Nothing Special   »   [go: up one dir, main page]

JP6130209B2 - Conductive film - Google Patents

Conductive film Download PDF

Info

Publication number
JP6130209B2
JP6130209B2 JP2013101954A JP2013101954A JP6130209B2 JP 6130209 B2 JP6130209 B2 JP 6130209B2 JP 2013101954 A JP2013101954 A JP 2013101954A JP 2013101954 A JP2013101954 A JP 2013101954A JP 6130209 B2 JP6130209 B2 JP 6130209B2
Authority
JP
Japan
Prior art keywords
copper powder
conductive film
flaky
flaky copper
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101954A
Other languages
Japanese (ja)
Other versions
JP2014222619A (en
Inventor
優樹 金城
優樹 金城
圭一 遠藤
圭一 遠藤
宏昌 三好
宏昌 三好
愛子 長原
愛子 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013101954A priority Critical patent/JP6130209B2/en
Publication of JP2014222619A publication Critical patent/JP2014222619A/en
Application granted granted Critical
Publication of JP6130209B2 publication Critical patent/JP6130209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、フレーク状銅粉を含有する導電膜に関する。   The present invention relates to a conductive film containing flaky copper powder.

樹脂中に銅粉を分散させてなる導電性ペーストは、絶縁基板に導電回路を接合したり、チップ部品に外部電極を付与するのに使用されており、最近では、積層セラミックコンデンサーの外部電極の形成にも適用されている。
前記積層セラミックコンデンサーの外部電極においては、通常、セラミックス素体の外部電極形成部分に導電性ペーストを付着させた後、加熱処理し、加熱中に導電性ペースト中のビヒクル分を蒸発ないし分解除去し、銅粉を互いに焼結させることによって外部電極を形成している。
Conductive paste made by dispersing copper powder in resin is used to bond conductive circuits to insulating substrates and to apply external electrodes to chip components. Recently, the external electrode of multilayer ceramic capacitors has been used. It has also been applied to formation.
In the external electrode of the multilayer ceramic capacitor, the conductive paste is usually attached to the external electrode forming portion of the ceramic body and then heat-treated, and the vehicle component in the conductive paste is evaporated or decomposed and removed during the heating. The external electrodes are formed by sintering the copper powder together.

このような積層セラミックコンデンサーの外部電極の場合には、電極の外観形状保持、表面平滑化、及びビヒクル分の蒸発ないし分解促進、導電性ペースト焼成時の焼結密度向上を図るためには、銅粉は球形状のものよりも扁平状(フレーク状)のものの方が好ましいとされている。特に、導電性ペーストとして安定した粘度を持ち、セラミックス素体へ適切な塗布性を持たせるには、粒径及び厚みが均一であるフレーク状銅粉末が好適である。また、電極として優れた電気伝導性を有するためには、フレーク状銅粉中の不純物量が少ないことが望ましい。更に、導電性ペーストの焼結性及び接着強度を制御し、それらの変動をなくすためには、粒径及び厚みの揃ったフレーク状銅粉が不可欠である。   In the case of the external electrode of such a multilayer ceramic capacitor, in order to maintain the external shape of the electrode, smooth the surface, accelerate the evaporation or decomposition of the vehicle, and improve the sintered density when firing the conductive paste, It is said that the powder is preferably flat (flaky) rather than spherical. In particular, a flaky copper powder having a uniform particle size and thickness is suitable for having a stable viscosity as a conductive paste and providing an appropriate coating property to the ceramic body. In order to have excellent electrical conductivity as an electrode, it is desirable that the amount of impurities in the flaky copper powder is small. Furthermore, in order to control the sinterability and adhesive strength of the conductive paste and eliminate these fluctuations, flaky copper powder having a uniform particle size and thickness is indispensable.

本願出願人は、このような特性を有するフレーク状銅粉を精度及び再現性良く作製することを目的として、フレーク状銅粉の粒度分布などを改善することを提案している(特許文献1参照)。
しかしながら、フレーク状銅粉の粒度分布などを改善しても、フレーク状銅粉の平面的な密集度が十分に高くないと、十分な導電性が得られないことがあり、特に、他の導電粉と混合して使用する際に導電性が低下してしまうという課題がある。
The present applicant has proposed to improve the particle size distribution of the flaky copper powder for the purpose of producing the flaky copper powder having such characteristics with high accuracy and reproducibility (see Patent Document 1). ).
However, even if the particle size distribution of the flaky copper powder is improved, sufficient conductivity may not be obtained unless the planar density of the flaky copper powder is sufficiently high. There exists a subject that electroconductivity will fall, when using it, mixing with powder.

特開2005−200734号公報Japanese Patent Laid-Open No. 2005-200734

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、フレーク状銅粉の平面的な密集度が高く、特に他の導電粉と混合して使用する際にも導電性が低下しない導電膜を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a conductive film in which the flake-like copper powder has a high planar density and does not deteriorate in conductivity even when used in combination with other conductive powder.

前記課題を解決するための手段としての本発明の導電膜は、フレーク状銅粉と、樹脂とを含有し、
前記導電膜の走査型電子顕微鏡による断面写真像の有効全面積Aに対する前記フレーク状銅粉の面積Bの割合である金属面積割合〔(B/A)×100〕が60%以上である。
The conductive film of the present invention as a means for solving the above problems contains flaky copper powder and a resin,
The metal area ratio [(B / A) × 100], which is the ratio of the area B of the flaky copper powder to the effective total area A of the cross-sectional photographic image of the conductive film by a scanning electron microscope, is 60% or more.

本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、フレーク状銅粉の平面的な密集度が高く、特に他の導電粉と混合して使用する際にも導電性が低下しない導電膜を提供することができる。   According to the present invention, the conventional problems can be solved and the object can be achieved, and the planar density of the flake-like copper powder is high, especially when mixed with other conductive powders. A conductive film whose conductivity is not reduced can be provided.

図1Aは、実施例1の導電膜の断面SEM写真(3,000倍)である。1A is a cross-sectional SEM photograph (magnified 3000 times) of the conductive film of Example 1. FIG. 図1Bは、実施例1の導電膜の断面SEM写真(10,000倍)である。1B is a cross-sectional SEM photograph (10,000 magnifications) of the conductive film of Example 1. FIG. 図2Aは、比較例1の導電膜の断面SEM写真(3,000倍)である。FIG. 2A is a cross-sectional SEM photograph (3,000 times) of the conductive film of Comparative Example 1. 図2Bは、比較例1の導電膜の断面SEM写真(10,000倍)である。2B is a cross-sectional SEM photograph (10,000 times) of the conductive film of Comparative Example 1. FIG. 図3Aは、比較例2の導電膜の断面SEM写真(3,000倍)である。3A is a cross-sectional SEM photograph (magnified 3000 times) of the conductive film of Comparative Example 2. FIG. 図3Bは、比較例2の導電膜の断面SEM写真(10,000倍)である。3B is a cross-sectional SEM photograph (10,000 times) of the conductive film of Comparative Example 2. FIG.

(導電膜)
本発明の導電膜は、フレーク状銅粉と、樹脂とを少なくとも含有し、更に必要に応じてその他の成分を含有してなる。
(Conductive film)
The electrically conductive film of this invention contains a flaky copper powder and resin at least, and also contains another component as needed.

本発明においては、前記導電膜の走査型電子顕微鏡による断面写真像の有効全面積Aに対する前記フレーク状銅粉の面積Bの割合である金属面積割合〔(B/A)×100〕が60%以上であり、60%〜90%が好ましい。
前記金属面積割合が、60%未満であると、フレーク状銅粉の密集度が悪くなり、導電性に影響が生じることがある。一方、前記金属面積割合が、90%以上であると、導電性ペーストの粘度が上昇し、導電膜を形成できないことがある。
In the present invention, the metal area ratio [(B / A) × 100] which is the ratio of the area B of the flaky copper powder to the effective total area A of the cross-sectional photographic image of the conductive film by a scanning electron microscope is 60%. Above, 60% to 90% is preferable.
When the metal area ratio is less than 60%, the density of the flaky copper powder is deteriorated, and the conductivity may be affected. On the other hand, when the metal area ratio is 90% or more, the viscosity of the conductive paste increases and the conductive film may not be formed.

ここで、前記金属面積割合は、アルミナ基板上に形成した導電膜の断面を、イオンミリング装置で切り出し、電界放出型走査電子顕微鏡により、SEM断面観察を行い、各導電膜の走査型電子顕微鏡によるSEM断面写真の有効全面積Aに対するフレーク状銅粉の面積Bの割合である金属面積割合〔(B/A)×100〕を求めることができる。
前記全面積とは、SEM断面写真の全面積を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定することができる。
前記有効全面積Aとは、前記全面積から除外面積を除いた面積を意味する。前記除外面積とは、気泡、断面切り出しの不具合による部分を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定することができる。
前記フレーク状銅粉の面積Bとは、SEM断面写真において銅粉が占める面積を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定することができる。
Here, the metal area ratio is determined by cutting a cross section of the conductive film formed on the alumina substrate with an ion milling apparatus, observing the SEM cross section with a field emission scanning electron microscope, and using the scanning electron microscope of each conductive film. The metal area ratio [(B / A) × 100], which is the ratio of the area B of the flaky copper powder to the effective total area A of the SEM cross-sectional photograph, can be obtained.
The total area means the total area of the SEM cross-sectional photograph, and can be measured by image analysis type particle size distribution measurement software (Mac-View Ver4, manufactured by Mountec Co., Ltd.).
The effective total area A means an area obtained by removing an excluded area from the total area. The said exclusion area means the part by the defect of a bubble and a cross-section cutout, and can measure it with image analysis type | formula particle size distribution measurement software (The product made by Mountec, Mac-View Ver4).
The area B of the flaky copper powder means the area occupied by the copper powder in the SEM cross-sectional photograph, and can be measured by image analysis type particle size distribution measurement software (Mac-View Ver4, manufactured by Mountec Co., Ltd.).

