Nothing Special   »   [go: up one dir, main page]

JP6210405B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP6210405B2
JP6210405B2 JP2013101335A JP2013101335A JP6210405B2 JP 6210405 B2 JP6210405 B2 JP 6210405B2 JP 2013101335 A JP2013101335 A JP 2013101335A JP 2013101335 A JP2013101335 A JP 2013101335A JP 6210405 B2 JP6210405 B2 JP 6210405B2
Authority
JP
Japan
Prior art keywords
light
light source
source unit
color temperature
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013101335A
Other languages
Japanese (ja)
Other versions
JP2014222581A (en
Inventor
容子 松林
容子 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013101335A priority Critical patent/JP6210405B2/en
Priority to CN201410197246.2A priority patent/CN104159354B/en
Publication of JP2014222581A publication Critical patent/JP2014222581A/en
Application granted granted Critical
Publication of JP6210405B2 publication Critical patent/JP6210405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、照射光の照度及び色温度を調整することができる照明装置に関する。   The present invention relates to an illumination device that can adjust the illuminance and color temperature of irradiated light.

従来から、光源として蛍光灯だけでなく低電力で高輝度発光が可能なLEDを備え、読書灯等として机上で用いられる照明装置が知られている(例えば、特許文献1参照)。この特許文献1に記載された照明装置では、LEDが灯具の中央に配置され、環状の蛍光灯がLEDを取り囲むように配置されている。LEDを点灯させればスポットライトのような照射光が得られ、蛍光灯を点灯させれば机上全体に照射される照射光が得られる。このようにLEDと蛍光灯を個別に点灯制御することで、照射光の配光と照度を調整することができる。   2. Description of the Related Art Conventionally, there has been known a lighting device that includes not only a fluorescent lamp as a light source but also an LED that can emit light with high luminance at low power, and is used on a desk as a reading lamp (for example, see Patent Document 1). In the illumination device described in Patent Document 1, the LED is arranged at the center of the lamp, and an annular fluorescent lamp is arranged so as to surround the LED. When the LED is turned on, irradiation light like a spotlight is obtained, and when the fluorescent lamp is turned on, irradiation light irradiated on the entire desk is obtained. Thus, by individually controlling the lighting of the LED and the fluorescent lamp, it is possible to adjust the light distribution and illuminance of the irradiation light.

また、上記のような2種の光源を備えた照明装置において、これら光源を互いに色温度の異なる光を出射するものにより構成し、該光源の出力比を制御することで照射光の照度及び色温度を調整できるようにしたものがある(例えば、特許文献2参照)。このような照明装置は、照射光の照度が高くなると色温度も高くなるように光源を調光制御する。   Moreover, in the illumination device provided with the two types of light sources as described above, the light sources are configured to emit light having different color temperatures, and the illuminance and color of the irradiation light are controlled by controlling the output ratio of the light sources. There is one in which the temperature can be adjusted (see, for example, Patent Document 2). Such an illuminating device performs dimming control of the light source so that the color temperature increases as the illuminance of the irradiation light increases.

特開2006−12755号公報JP 2006-12755 A 特開2005−243406号公報JP-A-2005-243406

上述したような特許文献1、2に記載された照明装置を、例えば、読書灯として用いた場合、一般的に、照射光の照度を高くすれば文字の読みやすさ感も向上する。しかしながら、照度を高くすると照射光が眩しくなるので、目の疲れを感じやすくなり長時間の視作業が難しくなる。また、むやみに照度を高くするとエネルギの無駄遣いにつながる。   When the illumination device described in Patent Documents 1 and 2 as described above is used as, for example, a reading lamp, generally, the readability of characters is improved by increasing the illuminance of irradiation light. However, when the illuminance is increased, the irradiation light becomes dazzling, so that it is easy to feel tired eyes and it is difficult to perform long-term visual work. In addition, unnecessarily high illuminance leads to wasted energy.

本発明は、上記課題を解決するものであって、文字の読みやすさ感を向上するために照射光の照度を高くしても目の疲れを感じ難くして長時間の視作業を可能とし、且つ省エネルギ化を図ることができる照明装置を提供することを目的とする。   The present invention solves the above-mentioned problems and makes it difficult to feel tired eyes even if the illumination intensity of the irradiation light is increased in order to improve the readability of characters, and enables long-term visual work. And it aims at providing the illuminating device which can aim at energy saving.

本発明の照明装置は、所定の色温度の光を出射する第1の光源部と、この第1の光源部とは異なる色温度の光を出射する第2の光源部と、これら第1の光源部及び第2の光源部を個別に調光制御する制御部と、を備え、前記制御部は、前記照明装置から照射される照射光の照度が300〜1500lxで色温度が5000〜7000Kの範囲において、照度と色温度と逆相関するように変化させ、且つ低照度時には照度変化に応じて色温度を緩やかに変化させ、高照度時には照度変化に応じて色温度を急激に変化させるように前記第1の光源部と第2の光源部の出力比を調整することを特徴とする。 The illumination device of the present invention includes a first light source unit that emits light of a predetermined color temperature, a second light source unit that emits light of a color temperature different from the first light source unit, and the first light source unit. A light source unit and a control unit that performs dimming control on the second light source unit individually, and the control unit has an illuminance of irradiation light from the illumination device of 300 to 1500 lx and a color temperature of 5000 to 7000K. in the range, varied to inverse correlation between intensity and color temperature, and at the time of low illuminance gradually changing the color temperature in accordance with the illuminance change, so as to abruptly change the color temperature in accordance with the illuminance change in a high illuminance And adjusting an output ratio between the first light source unit and the second light source unit.

