Nothing Special   »   [go: up one dir, main page]

JP6209067B2 - Image recognition apparatus and image recognition method - Google Patents

Image recognition apparatus and image recognition method Download PDF

Info

Publication number
JP6209067B2
JP6209067B2 JP2013240963A JP2013240963A JP6209067B2 JP 6209067 B2 JP6209067 B2 JP 6209067B2 JP 2013240963 A JP2013240963 A JP 2013240963A JP 2013240963 A JP2013240963 A JP 2013240963A JP 6209067 B2 JP6209067 B2 JP 6209067B2
Authority
JP
Japan
Prior art keywords
gesture
recognition
meaning
recognized
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013240963A
Other languages
Japanese (ja)
Other versions
JP2015102897A (en
Inventor
渋谷 彰
彰 渋谷
小林 茂子
茂子 小林
▲高▼橋 誠
誠 ▲高▼橋
雄太 樋口
雄太 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2013240963A priority Critical patent/JP6209067B2/en
Publication of JP2015102897A publication Critical patent/JP2015102897A/en
Application granted granted Critical
Publication of JP6209067B2 publication Critical patent/JP6209067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • User Interface Of Digital Computer (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像認識装置、及び画像認識方法に関する。   The present invention relates to an image recognition apparatus and an image recognition method.

従来では、手話の自動翻訳システムとしては、手のモーション認識などの精度向上などに注力しており、予測変換で簡易に文字入力するという発想よりも、如何に入力精度を向上させるかという視点でのシステム研究がおこなわれていた。   In the past, automatic sign language translation systems have focused on improving the accuracy of hand motion recognition, etc., from the perspective of how to improve input accuracy rather than the idea of simply inputting characters by predictive conversion. System research was conducted.

例えば、2つのカメラでユーザの画像を撮影し、それぞれの画像の画素値の差の相対的に大きい領域をユーザ領域として、ユーザ領域中の頂部を頭領域として、頂部よりも尖った領域を手先領域と特定して、手先の動きからジェスチャを判定する技術が知られている(特許文献1)。   For example, a user's image is photographed with two cameras, a region having a relatively large difference in pixel values of the respective images is defined as a user region, a top portion in the user region is defined as a head region, and a region sharper than the top portion is defined as a tip. A technique is known that identifies a region and determines a gesture from the movement of the hand (Patent Document 1).

特開2009−211563号公報JP 2009-211153 A

ところで、同一もしくは類似のジェスチャ動作で複数の意味を有する場合がある。この場合、仮にモーション認識の精度が高いとしても、正確に意味を判断することができないという問題点がある。   By the way, the same or similar gesture operation may have a plurality of meanings. In this case, even if the accuracy of motion recognition is high, there is a problem that the meaning cannot be accurately determined.

本発明は、このような問題点を解決するためになされたものであり、ジェスチャ動作の意味を正確に判断し得る画像認識装置及び画像認識方法を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide an image recognition apparatus and an image recognition method that can accurately determine the meaning of a gesture operation.

上述の課題を解決するために、本発明の画像認識装置は、撮影対象を画像データにして取得する画像取得手段と、画像取得手段により取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識手段と、画像取得手段により取得された画像データに基づいて、第1認識手段が認識したジェスチャ中における撮影対象の口の動作を認識し、撮影対象の口の動作の認識として、ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識手段と、第1認識手段によるジェスチャの認識結果に対応する意味候補と、第2認識手段による撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断手段と、判断手段が判断したジェスチャの意味を出力する出力手段と、第2認識手段により認識された音数が、判断手段が判断した意味の文字数を上回った場合、第2認識手段により認識された音数と、判断手段が判断した意味の文字数との差分情報を未使用情報として保持する未使用情報保持手段と、備え、判断手段は、認識対象のジェスチャの直前のジェスチャ中における未使用情報がある場合、当該未使用情報を、第2認識手段により認識された認識された音数に加えてジェスチャの意味を判断する、 In order to solve the above-described problems, an image recognition apparatus according to the present invention recognizes a shooting target gesture based on an image acquisition unit that acquires a shooting target as image data and the image data acquired by the image acquisition unit. Based on the first recognition means and the image data acquired by the image acquisition means, the movement of the mouth of the shooting target in the gesture recognized by the first recognition means is recognized, and the movement of the mouth of the shooting target is recognized, Second recognition means for recognizing the number of sounds based on the movement of the mouth in the gesture, semantic candidates corresponding to the recognition result of the gesture by the first recognition means, and recognition of the movement of the mouth to be imaged by the second recognition means based on the results, and determining means for determining the meaning of the gesture, and output means for outputting the meaning of the gesture the determination means determines, the number of sounds that have been recognized by the second recognizing means Unused information holding means for holding, as unused information, difference information between the number of sounds recognized by the second recognizing means and the number of meaning characters judged by the judging means when the number of meaning characters judged by the judging means is exceeded When there is unused information in the gesture immediately before the gesture to be recognized, the determination unit adds the unused information to the recognized number of sounds recognized by the second recognition unit, and the meaning of the gesture To judge,

また、本発明に係る画像認識方法において、撮影対象のジェスチャを認識する画像認識装置の画像認識方法において、撮影対象を画像データにして取得する画像取得ステップと、画像取得ステップにより取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識ステップと、画像取得ステップにより取得された画像データに基づいて、第1認識ステップで認識したジェスチャ中における撮影対象の口の動作を認識し、撮影対象の口の動作の認識として、ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識ステップと、第1認識ステップによるジェスチャの認識結果に対応する意味候補と、第2認識ステップによる撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断ステップと、判断ステップで判断したジェスチャの意味を出力する出力ステップと、第2認識ステップにより認識された音数が、判断ステップで判断した意味の文字数を上回った場合、第2認識ステップにより認識された音数と、判断ステップで判断した意味の文字数との差分情報を未使用情報として保持する未使用情報保持ステップと、備え、判断ステップは、認識対象のジェスチャの直前のジェスチャ中における未使用情報がある場合、当該未使用情報を、第2認識ステップにより認識された認識された音数に加えてジェスチャの意味を判断するIn the image recognition method according to the present invention, in the image recognition method of recognizing an image recognition apparatus gestures imaging target, an image acquisition step of acquiring a photographed subject image data, image data acquired by the image acquisition step Based on the first recognition step for recognizing the gesture to be photographed, and based on the image data acquired by the image acquisition step, recognize the movement of the mouth to be photographed in the gesture recognized in the first recognition step , As recognition of the movement of the mouth to be photographed, a second recognition step for recognizing the number of sounds based on the movement of the mouth in the gesture, a semantic candidate corresponding to the result of the gesture recognition by the first recognition step, and a second recognition A determination step for determining the meaning of the gesture based on the recognition result of the movement of the mouth to be imaged in the step; An output step of outputting the meaning of the gesture which is determined at the decision step, the number of sounds that have been recognized by the second recognition step, if exceeded the number of characters meaning it is determined in decision step, the sound speed that has been recognized by the second recognition step And an unused information holding step for holding, as unused information, difference information between the meaning character number determined in the determining step and the determining step includes unused information in the gesture immediately before the gesture to be recognized The meaning of the gesture is determined by adding the unused information to the recognized number of sounds recognized in the second recognition step .

この発明によれば、撮影対象のジェスチャを認識すると共に、ジェスチャ中の撮影対象の口の動作を認識し、ジェスチャの認識結果と、撮影対象の口の動作認識結果とに基づいてジェスチャの意味を判断する。また、画像認識装置は、音数を用いて、ジェスチャを認識する。このように、画像認識装置は、撮影対象の口の動きも考慮して判断するので、正確にジェスチャを認識することができる。さらに、画像認識装置は、ジェスチャ時における撮影対象の口の動作とジェスチャとの同期が取れていない場合でも、同期のずれを修正することができる。
また、本発明の画像認識装置は、撮影対象を画像データにして取得する画像取得手段と、 画像取得手段により取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識手段と、画像取得手段により取得された画像データに基づいて、第1認識手段が認識したジェスチャ中における撮影対象の口の動作を認識し、撮影対象の口の動作の認識として、ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識手段と、第1認識手段によるジェスチャの認識結果に対応する意味候補と、第2認識手段による撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断手段と、判断手段が判断したジェスチャの意味を出力する出力手段と、を備え、判断手段は、ジェスチャの意味候補の文字数と、第2認識手段により認識された音数との差が所定値以上である場合、第2認識手段により認識された音数を、ジェスチャの意味候補の何れか少なくとも1つの文字数と仮定して、ジェスチャの意味を判断する。
また、本発明の画像認識方法は、撮影対象のジェスチャを認識する画像認識装置の画像認識方法において、撮影対象を画像データにして取得する画像取得ステップと、画像取得ステップにより取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識ステップと、画像取得ステップにより取得された画像データに基づいて、第1認識ステップで認識したジェスチャ中における撮影対象の口の動作を認識し、撮影対象の口の動作の認識として、ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識ステップと、第1認識ステップによるジェスチャの認識結果に対応する意味候補と、第2認識ステップによる撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断ステップと、判断ステップで判断したジェスチャの意味を出力する出力ステップと、を備え、判断ステップは、ジェスチャの意味候補の文字数と、第2認識ステップにより認識された音数との差が所定値以上である場合、第2認識ステップにより認識された音数を、ジェスチャの意味候補の何れか少なくとも1つの文字数と仮定して、ジェスチャの意味を判断する。
この発明によれば、画像認識装置は、ジェスチャ時における撮影対象の口の動作とジェスチャとの同期が取れていない場合でも、同期のずれを修正することができる。
According to the present invention, the gesture of the photographing target is recognized, the movement of the mouth of the photographing target in the gesture is recognized, and the meaning of the gesture is determined based on the recognition result of the gesture and the movement recognition result of the mouth of the photographing target. to decide. The image recognition device recognizes a gesture using the number of sounds. As described above, the image recognition apparatus makes a determination in consideration of the movement of the mouth to be imaged, and thus can accurately recognize the gesture. Furthermore, the image recognition apparatus can correct the synchronization shift even when the movement of the mouth to be imaged at the time of the gesture and the gesture are not synchronized.
The image recognition apparatus of the present invention includes an image acquisition unit that acquires a shooting target as image data, a first recognition unit that recognizes a shooting target gesture based on the image data acquired by the image acquisition unit, Based on the image data acquired by the image acquisition means, the movement of the mouth of the photographing target in the gesture recognized by the first recognition means is recognized, and the movement of the mouth in the gesture is recognized as the recognition of the movement of the mouth of the photographing target. Based on the second recognition means for recognizing the number of sounds based on, the semantic candidates corresponding to the recognition result of the gesture by the first recognition means, and the recognition result of the movement of the mouth to be imaged by the second recognition means. Determination means for determining the meaning of the gesture, and output means for outputting the meaning of the gesture determined by the determination means. The determination means includes the number of characters of the meaning meaning of the gesture, 2 If the difference from the number of sounds recognized by the recognition means is greater than or equal to a predetermined value, the number of sounds recognized by the second recognition means is assumed to be at least one of the gesture meaning candidates, Determine the meaning.
The image recognition method of the present invention is an image recognition method of an image recognition apparatus for recognizing a gesture to be photographed, wherein an image acquisition step for obtaining the photographing target as image data and the image data obtained by the image acquisition step are provided. Based on the first recognition step for recognizing the gesture to be photographed and the image data obtained by the image obtaining step, the movement of the mouth to be photographed in the gesture recognized in the first recognition step is recognized and photographed. As a recognition of the movement of the target mouth, a second recognition step for recognizing the number of sounds based on the movement of the mouth in the gesture, a semantic candidate corresponding to the result of the gesture recognition by the first recognition step, and a second recognition step A judgment step for judging the meaning of the gesture based on the recognition result of the movement of the mouth of the subject to be photographed. An output step for outputting the meaning of the gesture determined in the step, and the determining step includes a case where the difference between the number of characters of the gesture meaning candidate and the number of sounds recognized in the second recognition step is equal to or greater than a predetermined value. The meaning of the gesture is determined by assuming that the number of sounds recognized in the second recognition step is the number of at least one character of the gesture meaning candidates.
According to the present invention, the image recognition apparatus can correct the synchronization shift even when the movement of the mouth to be imaged at the time of the gesture and the gesture are not synchronized.

一般的に、ジェスチャをする人は、ジェスチャをしながら、そのジェスチャの意味を口に表す傾向がある。この発明では、上記傾向を考慮して、撮影対象の口の動作の認識結果も用いてジェスチャの認識をしているので、単にジェスチャのみから認識する場合に比べて正確にジェスチャの意味を判断することができる。   Generally, a person who makes a gesture tends to express the meaning of the gesture in the mouth while gesturing. In the present invention, in consideration of the above-mentioned tendency, since the gesture is recognized using the recognition result of the movement of the mouth to be photographed, the meaning of the gesture is judged more accurately than when the gesture is recognized only from the gesture. be able to.

また、本発明の画像認識装置において、第2認識手段は、撮影対象の口の動作の認識として、ジェスチャ中における口の動きに基づいた音数の認識をするようにしてもよい。この場合、画像認識装置は、音数を用いて、ジェスチャを認識する。このように、画像認識装置は、撮影対象の口の動きも考慮して判断するので、正確にジェスチャを認識することができる。   In the image recognition device of the present invention, the second recognition means may recognize the number of sounds based on the movement of the mouth in the gesture as the recognition of the movement of the mouth to be imaged. In this case, the image recognition apparatus recognizes the gesture using the number of sounds. As described above, the image recognition apparatus makes a determination in consideration of the movement of the mouth to be imaged, and thus can accurately recognize the gesture.

また、本発明の画像認識装置において、第2認識手段は、ジェスチャ中における、最初に口を開いた時間から、最後に口を閉じた時間までの期間内の、口の開閉の回数に基づいた音数を認識する、ようにしてもよい。この場合、画像認識装置は、ジェスチャに対応する口の動作に基づいた音数を正確に判断することができる。   In the image recognition apparatus of the present invention, the second recognition means is based on the number of times the mouth is opened and closed within a period from the time when the mouth is first opened to the time when the mouth is finally closed during the gesture. The number of sounds may be recognized. In this case, the image recognition apparatus can accurately determine the number of sounds based on the movement of the mouth corresponding to the gesture.

また、本発明の画像認識装置において、判断手段は、ジェスチャの意味候補の音数と、第2認識手段によるジェスチャ中における音数との合致度に基づいてジェスチャの意味を判断する、ようにしてもよい。この場合、画像認識装置は、意味候補の音数と、ジェスチャ中の音数との合致度により最終的なジェスチャの意味を判断するので、正確にジェスチャの意味を判断することができる。   In the image recognition apparatus of the present invention, the determination unit determines the meaning of the gesture based on the degree of coincidence between the number of sounds of the gesture meaning candidate and the number of sounds in the gesture by the second recognition unit. Also good. In this case, the image recognition apparatus determines the final meaning of the gesture based on the degree of coincidence between the number of sounds of the semantic candidates and the number of sounds in the gesture, and thus can accurately determine the meaning of the gesture.

また、本発明の画像認識装置において、第2認識手段は、口の動作の認識として、口の動作による音情報の認識をし、判断手段は、ジェスチャの意味候補の音情報と、第2認識手段による認識結果の音情報との一致度にさらに基づいてジェスチャの意味を判断する、ようにしてもよい。この場合、画像認識装置は、音情報(例えば、子音であるか否かなど)とジェスチャ候補との一致度にさらに基づいてジェスチャの意味を判断する。これにより、画像認識装置は、ジェスチャ時に発した音情報とジェスチャの意味候補の音情報とを対比するので、正確にジェスチャの意味を判断することができる。   In the image recognition apparatus of the present invention, the second recognizing unit recognizes the sound information based on the mouth movement as the mouth movement recognition, and the judging unit recognizes the sound information of the gesture meaning candidate and the second recognition unit. The meaning of the gesture may be determined based on the degree of coincidence with the sound information of the recognition result by the means. In this case, the image recognition apparatus determines the meaning of the gesture based further on the degree of coincidence between the sound information (for example, whether or not it is a consonant) and the gesture candidate. Thereby, the image recognition apparatus compares the sound information generated at the time of the gesture with the sound information of the gesture meaning candidate, and thus can accurately determine the meaning of the gesture.

また、本発明の画像認識装置において、判断手段は、ジェスチャにおける複数の意味候補のそれぞれの文字数で区別した文字数グループごとに、当該意味候補のそれぞれに対する文字数に基づいた評価値を含んだ評価管理情報を複数生成し、評価管理情報における評価値と、文字数グループで区別された文字数とを用いて、複数の意味候補から一の意味候補を選択することで、ジェスチャの意味を判断する、ようにしてもよい。このように、画像認識装置は、ジェスチャの複数の意味候補のそれぞれの文字数で区別した文字数グループごとに、当該意味候補のそれぞれに対する文字数に基づいた評価値と、文字数グループで区別された文字数により意味候補を判断するので、ジェスチャ時における撮影対象の口の動作とジェスチャとの同期が取れていない場合でも、同期のずれを修正することができる。   Further, in the image recognition device of the present invention, the determination means includes evaluation management information including an evaluation value based on the number of characters for each of the meaning candidates for each character number group distinguished by the number of characters of the plurality of meaning candidates in the gesture. Are generated, and the meaning of the gesture is determined by selecting one meaning candidate from the plurality of meaning candidates using the evaluation value in the evaluation management information and the number of characters distinguished by the character number group. Also good. As described above, the image recognition device uses the evaluation value based on the number of characters for each of the meaning candidates and the number of characters distinguished in the character number group for each character number group distinguished by the number of characters of the plurality of meaning candidates of the gesture. Since the candidate is determined, the synchronization shift can be corrected even when the movement of the mouth to be imaged at the time of the gesture and the gesture are not synchronized.

本発明によれば、ジェスチャ動作の意味を正確に判断することができる。   According to the present invention, it is possible to accurately determine the meaning of a gesture operation.

本実施形態の画像認識装置10の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the image recognition apparatus 10 of this embodiment. 画像認識装置10のハードウェア構成図である。2 is a hardware configuration diagram of the image recognition device 10. FIG. ジェスチャDB13及び文章解釈DB14のデータ例を示す図である。It is a figure which shows the example of data of gesture DB13 and sentence interpretation DB14. 手話者の動作を模式的に示した説明図である。It is explanatory drawing which showed the operation | movement of a signer typically. 唇の動きに基づいて音数を計算する方法を説明する図である。It is a figure explaining the method of calculating the number of sounds based on the movement of a lip. ジェスチャの意味の候補の重み付けを説明する図である。It is a figure explaining the weighting of the candidate of the meaning of a gesture. 手話者の動作を模式的に示した説明図である。It is explanatory drawing which showed the operation | movement of a signer typically. 唇の動きに基づいて音数を計算する方法を説明する図である。It is a figure explaining the method of calculating the number of sounds based on the movement of a lip. 本発明の実施形態に係る手話の翻訳処理を示すフローチャートである。It is a flowchart which shows the translation process of sign language which concerns on embodiment of this invention.

以下、図面を参照しながら、本実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。   Hereinafter, this embodiment will be described with reference to the drawings. Where possible, the same parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態の画像認識装置10の機能を示すブロック図である。この画像認識装置10は、手話者などのジェスチャをテキストやイメージなどに翻訳するための装置であり、ジェスチャ入力部11(画像取得手段)、ジェスチャ認識部12(第1認識手段)、ジェスチャDB13、文章解釈DB14、唇動作認識部15(第2認識手段)、未使用情報DB17(未使用情報保持手段)、判断部18(判断手段)、及び判断結果出力部19(出力手段)を含んで構成されている。この画像認識装置10は、例えば、携帯端末やスマートフォンなどの携帯端末であることが好適である。   FIG. 1 is a block diagram illustrating functions of the image recognition apparatus 10 according to the present embodiment. The image recognition apparatus 10 is an apparatus for translating a gesture such as a sign language into text or an image, and includes a gesture input unit 11 (image acquisition unit), a gesture recognition unit 12 (first recognition unit), a gesture DB 13, It includes a sentence interpretation DB 14, a lip motion recognition unit 15 (second recognition unit), an unused information DB 17 (unused information holding unit), a determination unit 18 (determination unit), and a determination result output unit 19 (output unit). Has been. The image recognition device 10 is preferably a mobile terminal such as a mobile terminal or a smartphone.

図2は、画像認識装置10のハードウェア構成図である。図1に示される画像認識装置10は、物理的には、図2に示すように、一または複数のCPU101、主記憶装置であるRAM102及びROM103、入力デバイスであるキーボード及びマウス等の入力装置104、ディスプレイ等の出力装置105、ネットワークカード等のデータ送受信デバイスである通信モジュール106、半導体メモリ等の補助記憶装置107などを含むコンピュータシステムとして構成されている。図1における各機能は、図2に示すCPU101、RAM102等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPU101の制御のもとで入力装置104、出力装置105、通信モジュール106を動作させるとともに、RAM102や補助記憶装置107におけるデータの読み出し及び書き込みを行うことで実現される。以下、図1に示す機能ブロックに基づいて、各機能ブロックを説明する。   FIG. 2 is a hardware configuration diagram of the image recognition apparatus 10. As shown in FIG. 2, the image recognition apparatus 10 shown in FIG. 1 physically includes one or a plurality of CPUs 101, a main memory RAM 102 and ROM 103, and input devices 104 such as a keyboard and a mouse. The computer system includes an output device 105 such as a display, a communication module 106 that is a data transmission / reception device such as a network card, an auxiliary storage device 107 such as a semiconductor memory, and the like. Each function in FIG. 1 operates the input device 104, the output device 105, and the communication module 106 under the control of the CPU 101 by loading predetermined computer software on the hardware such as the CPU 101 and the RAM 102 shown in FIG. In addition, it is realized by reading and writing data in the RAM 102 and the auxiliary storage device 107. Hereinafter, each functional block will be described based on the functional blocks shown in FIG.

ジェスチャ入力部11は、手話者などの撮影対象者の動作を画像として取得する部分であり、例えばカメラである。   The gesture input unit 11 is a part that acquires, as an image, an action of a person to be photographed such as a sign language person, and is a camera, for example.

ジェスチャ認識部12は、ジェスチャ入力部11により取得された画像から特定した撮影対象者の動作に基づいて、ジェスチャを認識する部分である。ジェスチャ認識部12は、複数の画像から撮影対象者の指、腕、上体の動きを判別し、ジェスチャDB13及び文章解釈DB14を参照して判別した動きに対応する意味を認識する。   The gesture recognition unit 12 is a part that recognizes a gesture based on the action of the person to be photographed specified from the image acquired by the gesture input unit 11. The gesture recognizing unit 12 discriminates the movement of the finger, arm, and upper body of the person to be photographed from a plurality of images, and recognizes the meaning corresponding to the discriminated movement with reference to the gesture DB 13 and the sentence interpretation DB 14.

ジェスチャDB13は、手話者の動作をジェスチャ認識部12に認識させるための動作のパターンを記述するデータベースである。これはジェスチャ認識のための一般的なデータベースである。   The gesture DB 13 is a database describing an operation pattern for causing the gesture recognition unit 12 to recognize a signer's operation. This is a general database for gesture recognition.

ジェスチャDB13のデータ例を図3(A)に示す。図3(A)に示すように、ジェスチャDB13は、「ジェスチャID」と、「手の向き」と、「手の角度」と、「指の突起有無」と、「手の動きの情報」とを有する。   A data example of the gesture DB 13 is shown in FIG. As shown in FIG. 3A, the gesture DB 13 includes “gesture ID”, “hand orientation”, “hand angle”, “finger protrusion presence / absence”, “hand movement information”, and the like. Have

例えば、ジェスチャIDが「00000001」であるジェスチャは、手の向きが正面であり、手の角度が0度(指先が上を向いた状態)であり、「指の突起有無」に基づき、親指のみ上がっていて、「動き」に基づき、手が止まっていることを示す。   For example, a gesture whose gesture ID is “00000001” is that the direction of the hand is the front, the angle of the hand is 0 degrees (with the fingertip facing up), and only the thumb is based on “the presence or absence of a finger protrusion” Shows that the hand has stopped, based on "movement".

文章解釈DB14は、ジェスチャ認識部12が、ジェスチャDB13を参照して、ある程度の動作を認識すると、その意味を解釈するためのデータベースである。ここには動作のパターンの識別子とその意味(意図)とが対応付けて記述されることになる。これも一般的なジェスチャ解析のためのデータベースである。   The sentence interpretation DB 14 is a database for interpreting the meaning when the gesture recognition unit 12 recognizes a certain amount of motion with reference to the gesture DB 13. Here, an identifier of an operation pattern and its meaning (intention) are described in association with each other. This is also a database for general gesture analysis.

文章解釈DB14のデータ例を図3(B)に示す。図3(B)に示すように、文章解釈DB14は、「ジェスチャID」と「意味」とを有する。   A data example of the sentence interpretation DB 14 is shown in FIG. As shown in FIG. 3B, the sentence interpretation DB 14 has “gesture ID” and “meaning”.

図3(B)の例では、ジェスチャIDが「00000001」のジェスチャは、指文字で「あ」の意味であることを示す。また、ジェスチャIDが「00002000」のジェスチャは、名詞の「スタイル」、「形」、「型」の意味があることを示す。すなわち、ジェスチャIDが「00002000」のジェスチャは、複数の意味を有している。   In the example of FIG. 3B, a gesture having a gesture ID “00000001” indicates that “a” means a finger character. A gesture with a gesture ID “00002000” indicates that the nouns “style”, “form”, and “type” have meanings. That is, a gesture having a gesture ID “00002000” has a plurality of meanings.

唇動作認識部15は、ジェスチャ認識部12が認識した動作単位で、唇の動きを口の動作として認識する。具体的に、唇動作認識部15は、ジェスチャ認識部12が認識した動作単位で唇の動きの回数を計測した結果に基づいて音数を認識する。より具体的には、唇動作認識部15は、ジェスチャ中における、最初に唇を開いた時間から、最後に唇を閉じた時間までの期間内の、唇の開閉の回数を計測した結果に基づいて音数を認識する。また、唇動作認識部15は、唇の形状に基づいて子音を発したか、母音を発したかを認識する。   The lip motion recognition unit 15 recognizes the movement of the lips as the motion of the mouth in the motion unit recognized by the gesture recognition unit 12. Specifically, the lip motion recognition unit 15 recognizes the number of sounds based on the result of measuring the number of lip movements in the motion unit recognized by the gesture recognition unit 12. More specifically, the lip motion recognition unit 15 is based on the result of measuring the number of times the lips are opened and closed during the period from the time when the lips are first opened to the time when the lips are finally closed. To recognize the number of sounds. Also, the lip motion recognition unit 15 recognizes whether a consonant or a vowel is emitted based on the shape of the lips.

なお、唇動作認識部15は、唇の動作の平均時間に基づいて、伸ばす音の有無を判断する。例えば、図4(A)に示すように、撮影対象者が「おーきなかばん」と発していた場合、「大きな(おーきな)」の唇の動きでは、唇動作認識部15は、3音ではなく、「き」「な」の時間情報から、「おー」が2音であると推定する。また、図4(B)に示すように、「からす」など、唇の動きが少ないものについても、唇動作認識部15は、同様に、前後の平均的な一音の時間から、唇の動きを類推する。   Note that the lip motion recognition unit 15 determines whether or not there is a sound to extend based on the average time of lip motion. For example, as shown in FIG. 4 (A), when the person to be photographed utters “Okinaban”, the lip motion recognition unit 15 performs the “large” lip movement. From the time information of “ki” and “na” instead of three sounds, it is estimated that “o” is two sounds. As shown in FIG. 4B, the lip motion recognizing unit 15 similarly detects the lip of the lip from the average time of the previous and next sound, such as “crow”, which has little lip movement. Analogize the movement.

判断部18は、ジェスチャ認識部12による認識結果と唇動作認識部15による認識結果とを用いてジェスチャの意味を判断する。具体的には、判断部18は、ジェスチャ認識部12により1つの認識結果が得られた場合は、その認識結果を示す意味を判断結果出力部19へ出力する。また、判断部18は、ジェスチャ認識部12により複数の認識結果が得られた場合は、唇動作認識部15による唇の動きに基づいた音数を用いて認識結果を絞り込む。   The determination unit 18 determines the meaning of the gesture by using the recognition result by the gesture recognition unit 12 and the recognition result by the lip motion recognition unit 15. Specifically, when one recognition result is obtained by the gesture recognition unit 12, the determination unit 18 outputs a meaning indicating the recognition result to the determination result output unit 19. Further, when a plurality of recognition results are obtained by the gesture recognition unit 12, the determination unit 18 narrows down the recognition results using the number of sounds based on the lip movement by the lip motion recognition unit 15.

続いて、判断部18がジェスチャの意味を判断する具体例を、図5等を用いて説明する。図5(A)〜(E)は、「どんなヘアスタイルにする?」という手話動作を分割したものである。ジェスチャ認識部12が認識した結果に基づき、図5(A)〜(E)に動作を分割し、当該分割した単位で唇動作認識部15が唇の動きを認識する。図5(A)〜(E)に示すように、「どんなヘアスタイルにする?」という手話動作において、図5(C)の「スタイル」を示す動作の意味は、「スタイル」以外に、図3(B)に示すように「形(かたち)」、「型(かた)」という意味もあるので、ジェスチャ認識部12による認識結果のみでは、1つに意味を絞ることができない。   Next, a specific example in which the determination unit 18 determines the meaning of the gesture will be described with reference to FIG. FIGS. 5A to 5E are obtained by dividing the sign language action “What hairstyle do you want?”. Based on the result recognized by the gesture recognition unit 12, the motion is divided into FIGS. 5A to 5E, and the lip motion recognition unit 15 recognizes the movement of the lips in the divided unit. As shown in FIGS. 5A to 5E, in the sign language operation “What hairstyle do you want?”, The meaning of the operation indicating “style” in FIG. As shown in FIG. 3 (B), there is also a meaning of “shape” and “type”, so that only the recognition result by the gesture recognition unit 12 cannot narrow down the meaning to one.

そこで、判断部18は、唇動作認識部15による認識結果を用いて、ジェスチャの意味の絞り込みをする。具体的に、判断部18は、唇動作認識部15によって認識された音数及び唇の動作から導かれる子音情報に基づいて意味を絞り込む。   Therefore, the determination unit 18 narrows down the meaning of the gesture using the recognition result by the lip motion recognition unit 15. Specifically, the determination unit 18 narrows down the meaning based on the number of sounds recognized by the lip motion recognition unit 15 and consonant information derived from the lip motion.

図5に示した、「どんなヘアスタイルにする?」という手話動作において、図5(C)の「スタイル」の部分の候補として、図3(B)に示す文章解釈DB14に記載のように、スタイルを示す動作(ジェスチャIDが「00002000」の動作)の意味には、「スタイル」の他に「形」、「型」という意味がある。よって、ジェスチャの意味の候補として、「スタイル」、「形」、「型」がある。また、動作の意味に「に」を加えて話している可能性もあるので、「スタイルに」、「形に」、「型に」も候補に含まれる。このように、判断部18は、ジェスチャ認識部12が認識した動作の意味が名詞と判断される場合は、格助詞として1音付与したものも候補とする。   As shown in the sentence interpretation DB 14 shown in FIG. 3B, as a candidate for the “style” part in FIG. 5C, in the sign language action “What hairstyle do you want?” Shown in FIG. The meaning of the action indicating the style (the action with the gesture ID “00002000”) includes “shape” and “type” in addition to “style”. Therefore, there are “style”, “shape”, and “type” as candidates for the meaning of the gesture. In addition, since there is a possibility that “ni” is added to the meaning of the action, “in style”, “in shape”, and “in type” are also included in the candidates. As described above, when the meaning of the action recognized by the gesture recognition unit 12 is determined as a noun, the determination unit 18 also uses a case particle given one sound as a candidate.

判断部18は、最初に各候補に対して唇動作認識部15によって認識された音数に基づいて重み付けをする。具体的には、判断部18は、候補の文字数が音数と合致する場合、その音数を候補の重みとする。唇動作認識部15は、「スタイル」に対応する動作中の音数が4音であると認識したので、判断部18は、4音の候補に対しては4点を付与する。また、判断部18は、4音以外の候補の重みを、候補の音数と4音との差分値分を4点から減算した値とする。図6に、各候補に対して重み付けした例を示す。候補1の「かたち」は、3音であるので3点、候補2の「かた」は、2音であるので2点、候補3の「すたいる」は、4音であるので4点、候補1aの「かたちに」は、4音であるので4点、候補2aの「かたに」は、3音であるので3点、候補3aの「すたいるに」は、5音であるので3点となる。   The determination unit 18 first weights each candidate based on the number of sounds recognized by the lip motion recognition unit 15. Specifically, when the number of candidate characters matches the number of sounds, the determination unit 18 sets the number of sounds as the weight of the candidate. Since the lip motion recognition unit 15 has recognized that the number of active sounds corresponding to the “style” is four, the determination unit 18 gives four points to the four-tone candidates. Further, the determination unit 18 sets the weight of the candidate other than the four sounds as a value obtained by subtracting the difference value between the number of candidate sounds and the four sounds from the four points. FIG. 6 shows an example in which each candidate is weighted. Candidate 1's “shape” has 3 sounds, 3 points, candidate 2's “shape” has 2 sounds, and candidate 3's “salt” has 4 sounds, so 4 points Candidate 1a's “To Shape” has 4 sounds, so 4 points, Candidate 2a's “Kani ni” has 3 sounds, and Candidate 3a's “Stunni” has 5 sounds. There are 3 points.

判断部18は、続いて各候補に対して唇動作認識部15が認識した子音情報との一致度に基づいた重み付けをする。この例では、唇動作認識部15は、「st??」と認識しており、第1音が「s」と認識し、第2音が「t」と認識し、第3音及び第4音が認識できなかったことを示す。   The determination unit 18 subsequently weights each candidate based on the degree of coincidence with the consonant information recognized by the lip motion recognition unit 15. In this example, the lip motion recognition unit 15 recognizes “st ??”, the first sound is recognized as “s”, the second sound is recognized as “t”, the third sound and the fourth sound. Indicates that the sound could not be recognized.

唇動作認識部15による子音情報の認識結果に基づき、判断部18は、各候補と子音情報とが一致しているか否かを判断し、一致していない場合には、0.5点減算する。認識できなかった部分に対しては、判断外とする。上記の例の場合、判断部18は、第3音及び第4音が認識できなかったので、判断対象は、第1音及び第2音とする。   Based on the recognition result of the consonant information by the lip motion recognition unit 15, the determination unit 18 determines whether or not each candidate matches the consonant information. If they do not match, 0.5 point is subtracted. . The part that could not be recognized is out of judgment. In the case of the above example, the determination unit 18 cannot recognize the third sound and the fourth sound, so the determination targets are the first sound and the second sound.

候補1の「かたち」は、第1音が一致しないので、0.5点減算し、2.5点となる。候補2の「かた」は、第1音が一致しないので、0.5点減算し、1.5点となる。候補3の「すたいる」は、第1音及び第2音が一致するので、減算しない。候補1aの「かたちに」は、第1音が一致しないので、0.5点減算し、3.5点となる。候補2aの「かたに」は、第1音が一致しないので、0.5点減算し、2.5点となる。候補3aの「すたいるに」は、第1音及び第2音が一致するので、減算しない。   Since the first sound does not match the candidate 1 “shape”, 0.5 points are subtracted to 2.5 points. Candidate 2 “Kata” does not match the first sound, so 0.5 points are subtracted to 1.5 points. The candidate 3 “Sutaru” is not subtracted because the first and second sounds match. Since the first sound does not match the candidate 1a “in shape”, 0.5 points are subtracted to 3.5 points. Candidate 2a “Kani ni” does not match the first sound, so 0.5 points are subtracted to 2.5 points. Candidate 3a “suta ni ni” is not subtracted because the first and second sounds match.

上述のように、判断部18は、音数及び子音情報との一致度に基づいて算出した重みに対して、検出した音数(4音)で割ることにより正規化する。この結果、候補3の「すたいる」の重みが最も高いので、判断部18は、候補3を最優先候補とし、当該候補3に対応する正規化した値と、予め定義された閾値とを比較し、正規化した値が閾値以上であれば、判断部18は、候補3がジェスチャの意味であると判断する。   As described above, the determination unit 18 normalizes the weight calculated based on the degree of coincidence with the number of sounds and the consonant information by dividing by the detected number of sounds (four sounds). As a result, the candidate 3 has the highest weight of “Suru”, and therefore the determination unit 18 sets the candidate 3 as the highest priority candidate, the normalized value corresponding to the candidate 3, and a predefined threshold value. If the compared and normalized value is equal to or greater than the threshold value, the determining unit 18 determines that the candidate 3 has a gesture meaning.

(唇の動きによる音数とジェスチャの意味の文字数とが乖離している場合)
図5に示した例では、ジェスチャとそのジェスチャに対応する唇の動きとの同期が取れている場合について説明したが、ジェスチャとそのジェスチャに対応する唇の動きによる音数との間にずれがある場合の判断方法について説明する。図7を用いて、「どんなヘアスタイルにする?」という手話動作において、ジェスチャと、ジェスチャに対応する唇の動きとの同期が取れていない場合の例を説明する。図7に示すように、対象となるジェスチャの意味の文字数と、当該ジェスチャに対応する唇の動きの回数に乖離がある場合(例えば、あるジェスチャの最大文字数と唇の動きの数が2以上乖離している場合)は、次のジェスチャに対応する唇の動きも含んでいると仮定して、複数のパターンでスコア化(重み付け)を行う。
(If the number of sounds from the movement of the lips is different from the number of characters in the meaning of the gesture)
In the example shown in FIG. 5, the case where the gesture and the movement of the lip corresponding to the gesture are synchronized has been described. However, there is a difference between the number of sounds due to the movement of the lip corresponding to the gesture and the gesture. A determination method in a case will be described. With reference to FIG. 7, an example in which the gesture and the movement of the lips corresponding to the gesture are not synchronized in the sign language action “What kind of hair style do you want?” Will be described. As shown in FIG. 7, when there is a divergence between the number of characters in the meaning of the target gesture and the number of lip movements corresponding to the gesture (for example, the maximum number of characters in a gesture and the number of lip movements are two or more divergences). If it is), it is assumed that the movement of the lips corresponding to the next gesture is included, and scoring (weighting) is performed with a plurality of patterns.