<フレーク状銅粉>
前記フレーク状銅粉は、導電膜中に含有させることにより、粒子同士が大きな接触面積をもって互いに重なり合った状態となるので、導電性、表面平滑性、形状保持性の点から球状銅粉では得られない特異な効果を有する。
前記フレーク状銅粉は、フレーク状であれば特に制限はないが、レーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)は、0.1μm〜30μmが好ましく、1μm〜10μmがより好ましい。
前記フレーク状銅粉の平均厚みDは、0.1μm〜30μmが好ましい。
前記フレーク状銅粉の平均厚みDは、導電膜の断面の走査型電子顕微鏡(SEM)像から粒子100個をランダムに選択して画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)で計測して求めることができる。
前記フレーク状銅粉のアスペクト比(D50/D)は、1〜100が好ましく、1〜10がより好ましい。
前記フレーク状銅粉の前記導電膜における含有量は、85質量%〜95質量%が好ましい。前記含有量が、85質量%未満であると、導電膜の十分な導電性が得られないことがあり、95質量%を超えると、導電性ペーストの粘度が上昇し、導電膜を形成できないことがある。
<Flake copper powder>
When the flake copper powder is contained in the conductive film, the particles are overlapped with each other with a large contact area. Therefore, the spherical copper powder is obtained from the viewpoint of conductivity, surface smoothness, and shape retention. Has no unique effect.
The flaky copper powder is not particularly limited as long as it is flaky, but the cumulative 50% particle size (D50) in the volume-based particle size distribution by the laser diffraction particle size distribution measurement method is preferably 0.1 μm to 30 μm. 1 μm to 10 μm is more preferable.
The average thickness D of the flaky copper powder is preferably 0.1 μm to 30 μm.
The average thickness D of the flaky copper powder was determined by randomly selecting 100 particles from a scanning electron microscope (SEM) image of the cross section of the conductive film, and using image analysis type particle size distribution measurement software (Mac-View Ver4, manufactured by Mountec Co., Ltd.). ) To measure.
1-100 are preferable and, as for the aspect-ratio (D50 / D) of the said flaky copper powder, 1-10 are more preferable.
As for content in the said electrically conductive film of the said flaky copper powder, 85 mass%-95 mass% are preferable. When the content is less than 85% by mass, sufficient conductivity of the conductive film may not be obtained, and when it exceeds 95% by mass, the viscosity of the conductive paste increases and the conductive film cannot be formed. There is.

前記フレーク状銅粉は、特に制限はなく、目的に応じて適宜選択することができるが、湿式還元法で製造された球状銅粉をフレーク加工処理することによって製造することができる。
前記湿式還元法としては、銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させた懸濁液に一次還元剤を添加して亜酸化銅にまで還元する一次還元工程と、
前記亜酸化銅の懸濁液に二次還元剤を添加して金属銅にまで液中で還元する二次還元工程と、を含み、更に必要に応じてその他の工程を含むものが好ましい。
前記一次還元剤としては、例えば、ブドウ糖、などが挙げられる。
前記二次還元剤としては、例えば、ヒドラジン(抱水ヒドラジン)、などが挙げられる。
The flaky copper powder is not particularly limited and may be appropriately selected depending on the intended purpose. However, the flaky copper powder can be produced by subjecting spherical copper powder produced by a wet reduction method to flake processing.
As the wet reduction method, a primary reduction step of adding a primary reducing agent to a suspension obtained by reacting an aqueous copper salt solution and an alkali agent to precipitate copper hydroxide to reduce to cuprous oxide,
It is preferable to include a secondary reduction step of adding a secondary reducing agent to the cuprous oxide suspension to reduce it to metallic copper in a liquid, and further including other steps as necessary.
Examples of the primary reducing agent include glucose.
Examples of the secondary reducing agent include hydrazine (hydrated hydrazine).

前記二次還元工程が二次還元剤の一部を添加する第1の添加段階と、二次還元剤の他部を添加する第2の添加段階とからなり、前記第1の添加段階での二次還元剤の添加量が、前記第2の添加段階での二次還元剤の添加量よりも多いことが好ましく、前記第1の添加段階での二次還元剤の添加量が、前記第2の添加段階での二次還元剤の添加量よりも2倍以上多いことがより好ましい。これにより、反応初期に還元を強め、粒径を細かく、緻密な銅粉を製造することができる。   The secondary reduction step includes a first addition stage in which a part of the secondary reducing agent is added and a second addition stage in which the other part of the secondary reducing agent is added. In the first addition stage, Preferably, the amount of secondary reducing agent added is greater than the amount of secondary reducing agent added in the second addition stage, and the amount of secondary reducing agent added in the first addition stage is More preferably, it is more than twice as much as the amount of the secondary reducing agent added in the step of adding 2. Thereby, reduction | restoration can be strengthened at the initial stage of reaction, and a fine copper powder with a fine particle diameter can be manufactured.

前記フレーク加工処理は、得られた球状銅粉に潤滑剤を添加した後、ボールミルや振動ミルを用いて、ミル内に装填したメディアの機械的エネルギーにより圧伸延又は展伸することが好ましい。
前記フレーク加工処理は、湿式及び乾式のどちらでもよいが、乾式乾燥工程が不要な乾式が簡便である点から好ましい。
前記フレーク加工処理の処理時間は、10分間〜4時間が好ましい。
前記フレーク加工処理は、窒素ガス、アルゴンガス等の非酸化性雰囲気下で実施すると、銅粉表面の酸化を防止でき、酸素濃度の低いフレーク状銅粉が得られるので好ましい。
In the flake processing, after adding a lubricant to the obtained spherical copper powder, it is preferable to use a ball mill or a vibration mill to perform drawing or stretching by the mechanical energy of the media loaded in the mill.
The flake processing may be either a wet process or a dry process, but a dry process that does not require a dry process is preferred because it is simple.
The processing time of the flake processing is preferably 10 minutes to 4 hours.
When the flake processing is performed in a non-oxidizing atmosphere such as nitrogen gas or argon gas, it is possible to prevent oxidation of the copper powder surface, and a flaky copper powder having a low oxygen concentration can be obtained.

前記メディアとしては、セラミックス、ガラス、金属等の材質に制限はないが、強度があり、粉砕工程で破壊及び磨耗による不純物源とならない点から、セラミックスが好ましく、強度及びコスト面から材質はジルコニアがより好ましい。
前記メディアの直径は、1mm〜5mmが好ましい。
前記潤滑剤は、フレーク加工処理時に銅粉同士の凝集や凝集成長を抑制するために添加され、前記潤滑剤としては、例えば、オレイン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、などが挙げられる。
前記潤滑剤の添加量は、銅質量に対して、0.1質量%〜2.0質量%が好ましい。
The medium is not limited to materials such as ceramics, glass, metal, etc., but ceramics are preferable because they have strength and do not become an impurity source due to destruction and wear in the pulverization process, and materials are zirconia from the viewpoint of strength and cost. More preferred.
The diameter of the media is preferably 1 mm to 5 mm.
The lubricant is added to suppress aggregation and coagulation growth between copper powders during flake processing, and examples of the lubricant include oleic acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. , Etc.
The addition amount of the lubricant is preferably 0.1% by mass to 2.0% by mass with respect to the mass of copper.

<樹脂>
前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、エチルセルロース、ニトロセルロース、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Resin>
The resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, epoxy resin, acrylic resin, polyester resin, polyimide resin, polyurethane resin, phenoxy resin, silicone resin, ethyl cellulose, nitrocellulose, and the like Is mentioned. These may be used individually by 1 type and may use 2 or more types together.

前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、溶剤、硬化剤、分散剤、粘度調整剤、などが挙げられる。   There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a solvent, a hardening | curing agent, a dispersing agent, a viscosity modifier, etc. are mentioned.

前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、テルピネオール、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記溶剤は、粘度調整に使用され、導電膜が硬化した際には揮発して消失する。
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, tetradecane, tetralin, propyl alcohol, isopropyl alcohol, terpineol, ethyl carbitol, butyl carbitol , Ethyl carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and the like. These may be used individually by 1 type and may use 2 or more types together.
The solvent is used for viscosity adjustment and volatilizes and disappears when the conductive film is cured.

前記硬化剤としては、前記樹脂としてエポキシ樹脂を用いた場合には、エポキシ樹脂硬化剤、などが挙げられる。   Examples of the curing agent include an epoxy resin curing agent when an epoxy resin is used as the resin.

<導電膜の製造方法>
前記導電膜の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、前記導電性ペーストを基板上に塗布し、塗膜を硬化して得られる。
前記導電性ペーストは、例えば、前記フレーク状銅粉、前記樹脂、及び必要に応じてその他の成分を、例えば、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などを用い、混合することにより作製することができる。
<Method for producing conductive film>
There is no restriction | limiting in particular as a manufacturing method of the said electrically conductive film, According to the objective, it can select suitably, The said electrically conductive paste is apply | coated on a board | substrate and it obtains by hardening a coating film.
The conductive paste is, for example, the flaky copper powder, the resin, and other components as necessary, for example, ultrasonic dispersion, disperser, three-roll mill, ball mill, bead mill, biaxial kneader, self-revolving type It can produce by mixing using a stirrer etc.

前記塗布は、特に制限はなく、目的に応じて適宜選択することができ、例えば、スクリーン印刷法、グラビア印刷法、ワイヤーバーコーティング法、ドクターブレードコーティング法、ロールコーティング法、などが挙げられる。これらの中でも、スクリーン印刷法が好ましい。
前記塗膜の硬化温度は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、100℃〜300℃が好ましい。
前記塗膜の硬化時間は、前記硬化温度により異なり、一概には規定できないが、10分間〜60分間が好ましい。
There is no restriction | limiting in particular in the said application | coating, According to the objective, it can select suitably, For example, a screen printing method, a gravure printing method, a wire bar coating method, a doctor blade coating method, a roll coating method etc. are mentioned. Among these, the screen printing method is preferable.
There is no restriction | limiting in particular in the curing temperature of the said coating film, Although it can select suitably according to the objective, For example, 100 to 300 degreeC is preferable.
The curing time of the coating film varies depending on the curing temperature and cannot be generally defined, but is preferably 10 minutes to 60 minutes.

本発明の導電膜は、例えば、各種導電回路の接合、配線形成、チップ部品の外部電極の形成、積層セラミックコンデンサーの外部電極の形成、などの用途に好適に用いられる。   The conductive film of the present invention is suitably used for applications such as bonding of various conductive circuits, formation of wiring, formation of external electrodes of chip components, formation of external electrodes of multilayer ceramic capacitors, and the like.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<導電膜の作製>
−亜酸化銅スラリーの合成−
硫酸銅水溶液Aとして、純水11.9kgにCuSO・5HOを5.0kg溶解したものを用意した。
アルカリ水溶液Bとして、濃度48.5%のNaOH水溶液4.1kgを用意した。
まず、温度30℃に保持した前記硫酸銅水溶液Aに、温度35℃に保持した前記アルカリ水溶液Bを全量添加し、攪拌した。この液中に水酸化銅が析出した懸濁液を60℃に保持した。なお、前記硫酸銅水溶液Aと前記アルカリ水溶液Bとを、銅に対して苛性ソーダの当量比が1.24となるように混合した。
次に、得られた水酸化銅懸濁液の全量に対して、純水3.4kgに2.2kgのブドウ糖を溶かしたブドウ糖溶液を添加し、添加後10分間で液の温度を70.5℃まで昇温した後、50分間保持した。ここまでの処理操作はすべて窒素雰囲気下で行った。
Example 1
<Preparation of conductive film>
-Synthesis of cuprous oxide slurry-
A copper sulfate aqueous solution A prepared by dissolving 5.0 kg of CuSO 4 .5H 2 O in 11.9 kg of pure water was prepared.
As the alkaline aqueous solution B, 4.1 kg of 48.5% NaOH aqueous solution was prepared.
First, the entire amount of the alkaline aqueous solution B maintained at a temperature of 35 ° C. was added to the copper sulfate aqueous solution A maintained at a temperature of 30 ° C. and stirred. The suspension in which copper hydroxide was precipitated in this liquid was kept at 60 ° C. The copper sulfate aqueous solution A and the alkaline aqueous solution B were mixed so that the equivalent ratio of caustic soda to copper was 1.24.
Next, a glucose solution in which 2.2 kg of glucose is dissolved in 3.4 kg of pure water is added to the total amount of the obtained copper hydroxide suspension, and the temperature of the solution is adjusted to 70.5 within 10 minutes after the addition. After raising the temperature to 0 ° C., it was held for 50 minutes. All the processing operations so far were performed in a nitrogen atmosphere.

次に、水酸化銅懸濁液中に3.4リットル/分間の流量で135分間にわたって空気をバブリングさせた。
次に、水酸化銅懸濁液を窒素雰囲気中で静置した後、上澄み液を除去し、4.32kgの懸濁液を得た。
得られた4.32kgの懸濁液を2.16kgずつ2つに分けて、それぞれに純水を1.92kg追加して、4.08kgの懸濁液を2つ準備した。
Next, air was bubbled through the copper hydroxide suspension for 135 minutes at a flow rate of 3.4 liters / minute.
Next, the copper hydroxide suspension was allowed to stand in a nitrogen atmosphere, and then the supernatant was removed to obtain 4.32 kg of suspension.
The obtained 4.32 kg suspension was divided into 2.16 kg each, and 1.92 kg of pure water was added to each to prepare two 4.08 kg suspensions.

−銅粉の合成−
亜酸化銅スラリーの合成で得られた4.08kgの懸濁液を反応槽内に入れて攪拌しながら45.1℃に保持し、80%の抱水ヒドラジンを0分間〜10分の間に1.4当量添加した。その後、10分間〜80分間の間に0.56℃/分間の速度で84.1℃まで昇温した。
次いで、80分間〜100分間の間に抱水ヒドラジンを0.2当量添加し、すべての亜酸化銅が金属銅に還元されるまで保持した。
ここで、ヒドラジン当量は、亜酸化銅を金属銅にすべて還元するに要する化学量論量を1当量としたときの、その化学量論量に対する割合であり、0分間〜10分間の間で抱水ヒドラジンの添加量が1.4当量とは、0分間〜10分間の間に化学量論量において、亜酸化銅を金属銅にすべて還元するに要する化学量論量の14/10のヒドラジンを添加したことを意味する。
反応終了後の懸濁液を固液分離し、純水で十分に洗浄した後、乾燥して銅粉を得た。
-Synthesis of copper powder-
The 4.08 kg suspension obtained in the synthesis of the cuprous oxide slurry was placed in a reaction vessel and maintained at 45.1 ° C. with stirring, and 80% hydrazine hydrate was added for 0 minutes to 10 minutes. 1.4 equivalents were added. Thereafter, the temperature was raised to 84.1 ° C. at a rate of 0.56 ° C./min during 10 to 80 minutes.
Then, 0.2 equivalents of hydrazine hydrate was added during 80 to 100 minutes and held until all the cuprous oxide was reduced to metallic copper.
Here, the hydrazine equivalent is a ratio with respect to the stoichiometric amount when the stoichiometric amount required to reduce all of cuprous oxide to metallic copper is 1 equivalent, and is held for 0 to 10 minutes. The amount of water hydrazine added is 1.4 equivalent means that the stoichiometric amount of 14/10 hydrazine required to reduce all the cuprous oxide to metallic copper in a stoichiometric amount of 0 to 10 minutes. Means added.
The suspension after completion of the reaction was separated into solid and liquid, sufficiently washed with pure water, and dried to obtain copper powder.

−フレーク加工処理−
得られた銅粉を15.6kg用意した。
銅粉質量に対して1.0質量%の潤滑剤としてのステアリン酸を混合し、直径2.3mmのジルコニアボール192.4kg(65Lのポット容量に対してジルコニアボール充填量80vol%とした)とともに振動ミル(中央加工機械株式会社製、FVR−20)に投入し、ボールによる圧延伸処理を30分間連続して行った。以上により、実施例1のフレーク状銅粉を作製した。
得られた実施例1のフレーク状銅粉の累積50%粒子径(D50)は、1.72μm、アスペクト比(D50/平均厚みD)は、1.98であった。なお、累積50%粒子径(D50)は、レーザー回折式粒度分布装置(SYMPATEC社製、ヘロス粒度分布測定装置、HELOS&RODOS)により測定した。
前記フレーク状銅粉の平均厚みDは、導電膜の断面を走査型電子顕微鏡(SEM)像から粒子100個をランダムに選択して画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)で計測して求めた。
-Flake processing-
15.6 kg of the obtained copper powder was prepared.
Stearic acid as a lubricant of 1.0% by mass with respect to the mass of the copper powder is mixed, together with 192.4 kg of zirconia balls having a diameter of 2.3 mm (the zirconia ball filling amount is 80 vol% with respect to a 65 L pot capacity). It put into the vibration mill (Chuo Processing Machine Co., Ltd. make, FVR-20), and the pressure-stretching process by a ball was performed continuously for 30 minutes. Thus, the flaky copper powder of Example 1 was produced.
The cumulative 50% particle diameter (D50) of the obtained flaky copper powder of Example 1 was 1.72 μm, and the aspect ratio (D50 / average thickness D) was 1.98. The cumulative 50% particle size (D50) was measured with a laser diffraction particle size distribution device (manufactured by SYMPATEC, HEROS particle size distribution measurement device, HELOS & RODOS).
The average thickness D of the flaky copper powder was determined by randomly selecting 100 particles from a scanning electron microscope (SEM) image of the cross section of the conductive film, and using image analysis type particle size distribution measurement software (Mac-View Ver4, manufactured by Mountec Co., Ltd.). ) And measured.

−導電性ペーストの作製−
得られたフレーク状銅粉90質量部と、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製、アデカレジンEP−4901E)8質量部と、硬化剤(アミキュア MY−24、味の素ファインテクノ株式会社製)2質量部と、溶媒としてブチルカルビトールアセテートを適量とを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電性ペーストを作製した。
-Production of conductive paste-
90 parts by mass of the obtained flaky copper powder, 8 parts by mass of a bisphenol F type epoxy resin (manufactured by ADEKA, Adeka Resin EP-4901E) as a thermosetting resin, and a curing agent (Amicure MY-24, Ajinomoto Fine Techno Co., Ltd.) After mixing 2 parts by mass (made by company) and an appropriate amount of butyl carbitol acetate as a solvent with a kneading deaerator, a conductive paste was prepared by passing three rolls five times and uniformly dispersing.

−導電膜の作製−
得られた導電性ペーストをスクリーン印刷法によってアルミナ基板上に、13mm×13mm、厚み50μmのパターンに印刷した後、大気中において200℃で40分間焼成して硬化させることによって、導電膜を形成した。
-Production of conductive film-
The obtained conductive paste was printed on an alumina substrate by a screen printing method in a pattern of 13 mm × 13 mm and thickness 50 μm, and then baked and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. .

(比較例1)
−亜酸化銅スラリーの合成−
実施例1と同様の方法により、4.08kgの懸濁液を得た。
(Comparative Example 1)
-Synthesis of cuprous oxide slurry-
In the same manner as in Example 1, 4.08 kg of suspension was obtained.

−銅粉の合成−
銅粉の合成方法としては、実施例1において、抱水ヒドラジン添加の温度及び当量を45.1℃に保持した懸濁液に抱水ヒドラジンを0.1当量添加し、添加後0分間〜10分間の間に49.1℃まで昇温した。
その後、10分間〜30分間の間に抱水ヒドラジンを0.3当量添加し、30分間〜100分間の間に0.56℃/分間の速度で84.1℃まで昇温した。
次いで、100分間〜110分間の間に抱水ヒドラジンを0.33当量添加し、110分間〜190分間の間に抱水ヒドラジンを0.94当量添加し、すべての亜酸化銅が金属銅に還元されるまで保持した以外は、実施例1と同様にして、銅粉を作製した。
-Synthesis of copper powder-
As a method for synthesizing copper powder, in Example 1, 0.1 equivalent of hydrazine hydrate was added to a suspension in which the temperature and equivalent of hydrazine hydrate addition were maintained at 45.1 ° C., and 0 minutes to 10 minutes after addition. The temperature was raised to 49.1 ° C. during the minute.
Thereafter, 0.3 equivalent of hydrazine hydrate was added during 10 to 30 minutes, and the temperature was raised to 84.1 ° C. at a rate of 0.56 ° C./minute during 30 to 100 minutes.
Next, 0.33 equivalent of hydrazine hydrate was added during 100 minutes to 110 minutes, 0.94 equivalent of hydrazine hydrate was added during 110 minutes to 190 minutes, and all the cuprous oxide was reduced to metallic copper. A copper powder was prepared in the same manner as in Example 1 except that it was held until it was done.

−フレーク加工処理−
得られた銅粉を15.6kg用意した。
潤滑剤として銅粉質量に対して、1.0質量%のステアリン酸とを混合し、直径2.3mmのジルコニアボール216.5kg(65Lのポット容量に対してジルコニアボール充填量90vol%とした)とともに振動ミルに投入し、該ボールによる圧延伸処理を200分間連続して行い、比較例1のフレーク状銅粉を得た。
得られた比較例1のフレーク状銅粉の累積50%粒子径(D50)は、3.92μm、アスペクト比(D50/平均厚みD)は、5.49であった。
-Flake processing-
15.6 kg of the obtained copper powder was prepared.
As a lubricant, 1.0% by mass of stearic acid is mixed with respect to the mass of copper powder, and 216.5 kg of zirconia balls having a diameter of 2.3 mm (with a zirconia ball filling amount of 90 vol% with respect to a pot volume of 65 L). At the same time, it was put into a vibration mill, and the pressure-stretching treatment with the balls was continuously carried out for 200 minutes to obtain a flaky copper powder of Comparative Example 1.
The cumulative 50% particle diameter (D50) of the obtained flaky copper powder of Comparative Example 1 was 3.92 μm, and the aspect ratio (D50 / average thickness D) was 5.49.

次に、得られた比較例1のフレーク状銅粉を用い、実施例1と同様にして、導電性ペースト及び導電膜を作製した。   Next, using the obtained flaky copper powder of Comparative Example 1, a conductive paste and a conductive film were produced in the same manner as in Example 1.

(比較例2)
実施例1において、フレーク加工処理を行わなかった以外は、実施例1と同様にして、球状銅粉を得た。
得られた比較例2の球状銅粉の累積50%粒子径(D50)は、1.67μmであった。
次に、得られた比較例2の球状銅粉を用い、実施例1と同様にして、導電性ペースト及び導電膜を作製した。
(Comparative Example 2)
In Example 1, spherical copper powder was obtained in the same manner as in Example 1 except that the flake processing was not performed.
The cumulative 50% particle diameter (D50) of the obtained spherical copper powder of Comparative Example 2 was 1.67 μm.
Next, using the obtained spherical copper powder of Comparative Example 2, a conductive paste and a conductive film were produced in the same manner as in Example 1.

次に、作製した実施例1、及び比較例1〜2の導電膜について、以下のようにして、金属面積割合を測定した。結果を表1に示した。   Next, the metal area ratio was measured for the produced conductive films of Example 1 and Comparative Examples 1 and 2 as follows. The results are shown in Table 1.

<金属面積割合の測定>
アルミナ基板上に形成した導電膜の断面を、イオンミリング装置(高レートイオンガン付きE−3500形、株式会社日立ハイテクノロジーズ製)で切り出し、電界放出型走査電子顕微鏡(FE−SEM)(株式会社日立製作所製のS−4700型)により、SEM断面観察を行った。実施例1のSEM断面写真を図1A(3,000倍)、図1B(10,000倍)、比較例1のSEM断面写真を図2A(3,000倍)、図2B(10,000倍)、比較例2のSEM断面写真を図3A(3,000倍)、図3B(10,000倍)を、それぞれ示した。
次に、各導電膜の走査型電子顕微鏡によるSEM断面写真の有効全面積Aに対する銅粉の面積Bの割合である金属面積割合〔(B/A)×100〕を求めた。
前記全面積とは、SEM断面写真の全面積を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定した。
前記有効全面積Aとは、前記全面積から除外面積を除いた面積を意味する。前記除外面積とは、気泡、断面切り出しの不具合による部分を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定した。
前記銅粉の面積Bとは、SEM断面写真において銅粉が占める面積を意味し、画像解析式粒度分布測定ソフトウェア(マウンテック社製、Mac−View Ver4)により測定した。
<Measurement of metal area ratio>
A cross section of the conductive film formed on the alumina substrate was cut out with an ion milling device (E-3500 type with high-rate ion gun, manufactured by Hitachi High-Technologies Corporation), and a field emission scanning electron microscope (FE-SEM) (Hitachi Corporation). SEM cross-section observation was performed using S-4700 manufactured by Seisakusho. 1A (3,000 times) and FIG. 1B (10,000 times) SEM cross-sectional photographs of Example 1, and SEM cross-sectional photographs of Comparative Example 1 are FIG. 2A (3,000 times) and FIG. 2B (10,000 times). ) And SEM cross-sectional photographs of Comparative Example 2 are shown in FIG. 3A (3,000 times) and FIG. 3B (10,000 times), respectively.
Next, the metal area ratio [(B / A) × 100], which is the ratio of the area B of the copper powder to the effective total area A of the SEM cross-sectional photograph of each conductive film by a scanning electron microscope, was determined.
The said total area means the total area of a SEM cross-sectional photograph, and it measured with the image analysis type | formula particle size distribution measurement software (The product made in a mount tech company, Mac-View Ver4).
The effective total area A means an area obtained by removing an excluded area from the total area. The said exclusion area means the part by the defect of a bubble and a cross-section cutout, and it measured with the image analysis type | formula particle size distribution measurement software (The product made by Mountec, Mac-View Ver4).
The area B of the copper powder means the area occupied by the copper powder in the SEM cross-sectional photograph, and was measured by image analysis type particle size distribution measurement software (Mac-View Ver4, manufactured by Mountec Co., Ltd.).

表1の結果から、実施例1は、金属面積割合が比較例1及び2に比べて高く、銅粉の平面的な密集度が高いので、他の導電粉と混合して使用する際に導電性の低下を抑制できると考えられる。 From the result of Table 1, since Example 1 has a higher metal area ratio than Comparative Examples 1 and 2 and the planar density of the copper powder is high, it is conductive when used by mixing with other conductive powder. It is considered that the decrease in sex can be suppressed.

本発明の態様としては、例えば、以下のとおりである。
<1> フレーク状銅粉と、樹脂とを少なくとも含有する導電膜であって、
前記導電膜の走査型電子顕微鏡による断面写真像の有効全面積Aに対する前記フレーク状銅粉の面積Bの割合である金属面積割合〔(B/A)×100〕が60%以上であることを特徴とする導電膜である。
<2> 金属面積割合〔(B/A)×100〕が60%〜90%である前記<1>に記載の導電膜である。
<3> フレーク状銅粉の含有量が85質量%〜95質量%である前記<1>から<2>のいずれかに記載の導電膜である。
<4> フレーク状銅紛が、
銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出させた懸濁液に一次還元剤を添加して亜酸化銅にまで還元する一次還元工程と、
前記亜酸化銅の懸濁液に二次還元剤を添加して金属銅にまで液中で還元する二次還元工程と、
得られた銅粉をフレーク加工処理するフレーク加工処理工程と、を含むフレーク状銅粉の製造方法により製造され、
前記二次還元工程が二次還元剤の一部を添加する第1の添加段階と、二次還元剤の他部を添加する第2の添加段階とからなり、前記第1の添加段階での二次還元剤の添加量が、前記第2の添加段階での二次還元剤の添加量よりも多い前記<1>から<3>のいずれかに記載の導電膜である。
<5> 第1の添加段階での二次還元剤の添加量が、第2の添加段階での二次還元剤の添加量よりも2倍以上多い前記<4>に記載の導電膜である。
<6> 二次還元剤がヒドラジンである前記<4>から<5>のいずれかに記載の導電膜である。
As an aspect of this invention, it is as follows, for example.
<1> A conductive film containing at least a flaky copper powder and a resin,
The metal area ratio [(B / A) × 100], which is the ratio of the area B of the flaky copper powder to the effective total area A of the cross-sectional photographic image of the conductive film by a scanning electron microscope, is 60% or more. It is the electrically conductive film characterized.
<2> The conductive film according to <1>, wherein the metal area ratio [(B / A) × 100] is 60% to 90%.
<3> The conductive film according to any one of <1> to <2>, wherein the content of the flaky copper powder is 85% by mass to 95% by mass.
<4> Flaked copper powder
A primary reduction step of adding a primary reducing agent to the suspension obtained by reacting an aqueous copper salt solution with an alkali agent to precipitate copper hydroxide and reducing the suspension to cuprous oxide;
A secondary reduction step in which a secondary reducing agent is added to the cuprous oxide suspension to reduce it to metallic copper in a liquid;
Manufactured by a method for producing a flaky copper powder, including a flake processing step of flake processing the obtained copper powder,
The secondary reduction step includes a first addition stage in which a part of the secondary reducing agent is added and a second addition stage in which the other part of the secondary reducing agent is added. In the first addition stage, The conductive film according to any one of <1> to <3>, wherein the addition amount of the secondary reducing agent is larger than the addition amount of the secondary reducing agent in the second addition stage.
<5> The conductive film according to <4>, wherein the addition amount of the secondary reducing agent in the first addition stage is twice or more larger than the addition amount of the secondary reducing agent in the second addition stage. .
<6> The conductive film according to any one of <4> to <5>, wherein the secondary reducing agent is hydrazine.

Claims (4)

フレーク状銅粉と、樹脂とを少なくとも含有する導電膜であって、
前記導電膜の走査型電子顕微鏡による断面写真像の有効面積Aに対する前記フレーク状銅粉の面積Bの割合である金属面積割合[(B/A)×100]が60%以上であることを特徴とする導電膜。
A conductive film containing at least flaky copper powder and a resin,
The metal area ratio [(B / A) × 100], which is the ratio of the area B of the flaky copper powder to the effective area A of the cross-sectional photographic image of the conductive film by a scanning electron microscope, is 60% or more. A conductive film.
金属面積割合[(B/A)×100]が60%〜90%である請求項1に記載の導電膜。   The conductive film according to claim 1, wherein the metal area ratio [(B / A) × 100] is 60% to 90%. フレーク状銅粉の含有量が85質量%〜95質量%である請求項1から2のいずれかに記載の導電膜。   The conductive film according to claim 1, wherein the content of the flaky copper powder is 85% by mass to 95% by mass. フレーク状銅粉と、樹脂とを少なくとも含有する導電膜であって、
前記導電膜の走査型電子顕微鏡による断面写真像の有効面積Aに対する前記フレーク状銅粉の面積Bの割合である金属面積割合[(B/A)×100]が60%以上であり、
前記フレーク状銅粉の含有量が85質量%〜95質量%であることを特徴とする導電膜。
以上
A conductive film containing at least flaky copper powder and a resin,
The metal area ratio [(B / A) × 100], which is the ratio of the area B of the flaky copper powder to the effective area A of the cross-sectional photographic image of the conductive film by a scanning electron microscope, is 60% or more,
Content of the said flaky copper powder is 85 mass%-95 mass%, The electrically conductive film characterized by the above-mentioned.
that's all
JP2013101954A 2013-05-14 2013-05-14 Conductive film Active JP6130209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101954A JP6130209B2 (en) 2013-05-14 2013-05-14 Conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101954A JP6130209B2 (en) 2013-05-14 2013-05-14 Conductive film

Publications (2)

Publication Number Publication Date
JP2014222619A JP2014222619A (en) 2014-11-27
JP6130209B2 true JP6130209B2 (en) 2017-05-17

Family

ID=52122043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101954A Active JP6130209B2 (en) 2013-05-14 2013-05-14 Conductive film

Country Status (1)

Country Link
JP (1) JP6130209B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201913440TA (en) * 2015-09-07 2020-03-30 Hitachi Chemical Co Ltd Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
SG11201801845WA (en) * 2015-09-07 2018-04-27 Hitachi Chemical Co Ltd Assembly and semiconductor device
MY184948A (en) * 2015-09-07 2021-04-30 Hitachi Chemical Co Ltd Copper paste for joining, method for producing joined body, and method for producing semiconductor device
HUE053117T2 (en) * 2016-02-26 2021-06-28 Heraeus Deutschland Gmbh & Co Kg Copper ceramic composite
EP3210957B1 (en) * 2016-02-26 2019-01-02 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
DE102016203112B4 (en) * 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
EP3210956B1 (en) * 2016-02-26 2018-04-11 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3626785B1 (en) * 2018-09-20 2021-07-07 Heraeus Deutschland GmbH & Co KG Metal paste and its use for joining components
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015946A (en) * 2000-06-30 2002-01-18 Kyocera Corp Ceramic capacitor

Also Published As

Publication number Publication date
JP2014222619A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6130209B2 (en) Conductive film
JP5937730B2 (en) Method for producing copper powder
JP4868716B2 (en) Flake copper powder and conductive paste
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
JP4428085B2 (en) Method for producing copper fine particles
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
EP3275571A1 (en) Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
EP3296042A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
TW201100185A (en) Silver particles and a process for making them
JP7272834B2 (en) Silver powder and its manufacturing method
JP4296347B2 (en) Flaked copper powder and method for producing the same
US10307825B2 (en) Metal powder, ink, sintered body, substrate for printed circuit board, and method for manufacturing metal powder
JP2009046708A (en) Silver powder
JP2010059001A (en) Cuprous oxide powder and method for producing the same
JP5255580B2 (en) Method for producing flake copper powder
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
WO2022230650A1 (en) Nickel powder and method for producing nickel particles
JP2010275578A (en) Silver powder and production method therefor
JP2014122368A (en) Nickel ultrafine powder, conductive paste and method of producing nickel ultrafine powder
JP4061462B2 (en) Composite fine particles, conductive paste and conductive film
TW201338893A (en) Silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6130209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250