前記第1の光源部は、色温度4500〜5500Kの白色光を出射する白色LEDを有し、前記第2の光源部は、青色光を出射する青色LEDを有することが好ましい。   It is preferable that the first light source unit includes a white LED that emits white light having a color temperature of 4500 to 5500K, and the second light source unit includes a blue LED that emits blue light.

前記制御部は、照射光の照度500〜1000lxの範囲において変化させることが好ましい。 The control unit, it is preferable to change the illuminance of the irradiation light Te range odor 500~1000Lx.

上記照明装置は、前記第1の光源部及び第2の光源部を点灯してからの経過時間を計時する経過時間計時部を更に備え、前記制御部は、前記経過時間計時部により計時された経過時間が増すにつれて、照射光の照度を低くし且つ照射光の色温度を高くするように前記第1の光源部と第2の光源部との出力比を調整することが好ましい。   The illuminating device further includes an elapsed time measuring unit that measures an elapsed time since the first light source unit and the second light source unit are turned on, and the control unit is timed by the elapsed time measuring unit. As the elapsed time increases, it is preferable to adjust the output ratio between the first light source unit and the second light source unit so as to lower the illuminance of the irradiation light and increase the color temperature of the irradiation light.

本発明によれば、照射光の照度を高くすると色温度が低くなるので、文字の読みやすさ感を向上するために照射光の照度を高くしても照射光の眩しさが抑えられ、目の疲れを感じ難くなって長時間の視作業が可能となる。また、照射光の照度を低くすると色温度が高くなるので、文字の読みやすさ感を維持したまま照度を低くして省エネルギ化を図ることができる。   According to the present invention, when the illuminance of the irradiation light is increased, the color temperature is lowered, so that the dazzling of the irradiation light can be suppressed even if the illuminance of the irradiation light is increased in order to improve the readability of characters. This makes it difficult to feel tired of the eyes and enables long-term visual work. Further, when the illuminance of the irradiation light is lowered, the color temperature is increased. Therefore, it is possible to save energy by reducing the illuminance while maintaining the legibility of characters.

本発明の実施形態に係る照明装置の斜視図。The perspective view of the illuminating device which concerns on embodiment of this invention. 上記照明装置の構成を示すブロック図。The block diagram which shows the structure of the said illuminating device. 種々の色温度における照度と文字の読みやすさ感との関係を示す図。The figure which shows the relationship between the illumination intensity in various color temperature, and the readability feeling of a character. LEDから出射される光の色温度と同LEDの発光効率比との関係を示す図。The figure which shows the relationship between the color temperature of the light radiate | emitted from LED, and the luminous efficiency ratio of the LED. (a)は白色LEDと種々の青色LEDとを組み合わせた光源から照射される光の色度分布を示すxy色度図、(b)は(a)の二点鎖線で囲んだ領域の拡大図。(A) is an xy chromaticity diagram showing a chromaticity distribution of light emitted from a light source combining a white LED and various blue LEDs, and (b) is an enlarged view of a region surrounded by a two-dot chain line in (a). . (a)は上記照明装置を構成する第1の光源部の断面図、(b)は第2の光源部の断面図、(c)は(b)とは別の例の第2の光源部の断面図。(A) is sectional drawing of the 1st light source part which comprises the said illuminating device, (b) is sectional drawing of a 2nd light source part, (c) is the 2nd light source part of an example different from (b). FIG. 上記照明装置から照射される照射光の分光分布図。The spectral distribution map of the irradiation light irradiated from the said illuminating device. (a)(b)は、上記照明装置から照射される照射光の照度と色温度との関係を示す図。(A) and (b) are the figures which show the relationship between the illumination intensity of the irradiation light irradiated from the said illuminating device, and color temperature. 上記実施形態の変形例に係る照明装置の構成を示すブロック図。The block diagram which shows the structure of the illuminating device which concerns on the modification of the said embodiment.

本発明の実施形態に係る照明装置について図1乃至図8を参照して説明する。図1に示すように、照明装置1は、例えば、デスクスタンドとして用いられ、長尺な灯具11と、灯具11を移動自在に保持するアーム12と、アーム12を軸支して机上に載置されるベース13と、を備える。   An illumination device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the lighting device 1 is used as a desk stand, for example, and is mounted on a desk with a long lamp 11, an arm 12 that holds the lamp 11 movably, and an arm 12 that is pivotally supported. And a base 13 to be provided.

灯具11は、所定の色温度の光を出射する第1の光源部2と、第1の光源部2とは異なる色温度の光を出射する第2の光源部3と、を有する(図2も参照)。第1の光源部2及び第2の光源部3は、共にLEDにより構成され、図例では、列状に並べられた総計12個のLEDのうち、一端から4番目及び9番目に配置されたLED(ドットで示す)が第2の光源部3とされ、その他のLEDが第1の光源部2とされている。   The lamp 11 includes a first light source unit 2 that emits light having a predetermined color temperature, and a second light source unit 3 that emits light having a color temperature different from that of the first light source unit 2 (FIG. 2). See also). The first light source unit 2 and the second light source unit 3 are both configured by LEDs, and in the illustrated example, the first light source unit 2 and the second light source unit 3 are arranged fourth and ninth from one end among a total of twelve LEDs arranged in a row. The LED (shown by dots) is the second light source unit 3, and the other LEDs are the first light source unit 2.