図7に示す例の場合、図7(A)に示す「どんな」の動作時、図7(B)に示す「ヘア」の動作時は、動作と唇の動きの同期が取れているが、図7(C)に示すように「スタイル」の動作時に、その次の「する」の唇の動きも認識してしまうと、「スタイル」の動作時に唇の動きが6回あったと判断することになり、ジェスチャの意味の文字数と、ジェスチャに対応する唇の動きの数(音数)との間に乖離があることになる。   In the case of the example shown in FIG. 7, the operation and the movement of the lips are synchronized during the “what” operation shown in FIG. 7A and the “hair” operation shown in FIG. As shown in FIG. 7 (C), when the movement of the next “Yes” lip is recognized during the “Style” operation, it is determined that the lip movement has occurred six times during the “Style” operation. Thus, there is a divergence between the number of characters in the meaning of the gesture and the number of lip movements (number of sounds) corresponding to the gesture.

判断部18では、ジェスチャ毎にジェスチャの意味の文字数と、音数とを比較して、比較した結果、乖離がある場合(例えば、あるジェスチャの最大小文字数と音数との差が2以上)には、次のジェスチャの音数も含んでいると判断して、音数がジェスチャの意味候補の文字数の何れかであると仮定して重み付けをする。判断部18は、ジェスチャ認識部12により認識されたジェスチャの意味候補が複数ある場合に、音数が複数の意味候補の文字数のそれぞれであると仮定して重み付けをする。   The determination unit 18 compares the number of characters in the meaning of the gesture with the number of sounds for each gesture, and if there is a divergence as a result of the comparison (for example, the difference between the maximum lowercase number of a certain gesture and the number of sounds is 2 or more). Is weighted assuming that the number of sounds of the next gesture is also included, and that the number of sounds is one of the number of characters of the meaning candidate of the gesture. When there are a plurality of gesture meaning candidates recognized by the gesture recognition unit 12, the determination unit 18 performs weighting assuming that the number of sounds is the number of characters of the plurality of meaning candidates.

図7(C)のように、唇の動きが6回である場合に、図7(C)に対応する動作(ジェスチャID「00002000」)に対応するジェスチャの意味の文字数が2文字〜4文字のとき、判断部18は、音数が2文字〜4文字であると仮定して、音数が2文字〜4文字のそれぞれの場合に分けて(意味候補の文字数グループに分けて)重み付けをする。すなわち、判断部18は、唇動作認識部15により認識された音数を、ジェスチャの意味候補の何れか少なくとも1つの文字数であると仮定して重み付けをする。具体的には、判断部18は、図8(A)や図8(B)に示すように、意味候補の文字数グループごとに、各候補の重みの値(評価値と文字数とに基づいた値)を含むテーブル形式の情報を評価管理情報として生成する。   As shown in FIG. 7C, when the lips move 6 times, the number of characters in the meaning of the gesture corresponding to the operation corresponding to FIG. 7C (gesture ID “00002000”) is 2 to 4 characters. In this case, assuming that the number of sounds is 2 to 4 characters, the determination unit 18 performs weighting for each case of 2 to 4 characters (divided into semantic candidate character number groups). To do. That is, the determination unit 18 weights the number of sounds recognized by the lip motion recognition unit 15 assuming that the number of characters is at least one of the gesture meaning candidates. Specifically, as shown in FIGS. 8A and 8B, the determination unit 18 determines the weight value of each candidate (value based on the evaluation value and the number of characters) for each semantic candidate character number group. Table-format information including () is generated as evaluation management information.

図8(A)に唇動作認識部15により認識された音数が4文字であると仮定した場合における、各候補の重みの値と、各候補が適用された際の未使用の唇の動きの回数を示す。また、図8(B)に唇動作認識部15により認識された音数が3文字であると仮定した場合における、各候補の重みの値と、各候補が適用された際の未使用の唇の動きの回数を示す。ここで、未使用の唇の動きとは、ジェスチャの意味を判断するために使用されなかった唇の動きを示す。未使用の唇の動きの回数は、唇の動きの数と、各候補の文字数との差分値により求められる。なお、図8(A)及び(B)に示す候補は、代表的な候補(重みが高い値である候補)である。また、唇動作認識部15により認識された音数が2文字であると仮定した場合の各候補の重みの値、各候補が適用された際の未使用の唇の動きの回数の図は省略する。   The weight value of each candidate and the movement of unused lips when each candidate is applied, assuming that the number of sounds recognized by the lip motion recognition unit 15 in FIG. Indicates the number of times. 8B, assuming that the number of sounds recognized by the lip motion recognition unit 15 is 3 characters, the weight value of each candidate and the unused lips when each candidate is applied. Indicates the number of movements. Here, the unused lip movement refers to a lip movement that was not used to determine the meaning of the gesture. The number of unused lip movements is obtained from a difference value between the number of lip movements and the number of characters of each candidate. Note that the candidates shown in FIGS. 8A and 8B are representative candidates (candidates with high weights). Also, the figure of the weight value of each candidate when the number of sounds recognized by the lip motion recognition unit 15 is assumed to be two characters and the number of unused lip movements when each candidate is applied is omitted. To do.

図8(A)に示す重みは、4文字の場合における、音数に基づいた重み付けと子音情報に基づいた重み付けをした結果を正規化(文字数で割った)したものである。図8(B)に示す重みは、3文字の場合における、音数に基づいた重み付けと子音情報に基づいた重み付けをした結果を正規化したものである。   The weight shown in FIG. 8A is obtained by normalizing (dividing by the number of characters) the result of weighting based on the number of sounds and weighting based on the consonant information in the case of 4 characters. The weight shown in FIG. 8B is obtained by normalizing the result of weighting based on the number of sounds and weighting based on the consonant information in the case of three characters.

判断部18は、唇動作認識部15により認識された音数が4,3又は2文字であると仮定した場合における(図8(A)及び(B)参照)、各候補の重みの値の中で最も高い値の候補を最優先候補とし、当該最優先候補に対応する重みの値と、予め定義された閾値とを比較し、最優先候補に対応する重みの値が閾値以上であれば、判断部18は、最優先候補がジェスチャの意味であると判断する。以上で、判断部18がジェスチャの意味を判断する具体例の説明を終える。   When it is assumed that the number of sounds recognized by the lip motion recognition unit 15 is 4, 3, or 2 characters (see FIGS. 8A and 8B), the determination unit 18 determines the weight value of each candidate. The highest priority candidate is set as the highest priority candidate, the weight value corresponding to the highest priority candidate is compared with a predefined threshold value, and the weight value corresponding to the highest priority candidate is equal to or greater than the threshold value. The determination unit 18 determines that the highest priority candidate is the meaning of the gesture. This is the end of the description of the specific example in which the determination unit 18 determines the meaning of the gesture.

また、判断部18は、未使用の唇の動きの回数を未使用情報として未使用情報DB17へ登録する。未使用情報DB17は、未使用情報を管理するデータベースである。判断結果出力部19は、判断部18による判断結果を出力する。なお、判断結果出力部19は、判断部18が判断した結果複数の候補が有る場合、選択を促すために候補の出力もする。   Further, the determination unit 18 registers the number of unused lip movements as unused information in the unused information DB 17. The unused information DB 17 is a database that manages unused information. The determination result output unit 19 outputs the determination result by the determination unit 18. In addition, when there are a plurality of candidates as a result of determination by the determination unit 18, the determination result output unit 19 also outputs a candidate for prompting selection.

つぎに、このように構成された画像認識装置10による手話の翻訳処理について説明する。図9は、画像認識装置10の手話の翻訳処理を示すフローチャートである。   Next, a sign language translation process performed by the image recognition apparatus 10 configured as described above will be described. FIG. 9 is a flowchart showing sign language translation processing of the image recognition apparatus 10.

撮影対象となる手話者の手話動作が、ジェスチャ入力部11により撮影され、撮影対象の画像が入力される(ステップS1)。撮影された手話動作は、ジェスチャ認識部13により認識されるとともに、唇動作認識部15によって唇の動作の認識がなされる(ステップS2)。判断部18は、ジェスチャ認識部13がジェスチャ認識した結果、ジェスチャの意味の候補数が1つのみである場合(ステップS3;NO)、当該1つの認識結果が一意に絞られたので、認識完了し(ステップS12)、ステップS13へ移動する。判断部18は、ジェスチャ認識部13がジェスチャ認識した結果、候補数が複数ある場合において(ステップS3:YES)、唇動作認識部15によって認識した結果、唇の動作がある場合(ステップS4;YES)、ステップS5へ移動する。また、唇動作認識部15によって認識した結果、唇の動作がない場合において(ステップS4;NO)、直前のジェスチャに対応する唇の動きの内、未利用のデータがある場合(ステップS6;YES)、ステップS5へ移動し、直前のジェスチャに対応する唇の動きの内、未利用のデータがない場合(ステップS6;NO)、判断結果出力部19が複数のジェスチャの意味の候補を出力して、ジェスチャの意味の候補の選択を促す(ステップS11)。ジェスチャの意味が選択されると、判断部18は、選択されたジェスチャの意味をジェスチャの正式な意味であると判断し、ステップS13へ移動する。   The sign language action of the sign language to be photographed is photographed by the gesture input unit 11, and an image to be photographed is input (step S1). The photographed sign language motion is recognized by the gesture recognition unit 13 and the lip motion recognition unit 15 recognizes the lip motion (step S2). When the gesture recognition unit 13 recognizes the gesture and the number of candidates for the gesture meaning is only one (step S3; NO), the determination unit 18 recognizes the one recognition result, so that the recognition is completed. (Step S12), the process proceeds to Step S13. When there are a plurality of candidates as a result of gesture recognition by the gesture recognition unit 13 (step S3: YES), the determination unit 18 recognizes that the lip motion recognition unit 15 has a lip motion (step S4; YES). ), Move to step S5. If there is no lip motion as a result of recognition by the lip motion recognition unit 15 (step S4; NO), if there is unused data among the lip motions corresponding to the previous gesture (step S6; YES) ), The process moves to step S5, and if there is no unused data in the lip movement corresponding to the previous gesture (step S6; NO), the determination result output unit 19 outputs a plurality of gesture meaning candidates. The user is prompted to select a gesture meaning candidate (step S11). When the meaning of the gesture is selected, the determination unit 18 determines that the meaning of the selected gesture is the formal meaning of the gesture, and moves to step S13.

ステップS5において、判断部18は、各ジェスチャの意味候補に対して重み付け処理をして、重み付け処理した結果、閾値を超えたものがあれば(ステップS7;YES)、認識完了する(ステップS9)。   In step S5, the determination unit 18 performs weighting processing on the meaning candidates of each gesture, and if there is a result exceeding the threshold as a result of the weighting processing (step S7; YES), the recognition is completed (step S9). .

ステップS5において、判断部18が各ジェスチャの意味候補の重み付け処理をした結果、閾値を超えた候補が無ければ(ステップS7;NO)、判断結果出力部19が複数の候補を出力し、ジェスチャの意味の候補の選択を促す(ステップS8)。判断部18は、選択されたジェスチャの意味をジェスチャの正式な意味であると判断する。ステップS8又はステップS9の終了後、未利用のデータがある場合には、未利用データ登録処理をして(ステップS10)、ステップS13へ移動する。ここで未利用データ登録処理とは、判断部18が、未利用データを未使用情報DB17へ登録する処理をいう。   In step S5, if there is no candidate that exceeds the threshold (step S7; NO) as a result of the weighting process of the semantic candidates of each gesture by the determination unit 18, the determination result output unit 19 outputs a plurality of candidates, The user is prompted to select a meaning candidate (step S8). The determination unit 18 determines that the meaning of the selected gesture is the official meaning of the gesture. After step S8 or step S9, if there is unused data, an unused data registration process is performed (step S10), and the process proceeds to step S13. Here, the unused data registration process is a process in which the determination unit 18 registers unused data in the unused information DB 17.

ステップS13において、ステップS1でジェスチャ入力部11により入力されたジェスチャ全てに対して、認識が完了したか否かを判断し、認識完了していない場合(ステップS13;NO)、ステップS2へ戻り、認識完了したジェスチャの認識及び当該ジェスチャに対応する唇動作の認識を行う(ステップS2)。   In step S13, it is determined whether or not the recognition has been completed for all the gestures input by the gesture input unit 11 in step S1, and if the recognition has not been completed (step S13; NO), the process returns to step S2. Recognition of the recognized gesture and recognition of the lip motion corresponding to the gesture are performed (step S2).

ステップS13において、ステップS1でジェスチャ入力部11により入力されたジェスチャ全てに対して、認識が完了した場合(ステップS13;YES)、判断結果出力部19が判断部18による認識結果を出力して(ステップS14)、処理を終了する。   In step S13, when the recognition is completed for all the gestures input by the gesture input unit 11 in step S1 (step S13; YES), the determination result output unit 19 outputs the recognition result by the determination unit 18 ( Step S14) and the process is terminated.

つぎに、本実施形態における画像認識装置10の作用効果について説明する。   Next, functions and effects of the image recognition device 10 according to the present embodiment will be described.

本実施形態の画像認識装置10によれば、ジェスチャ認識部12は、ジェスチャ入力部11により入力された画像データから撮影対象のジェスチャを認識し、唇動作認識部15は、ジェスチャ入力部11により入力された画像データから撮影対象の唇の動作を認識し、判断部18は、ジェスチャ認識結果に対応する意味候補と、撮影対象の唇の動作の認識結果とに基づいて、ジェスチャの意味を判断し、判断結果出力部19は、ジェスチャの意味を出力する。   According to the image recognition device 10 of the present embodiment, the gesture recognition unit 12 recognizes a shooting target gesture from the image data input by the gesture input unit 11, and the lip motion recognition unit 15 inputs by the gesture input unit 11. The determination unit 18 determines the meaning of the gesture based on the meaning candidate corresponding to the gesture recognition result and the recognition result of the movement of the lip of the shooting target. The determination result output unit 19 outputs the meaning of the gesture.

このように、画像認識装置10は、ジェスチャの認識結果だけでなく、当該ジェスチャ中の撮影対象の唇の動作の認識結果も用いて、ジェスチャの認識を行う。一般的に、ジェスチャをする人は、ジェスチャをしながら、そのジェスチャの意味を口に表す傾向がある。画像認識装置10は、この点を考慮して、撮影対象の唇の動作の認識結果も用いてジェスチャの認識をしているので、単にジェスチャのみから認識する場合に比べて正確にジェスチャの意味を判断することができる。   In this way, the image recognition apparatus 10 recognizes a gesture using not only the gesture recognition result but also the recognition result of the movement of the lip of the photographing target in the gesture. Generally, a person who makes a gesture tends to express the meaning of the gesture in the mouth while gesturing. In consideration of this point, the image recognition apparatus 10 recognizes the gesture using the recognition result of the movement of the lip to be photographed. Therefore, the meaning of the gesture is more accurately compared to the case of recognizing only from the gesture. Judgment can be made.

唇動作認識部15は、口の動作の認識として、ジェスチャ中における撮影対象の唇の動きに基づいた音数を認識する。この場合、画像認識装置10は、撮影対象の音数を用いてジェスチャを認識する。これにより、画像認識装置10は、ジェスチャの意味の音数と撮影対象の唇の動きに基づいた音数とを照らし合わせて、ジェスチャの意味を判断するので、正確にジェスチャを認識することができる。   The lip motion recognizing unit 15 recognizes the number of sounds based on the movement of the lip to be imaged during the gesture as the mouth motion recognition. In this case, the image recognition apparatus 10 recognizes a gesture using the number of sounds to be captured. As a result, the image recognition apparatus 10 judges the meaning of the gesture by comparing the number of sounds of the gesture and the number of sounds based on the movement of the lips to be photographed, so that the gesture can be recognized accurately. .

唇動作認識部15は、ジェスチャ中における、最初に唇を開いた時間から、最後に唇を閉じた時間までの期間内の、唇の開閉の回数に基づいた音数を認識する。この場合、画像認識装置10は、ジェスチャに対応する唇動作に基づいた音数を正確に判断することができる。   The lip motion recognition unit 15 recognizes the number of sounds based on the number of times the lips are opened and closed within the period from the time when the lips are first opened to the time when the lips are finally closed. In this case, the image recognition device 10 can accurately determine the number of sounds based on the lip motion corresponding to the gesture.

判断部18は、ジェスチャの意味候補の音数と、唇動作認識部15によるジェスチャ中における音数との合致度に基づいてジェスチャの意味を判断する。この場合、画像認識装置は、ジェスチャの意味候補の音数と、唇の開閉回数との合致度によりジェスチャの意味を判断するので、正確にジェスチャの意味を判断することができる。   The determination unit 18 determines the meaning of the gesture based on the degree of coincidence between the number of sounds of the gesture meaning candidate and the number of sounds in the gesture by the lip motion recognition unit 15. In this case, since the image recognition apparatus determines the meaning of the gesture based on the degree of coincidence between the number of sounds of the gesture meaning candidate and the number of times the lips are opened and closed, it is possible to accurately determine the meaning of the gesture.

唇動作認識部15は、口の動作の認識として、唇の動作による音情報の認識をし、判断部18は、ジェスチャ意味候補の音情報と、第2認識手段による認識結果の音情報との一致度にさらに基づいてジェスチャの意味を判断する。この場合、画像認識装置10は、音情報(例えば、子音であるか否かなど)とジェスチャの意味候補との音情報に関する一致度に基づいてジェスチャの意味を判断する。これにより、画像認識装置10は、ジェスチャ時に発した音情報とジェスチャの意味候補の音情報とを対比するので、正確にジェスチャの意味を判断することができる。   The lip motion recognition unit 15 recognizes the sound information based on the lip motion as the mouth motion recognition, and the determination unit 18 determines the sound information of the gesture meaning candidate and the sound information of the recognition result by the second recognition unit. The meaning of the gesture is determined based on the degree of coincidence. In this case, the image recognition apparatus 10 determines the meaning of the gesture based on the degree of coincidence regarding the sound information between the sound information (for example, whether or not it is a consonant) and the meaning candidate of the gesture. As a result, the image recognition apparatus 10 compares the sound information generated at the time of the gesture with the sound information of the gesture meaning candidate, and thus can accurately determine the meaning of the gesture.

唇動作認識部15により認識された音数が、判断部18が判断した意味の文字数を上回った場合、唇動作認識部15により認識された音数と、判断部18が判断した意味の文字数との差分情報を未使用情報として保持する未使用情報DB17をさらに備え、判断部18は、認識対象のジェスチャの直前のジェスチャ中における未使用情報がある場合、当該未使用情報を、唇動作認識部15により認識された音数に加えてジェスチャの意味を判断する。この場合、画像認識装置10は、ジェスチャと撮影対象の唇の動作との同期が取れていない場合でも、ずれを修正してジェスチャの認識をすることができる。   If the number of sounds recognized by the lip motion recognition unit 15 exceeds the number of characters determined by the determination unit 18, the number of sounds recognized by the lip motion recognition unit 15 and the number of characters determined by the determination unit 18 The unused information DB 17 that holds the difference information as unused information is further included, and when there is unused information in the gesture immediately before the gesture to be recognized, the determination unit 18 uses the unused information as the lip motion recognition unit. In addition to the number of sounds recognized by 15, the meaning of the gesture is determined. In this case, the image recognition apparatus 10 can recognize the gesture by correcting the deviation even when the gesture and the movement of the lip of the photographing target are not synchronized.

判断部18は、ジェスチャの意味候補の文字数と唇動作認識部15により認識された唇の動作回数との差が所定値以上である場合、唇動作認識部15により認識された音数を、ジェスチャの意味候補の何れか少なくとも1つの文字数とする。この場合、画像認識装置10は、ジェスチャ時における撮影対象の唇の動作による音数と、ジェスチャの意味との同期が取れていない場合でも、ずれを修正してジェスチャの認識をすることができる。   When the difference between the number of characters of the gesture meaning candidates and the number of lip motions recognized by the lip motion recognition unit 15 is equal to or greater than a predetermined value, the determination unit 18 determines the number of sounds recognized by the lip motion recognition unit 15 as the gesture. Any one of the meaning candidates is assumed to be at least one character number. In this case, the image recognition apparatus 10 can recognize the gesture by correcting the deviation even when the number of sounds generated by the movement of the lips to be imaged at the time of the gesture and the meaning of the gesture are not synchronized.

判断部18は、ジェスチャの意味候補が複数あり、各ジェスチャの意味候補の文字数が同一でない場合、唇動作認識部15により認識された音数を、複数のジェスチャの意味候補の文字数で場合分けして、ジェスチャの意味を判断する。より具体的には、判断部18は、ジェスチャにおける複数の意味候補のそれぞれの文字数で区別した文字数グループごとに、当該意味候補のそれぞれに対する文字数に基づいた評価値を含んだ評価管理情報を複数生成し、評価管理情報における評価値と、文字数グループで区別された文字数とを用いて、複数の意味候補から一の意味候補を選択することで、ジェスチャの意味を判断する。この場合、画像認識装置10は、ジェスチャの複数の意味候補のそれぞれの文字数で区別した文字数グループごとに、当該意味候補のそれぞれに対する文字数に基づいた評価値と、文字数グループで区別された文字数により意味候補を判断するので、ジェスチャ時における撮影対象の唇の動作による音数と、ジェスチャの意味との同期が取れていない場合でも、ずれを修正してジェスチャの認識をすることができる。   When there are a plurality of gesture meaning candidates and the number of characters in each gesture meaning is not the same, the determination unit 18 classifies the number of sounds recognized by the lip motion recognition unit 15 by the number of characters in the plurality of gesture meaning candidates. To determine the meaning of the gesture. More specifically, the determination unit 18 generates a plurality of pieces of evaluation management information including evaluation values based on the number of characters for each of the semantic candidates for each character number group distinguished by the number of characters of the plurality of semantic candidates in the gesture. Then, the meaning of the gesture is determined by selecting one meaning candidate from a plurality of meaning candidates using the evaluation value in the evaluation management information and the number of characters distinguished in the character number group. In this case, the image recognition device 10 makes sense based on the evaluation value based on the number of characters for each semantic candidate and the number of characters distinguished in the character number group for each character number group distinguished by the number of characters of the plurality of semantic candidates for the gesture. Since the candidate is determined, the gesture can be recognized by correcting the deviation even when the number of sounds generated by the movement of the lip to be imaged at the time of the gesture and the meaning of the gesture are not synchronized.

上述の実施形態では、同一動作から複数の意味候補を抽出する場合について述べたが、類似動作も含めて複数の意味候補を抽出するようにしてもよい。   In the above-described embodiment, the case where a plurality of semantic candidates are extracted from the same operation has been described. However, a plurality of semantic candidates including a similar operation may be extracted.

上述の実施形態では、先のジェスチャの意味を特定できない場合、ジェスチャの意味の候補を出力して選択を促すようにしていたが、先のジェスチャの意味の判断をスキップし、後のジェスチャの意味を特定して、その後にスキップした先のジェスチャの意味を特定するようにしてもよい。   In the above-described embodiment, when the meaning of the previous gesture cannot be specified, a candidate for the meaning of the gesture is output to prompt selection, but the determination of the meaning of the previous gesture is skipped, and the meaning of the subsequent gesture May be specified, and the meaning of the previous gesture skipped thereafter may be specified.

上述の実施形態では、口の動作として、唇動作認識部15が唇の動作を認識する場合について述べたが、口の動作として舌の動作も認識するようにしてもよい。この場合、唇の動作と舌の動作とに基づいて、子音を発したか、母音を発したかを認識する。   In the above-described embodiment, the case where the lip motion recognition unit 15 recognizes the lip motion has been described as the mouth motion. However, the tongue motion may also be recognized as the mouth motion. In this case, it is recognized whether a consonant or a vowel is emitted based on the movement of the lips and the movement of the tongue.

10…画像認識装置、11…ジェスチャ入力部、12…ジェスチャ認識部、13…ジェスチャDB、14…文章解釈DB、15…唇動作認識部、17…未使用情報DB、18…判断部、19…判断結果出力部。 DESCRIPTION OF SYMBOLS 10 ... Image recognition apparatus, 11 ... Gesture input part, 12 ... Gesture recognition part, 13 ... Gesture DB, 14 ... Text interpretation DB, 15 ... Lip motion recognition part, 17 ... Unused information DB, 18 ... Judgment part, 19 ... Judgment result output section.

Claims (8)

撮影対象を画像データにして取得する画像取得手段と、
前記画像取得手段により取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識手段と、
前記画像取得手段により取得された画像データに基づいて、前記第1認識手段が認識したジェスチャ中における前記撮影対象の口の動作を認識し、前記撮影対象の口の動作の認識として、前記ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識手段と、
前記第1認識手段によるジェスチャの認識結果に対応する意味候補と、前記第2認識手段による前記撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断手段と、
前記判断手段が判断したジェスチャの意味を出力する出力手段と、
前記第2認識手段により認識された音数が、前記判断手段が判断した意味の文字数を上回った場合、前記第2認識手段により認識された音数と、前記判断手段が判断した意味の文字数との差分情報を未使用情報として保持する未使用情報保持手段と、
備え
前記判断手段は、認識対象のジェスチャの直前のジェスチャ中における未使用情報がある場合、当該未使用情報を、前記第2認識手段により認識された認識された音数に加えてジェスチャの意味を判断する、画像認識装置。
An image acquisition means for acquiring a shooting target as image data;
First recognition means for recognizing a gesture to be imaged based on image data acquired by the image acquisition means;
Based on the image data acquired by the image acquisition unit, the movement of the mouth of the photographing target in the gesture recognized by the first recognition unit is recognized, and the movement of the mouth of the shooting target is recognized as the movement of the mouth of the shooting target. Second recognition means for recognizing the number of sounds based on the movement of the mouth in
Determination means for determining the meaning of a gesture based on a meaning candidate corresponding to a gesture recognition result by the first recognition means and a recognition result of the mouth movement of the photographing target by the second recognition means;
Output means for outputting the meaning of the gesture determined by the determination means;
When the number of sounds recognized by the second recognizing means exceeds the number of characters determined by the determining means, the number of sounds recognized by the second recognizing means and the number of characters determined by the determining means Unused information holding means for holding the difference information as unused information,
Prepared ,
If there is unused information in the gesture immediately before the gesture to be recognized, the determining means determines the meaning of the gesture by adding the unused information to the recognized number of sounds recognized by the second recognizing means. An image recognition device.
撮影対象を画像データにして取得する画像取得手段と、
前記画像取得手段により取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識手段と、
前記画像取得手段により取得された画像データに基づいて、前記第1認識手段が認識したジェスチャ中における前記撮影対象の口の動作を認識し、前記撮影対象の口の動作の認識として、前記ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識手段と、
前記第1認識手段によるジェスチャの認識結果に対応する意味候補と、前記第2認識手段による前記撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断手段と、
前記判断手段が判断したジェスチャの意味を出力する出力手段と、
を備え
前記判断手段は、前記ジェスチャの意味候補の文字数と、前記第2認識手段により認識された音数との差が所定値以上である場合、前記第2認識手段により認識された音数を、前記ジェスチャの意味候補の何れか少なくとも1つの文字数と仮定して、ジェスチャの意味を判断する、画像認識装置。
An image acquisition means for acquiring a shooting target as image data;
First recognition means for recognizing a gesture to be imaged based on image data acquired by the image acquisition means;
Based on the image data acquired by the image acquisition unit, the movement of the mouth of the photographing target in the gesture recognized by the first recognition unit is recognized, and the movement of the mouth of the shooting target is recognized as the movement of the mouth of the shooting target. Second recognition means for recognizing the number of sounds based on the movement of the mouth in
Determination means for determining the meaning of a gesture based on a meaning candidate corresponding to a gesture recognition result by the first recognition means and a recognition result of the mouth movement of the photographing target by the second recognition means;
Output means for outputting the meaning of the gesture determined by the determination means;
Equipped with a,
When the difference between the number of characters of the semantic meaning of the gesture and the number of sounds recognized by the second recognition unit is equal to or greater than a predetermined value, the determination unit determines the number of sounds recognized by the second recognition unit as An image recognition apparatus that determines the meaning of a gesture on the assumption that the number of characters is at least one of the gesture meaning candidates .
前記第2認識手段は、前記ジェスチャ中における、最初に口を開いた時間から、最後に口を閉じた時間までの期間内の、前記口の開閉の回数に基づいた音数を認識する、請求項1または2に記載の画像認識装置。 The second recognition unit recognizes during the gesture, the first time you open the mouth, in the period until the last time mouth closed, the number of notes based on the number of opening and closing of the port, wherein Item 3. The image recognition apparatus according to Item 1 or 2 . 前記判断手段は、ジェスチャの意味候補の音数と、前記第2認識手段による前記ジェスチャ中における音数との合致度に基づいてジェスチャの意味を判断する、請求項1から3のいずれか一項に記載の画像認識装置。 The determining means includes a number of notes meanings candidate gesture to determine the meaning of the gesture based on the coincidence degree between the sound speed in the in the gesture by the second recognizing means, any one of claims 1 to 3 The image recognition apparatus described in 1. 前記第2認識手段は、前記口の動作の認識として、口の動作による音情報の認識をし、 前記判断手段は、前記ジェスチャの意味候補の音情報と、前記第2認識手段による認識結果の音情報との一致度にさらに基づいてジェスチャの意味を判断する、請求項4に記載の画像認識装置。   The second recognizing means recognizes sound information by mouth movement as recognition of the mouth movement, and the judging means recognizes sound information of the meaning meaning of the gesture and the recognition result by the second recognizing means. The image recognition device according to claim 4, wherein the meaning of the gesture is further determined based on the degree of coincidence with the sound information. 前記判断手段は、前記ジェスチャにおける複数の意味候補のそれぞれの文字数で区別した文字数グループごとに、当該意味候補のそれぞれに対する文字数に基づいた評価値を含んだ評価管理情報を複数生成し、
前記評価管理情報における評価値と、前記文字数グループで区別された文字数とを用いて、複数の意味候補から一の意味候補を選択することで、前記ジェスチャの意味を判断する、請求項2に記載の画像認識装置。
The determination means generates a plurality of evaluation management information including an evaluation value based on the number of characters for each of the meaning candidates for each character number group distinguished by the number of characters of each of the plurality of meaning candidates in the gesture,
By using the evaluation value in the evaluation management information, a number of characters are distinguished by the characters group, by selecting one of the meanings candidates from a plurality of sense candidates, to determine the meaning of the gesture, according to claim 2 Image recognition device.
撮影対象のジェスチャを認識する画像認識装置の画像認識方法において、
撮影対象を画像データにして取得する画像取得ステップと、
前記画像取得ステップにより取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識ステップと、
前記画像取得ステップにより取得された画像データに基づいて、前記第1認識ステップで認識したジェスチャ中における前記撮影対象の口の動作を認識し、前記撮影対象の口の動作の認識として、前記ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識ステップと、
前記第1認識ステップによるジェスチャの認識結果に対応する意味候補と、前記第2認識ステップによる前記撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断ステップと、
前記判断ステップで判断したジェスチャの意味を出力する出力ステップと
前記第2認識ステップにより認識された音数が、前記判断ステップで判断した意味の文字数を上回った場合、前記第2認識ステップにより認識された音数と、前記判断ステップで判断した意味の文字数との差分情報を未使用情報として保持する未使用情報保持ステップと、
備え、
前記判断ステップは、認識対象のジェスチャの直前のジェスチャ中における未使用情報がある場合、当該未使用情報を、前記第2認識ステップにより認識された認識された音数に加えてジェスチャの意味を判断する、画像認識方法。
In an image recognition method of an image recognition apparatus for recognizing a gesture to be photographed ,
An image acquisition step of acquiring a shooting target as image data;
A first recognition step for recognizing a gesture to be imaged based on the image data acquired by the image acquisition step;
Based on the image data acquired in the image acquisition step, the movement of the mouth of the shooting target in the gesture recognized in the first recognition step is recognized, and the movement of the mouth of the shooting target is recognized as the movement of the mouth of the shooting target. A second recognition step for recognizing the number of sounds based on the mouth movement in
A determination step of determining the meaning of the gesture based on the meaning candidates corresponding to the gesture recognition result in the first recognition step and the recognition result of the mouth movement of the photographing target in the second recognition step;
An output step of outputting the meaning of the gesture determined in the determination step ;
If the number of sounds recognized in the second recognition step exceeds the number of characters determined in the determination step, the number of sounds recognized in the second recognition step and the number of characters determined in the determination step Unused information holding step for holding the difference information as unused information,
Prepared,
In the determination step, when there is unused information in the gesture immediately before the gesture to be recognized, the meaning of the gesture is determined by adding the unused information to the recognized number of sounds recognized in the second recognition step. An image recognition method.
撮影対象のジェスチャを認識する画像認識装置の画像認識方法において、In an image recognition method of an image recognition apparatus for recognizing a gesture to be photographed,
撮影対象を画像データにして取得する画像取得ステップと、  An image acquisition step of acquiring a shooting target as image data;
前記画像取得ステップにより取得された画像データに基づいて、撮影対象のジェスチャを認識する第1認識ステップと、  A first recognition step for recognizing a gesture to be imaged based on the image data acquired by the image acquisition step;
前記画像取得ステップにより取得された画像データに基づいて、前記第1認識ステップで認識したジェスチャ中における前記撮影対象の口の動作を認識し、前記撮影対象の口の動作の認識として、前記ジェスチャ中における口の動きに基づいた音数の認識を行う第2認識ステップと、  Based on the image data acquired in the image acquisition step, the movement of the mouth of the shooting target in the gesture recognized in the first recognition step is recognized, and the movement of the mouth of the shooting target is recognized as the movement of the mouth of the shooting target. A second recognition step for recognizing the number of sounds based on the mouth movement in
前記第1認識ステップによるジェスチャの認識結果に対応する意味候補と、前記第2認識ステップによる前記撮影対象の口の動作の認識結果とに基づいて、ジェスチャの意味を判断する判断ステップと、  A determination step of determining the meaning of the gesture based on the meaning candidates corresponding to the gesture recognition result in the first recognition step and the recognition result of the mouth movement of the photographing target in the second recognition step;
前記判断ステップで判断したジェスチャの意味を出力する出力ステップと、  An output step of outputting the meaning of the gesture determined in the determination step;
を備え、With
前記判断ステップは、前記ジェスチャの意味候補の文字数と、前記第2認識ステップにより認識された音数との差が所定値以上である場合、前記第2認識ステップにより認識された音数を、前記ジェスチャの意味候補の何れか少なくとも1つの文字数と仮定して、ジェスチャの意味を判断する、画像認識方法。  When the difference between the number of characters of the meaning meaning of the gesture and the number of sounds recognized by the second recognition step is equal to or greater than a predetermined value, the determining step determines the number of sounds recognized by the second recognition step as An image recognition method for determining the meaning of a gesture on the assumption that the number of characters in any one of gesture meaning candidates is at least one.
JP2013240963A 2013-11-21 2013-11-21 Image recognition apparatus and image recognition method Expired - Fee Related JP6209067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013240963A JP6209067B2 (en) 2013-11-21 2013-11-21 Image recognition apparatus and image recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240963A JP6209067B2 (en) 2013-11-21 2013-11-21 Image recognition apparatus and image recognition method

Publications (2)

Publication Number Publication Date
JP2015102897A JP2015102897A (en) 2015-06-04
JP6209067B2 true JP6209067B2 (en) 2017-10-04

Family

ID=53378575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240963A Expired - Fee Related JP6209067B2 (en) 2013-11-21 2013-11-21 Image recognition apparatus and image recognition method

Country Status (1)

Country Link
JP (1) JP6209067B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111898108B (en) * 2014-09-03 2024-06-04 创新先进技术有限公司 Identity authentication method, device, terminal and server
CN113157080A (en) * 2020-01-07 2021-07-23 宝马股份公司 Instruction input method for vehicle, storage medium, system and vehicle
CN112053450B (en) 2020-09-10 2024-07-16 脸萌有限公司 Text display method and device, electronic equipment and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049194A (en) * 1996-07-30 1998-02-20 Aqueous Res:Kk Voice recognition device
JPH11149296A (en) * 1997-09-10 1999-06-02 Oki Electric Ind Co Ltd Word recognition device
JPH11203023A (en) * 1998-01-09 1999-07-30 Norio Aigase Character input system based on character image of associated character
JPH11306316A (en) * 1998-04-24 1999-11-05 Toshiba Corp Method and device for finger language recognition and record medium
JP2004015250A (en) * 2002-06-05 2004-01-15 Nec Corp Mobile terminal
JP2008310382A (en) * 2007-06-12 2008-12-25 Omron Corp Lip reading device and method, information processor, information processing method, detection device and method, program, data structure, and recording medium
JP2012118679A (en) * 2010-11-30 2012-06-21 Nec Commun Syst Ltd Information processor, word discrimination device, screen display operation device, word registration device and method and program related to the same
US20130104089A1 (en) * 2011-10-20 2013-04-25 Fuji Xerox Co., Ltd. Gesture-based methods for interacting with instant messaging and event-based communication applications

Also Published As

Publication number Publication date
JP2015102897A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6467965B2 (en) Emotion estimation device and emotion estimation method
US8837786B2 (en) Face recognition apparatus and method
JP6202157B2 (en) Hand gesture identification method and apparatus
JP6798798B2 (en) Method and device for updating data for user authentication
JP2020501264A (en) System and method for performing fingerprint authentication using images captured with a mobile device
JP7107598B2 (en) Authentication face image candidate determination device, authentication face image candidate determination method, program, and recording medium
KR20150127381A (en) Method for extracting face feature and apparatus for perforimg the method
CN108596079B (en) Gesture recognition method and device and electronic equipment
JP6287827B2 (en) Information processing apparatus, information processing method, and program
JP2012512478A (en) Method, apparatus and computer program for providing face pose estimation
JP6209067B2 (en) Image recognition apparatus and image recognition method
JP2016099643A (en) Image processing device, image processing method, and image processing program
Ouadjer et al. Feature importance evaluation of smartphone touch gestures for biometric authentication
Patil et al. Literature survey: sign language recognition using gesture recognition and natural language processing
Koch et al. One-shot lip-based biometric authentication: Extending behavioral features with authentication phrase information
KR101869304B1 (en) System, method and program for recognizing sign language
KR20190132885A (en) Apparatus, method and computer program for detecting hand from video
US9674185B2 (en) Authentication using individual's inherent expression as secondary signature
Gupta et al. Multimodal biometric system using grasshopper optimization
Tang et al. Extracting commands from gestures: Gesture spotting and recognition for real-time music performance
KR102563522B1 (en) Apparatus, method and computer program for recognizing face of user
JP6144192B2 (en) Image recognition apparatus and image recognition method
US20150103205A1 (en) Method of controlling digital apparatus and image capture method by recognition of hand shape, and apparatus therefor
JP2001331804A (en) Device and method for detecting image area
JP7400987B2 (en) Face recognition device, face recognition method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6209067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees