677B (en) | Polishing composition containing hybrid abrasive for nickel-phosphorous coated memory disks | |
EP2888077A1 (en) | Methods of polishing sapphire surfaces | |
JP5856256B2 (en) | Polishing composition for nickel-phosphorus storage disk | |
JP2010535109A (en) | Wire saw method | |
JP2007103463A (en) | POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE | |
CN104416450A (en) | Chemical mechanical polishing composition for polishing a sapphire surface and methods of using same | |
TWI723085B (en) | Polishing liquid composition for magnetic disk substrate | |
JP2015086102A (en) | Production method of silica particle, and polishing agent including the silica particle | |
JP2017139350A (en) | Polishing liquid, polishing liquid set, and substrate polishing method | |
TWI421334B (en) | Slurry composition and use thereof | |
JP2016003278A (en) | Polishing liquid, polishing liquid set, and method for polishing substrate | |
JP2017139349A (en) | Polishing liquid, polishing liquid set, and substrate polishing method | |
JPWO2019043890A1 (en) | Method for manufacturing semiconductor wafer | |
CN105694811A (en) | Zinc doped silica sol composite abrasive particles, polishing agent composition and preparation method of polishing agent composition | |
CN113480942B (en) | Polycrystalline YAG ceramic chemical mechanical polishing solution | |
JP2000351956A (en) | Abrasive for semiconductor, obtained by adding thickener | |
KR20150115633A (en) | Polishing compositoin and method for polishing substrate using the same | |
JP2018177576A (en) | Method of manufacturing irregular shape silica particle | |
TWI453273B (en) | Slurry composition and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171004 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6223785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |