Nothing Special   »   [go: up one dir, main page]

JP6135611B2 - Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them - Google Patents

Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them Download PDF

Info

Publication number
JP6135611B2
JP6135611B2 JP2014137908A JP2014137908A JP6135611B2 JP 6135611 B2 JP6135611 B2 JP 6135611B2 JP 2014137908 A JP2014137908 A JP 2014137908A JP 2014137908 A JP2014137908 A JP 2014137908A JP 6135611 B2 JP6135611 B2 JP 6135611B2
Authority
JP
Japan
Prior art keywords
defect
diffusion
grown
concentration
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014137908A
Other languages
Japanese (ja)
Other versions
JP2016013957A (en
Inventor
星 亮二
亮二 星
駿英 小内
駿英 小内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014137908A priority Critical patent/JP6135611B2/en
Publication of JP2016013957A publication Critical patent/JP2016013957A/en
Application granted granted Critical
Publication of JP6135611B2 publication Critical patent/JP6135611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、点欠陥濃度計算方法、Grown−in欠陥計算方法、Grown−in欠陥面内分布計算方法及びこれらを用いたシリコン単結晶製造方法に関する。   The present invention relates to a point defect concentration calculation method, a grown-in defect calculation method, a grown-in defect in-plane distribution calculation method, and a silicon single crystal manufacturing method using them.

近年、デバイスの高集積化に伴い、シリコン単結晶ウェーハの高品質要求が厳しくなっている。高品質とは、デバイスが動作するウェーハ表面近傍の欠陥が少ないもしくは無いことである。それらを達成できるウェーハとして、エピタキシャルウェーハ、アニールウェーハ、低/無欠陥結晶PW(ポリッシュドウェーハ)などがある。この中でも低コスト化が可能である低/無欠陥結晶PWが広く用いられるようになってきた。これは結晶成長中に形成されるGrown−in欠陥を制御して、低欠陥更には無欠陥にした結晶を製造し、これから切り出したウェーハである。   In recent years, with high integration of devices, high quality requirements for silicon single crystal wafers have become strict. High quality means that there are few or no defects near the wafer surface where the device operates. Wafers that can achieve these include epitaxial wafers, annealed wafers, and low / defect-free crystal PW (polished wafers). Among these, low / defect-free crystals PW that can be reduced in cost have been widely used. This is a wafer cut out from a crystal in which a grown-in defect formed during crystal growth is controlled to produce a crystal having low defects or no defects.

Grown−in欠陥は点欠陥が結晶成長中に凝集して形成された欠陥である。点欠陥には格子点のSi原子が欠落したVacancy(空孔)と、格子間にSi原子が入り込んだInterstitial−Si(格子間Si)の2種類が存在する。このGrown−in欠陥の形成状態は、単結晶の成長速度やシリコン融液から引上げられた単結晶の冷却条件により違いが生じる。例えば成長速度を比較的速く設定して単結晶を育成した場合には、Vacancyが優勢になることが知られている。このVacancyが凝集して集まったものはVoid欠陥と呼ばれ、検出のされ方によって呼称は異なるが、FPD(Flow Pattern Defect)、COP(Crystal Originated Particle)あるいはLSTD(Laser Scattering Tomography Defects)などとして検出される。これらの欠陥がシリコン基板上に形成される酸化膜に取り込まれると、酸化膜の耐圧不良の原因となると考えられている。   The Grown-in defect is a defect formed by aggregating point defects during crystal growth. There are two types of point defects: Vacancy (vacancies) in which Si atoms at lattice points are missing, and Interstitial-Si (interstitial Si) in which Si atoms enter between lattices. The formation state of this Grown-in defect varies depending on the growth rate of the single crystal and the cooling conditions of the single crystal pulled from the silicon melt. For example, it is known that vacancy becomes dominant when a single crystal is grown at a relatively high growth rate. A collection of this vacancy is called a void defect, and the name differs depending on how it is detected. Is done. When these defects are taken into the oxide film formed on the silicon substrate, it is considered that the breakdown voltage of the oxide film is caused.

一方で成長速度を比較的低速に設定して単結晶を育成した場合には、Interstitial−Si(以下I−Siと表記する)が優勢になることが知られている。このI−Siが凝集して集まると、転位ループなどがクラスタリングしたと考えられるLEP(Large Etch Pit=転位クラスタ欠陥)が検出される。この転位クラスタ欠陥が生じる領域にデバイスを形成すると、電流リークなど重大な不良を起こすと言われている。   On the other hand, when a single crystal is grown at a relatively low growth rate, it is known that Interstitial-Si (hereinafter referred to as I-Si) becomes dominant. When this I-Si aggregates and collects, LEP (Large Etch Pit = dislocation cluster defect), which is considered to be a cluster of dislocation loops, is detected. It is said that when a device is formed in a region where this dislocation cluster defect occurs, a serious failure such as current leakage occurs.

そこでVacancyが優勢となる条件とI−Siが優勢となる条件との中間的な条件で結晶を育成すると、VacancyやI−Siが無い、もしくはVoid欠陥や転位クラスタ欠陥を形成しない程度の少量しか存在しない、無欠陥領域が得られることが知られている。無欠陥であってもVacancyが優勢な領域をNv領域、I−Siが優勢な領域をNi領域と呼んでいる。このような無欠陥領域を得るためには、育成される結晶の熱環境を調整する必要がある。この調整を試行錯誤的に実施しても簡単に無欠陥領域が得られるわけではなく、また膨大なコストがかかる。そこで、炉内熱環境や欠陥の形成をシミュレーションすることで、無欠陥結晶が得られる条件を求める試みがなされている。   Therefore, if the crystal is grown under an intermediate condition between the vacancy dominant condition and the I-Si dominant condition, there is no vacancy or I-Si, or a small amount that does not form void defects or dislocation cluster defects. It is known that a defect-free region that does not exist can be obtained. Even if there is no defect, the region where the vacancy is dominant is called the Nv region, and the region where the I-Si is dominant is called the Ni region. In order to obtain such a defect-free region, it is necessary to adjust the thermal environment of the crystal to be grown. Even if this adjustment is performed on a trial and error basis, a defect-free region cannot be easily obtained, and an enormous cost is required. Therefore, attempts have been made to obtain conditions for obtaining defect-free crystals by simulating the thermal environment in the furnace and the formation of defects.

シリコン単結晶におけるGrown−in欠陥の形成論としては、ボロンコフにより提唱されたモデルが広く知られている。これは点欠陥の濃度が濃度勾配による拡散、温度勾配による拡散、対消滅による減少の3つによって決まるものである。多くの場合、この理論に基づいて計算が行われている。   As a formation theory of a Grown-in defect in a silicon single crystal, a model proposed by Boronkov is widely known. This is because the concentration of point defects is determined by three factors: diffusion due to concentration gradient, diffusion due to temperature gradient, and decrease due to pair annihilation. In many cases, calculations are performed based on this theory.

特許文献1ではこのモデルを簡単化し、成長速度Vと界面近傍の温度勾配Gとの比V/Gに依存して点欠陥濃度が決まるモデルが提案されている。V/Gが大きければVacancy濃度が優勢となり、V/Gが小さいとI−Siが優勢となる。Vacancy濃度とI−Si濃度が拮抗するV/Gに制御することで、点欠陥の濃度を低減でき、Grown−in欠陥を成長させないようにしている。このV/Gの径方向の分布によって欠陥分布が決まるとしている。また特許文献2では、結晶成長界面での温度勾配Gと結晶成長速度Vとの比(V/G)を制御することで無欠陥結晶が得られることが示されている。このモデルは、結晶の温度分布を求めるだけで、欠陥分布が予想できるので簡便であり有効である。しかしこのモデルでは点欠陥のシンクである外表面へ向かう外方拡散を考慮していない。このため現実の欠陥面内分布、特に外周部における分布形状を表すことができない。近年、無欠陥領域でもより高品質化が望まれており外周部の欠陥分布が重要となってきている。そのため、外周部の欠陥分布を正確に計算できるシミュレーション方法が求められている。   Patent Document 1 proposes a model in which this model is simplified and the point defect concentration is determined depending on the ratio V / G between the growth rate V and the temperature gradient G in the vicinity of the interface. When V / G is large, the vacancy concentration is dominant, and when V / G is small, I-Si is dominant. By controlling to V / G where the vacancy concentration and the I-Si concentration antagonize, the concentration of point defects can be reduced and the grown-in defects are prevented from growing. The distribution of defects is determined by the radial distribution of V / G. Patent Document 2 shows that a defect-free crystal can be obtained by controlling the ratio (V / G) between the temperature gradient G and the crystal growth rate V at the crystal growth interface. This model is simple and effective because the defect distribution can be predicted only by obtaining the temperature distribution of the crystal. However, this model does not consider outward diffusion toward the outer surface, which is a sink for point defects. For this reason, the actual defect in-plane distribution, in particular, the distribution shape in the outer periphery cannot be expressed. In recent years, higher quality is desired even in a defect-free region, and the defect distribution in the outer periphery has become important. Therefore, a simulation method that can accurately calculate the defect distribution in the outer peripheral portion is required.

そこで特許文献3−5に開示されている欠陥分布シミュレーション方法は、結晶の長さを変化させて結晶内温度を求め、その後に拡散方程式に基づき点欠陥(VacancyとI−Si)濃度を求め、両点欠陥濃度の差が小さい部分を無欠陥領域として求めるものである。これらの計算を多次元で行うことで、外方拡散の影響も考慮しているようである。しかし、特許文献5で得られている欠陥分布は、現実の分布を正確に表していないように見える。またこのような多次元の計算は計算量が飛躍的に増えるので非常に時間がかかる。このため炉内部品を変えながら、最適な育成条件を見つけるという作業が簡便に行えないという問題がある。特許文献6でも多次元と思われる計算を行っているが、段落(0034)に記載されているように、結晶周辺部の分布が合っておらず、I−Siの径方向拡散を削除している。これでも欠陥分布が正しく表現されておらず、しかも膨大な計算量が必要であるという問題点があった。   Therefore, the defect distribution simulation method disclosed in Patent Documents 3-5 determines the temperature in the crystal by changing the length of the crystal, and then determines the concentration of point defects (Vacancy and I-Si) based on the diffusion equation, A portion having a small difference between both point defect densities is obtained as a defect-free region. By performing these calculations in multiple dimensions, it seems that the influence of out-diffusion is taken into account. However, the defect distribution obtained in Patent Document 5 does not appear to accurately represent the actual distribution. In addition, such multi-dimensional calculation takes a very long time because the amount of calculation increases dramatically. For this reason, there is a problem that it is not possible to easily perform the operation of finding the optimum growth conditions while changing the in-furnace parts. Although the calculation considered to be multidimensional is performed also in patent document 6, as described in the paragraph (0034), the distribution of the peripheral portion of the crystal is not suitable, and the radial diffusion of I-Si is deleted. Yes. Even in this case, there is a problem that the defect distribution is not correctly expressed and a huge amount of calculation is required.

特開平11−1393号公報Japanese Patent Application Laid-Open No. 11-1393 特開平11−157996号公報JP-A-11-157996 特開2001−302394号公報JP 2001-302394 A 特開2002−47096号公報JP 2002-47096 A 特開2004−26567号公報JP 2004-26567 A 特開2003−73192号公報JP 2003-73192 A

本発明は、上記問題点に鑑みてなされたものであって、短時間で正確に点欠陥濃度を計算することができる点欠陥濃度計算方法及び短時間で正確にGrown−in欠陥のサイズを計算することができるGrown−in欠陥計算方法を提供することを目的とする。また、正確な欠陥分布を簡便に求めることができるGrown−in欠陥面内分布計算方法を提供することを目的とする。更に、これらの計算結果を利用したシリコン単結晶製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a point defect concentration calculation method capable of calculating a point defect concentration accurately in a short time and a size of a grown-in defect accurately in a short time. An object of the present invention is to provide a Grown-in defect calculation method. It is another object of the present invention to provide a Grown-in defect in-plane distribution calculation method capable of easily obtaining an accurate defect distribution. It is another object of the present invention to provide a silicon single crystal manufacturing method utilizing these calculation results.

上記目的を達成するために、本発明では、育成中のシリコン単結晶中における点欠陥濃度を計算する方法において、点欠陥の拡散を、結晶成長軸に平行な拡散と、結晶径方向の拡散とを、それぞれ1次元の拡散として計算することを特徴とする点欠陥濃度計算方法を提供する。   To achieve the above object, according to the present invention, in the method for calculating the concentration of point defects in a growing silicon single crystal, the diffusion of point defects includes diffusion parallel to the crystal growth axis and diffusion in the crystal diameter direction. Is calculated as a one-dimensional diffusion, respectively, and a point defect concentration calculation method is provided.

このように拡散を計算し、点欠陥濃度を計算する方法であれば、非常に簡単な計算により短時間で正確に点欠陥濃度を求めることができる。   With this method of calculating diffusion and calculating the point defect concentration, the point defect concentration can be accurately obtained in a short time by a very simple calculation.

また、前記結晶成長軸に平行な拡散を計算する場合と、前記結晶径方向の拡散を計算する場合とで、異なる点欠陥の拡散係数を用いることが好ましい。   Further, it is preferable to use different point defect diffusion coefficients for calculating the diffusion parallel to the crystal growth axis and for calculating the diffusion in the crystal diameter direction.

このような点欠陥濃度計算方法であれば、特に結晶径方向の拡散(外方拡散)の計算結果を、現実のシリコン単結晶の測定結果により近づけることができる。   With such a point defect concentration calculation method, the calculation result of diffusion in the crystal diameter direction (outward diffusion) can be made closer to the actual measurement result of a silicon single crystal.

また、前記結晶成長軸に平行な拡散及び前記結晶径方向の拡散を、点欠陥の濃度勾配による拡散、温度勾配による拡散のいずれか一方もしくは両者とし、前記濃度勾配による拡散、前記温度勾配による拡散のいずれか一方もしくは両者を計算するか、加えて対消滅による前記点欠陥濃度の減少効果を計算することにより前記点欠陥濃度を求めることが好ましい。   Further, the diffusion parallel to the crystal growth axis and the diffusion in the crystal diameter direction is one or both of diffusion due to a concentration gradient of point defects and diffusion due to a temperature gradient, diffusion due to the concentration gradient, diffusion due to the temperature gradient. It is preferable to obtain the point defect concentration by calculating one or both of these, or by calculating the effect of reducing the point defect concentration due to pair annihilation.

このような点欠陥濃度計算方法であれば、得られる点欠陥濃度の値が、現実のシリコン単結晶の点欠陥濃度の値により近づくため好ましい。   Such a point defect concentration calculation method is preferable because the obtained point defect concentration value is closer to the point defect concentration value of an actual silicon single crystal.

また、前記点欠陥濃度の計算を融点から欠陥形成温度まで行うことが好ましい。   The point defect concentration is preferably calculated from the melting point to the defect formation temperature.

このような点欠陥濃度計算方法であれば、より効率的に点欠陥濃度を計算することができる。   With such a point defect concentration calculation method, the point defect concentration can be calculated more efficiently.

更に本発明では、上記本発明の点欠陥濃度計算方法で求められた前記点欠陥濃度から、欠陥形成温度帯における点欠陥の凝集を計算することによりGrown−in欠陥サイズを求めることを特徴とするGrown−in欠陥計算方法を提供する。   Further, the present invention is characterized in that a Grown-in defect size is obtained by calculating agglomeration of point defects in a defect formation temperature zone from the point defect concentration obtained by the point defect concentration calculation method of the present invention. A Grown-in defect calculation method is provided.

このようなGrown−in欠陥計算方法であれば、短時間で正確にGrown−in欠陥のサイズを計算することができる。   With such a grown-in defect calculation method, the size of the grown-in defect can be accurately calculated in a short time.

この場合、前記Grown−in欠陥サイズが一定値以下となる領域を無欠陥領域と判断することができる。   In this case, a region where the Grown-in defect size is a certain value or less can be determined as a defect-free region.

このようなGrown−in欠陥計算方法であれば、シリコン単結晶が無欠陥領域を有するものであるかどうかを容易に判断することができる。   With such a Grown-in defect calculation method, it can be easily determined whether or not the silicon single crystal has a defect-free region.

また、前記点欠陥濃度の計算及び前記点欠陥の凝集の計算を、総合伝熱解析ソフトによって求められた育成炉内の温度分布に基づいて行うことが好ましい。   Moreover, it is preferable to perform the calculation of the point defect concentration and the calculation of the aggregation of the point defects based on the temperature distribution in the growth furnace obtained by the comprehensive heat transfer analysis software.

このようなソフトは、インターフェイスなどが整備され使いやすい上、それぞれ実績があるので一定の条件下で用いる場合にはある程度信頼できる結果が期待できる。   Such software is easy to use and has an interface, etc., and since each has a track record, a reliable result can be expected when used under certain conditions.

更に本発明では、上記本発明のGrown−in欠陥計算方法で求められる空孔型・格子間型それぞれの無欠陥領域となる成長速度を、結晶径に対しプロットすることにより欠陥面内分布形状を求めることを特徴とするGrown−in欠陥面内分布計算方法を提供する。   Furthermore, in the present invention, the defect in-plane distribution shape is obtained by plotting the growth rate to be a defect-free region of each of the vacancy type and the interstitial type obtained by the Grown-in defect calculation method of the present invention, against the crystal diameter. A Grown-in defect in-plane distribution calculation method is provided.

このようなGrown−in欠陥面内分布計算方法であれば、正確な欠陥分布を簡便に求めることができる。   With such a Grown-in defect in-plane distribution calculation method, an accurate defect distribution can be easily obtained.

更に本発明では、上記本発明の点欠陥濃度計算方法、Grown−in欠陥計算方法又はGrown−in欠陥面内分布計算方法で計算した結果に基づいて、育成炉構造、炉内部品、温度環境及び操業条件のいずれか一つ以上の育成条件を変更し、該育成条件にて実結晶を育成することを特徴とするシリコン単結晶製造方法を提供する。   Furthermore, in the present invention, based on the results calculated by the point defect concentration calculation method, the Grown-in defect calculation method or the Grown-in defect in-plane distribution calculation method of the present invention, the growth furnace structure, in-furnace parts, temperature environment and Provided is a method for producing a silicon single crystal, characterized in that any one or more of operating conditions are changed and a real crystal is grown under the growing conditions.

このようなシリコン単結晶製造方法であれば、欠陥が少ないもしくは無いシリコン単結晶を低コストで得ることができる。   With such a silicon single crystal manufacturing method, a silicon single crystal with few or no defects can be obtained at low cost.

本発明の点欠陥濃度計算方法であれば、短時間で正確に点欠陥濃度を求めることができる。また、本発明のGrown−in欠陥計算方法であれば、短時間で正確にGrown−in欠陥のサイズを計算することができる。これらの計算結果を用いる本発明のGrown−in欠陥面内分布計算方法であれば、正確な欠陥分布を簡便に求めることができる。更に、本発明の点欠陥濃度計算方法、Grown−in欠陥計算方法又はGrown−in欠陥面内分布計算方法の計算結果に基づいて育成条件を設定するシリコン単結晶製造方法であれば、欠陥が少ないもしくは無いシリコン単結晶を低コストで得ることができる。   With the point defect concentration calculation method of the present invention, the point defect concentration can be obtained accurately in a short time. Further, according to the Grown-in defect calculation method of the present invention, the Grown-in defect size can be accurately calculated in a short time. With the Grown-in defect in-plane distribution calculation method of the present invention using these calculation results, an accurate defect distribution can be easily obtained. Furthermore, the silicon single crystal manufacturing method in which the growth conditions are set based on the calculation result of the point defect concentration calculation method, the grown-in defect calculation method, or the grown-in defect in-plane distribution calculation method of the present invention has few defects. Alternatively, no silicon single crystal can be obtained at low cost.

実施例で得られた無欠陥領域が得られる上限及び下限の成長速度の結晶径方向分布を表した図である。It is a figure showing the crystal diameter direction distribution of the growth rate of the upper limit and minimum which can obtain the defect-free area | region obtained in the Example. 実験で得られた縦割りサンプルのX線トポグラフの例を示した図である。It is the figure which showed the example of the X-ray topograph of the vertically divided sample obtained by experiment. 欠陥面内分布における点欠陥外方拡散の効果を説明した図である。It is the figure explaining the effect of the point defect outward diffusion in the defect in-plane distribution. 本発明のシリコン単結晶製造方法に用いることができる単結晶育成炉の概略を表した図である。It is the figure showing the outline of the single crystal growth furnace which can be used for the silicon single crystal manufacturing method of this invention. 比較例で得られた無欠陥領域が得られる上限及び下限の成長速度の結晶径方向分布を表した図である。It is a figure showing the crystal diameter direction distribution of the growth rate of the upper limit and minimum which can obtain the defect-free area | region obtained by the comparative example.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

上記のように、短時間で正確に点欠陥濃度を計算することができる点欠陥濃度計算方法が求められている。   As described above, there is a need for a point defect concentration calculation method that can accurately calculate a point defect concentration in a short time.

結晶中の点欠陥の拡散は3次元的に起こる現象であり、本来拡散方程式を3次元で解くことが望ましい。しかし拡散方程式を解くことは一般に難しく、差分法等による計算を行う場合には、次元が増加すると計算量が飛躍的に増大するので計算に時間がかかる。特許文献1や特許文献2で示されるように、成長軸方向の1次元の簡単化したモデルで、おおよその欠陥分布は推定できている。つまり結晶の中心付近では、結晶成長軸方向の濃度勾配は大きいが、結晶径方向の濃度勾配は大きくないので、成長方向の1次元で考えても大きな問題は無いと考えられる。しかし結晶外周部では、点欠陥のシンクである表面が近いため、表面に向かって点欠陥が拡散する外方拡散の影響が大きくなる。   The diffusion of point defects in crystals is a phenomenon that occurs three-dimensionally, and it is desirable to solve the diffusion equation in three dimensions. However, it is generally difficult to solve the diffusion equation, and when the calculation by the difference method or the like is performed, the calculation amount increases drastically as the dimension increases. As shown in Patent Document 1 and Patent Document 2, an approximate defect distribution can be estimated with a one-dimensional simplified model in the growth axis direction. That is, in the vicinity of the center of the crystal, the concentration gradient in the crystal growth axis direction is large, but the concentration gradient in the crystal diameter direction is not large. However, since the surface that is the sink of point defects is close to the outer periphery of the crystal, the influence of outward diffusion that the point defects diffuse toward the surface becomes large.

このような外方拡散の影響も考慮するために、拡散を多次元で計算すると、上記のように計算量が飛躍的に増大する問題が生じる。このように、従来の方法では、拡散の計算量を減らすことと、点欠陥濃度を正確に計算することとを両立することはできなかった。   In order to take into account the influence of such outward diffusion, if the diffusion is calculated in a multi-dimensional manner, there arises a problem that the amount of calculation increases dramatically as described above. Thus, in the conventional method, it has been impossible to achieve both reduction in the amount of calculation of diffusion and accurate calculation of the point defect concentration.

本発明者らは、上記問題点を解決するために鋭意検討を行った結果、育成中のシリコン単結晶中における点欠陥濃度を計算する方法において、点欠陥の拡散を、結晶成長軸に平行な拡散と、結晶径方向の拡散とを、それぞれ1次元の拡散として計算する点欠陥濃度計算方法が、上記問題点を解決できることを見出し、本発明の点欠陥濃度計算方法を完成させた。   As a result of diligent studies to solve the above problems, the inventors of the present invention calculated a point defect concentration in a growing silicon single crystal by making point defect diffusion parallel to the crystal growth axis. The point defect concentration calculation method for calculating the diffusion and the diffusion in the crystal diameter direction as one-dimensional diffusion can be solved, and the point defect concentration calculation method of the present invention has been completed.

以下、本発明の実施の形態について具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.

[点欠陥濃度計算方法]
上記のように、本発明の点欠陥濃度計算方法は、点欠陥の拡散を、結晶成長軸に平行な拡散と、結晶径方向の拡散(外方拡散)とを、それぞれ1次元の拡散として計算する方法である。このように、結晶成長軸に平行な拡散と、結晶径方向の外方拡散とを、それぞれ1次元で計算することで最終的な点欠陥濃度を求める本発明であれば、拡散の計算量を減らしつつ、点欠陥濃度を正確に計算することができる。
[Point defect concentration calculation method]
As described above, according to the point defect concentration calculation method of the present invention, the point defect diffusion is calculated as one-dimensional diffusion for diffusion parallel to the crystal growth axis and diffusion in the crystal diameter direction (outward diffusion). It is a method to do. In this way, in the present invention for obtaining the final point defect concentration by calculating the diffusion parallel to the crystal growth axis and the outward diffusion in the crystal diameter direction in one dimension, the amount of calculation of the diffusion is reduced. The point defect density can be accurately calculated while decreasing.

例えば、結晶成長軸に平行な1次元の拡散を計算し、結晶成長軸に平行な拡散のみを考慮した点欠陥濃度を求めたあとに、外方拡散(結晶径方向の拡散)を計算し、結晶外周部の点欠陥の濃度を修正し、最終的な点欠陥濃度を求めることができる。これらの計算を1次元で行うことで、非常に簡単な計算により精度よく点欠陥濃度を求めることができる。   For example, after calculating the one-dimensional diffusion parallel to the crystal growth axis and calculating the point defect concentration considering only the diffusion parallel to the crystal growth axis, the outward diffusion (diffusion in the crystal diameter direction) is calculated, The final point defect concentration can be obtained by correcting the concentration of point defects on the outer periphery of the crystal. By performing these calculations in one dimension, the point defect density can be obtained with high accuracy by a very simple calculation.

この際に、結晶成長軸に平行な拡散を計算する場合と、結晶径方向の外方拡散を計算する場合とで、異なる点欠陥の拡散係数を用いることが好ましい。外方拡散を1次元で計算する場合には、次に示すような幾つかの理由で、結晶成長軸に平行な拡散を計算する場合と異なった拡散係数を用いることが好ましい。   At this time, it is preferable to use different point defect diffusion coefficients for calculating the diffusion parallel to the crystal growth axis and for calculating the outward diffusion in the crystal diameter direction. When calculating outward diffusion in one dimension, it is preferable to use a diffusion coefficient different from that for calculating diffusion parallel to the crystal growth axis for several reasons as follows.

通常固体中では圧力変化が無いので平衡濃度Ceや拡散係数Dを
Ce=Coexp(−Ec/kT)、D=Doexp(−Ed/kT)・・・式1
Ec,Ed:活性化エネルギー、Co,Do:係数
と表記しても大きな問題がない。しかし育成中の結晶中には不均一な内部応力が働いている。このため式1は圧力を考慮した
Ce=Coexp(−(Ec+pVc)/kT)、D=Doexp(−(Ed+pVd)/kT)・・・式2
Vc,Vd:活性化体積、p:圧力
と表記するのが好ましいと考えられる。
Usually, since there is no pressure change in a solid, the equilibrium concentration Ce and the diffusion coefficient D are Ce = Coexp (−Ec / kT), D = Doexp (−Ed / kT), Equation 1
Ec, Ed: Activation energy, Co, Do: Coefficients, there are no major problems. However, non-uniform internal stress is acting in the growing crystal. For this reason, the equation 1 takes into account the pressure Ce = Coexp (− (Ec + pVc) / kT), D = Doexpp (− (Ed + pVd) / kT).
It is considered preferable to express Vc, Vd: activation volume and p: pressure.

ここで拡散係数の圧力依存性については議論することは簡単ではないが、平衡濃度に関しては比較的容易に想像できる。つまり圧力が高い場合はVacancyが安定であり、低い場合はI−Siが安定であろうと考えられる。   Here, it is not easy to discuss the pressure dependence of the diffusion coefficient, but it is relatively easy to imagine the equilibrium concentration. That is, it is considered that Vacancy is stable when the pressure is high and I-Si is stable when the pressure is low.

一方で結晶内応力は中心付近で圧縮、外周部で引張りと推定される。従ってI−Siの平衡濃度は周辺で高いと考えられ、このため逆に過飽和度は周辺で低いと考えられる。Grown−in欠陥形成に寄与したり、拡散の駆動力となったりするのは、平衡濃度を超え過飽和となった点欠陥と考えられる。従って(1)周辺ではI−Si欠陥が形成しにくい、(2)周辺に向かうI−Si拡散が起こりやすい、というふたつの効果がある。VacancyではI−Siと逆の効果が考えられる。この結晶中心付近と外周部との応力差による(1)と(2)の効果によりI−Siは見かけ上拡散係数が大きくなるし、Vacancyは見かけ上拡散係数が小さくなる。   On the other hand, the intracrystalline stress is estimated to be compressed near the center and tensile at the outer periphery. Therefore, it is considered that the equilibrium concentration of I-Si is high in the periphery, and therefore, the degree of supersaturation is considered to be low in the periphery. Contributing to the formation of a Grown-in defect or a driving force for diffusion is considered to be a point defect that is supersaturated beyond the equilibrium concentration. Therefore, there are two effects: (1) it is difficult to form I-Si defects in the periphery, and (2) I-Si diffusion toward the periphery is likely to occur. In Vacancy, the opposite effect to I-Si can be considered. Due to the effects of (1) and (2) due to the stress difference between the vicinity of the crystal center and the outer periphery, I-Si has an apparently large diffusion coefficient, and Vacancy has an apparently small diffusion coefficient.

更に外方拡散を1次元で計算するがゆえの効果を考慮する必要がある。それは、(3)中心部と外周部との体積差である。円筒形状である育成中シリコン単結晶では、中心部の体積に比較して外周部の体積の方が大きい。このため応力効果によって外方に向かって拡散しやすいI−Siは、拡散して行ける領域が2次元的に広がっており、非常に拡散しやすい。Vacancyの場合は逆に拡散しにくい。   Furthermore, it is necessary to consider the effect of calculating the outward diffusion in one dimension. It is (3) the volume difference between the central part and the outer peripheral part. In the growing silicon single crystal having a cylindrical shape, the volume of the outer peripheral portion is larger than the volume of the central portion. For this reason, I-Si that easily diffuses outward due to the stress effect has an area that can be diffused spreads two-dimensionally and is very easy to diffuse. In the case of vacancy, it is difficult to diffuse.

以上、I−Siで考えた場合(1)周辺で過飽和濃度(過飽和度)が低下するために、Grown−in欠陥が形成しにくくなる効果、(2)周辺で過飽和濃度が低下するために、周辺に向かう拡散が起こりやすい効果、(3)中心部と外周部との体積差により、周辺部に向かう拡散が起こりやすい効果、の3つがある。これらを拡散係数に背負わせた見かけの外方拡散係数と考えると、I−Siの見かけの外方拡散係数は大きくなる。Vacancyの見かけの外方拡散係数はその逆である。従って外方拡散を1次元で計算する際には、結晶成長方向に平行な拡散を計算する場合とは異なる、見かけの外方拡散係数を用いることが望ましい。   As described above, when I-Si is considered, (1) the supersaturation concentration (supersaturation degree) is reduced in the vicinity, and thus the effect of making it difficult to form a grown-in defect. (2) the supersaturation concentration is reduced in the vicinity. There are three effects: (3) the effect that diffusion toward the periphery tends to occur, and (3) the effect that diffusion toward the periphery easily occurs due to the volume difference between the central portion and the outer periphery. Considering these as apparent outward diffusion coefficients that are carried by the diffusion coefficient, the apparent outward diffusion coefficient of I-Si increases. Vacancy's apparent outward diffusion coefficient is the opposite. Therefore, when calculating the outward diffusion in one dimension, it is desirable to use an apparent outward diffusion coefficient that is different from the case of calculating the diffusion parallel to the crystal growth direction.

上記の結晶成長軸に平行な拡散及び結晶径方向の拡散(点欠陥の拡散)を、点欠陥の濃度勾配による拡散、温度勾配による拡散のいずれか一方もしくは両者とすることが好ましい。この場合、濃度勾配による拡散、温度勾配による拡散のいずれか一方もしくは両者を計算するか、加えて対消滅による点欠陥濃度の減少効果を計算することにより点欠陥濃度を求めることができる。これにより、得られる点欠陥濃度の値を、現実のシリコン単結晶の点欠陥濃度の値により近づけることができる。   The diffusion parallel to the crystal growth axis and the diffusion in the crystal diameter direction (diffusion of point defects) is preferably one or both of diffusion due to the concentration gradient of point defects and diffusion due to the temperature gradient. In this case, the point defect concentration can be obtained by calculating one or both of diffusion due to the concentration gradient and diffusion due to the temperature gradient, or by calculating the effect of decreasing the point defect concentration due to pair annihilation. Thereby, the obtained point defect concentration value can be made closer to the actual point defect concentration value of the silicon single crystal.

上記の点欠陥濃度の計算は、融点から欠陥形成温度まで行うことが好ましい。すなわち、点欠陥の拡散及び対消滅を、シリコン単結晶の融点から欠陥形成温度まで計算し、点欠陥濃度を求めることが効率的である。   The calculation of the point defect concentration is preferably performed from the melting point to the defect formation temperature. That is, it is efficient to calculate the point defect diffusion and pair annihilation from the melting point of the silicon single crystal to the defect formation temperature to obtain the point defect concentration.

Grown−in欠陥が形成される温度は成長速度を急変させる実験などから求められており、例えば特開平8−337490号公報では1150℃−1080℃とされている。従って点欠陥の拡散による濃度の変化も、融点からGrown−in欠陥が形成される温度まで計算することが好ましい。実際に計算を行ってみると、温度低下に伴い拡散係数が低下し、過飽和濃度増加量が減少するので、点欠陥濃度は1150℃程度までには一定濃度となる。従って、点欠陥濃度はシリコン単結晶の融点から欠陥形成温度まで計算すれば十分であることがわかる。なお、シリコン単結晶の融点は、約1412℃である。欠陥形成開始温度は1150℃付近の温度であるが、この温度に限定されるものではない。   The temperature at which the Grown-in defect is formed is obtained from an experiment that rapidly changes the growth rate, and is, for example, 1150 ° C.-1080 ° C. in Japanese Patent Laid-Open No. 8-337490. Therefore, the change in concentration due to the diffusion of point defects is preferably calculated from the melting point to the temperature at which the grown-in defect is formed. When the calculation is actually performed, the diffusion coefficient decreases as the temperature decreases, and the amount of increase in the supersaturation concentration decreases, so that the point defect concentration becomes a constant concentration by about 1150 ° C. Therefore, it is understood that it is sufficient to calculate the point defect concentration from the melting point of the silicon single crystal to the defect formation temperature. The melting point of the silicon single crystal is about 1412 ° C. The defect formation start temperature is a temperature around 1150 ° C., but is not limited to this temperature.

[Grown−in欠陥計算方法]
次に、本発明のGrown−in欠陥計算方法について説明する。本発明のGrown−in欠陥計算方法は、上記の点欠陥濃度計算方法で求められた点欠陥濃度から、欠陥形成温度帯における点欠陥の凝集を計算することによりGrown−in欠陥サイズを求める計算方法である。このように上記の方法で求めた点欠陥濃度を用いるGrown−in欠陥計算方法であれば、短時間で正確にGrown−in欠陥のサイズを計算することができる。
[Grown-in defect calculation method]
Next, the Grown-in defect calculation method of the present invention will be described. The Grown-in defect calculation method of the present invention is a calculation method for obtaining the Grown-in defect size by calculating the aggregation of point defects in the defect formation temperature zone from the point defect concentration obtained by the above point defect concentration calculating method. It is. As described above, the Grown-in defect calculation method using the point defect concentration obtained by the above method can accurately calculate the Grown-in defect size in a short time.

例えば、シリコン単結晶の融点から欠陥形成温度までで求められた点欠陥濃度から、欠陥形成温度帯において点欠陥が凝集する過程を計算し、Grown−in欠陥サイズを求めることができる。   For example, from the point defect concentration obtained from the melting point of the silicon single crystal to the defect formation temperature, the process of agglomeration of point defects in the defect formation temperature zone can be calculated to determine the Grown-in defect size.

この際、Grown−in欠陥サイズが一定値以下となる領域を無欠陥領域と判断することができる。この場合、シリコン単結晶の成長速度を変数として、点欠陥の凝集等を計算し、Grown−in欠陥サイズが一定値以下となる領域を求めることで、空孔型の無欠陥領域や格子間型の無欠陥領域を得ることができるシリコン単結晶の成長速度を求めることができる。   At this time, a region where the Grown-in defect size is a certain value or less can be determined as a defect-free region. In this case, by using the growth rate of the silicon single crystal as a variable, agglomeration of point defects and the like are calculated, and by obtaining a region where the Grown-in defect size is a certain value or less, a vacancy-type defect-free region or interstitial type is obtained. The growth rate of a silicon single crystal that can obtain a defect-free region can be obtained.

欠陥形成温度帯では、それまでに過飽和となった点欠陥が凝集してGrown−in欠陥を形成すると考えられる。そこでこの温度帯における点欠陥の凝集過程を計算しGrown−in欠陥サイズを求めることができる。また、上記のように求められた欠陥サイズのうち、一定の欠陥サイズ以下を無欠陥領域と判定することも可能である。Grown−in欠陥サイズを知ることができれば、例えばアニール処理により消滅しやすいサイズを持つ結晶を育成する条件を求めることができる。一方で無欠陥と判断される領域は、酸素濃度や欠陥の検出能力の向上によって変化するので、その時の検出能力等に見合ったサイズ以下を無欠陥領域と判断することができる。現状ではこのサイズを10〜30nm程度と定めることができる。無欠陥領域とは、Grown−in欠陥サイズが一定値以下となる成長速度の幅であり、またGrown−in欠陥サイズが一定値以下となる結晶中の位置(領域)である。なお、欠陥形成温度帯の温度範囲は特に限定されないが、例えば、1150℃−1080℃である。   In the defect formation temperature zone, it is considered that the point defects that have been supersaturated so far aggregate to form a grown-in defect. Therefore, it is possible to calculate the Grown-in defect size by calculating the aggregation process of point defects in this temperature range. Moreover, it is also possible to determine a defect size equal to or smaller than a certain defect size among the defect sizes obtained as described above as a defect-free region. If the Grown-in defect size can be known, for example, conditions for growing a crystal having a size that easily disappears by annealing treatment can be obtained. On the other hand, the region determined to be defect-free changes due to the improvement of the oxygen concentration and the defect detection capability, so that a size equal to or smaller than the size corresponding to the detection capability at that time can be determined as the defect-free region. At present, this size can be set to about 10 to 30 nm. The defect-free region is a growth rate range in which the Grown-in defect size is a certain value or less, and is a position (region) in the crystal where the Grown-in defect size is a certain value or less. The temperature range of the defect formation temperature zone is not particularly limited, but is, for example, 1150 ° C.-1080 ° C.

[Grown−in欠陥面内分布計算方法]
次に、本発明のGrown−in欠陥面内分布計算方法について説明する。本発明のGrown−in欠陥面内分布計算方法は、上記のGrown−in欠陥計算方法で求められる空孔型・格子間型それぞれの無欠陥領域となる成長速度を、結晶径に対しプロットすることにより欠陥面内分布形状を求める計算方法である。このように、点欠陥が凝集する過程を計算し求められる空孔型・格子間型それぞれで無欠陥と判断される成長速度を、結晶径に対しプロットすることによって、欠陥面内分布形状を簡便に求めることができる。
[Grown-in defect in-plane distribution calculation method]
Next, the Grown-in defect in-plane distribution calculation method of the present invention will be described. The Grown-in defect in-plane distribution calculation method of the present invention plots the growth rate to be a defect-free region of each of the vacancy type and the interstitial type obtained by the above Grown-in defect calculation method against the crystal diameter. This is a calculation method for obtaining the distribution shape in the defect plane. In this way, the defect in-plane distribution shape can be simplified by plotting the growth rate determined to be defect-free for each of the vacancy type and interstitial type obtained by calculating the process of point defect aggregation. Can be requested.

シリコン単結晶の成長速度を変数として、上述の拡散・対消滅・点欠陥の凝集を計算すると、Vacancy過飽和濃度CvとI−Si過飽和濃度Ciとの差Cv−Ciは成長速度が高速から低速になるに従い、正から負になる。Grown−in欠陥サイズは高速から低速になるに従い、Cv−Ci>0の範囲の無欠陥領域(空孔型の無欠陥領域)近傍ではVacancy凝集体サイズが小さくなっていき、Cv−Ci=0で0になり、Cv−Ci<0の範囲の無欠陥領域(格子間型の無欠陥領域)近傍ではI−Si凝集体サイズが大きくなっていく。この時のVacancy凝集体が一定サイズ以下となる成長速度(無欠陥上限成長速度)と、I−Si凝集体が一定サイズ以下となる成長速度(無欠陥下限成長速度)を、結晶径方向にプロットすることにより、欠陥面内分布形状を求めることができる。これは実際の結晶で成長速度を徐々に低下させながら得られた欠陥分布に相当するものである。この欠陥面内分布を用いれば、結晶面内で無欠陥領域が得られるかを容易に判断することが可能となる。   When the above-mentioned diffusion / pair annihilation / aggregation of point defects is calculated using the growth rate of the silicon single crystal as a variable, the difference Cv-Ci between the Vacancy supersaturation concentration Cv and the I-Si supersaturation concentration Ci decreases from a high speed to a low speed. As it becomes, it goes from positive to negative. As the grown-in defect size decreases from high speed to low speed, the vacancy aggregate size decreases in the vicinity of the defect-free region (vacancy-type defect-free region) in the range of Cv-Ci> 0, and Cv-Ci = 0. The I-Si aggregate size increases in the vicinity of the defect-free region (interstitial defect-free region) in the range of Cv-Ci <0. The growth rate at which the Vacancy agglomerates are below a certain size (defect-free upper limit growth rate) and the growth rate at which the I-Si agglomerates are below a certain size (defect-free lower limit growth rate) are plotted in the crystal diameter direction. By doing so, the in-plane distribution shape of the defect can be obtained. This corresponds to the defect distribution obtained with an actual crystal while gradually reducing the growth rate. By using this defect in-plane distribution, it is possible to easily determine whether a defect-free region can be obtained in the crystal plane.

以上の計算(点欠陥濃度の計算及び点欠陥の凝集の計算)は、総合伝熱解析ソフト等によって求められた、育成炉内の温度分布に基づいて行うことができる。   The above calculation (calculation of point defect concentration and point defect agglomeration) can be performed based on the temperature distribution in the growth furnace determined by the comprehensive heat transfer analysis software or the like.

単結晶育成炉内の温度分布を求めるソフトは、総合伝熱解析プログラムFEMAG(F.Dupret et al.;Int. J. Heat Mass Transfer,33,1849(1990)参照)を初めとして幾つかのソフトが市販されている。これらの解析ソフトはインターフェイスなどが整備され使いやすい上、それぞれ実績があるので一定の条件下で用いる場合にはある程度信頼できる結果が期待できる。従って、拡散・対消滅・点欠陥凝集の計算の元となる温度分布にこれらのソフトによって計算されたものを用いることはメリットがある。   Software for obtaining the temperature distribution in the single crystal growth furnace includes several software including an integrated heat transfer analysis program FEMAG (see F. Dupret et al .; Int. J. Heat Mass Transfer, 33, 1849 (1990)). Is commercially available. These analysis softwares are easy to use with a well-developed interface, etc., and since each has proven results, reliable results can be expected to some extent when used under certain conditions. Therefore, it is advantageous to use those calculated by these software for the temperature distribution that is the basis of calculation of diffusion, pair annihilation, and point defect aggregation.

[シリコン単結晶製造方法]
本発明のシリコン単結晶製造方法は、上記本発明の点欠陥濃度計算方法、Grown−in欠陥計算方法又はGrown−in欠陥面内分布計算方法で計算した結果に基づいて、育成炉構造、炉内部品、温度環境及び操業条件のいずれか一つ以上の育成条件を変更し、この変更した育成条件にて実結晶を育成する製造方法である。このように、本発明の計算方法を用いて、育成条件を変更し結晶育成温度環境を計算・評価し、その結果を反映させた条件で実結晶を育成することが好ましい。
[Silicon single crystal manufacturing method]
The silicon single crystal manufacturing method of the present invention is based on the results calculated by the above point defect concentration calculation method, Grown-in defect calculation method or Grown-in defect in-plane distribution calculation method of the present invention, This is a manufacturing method in which one or more growth conditions of a product, a temperature environment, and an operation condition are changed, and a real crystal is grown under the changed growth condition. As described above, it is preferable to grow the actual crystal under conditions reflecting the results by changing the growth conditions and calculating and evaluating the crystal growth temperature environment using the calculation method of the present invention.

上述してきた計算を実施する最大の目的は、実際の結晶を育成するために最適な条件を簡単かつ精度よく求めることである。また、最適な条件を求めるために本計算方法で様々な熱環境条件を計算・評価し、目的にあった条件(最適条件)で実結晶を引き上げることである。全ての熱環境で実結晶を育成し、欠陥分布を評価していたのでは、膨大な時間とコストが掛かってしまう。これを計算で行うことができれば、幾通りもの熱環境を短時間で、非常に低コストで試すことができる。このため最適な環境を簡単に見つけることができる。この最適条件で実結晶を引上げることにより、低欠陥または無欠陥結晶の開発にかかるコストを一挙に下げることが可能である。   The greatest purpose of performing the above-described calculation is to easily and accurately obtain the optimum conditions for growing an actual crystal. In addition, in order to obtain the optimum conditions, various thermal environment conditions are calculated and evaluated by this calculation method, and the actual crystal is pulled up under conditions (optimum conditions) suitable for the purpose. Growing a real crystal in all the thermal environments and evaluating the defect distribution would take enormous time and cost. If this can be done by calculation, several thermal environments can be tried in a short time at a very low cost. This makes it easy to find the optimal environment. By pulling up the actual crystal under this optimum condition, it is possible to reduce the cost for developing a low defect or defect-free crystal all at once.

本発明のシリコン単結晶製造方法であれば、本発明の計算方法を用いて育成条件を設定しているので、最先端分野で用いられている無欠陥単結晶を低コストで得ることができる。このような単結晶からは、メモリー・CPU・パワーデバイスなど半導体デバイスの基板として用いられるシリコンウェーハを切り出すことができる。   If it is the silicon single crystal manufacturing method of this invention, since the growth conditions are set using the calculation method of this invention, the defect-free single crystal used in the most advanced field can be obtained at low cost. From such a single crystal, a silicon wafer used as a substrate for a semiconductor device such as a memory, CPU, or power device can be cut out.

ここで、本発明のシリコン単結晶製造方法に用いることができる単結晶育成炉(CZ単結晶製造装置)について図4を参照して説明するが、育成炉はこれに限定されない。   Here, a single crystal growth furnace (CZ single crystal production apparatus) that can be used in the silicon single crystal production method of the present invention will be described with reference to FIG. 4, but the growth furnace is not limited thereto.

図4に示すシリコン単結晶製造装置の外観は、メインチャンバー1、これに連通するトップチャンバー11及びトップチャンバー11に連通する引上げチャンバー2で構成されている。メインチャンバー1の内部には、黒鉛ルツボ6及び石英ルツボ5が設置されている。黒鉛ルツボ6を囲むように加熱ヒーター7が設けられており、加熱ヒーター7によって、石英ルツボ5内に収容された原料シリコン多結晶が溶融されて原料融液4とされる。また、断熱部材8が設けられており、加熱ヒーター7からの輻射熱がメインチャンバー1等の金属製の器具に直接当たるのを防いでいる。   The external appearance of the silicon single crystal manufacturing apparatus shown in FIG. 4 includes a main chamber 1, a top chamber 11 that communicates with the main chamber 1, and a pulling chamber 2 that communicates with the top chamber 11. A graphite crucible 6 and a quartz crucible 5 are installed inside the main chamber 1. A heater 7 is provided so as to surround the graphite crucible 6, and the raw material silicon polycrystal accommodated in the quartz crucible 5 is melted by the heater 7 to form a raw material melt 4. Further, a heat insulating member 8 is provided to prevent the radiant heat from the heater 7 from directly hitting a metal instrument such as the main chamber 1.

原料融液4の融液面上では遮熱部材13が、融液面に所定間隔で対向配置され、原料融液面からの輻射熱を遮断している。このルツボ中に種結晶を浸漬した後、原料融液4から棒状の単結晶棒3が引き上げられる。ルツボは結晶成長軸方向に昇降可能であり、単結晶の成長が進行して減少した原料融液4の液面下降分を補うように、成長中にルツボを上昇させることにより、原料融液4の融液面の高さはおおよそ一定に保たれる。   On the melt surface of the raw material melt 4, a heat shield member 13 is disposed opposite the melt surface at a predetermined interval to block radiant heat from the raw material melt surface. After immersing the seed crystal in the crucible, the rod-shaped single crystal rod 3 is pulled up from the raw material melt 4. The crucible can be moved up and down in the direction of the crystal growth axis, and the raw material melt 4 is raised by raising the crucible during the growth so as to compensate for the lowering of the liquid surface of the raw material melt 4 that has decreased as the growth of the single crystal proceeds. The height of the melt surface is kept approximately constant.

さらに、単結晶育成時にパージガスとしてアルゴンガス等の不活性ガスが、ガス導入口10から導入され、引き上げ中の単結晶棒3とガスパージ筒12との間を通過した後、遮熱部材13と原料融液4の融液面との間を通過し、ガス流出口9から排出している。導入するガスの流量と、ポンプや弁によるガスの排出量を制御することにより、引上げ中のチャンバー内の圧力が制御される。   Further, an inert gas such as argon gas is introduced from the gas inlet 10 as a purge gas during single crystal growth, and after passing between the single crystal rod 3 being pulled and the gas purge cylinder 12, the heat shield member 13 and the raw material It passes between the melt surface of the melt 4 and is discharged from the gas outlet 9. By controlling the flow rate of gas to be introduced and the amount of gas discharged by a pump or valve, the pressure in the chamber being pulled up is controlled.

以下、実際のデータを用いながら詳細に説明をする。   Hereinafter, detailed description will be given using actual data.

[実験]
シリコン単結晶においてGrown−in欠陥領域の評価を行う際に、結晶成長速度を漸減した結晶を育成し、これを縦割りにして欠陥分布を調査する。この様にして評価した例が図2である。これは縦割り結晶に650℃2時間+800℃4時間+1000℃16時間の析出熱処理を加えた後、X線トポグラフにて評価したものである。この様な成長速度漸減縦割り結晶では、I−rich領域は結晶外周部で垂れ下がる、OSF領域は外周で垂れ下がってから跳ね上がる分布が一般的である。この外周部における欠陥分布形状は点欠陥の外方拡散により決まっていると考えられる。それは以下のように説明できる。
[Experiment]
When evaluating a grown-in defect region in a silicon single crystal, a crystal having a gradually reduced crystal growth rate is grown, and this is vertically divided to investigate the defect distribution. An example evaluated in this manner is shown in FIG. This was evaluated by X-ray topography after subjecting the vertically divided crystal to precipitation heat treatment at 650 ° C. for 2 hours + 800 ° C. for 4 hours + 1000 ° C. for 16 hours. In such a vertically-divided crystal with a gradually decreasing growth rate, the distribution is generally such that the I-rich region hangs down on the outer periphery of the crystal and the OSF region hangs down on the outer periphery. It is considered that the defect distribution shape in the outer peripheral portion is determined by the outward diffusion of point defects. It can be explained as follows.

図3は、欠陥面内分布における点欠陥外方拡散の効果を説明した図である。仮に外方拡散を考えない場合に、結晶径方向の欠陥分布がフラットであったとする(図3(a)参照)。次に結晶外周付近でI−Siが、点欠陥の無限のシンクである表面に向かって外方拡散した場合を考える(図3(b)参照)。I−Siの外方拡散によりI−rich/Ni領域境界、Ni/Nv領域境界、Nv/OSF領域境界、OSF/V−rich領域境界は外周部でI領域である下側に曲がる。なぜならI−rich領域外周部ではI−Siが減少してNi領域になるし、Ni領域外周部はNv領域になる。Nv領域やOSF領域はVacancyが優勢な領域ではあるが、外周部でI−Siが外方拡散し、Vacancy優勢度が高まるので、同様に下側に向かって曲がる。   FIG. 3 is a diagram illustrating the effect of point defect outward diffusion in the defect in-plane distribution. If out diffusion is not considered, it is assumed that the defect distribution in the crystal diameter direction is flat (see FIG. 3A). Next, consider the case where I-Si diffuses outward toward the surface, which is an infinite sink of point defects, near the periphery of the crystal (see FIG. 3B). Due to the outward diffusion of I-Si, the I-rich / Ni region boundary, the Ni / Nv region boundary, the Nv / OSF region boundary, and the OSF / V-rich region boundary bend to the lower side which is the I region at the outer periphery. This is because I-Si decreases in the outer periphery of the I-rich region and becomes the Ni region, and the outer periphery of the Ni region becomes the Nv region. The Nv region and the OSF region are vacancy-dominated regions, but since I-Si diffuses outward at the outer peripheral portion and vacancy dominance increases, the Nv region and the OSF region also bend downward.

更に結晶外周部付近でVacancyが表面に向かって外方拡散した場合を考える(図3(c)参照)。Vacancy優勢であったNvではVacancyが減少し、先に外方拡散したI−Siも減少しているためどちらも優勢でない領域になる。従って線状であったNv/Ni領域境界は外側に向かって幅広になる。OSF領域外周部ではVacancyが外方拡散してNv領域に、V−rich領域外周部ではOSF領域になる。これによりNv/OSF領域境界、OSF/V−rich領域境界は外周部でV領域である上側に曲がる。   Further, consider the case where vacancy diffuses outward toward the surface in the vicinity of the crystal periphery (see FIG. 3C). Vacancy In predominates which was Nv Vacancy is reduced, the area neither dominant because it also reduced I-Si which outdiffused first. Therefore, the linear Nv / Ni region boundary becomes wider toward the outside. The vacancy is diffused outward in the outer periphery of the OSF region and becomes the Nv region, and becomes the OSF region in the outer periphery of the V-rich region. As a result, the Nv / OSF region boundary and the OSF / V-rich region boundary bend upward in the V region.

以上のように考えると、図2の様な実際のSE漸減縦割り結晶の欠陥分布を良く説明できる。この実際の縦割りサンプルにおけるOSF/Nv領域境界に注目すると、中央から周辺に向かって、一度下側に向かって垂れ下がった後、上側に向かって跳ね上がっている。つまりVacancyの外方拡散領域よりも、I−Siの外方拡散領域の方がより内側に食い込んでいることが判る。このことからI−Siの見かけの外方拡散係数Di’はVacancyの見かけの外方拡散係数Dv’より大きいと考えられる。   Considering the above, the defect distribution of the actual SE gradually decreasing vertically divided crystal as shown in FIG. 2 can be well explained. When attention is paid to the OSF / Nv region boundary in this actually vertically divided sample, it hangs down from the center to the periphery and then jumps up. That is, it can be seen that the outward diffusion region of I-Si bites inward more than the outward diffusion region of Vacancy. From this, it is considered that the apparent outward diffusion coefficient Di ′ of I-Si is larger than the apparent outward diffusion coefficient Dv ′ of Vacancy.

先に述べたが見かけの外方拡散係数Dv’,Di’には3つの効果が含まれている。つまりI−Siで考えた場合(1)周辺で過飽和濃度が低下するために、Grown−in欠陥が形成しにくくなる効果、(2)周辺で過飽和濃度が低下するために、周辺に向かう拡散が起こりやすい効果、(3)中心部と外周部との体積差により、周辺部に向かう拡散が起こりやすい効果である。このため結晶成長軸に平行な拡散を考える場合のDv,Diと区別して扱うことが好ましい。Dv,Diは従来検討されてきており各種の値が報告されている。しかしDv’,Di’に関しては明らかにされてはいない。そこで次にDv’,Di’のおおよその値を実験的に求める。   As described above, the apparent outward diffusion coefficients Dv ′ and Di ′ include three effects. In other words, when considered in terms of I-Si, (1) the supersaturation concentration is reduced in the vicinity, so that the growth-in defect is less likely to be formed, and (2) the supersaturation concentration is reduced in the periphery, so that diffusion toward the periphery occurs. This is an effect that is likely to occur, and (3) an effect that diffusion toward the peripheral portion is likely to occur due to a volume difference between the central portion and the outer peripheral portion. For this reason, it is preferable to distinguish from Dv and Di when considering diffusion parallel to the crystal growth axis. Dv and Di have been studied conventionally and various values have been reported. However, Dv 'and Di' are not disclosed. Then, next, approximate values of Dv ′ and Di ′ are experimentally obtained.

図2に示した様な成長速度漸減縦割り欠陥分布を、熱環境が異なる幾つかの条件下において求めた。次にVacancy外方拡散距離(Lv)とI−Si外方拡散距離(Li)を求めた。LvはOSF/Nv領域境界が上に跳ね上がる部分から外周までの距離、LiはNv/Ni境界が下に垂れ下がる部分から外周までの距離として求めた。   The growth rate gradually decreasing vertical defect distribution as shown in FIG. 2 was obtained under several conditions with different thermal environments. Next, Vacancy outward diffusion distance (Lv) and I-Si outward diffusion distance (Li) were determined. Lv was determined as the distance from the part where the OSF / Nv region boundary jumped up to the outer periphery, and Li was determined as the distance from the part where the Nv / Ni boundary hangs down to the outer periphery.

一方で成長速度漸減縦割り結晶を育成した条件において、FEMAGにて結晶温度分布を求めた。この温度分布の外周約30mmにおける融点(Tm)から欠陥形成温度帯(Td=1150℃)までの外方拡散距離を
Lv=√∫Tm TdDv’tdT、Li=√∫Tm TdDi’tdT ・・・式3
t:拡散する時間
として求めた。Dv’,Di’は見かけの外方拡散係数であり
Dv’=0.006exp(−0.4/kT)、Di’=4420exp(−2.0/kT) ・・・式4
とした時に、先に縦割り欠陥分布から実測したLv,Liと1:1対応が得られた。従って見かけの外方拡散係数として式4の値程度が妥当である。この値は一般的に報告されている拡散係数に比較して、特にI−Siの値が非常に大きい。これらが先に(1)〜(3)で述べた応力及び体積比の効果であると考えられる。
On the other hand, the crystal temperature distribution was determined by FEMAG under the conditions in which the growth rate was gradually reduced and the crystal was grown. The defect formation temperature zone from the melting point (Tm) in the outer periphery of about 30mm of the temperature distribution (Td = 1150 ℃) until the out-diffusion distance Lv = √∫ Tm Td Dv'tdT, Li = √∫ Tm Td Di'tdT · ..Formula 3
t: It was determined as the diffusion time. Dv ′ and Di ′ are apparent outward diffusion coefficients. Dv ′ = 0.006exp (−0.4 / kT), Di ′ = 4420exp (−2.0 / kT) Equation 4
In this case, a 1: 1 correspondence was obtained with Lv and Li previously measured from the vertical defect distribution. Therefore, the value of Equation 4 is appropriate as an apparent outward diffusion coefficient. This value is particularly large for I-Si as compared with the generally reported diffusion coefficient. These are considered to be the effects of the stress and volume ratio described above in (1) to (3).

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this Example.

(実施例)
図4に概略図を示したシリコン単結晶育成装置において、結晶の直径を306mm、直胴長さを100cmとした時の炉内温度分布を、FEMAGの定常解析により求めた。求められた温度から、結晶内の成長軸方向温度分布を抽出した。抽出位置は、結晶中心部を0cmとして1cm毎に、0cm,1cm,2cm・・・・14cm,14.3cm,15cmとした。それぞれの位置において結晶界面=融点から成長軸に平行な方向に5mm毎の温度を抽出した。
(Example)
In the silicon single crystal growth apparatus schematically shown in FIG. 4, the temperature distribution in the furnace when the diameter of the crystal was 306 mm and the length of the straight body was 100 cm was determined by steady analysis of FEMAG. The temperature distribution in the growth axis direction in the crystal was extracted from the obtained temperature. Extraction positions were 0 cm, 1 cm, 2 cm,..., 14 cm, 14.3 cm, and 15 cm every 1 cm with the center of the crystal being 0 cm. At each position, the temperature was extracted every 5 mm in the direction parallel to the growth axis from the crystal interface = melting point.

このそれぞれの位置において、結晶成長方向に平行な拡散を計算した。先にも述べたがシリコン単結晶におけるGrown−in欠陥の形成論としては、ボロンコフにより提唱されたモデルが広く知られている。これは点欠陥の濃度が濃度勾配による拡散、温度勾配による拡散、対消滅による減少の3つによって決まるものである。特に成長速度Vと界面近傍の温度勾配Gとの比V/Gに依存して点欠陥の濃度が決まり、V/Gが大きければVacancy濃度が優勢、V/Gが小さければI−Siが優勢となることが知られている。このV/Gが大きく影響する要因は、温度勾配による拡散、つまり温度が下がることによって点欠陥の平衡濃度が低下し、このため過飽和になった点欠陥が濃度勾配とは逆に拡散する効果があるからと考えられる。この効果は坂道拡散と呼ばれる。濃度拡散を重視するか、坂道拡散を重視するか、または対消滅にかかる係数をどの程度とするか、など計算の手法はいくつも考えられる。その計算手法によって、点欠陥の平衡濃度や拡散係数が異なってくるので、各種の値が報告されているのが現状である。本手法において結晶成長軸方向に関する計算は、現実の欠陥分布と整合性が取れる計算であれば、どのような方法でも良い。本実施例では坂道拡散を主として拡散を計算し、点欠陥の過飽和濃度を求めた。   At each of these positions, the diffusion parallel to the crystal growth direction was calculated. As described above, a model proposed by Boronkov is widely known as the formation theory of a grown-in defect in a silicon single crystal. This is because the concentration of point defects is determined by three factors: diffusion due to concentration gradient, diffusion due to temperature gradient, and decrease due to pair annihilation. In particular, the concentration of point defects is determined depending on the ratio V / G between the growth rate V and the temperature gradient G near the interface. If V / G is large, the vacancy concentration is dominant, and if V / G is small, I-Si is dominant. It is known that The factor that V / G greatly influences is the diffusion due to the temperature gradient, that is, the equilibrium concentration of point defects decreases as the temperature decreases, and therefore, the effect that the point defects that are supersaturated diffuse in the opposite direction of the concentration gradient. It is thought that there is. This effect is called slope diffusion. There are various calculation methods such as whether concentration diffusion is emphasized, slope diffusion is emphasized, or a coefficient for pair annihilation is set. Since the equilibrium concentration and diffusion coefficient of point defects vary depending on the calculation method, various values have been reported. In this method, the calculation related to the crystal growth axis direction may be any method as long as it is consistent with the actual defect distribution. In this example, the diffusion was calculated mainly for slope diffusion, and the supersaturated concentration of point defects was obtained.

具体的には結晶成長軸に平行に融点から10−20℃程度毎に拡散の計算を行った。計算は以下のようにして行った。まず、前の温度での平衡濃度と次の温度での平衡濃度との差分を過飽和濃度とし、これが1次元で拡散した後の濃度を求めた。次に拡散後の濃度と、その次の温度の平衡濃度との差が更に過飽和濃度となるので、これをまた1次元で拡散させた後の濃度を求めた。これを融点から欠陥形成が始まる1150℃まで繰り返し行った。拡散する時間・距離は成長速度に依存するので、これらの濃度は成長速度の関数として求められる。この時の計算に用いた平衡濃度および拡散係数の値は
Cev=4.5×1026exp(−3.9/kT)、Cei=2.5×1028exp(−4.5/kT)
Dv=40exp(−1.6/kT)、Di=6.6×10−3exp(−0.55/kT)
である。VacancyとI−Siそれぞれで拡散後の過飽和濃度を求めた上でその差分を点欠陥過飽和濃度として求めた。
Specifically, the diffusion was calculated about every 10-20 ° C. from the melting point parallel to the crystal growth axis. The calculation was performed as follows. First, the difference between the equilibrium concentration at the previous temperature and the equilibrium concentration at the next temperature was defined as the supersaturated concentration, and the concentration after this was diffused in one dimension was determined. Next, since the difference between the concentration after diffusion and the equilibrium concentration at the next temperature becomes a supersaturated concentration, the concentration after diffusion in one dimension was obtained. This was repeated from the melting point to 1150 ° C. where defect formation started. Since the diffusion time and distance depend on the growth rate, these concentrations are obtained as a function of the growth rate. The values of equilibrium concentration and diffusion coefficient used for the calculation at this time are Cev = 4.5 × 10 26 exp (−3.9 / kT), Cei = 2.5 × 10 28 exp (−4.5 / kT)
Dv = 40exp (−1.6 / kT), Di = 6.6 × 10 −3 exp (−0.55 / kT)
It is. After obtaining the supersaturated concentration after diffusion in Vacancy and I-Si, the difference was obtained as the point defect supersaturated concentration.

次に求められた点欠陥過飽和濃度を、先に求めた見かけの外方拡散係数を使って、結晶径方向に1次元拡散させることによって最終的な過飽和濃度を算出した。ここでは計算をより簡単化するため成長方向に平行な拡散を計算した後に外方拡散を計算した。温度毎に成長方向の1次元計算と径方向の1次元計算とを行うことを繰り返しても良い。   Next, the final supersaturation concentration was calculated by one-dimensionally diffusing the obtained point defect supersaturation concentration in the crystal diameter direction using the apparent outward diffusion coefficient obtained previously. Here, in order to make the calculation easier, the outward diffusion was calculated after calculating the diffusion parallel to the growth direction. You may repeat performing one-dimensional calculation of a growth direction and one-dimensional calculation of a radial direction for every temperature.

次に最終的に求められた過飽和点濃度から、点欠陥が凝集する過程を計算した。凝集の温度帯は1150℃から1080℃とした。凝集はこの温度帯の通過時間と拡散係数から求まる拡散距離に影響される。ここで拡散距離範囲内の点欠陥が全て集まるとした最大欠陥サイズを求め、これを実結晶中で確認されたGrown−in欠陥平均サイズで規格化した平均欠陥サイズとして求めた。実結晶中では点欠陥が拡散しながら凝集・分裂を繰り返し、臨界核半径以上となったものがGrown−in欠陥へと成長する。このため最大欠陥サイズ以下で密度分布を持った欠陥が形成されると考えられる。この過程を計算する方がより正しいが、ここでは簡単のため平均欠陥サイズのみ求めた。この方法で求めたVoidサイズは、成長速度を速くしていくとCv−Ciが大きくなるので途中まで大きくなり、更に高速では通過時間が短く拡散距離が短くなるので小さくなり、現実に即した結果が得られている。   Next, the process of agglomeration of point defects was calculated from the finally obtained supersaturation point concentration. The temperature range for aggregation was 1150 ° C to 1080 ° C. Aggregation is affected by the diffusion distance determined from the transit time and diffusion coefficient of this temperature range. Here, the maximum defect size that all point defects within the diffusion distance range gathered was determined, and this was determined as the average defect size normalized by the Grown-in defect average size confirmed in the actual crystal. In the actual crystal, the point defects are repeatedly agglomerated and split while diffusing, and those that are larger than the critical nucleus radius grow into grown-in defects. For this reason, it is considered that defects having a density distribution below the maximum defect size are formed. It is more correct to calculate this process, but for the sake of simplicity, only the average defect size is obtained here. The Void size obtained by this method increases as Cv-Ci increases as the growth rate increases, and further increases at higher speeds because the transit time is shorter and the diffusion distance is shorter, resulting in a realistic result. Is obtained.

次に算出された欠陥サイズのうち一定以下のサイズを無欠陥領域と判定した。一定以下のサイズは次のように求めた。ある条件にて成長速度を漸減しながら、図2に示すような結晶を育成し、Nv領域の上端の成長速度、Ni領域の下端の成長速度を求めた。この条件を上述してきた方法で計算し、Nv上端部が得られた成長速度における空孔凝集欠陥サイズ、及びNi下端部が得られた成長速度におけるI−Si凝集欠陥サイズを一定以下のサイズとして求めた。   Next, among the calculated defect sizes, a size smaller than a certain size was determined as a defect-free region. The size below a certain level was determined as follows. While gradually reducing the growth rate under a certain condition, a crystal as shown in FIG. 2 was grown, and the growth rate at the upper end of the Nv region and the growth rate at the lower end of the Ni region were obtained. This condition is calculated by the above-described method, and the vacancy agglomerated defect size at the growth rate at which the Nv upper end is obtained and the I-Si agglomerated defect size at the growth rate at which the Ni lower end is obtained are set to a certain size or less. Asked.

以上述べてきた点欠陥の過飽和濃度及びGrown−in欠陥サイズは成長速度の関数として得られる。この関係から欠陥サイズが一定値以下となる無欠陥領域が得られる成長速度範囲が求められる。この無欠陥領域が得られる上限及び下限の成長速度を、まず結晶中心部0cmで求め、次に1cmで求め、これを繰り返し15cmまで求めた。それを結晶径方向にプロットしたものが図1である。上限成長速度、下限成長速度に加え、Cv−Ci=0となる成長速度も記載してある。また縦軸は結晶中心部でCv−Ci=0となる成長速度で規格化した相対成長速度で表示してある。図1では、図2で得られているようなI−rich領域が結晶外周部で垂れ下がり、OSF領域が外周で垂れ下がってから跳ね上がる特徴的な分布が再現されていることがわかる。   The supersaturated concentration of point defects and the grown-in defect size described above are obtained as a function of the growth rate. From this relationship, a growth rate range in which a defect-free region in which the defect size is a certain value or less is obtained. The upper and lower growth rates at which this defect-free region can be obtained were first determined at 0 cm of the crystal center and then at 1 cm, and this was repeated up to 15 cm. FIG. 1 is a plot of this in the crystal diameter direction. In addition to the upper limit growth rate and the lower limit growth rate, the growth rate at which Cv−Ci = 0 is also described. The vertical axis represents the relative growth rate normalized by the growth rate at which Cv−Ci = 0 at the center of the crystal. In FIG. 1, it can be seen that a characteristic distribution is reproduced in which the I-rich region as obtained in FIG. 2 hangs down at the outer periphery of the crystal and the OSF region hangs down at the outer periphery.

この様にして得られた無欠陥上限速度及び下限速度で挟まれた範囲が無欠陥領域と判断される。面内どの部分でもこの範囲に入る成長速度があれば、結晶径方向全面にわたって無欠陥である結晶が得られる(無欠陥条件)と考えることができる。全面にわたり無欠陥となる成長速度の幅が大きければ、無欠陥領域を得るためのマージンが大きいと判断できる。この様にして製造マージンが最大となる様に、炉内部品を変更し、熱環境を最適化することができる。   A range between the defect-free upper limit speed and the lower limit speed obtained in this way is determined as a defect-free area. If there is a growth rate that falls within this range at any part in the plane, it can be considered that a crystal having no defect is obtained over the entire crystal diameter direction (defect-free condition). It can be determined that the margin for obtaining a defect-free region is large if the width of the growth rate at which defect-free growth occurs over the entire surface is large. In this way, the furnace environment can be changed to optimize the thermal environment so that the manufacturing margin is maximized.

本手法を用いて評価する場合にかかる時間は、条件にも依存するが、総合伝熱解析による温度分布計算が定常解析であれば1時間程度、点欠陥の拡散・対消滅・Grown−in欠陥の計算はマイクロソフト社の表計算ソフトEXCELで数十秒程度である。温度データの引き渡し作業を手動で行っているため十数分かかるが、全体でも1時間半程度である。実際には平衡して計算を進めるので、1条件当り1時間程度である。もちろんこれらの計算時間は、メッシュや温度の分割数に依存する。一方で実結晶を育成し、これからサンプルを切り出し、欠陥分布評価を行う場合、評価手法等にもよるが、少なくとも1週間程度かかる。従って本手法による評価時間は実結晶の1/100程度の短時間である。更に本手法はソフト導入に掛かる初期コスト以外はほとんど無視できる程度の低コストである。   The time required for evaluation using this method depends on conditions, but if the temperature distribution calculation by comprehensive heat transfer analysis is steady analysis, it takes about 1 hour for point defect diffusion, pair annihilation, and grown-in defects. This calculation takes about tens of seconds with Microsoft spreadsheet software EXCEL. It takes about ten minutes because the temperature data is manually transferred, but it takes about an hour and a half. Actually, the calculation proceeds in equilibrium, so it is about one hour per condition. Of course, these calculation times depend on the number of meshes and temperature divisions. On the other hand, when a real crystal is grown, a sample is cut out from this, and defect distribution evaluation is performed, it takes at least about one week although it depends on the evaluation method and the like. Therefore, the evaluation time by this method is a short time of about 1/100 of the actual crystal. Furthermore, this method is low enough to be negligible except for the initial cost for software installation.

途中で述べた様に計算の方法は今回の実施例で示したものの他に幾通りも考えられる。計算方法によって平衡濃度や拡散係数の値が異なってくる可能性もある。その場合には現実に即した調整を行えば良い。本技術の特徴は、結晶成長方向と径方向とでそれぞれ1次元の拡散を計算することである。その際、用いる拡散係数の値を異なるものとすることが望まれる。本発明の最終的な目的は、本発明の計算方法を用いて熱環境を最適化した条件で実結晶を育成することで、結晶開発コストを下げることである。   As described in the middle, there are various calculation methods other than those shown in this embodiment. Depending on the calculation method, the equilibrium concentration and the value of the diffusion coefficient may vary. In that case, it is only necessary to make adjustments according to reality. The feature of this technique is to calculate one-dimensional diffusion in the crystal growth direction and the radial direction, respectively. At this time, it is desirable to use different diffusion coefficient values. The final object of the present invention is to reduce the cost of crystal development by growing a real crystal under the conditions that optimize the thermal environment using the calculation method of the present invention.

(比較例)
外方拡散を計算しないことを除いては、実施例と同じ操作によって、無欠陥領域が得られる上限及び下限の成長速度の結晶径方向分布を求めた。結果を図5に示す。結晶中心部付近では、図1と同等の欠陥分布形状となっているが、外周部付近では無欠陥領域が得られる速度が低速側にシフトしてしまっている。これは明らかに図2に示される現実の欠陥分布とは異なっており、現実を表現できていない。
(Comparative example)
Except for not calculating the outward diffusion, the crystal diameter direction distribution of the upper limit and the lower limit growth rate at which a defect-free region is obtained was obtained by the same operation as in the example. The results are shown in FIG. In the vicinity of the center of the crystal, the defect distribution shape is the same as in FIG. 1, but in the vicinity of the outer periphery, the speed at which a defect-free region is obtained has shifted to the low speed side. This is clearly different from the actual defect distribution shown in FIG. 2, and the reality cannot be expressed.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…メインチャンバー、 2…引上げチャンバー、 3…単結晶棒、
4…原料融液、 5…石英ルツボ、 6…黒鉛ルツボ、
7…加熱ヒーター、 8…断熱部材、 9…ガス流出口、
10…ガス導入口、 11…トップチャンバー、 12…ガスパージ筒、
13…遮熱部材。
1 ... main chamber, 2 ... pulling chamber, 3 ... single crystal rod,
4 ... Raw material melt, 5 ... Quartz crucible, 6 ... Graphite crucible,
7 ... Heater, 8 ... Heat insulation member, 9 ... Gas outlet,
10 ... Gas inlet, 11 ... Top chamber, 12 ... Gas purge cylinder,
13: Heat shielding member.

Claims (9)

育成中のシリコン単結晶中における点欠陥濃度を計算する方法において、点欠陥の拡散を、結晶成長軸に平行な拡散と、結晶径方向の拡散とを、それぞれ1次元の拡散として計算することを特徴とする点欠陥濃度計算方法。   In the method of calculating the concentration of point defects in the growing silicon single crystal, the calculation of the point defect diffusion is performed as one-dimensional diffusion for diffusion parallel to the crystal growth axis and diffusion in the crystal diameter direction. A characteristic point defect density calculation method. 前記結晶成長軸に平行な拡散を計算する場合と、前記結晶径方向の拡散を計算する場合とで、異なる点欠陥の拡散係数を用いることを特徴とする請求項1に記載の点欠陥濃度計算方法。   2. The point defect concentration calculation according to claim 1, wherein a diffusion coefficient of different point defects is used when calculating diffusion parallel to the crystal growth axis and when calculating diffusion in the crystal diameter direction. Method. 前記結晶成長軸に平行な拡散及び前記結晶径方向の拡散を、点欠陥の濃度勾配による拡散、温度勾配による拡散のいずれか一方もしくは両者とし、前記濃度勾配による拡散、前記温度勾配による拡散のいずれか一方もしくは両者を計算するか、加えて対消滅による前記点欠陥濃度の減少効果を計算することにより前記点欠陥濃度を求めることを特徴とする請求項1又は請求項2に記載の点欠陥濃度計算方法。   Diffusion parallel to the crystal growth axis and diffusion in the crystal diameter direction is one or both of diffusion due to a concentration gradient of point defects and diffusion due to a temperature gradient, and either diffusion due to the concentration gradient or diffusion due to the temperature gradient. 3. The point defect concentration according to claim 1, wherein the point defect concentration is calculated by calculating one or both of them, or by calculating an effect of reducing the point defect concentration due to pair annihilation. Method of calculation. 前記点欠陥濃度の計算を融点から欠陥形成温度まで行うことを特徴とする請求項1から請求項3のいずれか1項に記載の点欠陥濃度計算方法。   The point defect concentration calculation method according to any one of claims 1 to 3, wherein the point defect concentration is calculated from a melting point to a defect formation temperature. 請求項1から請求項4のいずれか1項に記載の点欠陥濃度計算方法で求められた前記点欠陥濃度から、欠陥形成温度帯における点欠陥の凝集を計算することによりGrown−in欠陥サイズを求めることを特徴とするGrown−in欠陥計算方法。   The Grown-in defect size is calculated by calculating agglomeration of point defects in the defect formation temperature zone from the point defect concentration obtained by the point defect concentration calculation method according to any one of claims 1 to 4. A Grown-in defect calculation method characterized by comprising: 前記Grown−in欠陥サイズが一定値以下となる領域を無欠陥領域と判断することを特徴とする請求項5に記載のGrown−in欠陥計算方法。   6. The grown-in defect calculation method according to claim 5, wherein a region in which the grown-in defect size is a predetermined value or less is determined as a defect-free region. 前記点欠陥濃度の計算及び前記点欠陥の凝集の計算を、総合伝熱解析ソフトによって求められた育成炉内の温度分布に基づいて行うことを特徴とする請求項5又は請求項6に記載のGrown−in欠陥計算方法。   The calculation of the point defect concentration and the calculation of the aggregation of the point defects are performed based on the temperature distribution in the growth furnace obtained by comprehensive heat transfer analysis software. Grown-in defect calculation method. 請求項6又は請求項7に記載のGrown−in欠陥計算方法で求められる空孔型・格子間型それぞれの無欠陥領域となる成長速度を、結晶径に対しプロットすることにより欠陥面内分布形状を求めることを特徴とするGrown−in欠陥面内分布計算方法。   The in-plane distribution shape by plotting the growth rate to be a defect-free region of each of the vacancy type and the interstitial type obtained by the Grown-in defect calculation method according to claim 6 or 7 against the crystal diameter A method for calculating a Grown-in defect in-plane distribution. 請求項1から請求項4のいずれか1項に記載の点欠陥濃度計算方法、請求項5から請求項7のいずれか1項に記載のGrown−in欠陥計算方法又は請求項8に記載のGrown−in欠陥面内分布計算方法で計算した結果に基づいて、育成炉構造、炉内部品、温度環境及び操業条件のいずれか一つ以上の育成条件を変更し、該育成条件にて実結晶を育成することを特徴とするシリコン単結晶製造方法。   The point defect concentration calculation method according to any one of claims 1 to 4, the Grown-in defect calculation method according to any one of claims 5 to 7, or the Growth according to claim 8. -Based on the result calculated by the in-plane distribution calculation method, change one or more growth conditions of the growth furnace structure, in-furnace parts, temperature environment and operation conditions, and change the actual crystal under the growth conditions. A method for producing a silicon single crystal, characterized by growing.
JP2014137908A 2014-07-03 2014-07-03 Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them Active JP6135611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137908A JP6135611B2 (en) 2014-07-03 2014-07-03 Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137908A JP6135611B2 (en) 2014-07-03 2014-07-03 Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them

Publications (2)

Publication Number Publication Date
JP2016013957A JP2016013957A (en) 2016-01-28
JP6135611B2 true JP6135611B2 (en) 2017-05-31

Family

ID=55230483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137908A Active JP6135611B2 (en) 2014-07-03 2014-07-03 Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them

Country Status (1)

Country Link
JP (1) JP6135611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927150B2 (en) 2018-05-29 2021-08-25 信越半導体株式会社 Method for manufacturing silicon single crystal
JP7040491B2 (en) * 2019-04-12 2022-03-23 株式会社Sumco A method for determining the gap size at the time of manufacturing a silicon single crystal and a method for manufacturing a silicon single crystal.
CN110660453B (en) * 2019-10-09 2023-03-07 中国原子能科学研究院 Parallel computing method for solving rate theoretical equation based on exponential time difference format
JP7218708B2 (en) * 2019-10-29 2023-02-07 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, silicon single crystal manufacturing method, and single crystal pulling apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102374B2 (en) * 1997-03-12 2000-10-23 日本電気株式会社 Diffusion simulation method
JP4106880B2 (en) * 2001-07-27 2008-06-25 株式会社Sumco Method for simulating density distribution and size distribution of defects in single crystal
JP2003073192A (en) * 2001-09-04 2003-03-12 Sumitomo Mitsubishi Silicon Corp Method for determining production condition of semiconductor silicon crystal
JP4192704B2 (en) * 2002-07-10 2008-12-10 株式会社Sumco A simulation method to maximize the defect-free region of a single crystal
JP4403722B2 (en) * 2003-05-28 2010-01-27 株式会社Sumco Simulation method for density distribution and size distribution of void defect in silicon single crystal
JP5733245B2 (en) * 2012-03-16 2015-06-10 信越半導体株式会社 Manufacturing method of silicon single crystal wafer

Also Published As

Publication number Publication date
JP2016013957A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP4808832B2 (en) Method for producing defect-free crystals
KR100848435B1 (en) Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
JP6135611B2 (en) Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them
US9777394B2 (en) Method of producing silicon single crystal ingot
JPH11199387A (en) Production of silicon single crystal and silicon single crystal wafer
JP2013193897A (en) Method for producing silicon single crystal wafer
JP2014518196A (en) Wafer and single crystal ingot quality evaluation method and single crystal ingot quality control method using the same
JP2006169044A (en) Method for manufacturing single crystal and method for manufacturing annealed wafer
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2008189485A (en) Method and apparatus for manufacturing silicon single crystal
KR20090075989A (en) Prediction method of oxygen concentration by process parameter in single crystal growing and computer readable record medium on which a program therefor is recorded
KR20090034534A (en) Method of manufacturing ultra low defects semiconductor single crystalline ingot and apparatus for the same
JP6919629B2 (en) A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.
JP5282762B2 (en) Method for producing silicon single crystal
JP6102631B2 (en) Grow-in defect formation simulation method and silicon single crystal manufacturing method based on the simulation method
JP7525568B2 (en) Method for producing single crystal silicon ingots
JP6665797B2 (en) Silicon single crystal growing method, silicon single crystal and silicon single crystal wafer
KR101379798B1 (en) Apparatus and method for growing monocrystalline silicon ingots
KR101366154B1 (en) High quality silicon monocrystalline ingot and wafer for semiconductor
JP6135818B2 (en) Silicon single crystal manufacturing method
JP6524954B2 (en) Method of growing silicon single crystal and method of manufacturing silicon single crystal wafer
KR101379799B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JP6354643B2 (en) Method for producing silicon single crystal
JP2003073192A (en) Method for determining production condition of semiconductor silicon crystal
JP2015008314A (en) Method of producing epitaxial wafer and epitaxial wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250