また、灯具11は、第1の光源部2及び第2の光源部3を個別に調光制御する制御部4と、制御部4による調光制御様式を規定する調光調色カーブ(後述参照)を記憶したメモリ部5と、を有する。制御部4は、マイコンやスイッチ等を有し、商用電源から第1の光源部2及び第2の光源部3への給電を調整することで、これら第1の光源部2と第2の光源部3との出力比を調整する。   The lamp 11 includes a control unit 4 that performs dimming control of the first light source unit 2 and the second light source unit 3 individually, and a dimming and toning curve that defines a dimming control mode by the control unit 4 (see below). ). The control unit 4 includes a microcomputer, a switch, and the like, and adjusts the power supply from the commercial power supply to the first light source unit 2 and the second light source unit 3, so that the first light source unit 2 and the second light source are adjusted. The output ratio with the unit 3 is adjusted.

ベース13は、自身に対して回動可能に取り付けられ灯具11から照射される照射光の照度及び色温度を調整するのに用いられるダイヤル状の操作部6を有する。ユーザが操作部6を回動させると、その回動量に応じて照射光の照度及び色温度の変化量が調光調色カーブに基づいて決定され、その変化量分だけ照度及び色温度が変化するように制御部4が第1の光源部2及び第2の光源部3への給電を制御する。   The base 13 has a dial-like operation unit 6 that is attached to itself so as to be rotatable and is used to adjust the illuminance and color temperature of the irradiation light emitted from the lamp 11. When the user rotates the operation unit 6, the amount of change in the illuminance and color temperature of the irradiation light is determined based on the dimming toning curve according to the amount of rotation, and the illuminance and color temperature change by the amount of change. Thus, the control unit 4 controls power feeding to the first light source unit 2 and the second light source unit 3.

照明装置1を読書灯として用いた場合に、照明装置1から照射される照射光の照度及び色温度と文字の読みやすさ感との関係を調べる実験を行った。本実験では、あらゆる波長の可視光を出射するキセノンランプに液晶フィルタを組み合わせ、液晶フィルタの透光性を制御することで種々の色温度の照射光を生成した。テストする色温度としては、JISZ9112の「蛍光ランプの光源色及び演色性による区分」に記載されている白色光の色温度範囲2700〜7000Kに基づいて、2700K、5000K、6000K及び7000Kの4水準を選択した。また、テストする照度としては、300lx、500lx、600lx、750lx及び1000lxの5水準を選択した。   When the illuminating device 1 was used as a reading lamp, an experiment was conducted to examine the relationship between the illuminance and color temperature of the irradiation light emitted from the illuminating device 1 and the readability of characters. In this experiment, a xenon lamp that emits visible light of any wavelength was combined with a liquid crystal filter, and irradiation light with various color temperatures was generated by controlling the translucency of the liquid crystal filter. The color temperature to be tested is 4 levels of 2700K, 5000K, 6000K and 7000K based on the color temperature range 2700-7000K of white light described in "Classification by light source color and color rendering of fluorescent lamp" of JISZ9112. Selected. As the illuminance to be tested, five levels of 300 lx, 500 lx, 600 lx, 750 lx and 1000 lx were selected.

上記のようなテスト色温度及びテスト照度の照射光下において、テスト文字の読みやすさを被験者に評価してもらった。テスト文字は、無地用紙の中央に新聞紙の活字サイズである7ポイントで印刷された30文字とし、それを視距離40cmで被験者に読み取ってもらった。被験者は23〜69歳の男女30名とし、文字の読みやすさ感を「非常に読みやすい」、「かなり読みやすい」、「やや読みやすい」、「どちらでもない」、「やや読みにくい」、「かなり読みにくい」、「非常に読みにくい」の中から選択評価してもらった。そして、「非常に読みやすい」を3点、「かなり読みやすい」を2点、「やや読みやすい」を1点、「どちらでもない」を0点、「やや読みにくい」を−1点、「かなり読みにくい」を−2点、「非常に読みにくい」を−3点として、読みやすさ感を数値化した。   Under the test light temperature and test illumination intensity as described above, the test subject evaluated the readability of the test characters. The test characters were 30 characters printed at 7 points, which is the size of newspaper newspaper, in the center of plain paper, and the subjects read it at a viewing distance of 40 cm. The subjects were 30 males and females aged 23-69 years old, and the text readability was “very easy to read”, “pretty easy to read”, “somewhat easy to read”, “neither”, “somewhat difficult to read”, They were selected and evaluated from “very difficult to read” and “very difficult to read”. 3 points for “very easy to read”, 2 points for “very easy to read”, 1 point for “slightly easy to read”, 0 for “neither”, 1 for “slightly difficult to read”, “ The sense of readability was quantified, with "very difficult to read" being -2 points and "very difficult to read" being -3 points.

実験の手順としては、上記4水準のテスト色温度の中からランダムに選択された色温度の照射光下において、照度を300lx、500lx、600lx、750lx、1000lxの順に上昇させて、各照度におけるテスト文字の読みやすさを評価してもらった。まず、照度300lxにおいてテスト文字が印刷されていない無地用紙で3分間の順応を行い、次いで、テスト文字の黙読を10秒間行った後、テスト文字の読みやすさを主観評価してもらった。その後の照度500lx以上の実験では、無地用紙での順応を1分間とし、照度1000lxでの主観評価後、色温度を変更して同様の実験を繰り返した。   As an experimental procedure, the illuminance is increased in the order of 300 lx, 500 lx, 600 lx, 750 lx, and 1000 lx under the irradiation light of the color temperature randomly selected from the above four levels of test color temperatures, and the test at each illuminance is performed. We had you evaluate readability of letter. First, adaptation was performed for 3 minutes on plain paper on which test characters were not printed at an illuminance of 300 lx, and then the test characters were silently read for 10 seconds, and then the test characters were subjected to subjective evaluation for readability. In subsequent experiments with an illuminance of 500 lx or more, adaptation on plain paper was performed for 1 minute, and after subjective evaluation at an illuminance of 1000 lx, the color temperature was changed and the same experiment was repeated.

その結果、図3に示すように、色温度が高い方が読みやすさ感も高い傾向にあり、また、色温度に関わらず照度が高くなると読みやすさ感も向上することが分かった。しかしながら、読みやすさ感の向上の仕方は色温度によって異なり、例えば、色温度2700K(白抜き丸印で示す)では照度と読みやすさ感がほぼ比例するのに対し、他の色温度では照度が600lxを超えると読みやすさ感がほぼ頭打ちとなった。   As a result, as shown in FIG. 3, it was found that the higher the color temperature, the higher the readability, and the higher the illuminance, the better the readability. However, the method of improving the readability differs depending on the color temperature. For example, the illuminance is almost proportional to the readability at a color temperature of 2700 K (indicated by a white circle), whereas the illuminance is improved at other color temperatures. When it exceeded 600 lx, the sense of readability almost reached its peak.

上記実験では、種々の色温度における照射光照度と文字の読みやすさ感との関係を調べた。図4は、種々の色温度におけるLEDの発光効率をプロットしたものである。なお、発光効率は、色温度5000Kにおける発光効率で規格化した発光効率比で示されている。図4から明らかなように、発光効率比は、色温度5000Kで最も高くなり、色温度が5000Kから高くなっても低くなっても低下した。従って、発光効率の観点からは、LEDを色温度5000Kで発光させることが好ましい。   In the above experiment, the relationship between the illuminance of irradiated light at various color temperatures and the readability of characters was examined. FIG. 4 is a plot of the luminous efficiency of the LEDs at various color temperatures. The luminous efficiency is shown as a luminous efficiency ratio normalized by the luminous efficiency at a color temperature of 5000K. As is clear from FIG. 4, the luminous efficiency ratio was the highest at the color temperature of 5000K, and was lowered regardless of whether the color temperature was increased from 5000K or decreased. Therefore, from the viewpoint of luminous efficiency, it is preferable to cause the LED to emit light at a color temperature of 5000K.

図3に戻って、LEDの発光効率が最も高い色温度5000K(白抜き逆三角で示す)において、照射光の照度が1500lxのとき(点Pで示す)、読みやすさ感は略1.4であった。ここで、この読みやすさ感を維持したまま照度を下げるには、図中の点線矢印で示すように、色温度を6000Kに上昇させ(点Qで示す)、更には色温度を7000K(点Rで示す)まで上昇させればよいことが分かる。   Returning to FIG. 3, when the illuminance of the irradiated light is 1500 lx (indicated by a point P) at a color temperature of 5000 K (indicated by a white inverted triangle) where the luminous efficiency of the LED is the highest, the sense of readability is approximately 1.4. Met. Here, in order to reduce the illuminance while maintaining this sense of readability, the color temperature is increased to 6000K (indicated by the point Q) as shown by the dotted arrow in the figure, and the color temperature is further increased to 7000K (point It can be seen that it may be increased to (indicated by R).

上記のように照射光の色温度を5000Kから7000Kまで上昇させるには、色温度5000Kの白色光を出射する白色LEDと、白色光よりも色温度の高い青色光を出射する青色LEDと、を組み合わせ、これらLEDの出力比を調整することが考えられる。そこで、図5(a)(b)に示すように、白色LEDと、各々主波長の異なる青色光を出射する種々の青色LEDと、を組み合わせ、それぞれの組み合わせにおいてどのような色温度の光が得られるのかを調べた。テストした青色LEDは、それぞれ450nm、460nm、470nm、480nm及び490nmに主波長を有する青色光を出射するものとした。図中、白抜き三角は、白色LEDと各々の青色LEDとを光束比99:1で組み合わせた場合の色度点を示し、白抜き四角は、白色LEDと各々の青色LEDとを光束比96:4で組み合わせた場合の色度点を示す。   In order to increase the color temperature of the irradiation light from 5000K to 7000K as described above, a white LED that emits white light having a color temperature of 5000K and a blue LED that emits blue light having a color temperature higher than that of white light are provided. It is conceivable to adjust the output ratio of these LEDs in combination. Therefore, as shown in FIGS. 5 (a) and 5 (b), a white LED and various blue LEDs that emit blue light each having a different main wavelength are combined, and the light of any color temperature in each combination. We investigated whether it could be obtained. The blue LEDs tested emitted blue light having dominant wavelengths at 450 nm, 460 nm, 470 nm, 480 nm and 490 nm, respectively. In the figure, white triangles indicate chromaticity points when white LEDs and respective blue LEDs are combined at a luminous flux ratio of 99: 1, and white squares indicate white LEDs and respective blue LEDs at a luminous flux ratio of 96. : Indicates the chromaticity point when combined at 4.

その結果、白色LEDと主波長480nmの青色光を出射する青色LEDとを組み合わせた場合に、デスクスタンドの照射光として好適に用いることができる昼光色区分(図5(b)参照)の光が効率良く得られることが分かった。なお、図例では、青色光の主波長が480nmであることを考慮して、波長域475〜485nmの青色光と白色LEDからの白色光とを混色させることで得られる光の範囲をドットで示している。また、ここで言う昼光色区分とは、JISZ9112の「蛍光ランプの光源色及び演色性による区分」に記載された昼光色区分のことであり、Duvの上限が15で下限が−4であり、且つ色温度の上限が7100Kで下限が5700Kである区分を指す。   As a result, when a white LED and a blue LED that emits blue light having a dominant wavelength of 480 nm are combined, the light of the daylight color classification (see FIG. 5B) that can be suitably used as the irradiation light of the desk stand is efficient. It turns out that it gets well. In the example shown in the drawing, the range of light obtained by mixing blue light in the wavelength range of 475 to 485 nm and white light from the white LED is represented by dots in consideration of the main wavelength of blue light being 480 nm. Show. The daylight color classification referred to here is the daylight color classification described in “Classification by light source color and color rendering of fluorescent lamp” of JISZ9112, the upper limit of Duv is 15, the lower limit is −4, and the color The upper limit of temperature is 7100K and the lower limit is 5700K.

上記のように、色温度5000Kの白色光を出射する白色LEDと波長域475〜485nmに主波長を持つ青色光を出射する青色LEDとを組み合わせれば、昼光色区分の光を効率良く得ることができる。そこで、本実施形態においては、第1の光源部2を色温度5000Kの白色光を出射する白色LEDを有するものとし、第2の光源部3を波長域475〜485nmに主波長を持つ青色光を出射する青色LEDを有するものとした。ここで、第1の光源部2から出射される白色光の色温度は、厳密に5000Kである必要は無く、4500〜5500Kの範囲であればよい。   As described above, by combining a white LED that emits white light with a color temperature of 5000 K and a blue LED that emits blue light having a dominant wavelength in the wavelength range of 475 to 485 nm, it is possible to efficiently obtain daylight color division light. it can. Therefore, in the present embodiment, the first light source unit 2 includes a white LED that emits white light having a color temperature of 5000K, and the second light source unit 3 includes blue light having a dominant wavelength in the wavelength region of 475 to 485 nm. A blue LED that emits light. Here, the color temperature of the white light emitted from the first light source unit 2 does not have to be strictly 5000K, and may be in the range of 4500 to 5500K.

図6(a)に示すように、第1の光源部2は、LEDチップ21と、LEDチップ21を収容する基台22と、LEDチップ21を封止する封止材23と、封止材23に分散されLEDチップ21からの光を波長変換して出射する蛍光体24と、を有する。LEDチップ21は、主波長450nmの青色光を出射する窒化ガリウム系青色LEDチップにより構成される。基台22は、その中央に底面へ向かうにつれて内径が小さくなる凹部22aを有し、凹部22aの底面にLEDチップ21が配置されている。凹部22aの内周面には、高い光反射率を有する材料、例えば、銀やアルミニウムにより構成された薄膜が形成されている。封止材23は、LEDチップ21からの光を透過する透光性材料、例えば、透明シリコーン樹脂により構成され、好ましくは光を拡散する拡散材を含む。蛍光体24は、LEDチップ21からの青色光により励起されて主波長580nmの黄色光(後述する図7参照)を出射する黄色系蛍光体、例えば、YAG蛍光体により構成される。第1の光源部2は、LEDチップ21からの青色光と蛍光体24からの黄色光とを互いに混色させることで白色光を出射する。   As shown to Fig.6 (a), the 1st light source part 2 is the LED chip 21, the base 22 which accommodates LED chip 21, the sealing material 23 which seals LED chip 21, and a sealing material. And a phosphor 24 that is dispersed in the light source 23 and emits light from the LED chip 21 after wavelength conversion. The LED chip 21 is composed of a gallium nitride blue LED chip that emits blue light having a main wavelength of 450 nm. The base 22 has a concave portion 22a whose inner diameter decreases in the center toward the bottom surface, and the LED chip 21 is disposed on the bottom surface of the concave portion 22a. A thin film made of a material having high light reflectivity, for example, silver or aluminum is formed on the inner peripheral surface of the recess 22a. The sealing material 23 is made of a translucent material that transmits light from the LED chip 21, for example, a transparent silicone resin, and preferably includes a diffusing material that diffuses light. The phosphor 24 is composed of a yellow phosphor such as a YAG phosphor that is excited by blue light from the LED chip 21 and emits yellow light having a main wavelength of 580 nm (see FIG. 7 described later). The first light source unit 2 emits white light by mixing the blue light from the LED chip 21 and the yellow light from the phosphor 24 with each other.

図6(b)に示すように、第2の光源部3は、図6(a)に示した第1の光源部2を基に、LEDチップ21をLEDチップ31に置換し、また、蛍光体24を蛍光体34に置換したものである。LEDチップ31は、波長域290〜380nmに主波長を持つ近紫外光を出射する近紫外LEDチップにより構成される。蛍光体34は、LEDチップ31から出射された近紫外光を、波長域475〜485nmに主波長を持つ青色光に波長変換する蛍光体により構成される。なお、図6(c)に示すように、第2の光源部3は、蛍光体を有さず、波長域475〜485nmに主波長を持つ青色光を直接に出射するLEDチップ32を有する構成とされてもよい。   As shown in FIG. 6B, the second light source unit 3 replaces the LED chip 21 with the LED chip 31 based on the first light source unit 2 shown in FIG. The body 24 is replaced with a phosphor 34. The LED chip 31 is composed of a near-ultraviolet LED chip that emits near-ultraviolet light having a main wavelength in a wavelength range of 290 to 380 nm. The phosphor 34 is formed of a phosphor that converts the wavelength of near-ultraviolet light emitted from the LED chip 31 into blue light having a dominant wavelength in the wavelength range of 475 to 485 nm. In addition, as shown in FIG.6 (c), the 2nd light source part 3 has the LED chip 32 which does not have a fluorescent substance and directly radiate | emits the blue light which has a main wavelength in a wavelength range 475-485 nm. It may be said.

図7は、第1の光源部2(白色LED)から照射される白色光の分光分布(白抜きダイヤと破線で示す)と、第1の光源部2と第2の光源部3(青色LED)を光束比1500:300で組み合わせたときの照射光の分光分布(白抜き丸と実線で示す)と、を示す。この光束比で第1の光源部2と第2の光源部3を組み合わせた場合、照射光の色温度は7000Kとなる。従って、第1の光源部2と第2の光源部3の光束比を1500:0〜300の範囲で調整することにより、照射光の色温度を5000K〜7000Kの範囲で変化させることができる。   FIG. 7 shows the spectral distribution of white light emitted from the first light source unit 2 (white LED) (shown by a white diamond and a broken line), the first light source unit 2 and the second light source unit 3 (blue LED). ) Are combined at a luminous flux ratio of 1500: 300, showing the spectral distribution of irradiation light (indicated by a white circle and a solid line). When the first light source unit 2 and the second light source unit 3 are combined with this luminous flux ratio, the color temperature of the irradiated light is 7000K. Therefore, the color temperature of the irradiation light can be changed in the range of 5000K to 7000K by adjusting the luminous flux ratio between the first light source unit 2 and the second light source unit 3 in the range of 1500: 0 to 300.

図8(a)に示すように、照明装置1から照射される照射光は、照度と色温度とが逆相関して変化するように規定した調光調色カーブに基づいて制御される。調光調色カーブは、照度が300lxのときに色温度が7000Kで、照度が1500lxのときに色温度が5000Kとなり、且つ低照度時には照度変化に応じて色温度が緩やかに変化し、高照度時には照度変化に応じて色温度が急激に変化するように規定する。このように照度に対して色温度を対数制御することで、照度に対して色温度を線形制御する場合(点線で示す)に比べて、ユーザが違和感を感じにくい自然な照射光を実現することができる。なお、図8(b)に示すように、調光調色カーブは、より好ましくは、照度が500〜1000lxの範囲において色温度が5000〜7000Kの範囲で対数制御されるように規定する。   As shown in FIG. 8A, the irradiation light emitted from the lighting device 1 is controlled based on a light control toning curve that is defined so that the illuminance and the color temperature change in inverse correlation. The light control toning curve has a color temperature of 7000 K when the illuminance is 300 lx, a color temperature of 5000 K when the illuminance is 1500 lx, and the color temperature gradually changes according to the change in illuminance when the illuminance is low. Sometimes, it is specified that the color temperature changes rapidly according to the illuminance change. In this way, by logarithmically controlling the color temperature with respect to the illuminance, it is possible to realize natural irradiation light that makes it difficult for the user to feel uncomfortable as compared to the case where the color temperature is linearly controlled with respect to the illuminance (indicated by a dotted line). Can do. As shown in FIG. 8B, the light control toning curve is more preferably defined so that the logarithm control is performed in the range of 5,000 to 7000K and the color temperature in the range of 500 to 1000 lx.

上記のように構成された照明装置1によれば、照射光の照度を高くすると色温度が低くなるので、文字の読みやすさ感を向上するために照射光の照度を高くしても照射光の眩しさが抑えられ、目の疲れを感じ難くなって長時間の視作業が可能となる。また、照射光の照度を低くすると色温度が高くなるので、文字の読みやすさ感を維持したまま照度を低くして省エネルギ化を図ることができる。更に、照射光を高照度としたときに色温度がLED発光効率の最も高い5000Kに近づくように制御されているので、これによっても省エネルギ化を図ることができる。   According to the illuminating device 1 configured as described above, since the color temperature decreases when the illuminance of the irradiation light is increased, the irradiation light is increased even if the illuminance of the irradiation light is increased in order to improve the readability of characters. This reduces the glare of the eyes and makes it difficult to feel tired eyes. Further, when the illuminance of the irradiation light is lowered, the color temperature is increased. Therefore, it is possible to save energy by reducing the illuminance while maintaining the legibility of characters. Furthermore, since the color temperature is controlled to approach 5000K, which has the highest LED light emission efficiency when the illumination light is set to a high illuminance, energy saving can also be achieved.

次に、上記実施形態の変形例に係る照明装置について図9を参照して説明する。照明装置1aは、上記の照明装置1を基に、第1の光源部2及び第2の光源部3を点灯してからの経過時間を計時する経過時間計時部7を更に備えたものである。制御部4は、経過時間計時部7により計時された経過時間が増すにつれて、照射光の照度を低くし且つ照射光の色温度を高くするように第1の光源部2と第2の光源部3との出力比を調整する。   Next, a lighting device according to a modification of the above embodiment will be described with reference to FIG. The illuminating device 1a is further provided with an elapsed time measuring unit 7 that measures the elapsed time since the first light source unit 2 and the second light source unit 3 are turned on based on the illuminating device 1 described above. . The control unit 4 includes the first light source unit 2 and the second light source unit so as to decrease the illuminance of the irradiation light and increase the color temperature of the irradiation light as the elapsed time counted by the elapsed time counting unit 7 increases. The output ratio with 3 is adjusted.

一般に、文字を読む等の視作業を開始した直後では、ユーザは、照射光の色温度よりも照度の影響による明るさ感を感じやすい。そのため、照明装置1aでは、視作業の開始直後には最もLED発光効率の高い色温度5000Kの照射光(図4参照)を高照度、例えば、1500lxで照射する(図3における点Pの条件)。そして、第1の光源部2及び第2の光源部3を点灯してからの経過時間が増すにつれて、点Pから点Q、更には点Rへと遷移するようにして、照射光の照度を低くしつつ色温度を高くする。これにより、読みやす感を維持したまま照度を低くすることができるので、点Pの条件で第1の光源部2及び第2の光源部3を点灯し続ける場合に比べて、省エネルギ化を図ることができる。   In general, immediately after starting a visual task such as reading a character, the user tends to feel a sense of brightness due to the influence of illuminance rather than the color temperature of irradiation light. Therefore, in the lighting device 1a, immediately after the start of the visual operation, the irradiation light (see FIG. 4) having the highest LED light emission efficiency and the color temperature of 5000K is irradiated with high illuminance, for example, 1500 lx (condition of the point P in FIG. 3). . Then, as the elapsed time from turning on the first light source unit 2 and the second light source unit 3 increases, the illuminance of the irradiation light is changed so as to transition from the point P to the point Q and further to the point R. Increase color temperature while lowering. As a result, the illuminance can be lowered while maintaining a sense of readability, so energy saving can be achieved as compared with the case where the first light source unit 2 and the second light source unit 3 are kept on under the condition of the point P. You can plan.

なお、本発明に係る照明装置は、上記実施形態及びその変形例に限定されず種々の変形が可能である。例えば、第1の光源部及び第2の光源部は、必ずしもLEDにより構成される必要は無く、蛍光灯や有機EL発光素子により構成されてもよい。また、第1の光源部及び第2の光源部の各々から照射される光は、それぞれ白色光及び青色光に限定されず、例えば、昼光色の光及び電球色の光とされてもよい。   In addition, the illumination device according to the present invention is not limited to the above-described embodiment and its modifications, and various modifications can be made. For example, the first light source unit and the second light source unit are not necessarily configured by LEDs, and may be configured by a fluorescent lamp or an organic EL light emitting element. Further, the light emitted from each of the first light source unit and the second light source unit is not limited to white light and blue light, respectively, and may be, for example, daylight color light and light bulb color light.

1 照明装置
2 第1の光源部
3 第2の光源部
4 制御部
7 経過時間計時部
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 1st light source part 3 2nd light source part 4 Control part 7 Elapsed time timing part

Claims (4)

所定の色温度の光を出射する第1の光源部と、この第1の光源部とは異なる色温度の光を出射する第2の光源部と、これら第1の光源部及び第2の光源部を個別に調光制御する制御部と、を備えた照明装置であって、
前記制御部は、前記照明装置から照射される照射光の照度が300〜1500lxで色温度が5000〜7000Kの範囲において、照度と色温度と逆相関するように変化させ、且つ低照度時には照度変化に応じて色温度を緩やかに変化させ、高照度時には照度変化に応じて色温度を急激に変化させるように前記第1の光源部と第2の光源部の出力比を調整することを特徴とする照明装置。
A first light source unit that emits light of a predetermined color temperature, a second light source unit that emits light of a color temperature different from that of the first light source unit, the first light source unit and the second light source A lighting unit including a control unit that performs dimming control of each unit,
Wherein the control unit, to the extent the illuminance of the illumination light color temperature 300~1500lx of 5000~7000K emitted from the illumination device, is changed to inverse correlation between intensity and color temperature, and illuminance at the time of low illuminance The output temperature ratio of the first light source unit and the second light source unit is adjusted so that the color temperature is gradually changed according to the change and the color temperature is rapidly changed according to the illuminance change at high illuminance. A lighting device.
前記第1の光源部は、色温度4500〜5500Kの白色光を出射する白色LEDを有し、前記第2の光源部は、青色光を出射する青色LEDを有することを特徴とする請求項1に記載の照明装置。   2. The first light source unit includes a white LED that emits white light having a color temperature of 4500 to 5500K, and the second light source unit includes a blue LED that emits blue light. The lighting device described in 1. 前記制御部は、照射光の照度を500〜1000lxの範囲において変化させることを特徴とする請求項1又は請求項2に記載の照明装置。   The illumination device according to claim 1 or 2, wherein the control unit changes the illuminance of the irradiation light in a range of 500 to 1000 lx. 前記第1の光源部及び第2の光源部を点灯してからの経過時間を計時する経過時間計時部を更に備え、
前記制御部は、前記経過時間計時部により計時された経過時間が増すにつれて、照射光の照度を低くし且つ照射光の色温度を高くするように前記第1の光源部と第2の光源部との出力比を調整することを特徴とする請求項1乃至請求項3のいずれか一項に記載の照明装置。
An elapsed time timer that measures an elapsed time since the first light source unit and the second light source unit are turned on;
The control unit includes the first light source unit and the second light source unit so as to lower the illuminance of the irradiation light and increase the color temperature of the irradiation light as the elapsed time counted by the elapsed time counting unit increases. The lighting device according to any one of claims 1 to 3, wherein the output ratio of the lighting device is adjusted.
JP2013101335A 2013-05-13 2013-05-13 Lighting device Expired - Fee Related JP6210405B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013101335A JP6210405B2 (en) 2013-05-13 2013-05-13 Lighting device
CN201410197246.2A CN104159354B (en) 2013-05-13 2014-05-12 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101335A JP6210405B2 (en) 2013-05-13 2013-05-13 Lighting device

Publications (2)

Publication Number Publication Date
JP2014222581A JP2014222581A (en) 2014-11-27
JP6210405B2 true JP6210405B2 (en) 2017-10-11

Family

ID=51884733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101335A Expired - Fee Related JP6210405B2 (en) 2013-05-13 2013-05-13 Lighting device

Country Status (2)

Country Link
JP (1) JP6210405B2 (en)
CN (1) CN104159354B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025613A1 (en) * 2015-08-13 2017-02-16 Philips Lighting Holding B.V. Sleepy light
JP6868843B2 (en) * 2016-11-29 2021-05-12 パナソニックIpマネジメント株式会社 Light emitting device
CN107527583B (en) * 2017-07-27 2021-07-23 北京华文众合科技有限公司 Display device and display method thereof, center console, teaching system and storage medium
CN108040393A (en) * 2017-12-06 2018-05-15 付永智 A kind of LED light device with multiple radiating mode
CN108040392A (en) * 2017-12-06 2018-05-15 付永智 LED light device
CN107911904A (en) * 2017-12-06 2018-04-13 付永智 LED light device on vehicle
CN107940419A (en) * 2017-12-06 2018-04-20 付永智 Wind-cooling heat dissipating type LED light device
JP6945181B2 (en) * 2017-12-13 2021-10-06 パナソニックIpマネジメント株式会社 Lighting control device, lighting control system and lighting control method
CN112040618B (en) * 2019-06-04 2022-03-15 广州和控信息科技有限公司 Method for automatically changing color temperature in lamp adjusting process
JP7144771B2 (en) * 2020-01-17 2022-09-30 東芝ライテック株式会社 lighting equipment
CN112728447B (en) * 2021-02-02 2022-09-02 苏州佳世达电通有限公司 Lighting structure, lighting device using same and control method of lighting structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146797B2 (en) * 2001-08-23 2008-09-10 幸康 奥村 LED light with adjustable color temperature
CN101839435B (en) * 2009-01-28 2014-08-27 松下电器产业株式会社 Illumination device and controller thereof
JP2010176985A (en) * 2009-01-28 2010-08-12 Panasonic Electric Works Co Ltd Lighting system
JP2011023339A (en) * 2009-06-15 2011-02-03 Motoko Ishii Lighting Design Inc Lighting system equipped with control device by illuminance and color temperature
JP5443959B2 (en) * 2009-11-25 2014-03-19 パナソニック株式会社 Lighting device
JP2012199218A (en) * 2010-09-09 2012-10-18 Mitsubishi Chemicals Corp Light-emitting device, lighting system and lighting method
CN102507151A (en) * 2011-10-25 2012-06-20 复旦大学 Reading desk lamp evaluation method based on ergonomic experiment

Also Published As

Publication number Publication date
JP2014222581A (en) 2014-11-27
CN104159354A (en) 2014-11-19
CN104159354B (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6210405B2 (en) Lighting device
JP6763071B2 (en) White light emitting device and lighting device
JP6802803B2 (en) Multi-channel lamp system and method using mixed spectrum
JP6189217B2 (en) White light source and white light source system using the same
JP4966315B2 (en) Light source system and lighting device
JP5415664B2 (en) Light source device
JP4749912B2 (en) lighting equipment
JP2009224277A (en) Indoor lighting device
JP2007299714A (en) Lighting fixture
JP2005063687A (en) Light-emitting device and display device
JP2008258356A (en) Illuminating light source and illuminator comprising the same
JP2015156263A (en) Luminaire
JP2010282974A (en) Lighting fixture
TWI434009B (en) Optical-characteristics tunable illumination apparatus
JP2009004325A (en) Luminaire
JP2016096055A (en) Luminaire
JP2016095998A (en) Luminaire
WO2017133460A1 (en) Light source module and illumination device
JP7281779B2 (en) lighting equipment
JP2009032483A (en) Luminaire
JP6501203B2 (en) Lighting device
JP2004165105A (en) Fluorescent lamp device
Sato et al. Technological Strategy of Solid State Lighting
JP2010272536A (en) Lighting device
TWM442451U (en) LED bulb and LED lamp

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R151 Written notification of patent or utility model registration

Ref document number: 6210405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees