Nothing Special   »   [go: up one dir, main page]

JP6127290B2 - コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器 - Google Patents

コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器 Download PDF

Info

Publication number
JP6127290B2
JP6127290B2 JP2013112219A JP2013112219A JP6127290B2 JP 6127290 B2 JP6127290 B2 JP 6127290B2 JP 2013112219 A JP2013112219 A JP 2013112219A JP 2013112219 A JP2013112219 A JP 2013112219A JP 6127290 B2 JP6127290 B2 JP 6127290B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
converter
charger
doubler rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013112219A
Other languages
English (en)
Other versions
JP2014233128A (ja
Inventor
将年 鵜野
将年 鵜野
明夫 久木田
明夫 久木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2013112219A priority Critical patent/JP6127290B2/ja
Priority to EP14804764.0A priority patent/EP3007314B1/en
Priority to PCT/JP2014/063932 priority patent/WO2014192726A1/ja
Priority to CN201480029896.4A priority patent/CN105247757B/zh
Priority to KR1020157033385A priority patent/KR102125595B1/ko
Priority to US14/892,860 priority patent/US10069323B2/en
Publication of JP2014233128A publication Critical patent/JP2014233128A/ja
Application granted granted Critical
Publication of JP6127290B2 publication Critical patent/JP6127290B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/005Conversion of DC power input into DC power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数個の蓄電セル(二次電池や電気二重層キャパシタ等)の直列接続により構成される蓄電モジュールにおいて、各蓄電セルの電圧を均等化しつつ充放電を行う充放電器に関する。
二次電池や電気二重層キャパシタ等の蓄電セルは、用途に応じた所望の電圧を得るために複数個のセルを直列に接続することによりモジュールを構成して使用される。上述の蓄電モジュールにおいては繰り返し充放電を行ううちに、各セルの容量、内部抵抗、環境温度、自己放電等のばらつきに起因したセル電圧のばらつきが発生する。ばらつきが発生した蓄電モジュールにおいては、劣化の加速的進行および利用可能エネルギーの低下等といった問題が発生する。よって複数個の蓄電セルを直列に接続して使用する場合は各セルの電圧ばらつきを解消させるための均等化回路が必要となる。
これまでに各種の均等化回路が用いられてきているが、多くの方式では多数のスイッチが必要になるため回路構成が複雑化するという課題を有していた。それに対して、一石ならびに二石(すなわちスイッチが一つ、ならびに二つ)で動作可能な均等化回路が提案されている(図1、図2。特許文献1、及び、本発明と同一の出願人による先の特許出願である特願2012−46569を参照)。これらの方式では必要となるスイッチの数を大幅に削減可能なため、回路構成を大幅に簡素化できるといった長所を有している。しかし、これらの方式は電圧均等化に特化した「均等化回路」であるため、蓄電セルを充放電するための充放電器が別途必要となる。すなわち蓄電システムとしては「均等化回路」以外にも「充放電器」が必要であるため、蓄電システムにはまだ簡素化の余地がある。
これに関し、一石(すなわちスイッチ一つ)で動作可能な均等化機能を有する充電器が提案されている(図3。特許文献2)。この方式は充電器と均等化回路を一体化した方式であるため、直列接続された蓄電セルの電圧ばらつきを解消しつつ充電が行える。充電器と均等化回路を別々に設ける必要がないため蓄電システムとしての簡素化が可能である。しかし、この方式は直列接続された蓄電セルに対して個別に充電電力を供給する方式であり、回路を構成する全てのコンポーネントの電流容量を比較的大きく設計する必要があるため回路が大型化・高コスト化する傾向にある。また、放電器としての機能は有していないため、放電器は別途必要となる。
特開2012−186881号公報 特開2011−199949号公報 特開2011−45162号公報
M. Uno and A. Kukita, " Cell Voltage Equalizer Using Series Resonant Inverter and Voltage Multiplier for Series-Connected Supercapacitors", IEEE Energy Conversion Congress and Exposition, 2012, pp. 672-677.
本発明はこのような背景の下でなされたものである。本発明は、蓄電セルの電圧ばらつきを解消しつつ充電することが可能であって、且つ、少なくとも蓄電セル電圧の均等化を担う回路部については電流容量を大きく設計する必要がない充電器を提供すること、及び、そのような充電器において放電機能を更に備えた充放電器を提供することを課題とする。
上記課題を解決するため、本発明は、直列接続された第1から第n(nは2以上の整数)のキャパシタの各々に対して、2つの直列接続されたダイオードを並列に接続し、更に、2つの直列接続されたダイオードの各々における中間点に中間キャパシタを接続してなる、多段倍電圧整流回路と、動作時において矩形波状の電圧が印加される素子を備えた、コンバータと、素子から電圧の入力を受けて、多段倍電圧整流回路に対して電圧を出力する入力回路とを備え、コンバータの出力部に直列接続された第1から第nのキャパシタを接続することにより、コンバータの出力電圧によって第1から第nのキャパシタを充電するとともに、素子から入力回路を介して多段倍電圧整流回路に電圧を入力することにより、第1から第nのキャパシタを均等に充電するよう構成されたことを特徴とする充電器を提供する。
上記充電器の充電動作においては、コンバータ内の素子に印加される矩形波状の電圧を利用して直列キャパシタ鎖の電圧を均等化しつつ、コンバータの出力電圧によって当該直列キャパシタ鎖に充電を行う。後述の実施例において示すとおり、直列キャパシタ鎖に蓄電セル又は蓄電セル群を接続して、これらを充電することが可能である。
入力回路としては、上記素子に接続された第1のコイルと、第1のコイルと磁気的に結合されて多段倍電圧整流回路に接続された第2のコイルとを備えた回路を用いることが好ましい。このようにトランスを用いて入力回路を構成すれば、第1のコイル側と第2のコイル側の電流比を調整できるため、設計の自由度が増す。この場合、特に、直列接続されたインダクタとキャパシタとを含む直列共振回路を第1のコイルに接続することが好ましい。後述の実施例において示すとおり、直列共振回路を用いることにより、入力回路を介して多段倍電圧整流回路に流れ込む電流の大きさを制御することが可能となる。
また、本発明の充電器において用いられるコンバータは、双方向コンバータであってもよい。双方向コンバータを用いることにより上記第1から第nのキャパシタの充放電が可能となるため、本発明の充電器は充放電器として動作できる。
本発明の均等化機能付充放電器によれば、従来のコンバータを用いた充放電器におけるスイッチングノードに多段倍電圧整流回路を接続することで、均等化機能を新たに付加することが可能となる。典型的実施例において、蓄電セルに対する充放電は主にコンバータにより行われ、多段倍電圧整流回路は蓄電セル間の電圧ばらつきを解消する微小な電力のみを供給する。よって、充放電回路部(コンバータ)と均等化回路部(多段倍電圧整流回路)をそれぞれ別々に適切に設計することが可能となるため、従来方式と比較して回路の小型化・低コスト化が可能となる。
特許文献1に記載されている、従来の一石式均等化回路の回路図である。 特願2012−046569により提案されている、従来の二石式均等化回路の回路図である。 特許文献2に記載されている、従来の一石式均等化充電器の回路図である。 本発明の充電器、充放電器において用いることができる、降圧型コンバータの回路図である。 本発明の充電器、充放電器において用いることができる、昇圧型コンバータの回路図である。 本発明の充電器、充放電器において用いることができる、昇降圧コンバータの回路図である。 本発明の充電器、充放電器において用いることができる、SEPICコンバータの回路図である。 本発明の充電器、充放電器において用いることができる、Zetaコンバータの回路図である。 本発明の充電器、充放電器において用いることができる、Cukコンバータの回路図である。 SEPICコンバータの動作波形を示すグラフである。 SEPICコンバータの動作時における、スイッチQがオンの時の電流経路を示す図である。 SEPICコンバータの動作時における、スイッチQがオフの時の電流経路を示す図である。 多段倍電圧整流回路、及び入力回路の一例を示す回路図である。 図7に示す多段倍電圧整流回路、及び入力回路の動作波形を示すグラフである。 図7に示す多段倍電圧整流回路、及び入力回路の動作時における、モード1の電流経路を示す図である。 図7に示す多段倍電圧整流回路、及び入力回路の動作時における、モード2の電流経路を示す図である。 図7に示す多段倍電圧整流回路の等価回路の回路図である。 本発明の第1の実施形態である、SEPICコンバータ、入力回路、及び多段倍電圧整流回路を用いた均等化機能付充電器に、直列接続された蓄電セルB1〜B4を接続したシステムの回路図である。 多段倍電圧整流回路と入力回路との接続点を、図7の構成から変更したときの回路図である。 図12に示す多段倍電圧整流回路、及び入力回路の動作時における、モード1の電流経路を示す図である。 図12に示す多段倍電圧整流回路、及び入力回路の動作時における、モード2の電流経路を示す図である。 多段倍電圧整流回路、及び入力回路の別の一例を示す回路図である。入力回路として、直列共振回路が用いられている。 図14に示す多段倍電圧整流回路、及び入力回路の、DCM(Discontinuous Conduction Mode)での動作波形を示すグラフである。 図14に示す多段倍電圧整流回路、及び入力回路の動作時における、モード1,モード5の電流経路を示す図である。 図14に示す多段倍電圧整流回路、及び入力回路の動作時における、モード2,モード4の電流経路を示す図である。 本発明の第2の実施形態である、SEPICコンバータ、入力回路(直列共振回路)、及び多段倍電圧整流回路を用いた均等化機能付充電器に、直列接続された蓄電セルB1〜B4を接続したシステムの回路図である。 本発明の均等化機能付充電器(SEPICコンバータ、直列共振回路、及び多段倍電圧整流回路を用いた均等化機能付充電器)を用いた実験結果を示すグラフである。 本発明の充電器、充放電器において用いることができる、双方向SEPICコンバータの回路図である。 双方向SEPICコンバータの、充電時の動作波形を示すグラフである。 双方向SEPICコンバータの充電動作時における、スイッチQaがオン、スイッチQbがオフの時の電流経路を示す図である。 双方向SEPICコンバータの充電動作時における、スイッチQaがオフ、スイッチQbがオンの時の電流経路を示す図である。 双方向SEPICコンバータの、放電時の動作波形を示すグラフである。 双方向SEPICコンバータの放電動作時における、スイッチQaがオフ、スイッチQbがオンの時の電流経路を示す図である。 双方向SEPICコンバータの放電動作時における、スイッチQaがオン、スイッチQbがオフの時の電流経路を示す図である。 本発明の第3の実施形態である、双方向SEPICコンバータ、入力回路(直列共振回路)、及び多段倍電圧整流回路を用いた均等化機能付充電器に、直列接続された蓄電セルB1〜B4を接続したシステムの回路図である。 コイルを用いずにコンバータと多段倍電圧整流回路とを接続する場合の構成を示す回路図である。 図25に示す多段倍電圧整流回路、及び入力回路の動作時における、モード1の電流経路を示す図である。 図25に示す多段倍電圧整流回路、及び入力回路の動作時における、モード2の電流経路を示す図である。
これより図面を用いて、本発明に係る充電器、及び充放電器を説明する。但し、本発明に係る充電器、充放電器の構成は、各図面にて示される特定の具体的構成へと限定されるわけではなく、本発明の範囲内で適宜変更可能である。例えば、以下において各キャパシタは主に単独の蓄電素子であるとして、また蓄電セルは二次電池、電気二重層キャパシタ等であるとして説明するが、これらは充放電可能な任意の素子、複数の素子からなるモジュール、あるいはそれらモジュールを用いて構成される任意の装置であってもよい。その他、以下の実施例における多段倍電圧整流回路は4段倍電圧整流回路として示されているが、本発明における多段倍電圧整流回路の段数、すなわち直列接続されるキャパシタの数nは2以上の任意の整数であってよい。
電圧均等化機能を有する本発明の充電器、及び充放電器は、コンバータ(充電回路)、入力回路、及び多段倍電圧整流回路の3つの機能部を備えている。コンバータとして用いることが可能な代表例として、図4a〜図4fは、降圧型コンバータ、昇圧型コンバータ、反転型昇降圧コンバータ、SEPICコンバータ、Zetaコンバータ、Cukコンバータをそれぞれ示している。これらコンバータの出力電圧によって、多段倍電圧整流回路に含まれる各キャパシタを充電することができる。
図4a〜図4f中では、コンバータ内のスイッチングノードにおいて発生する矩形波状の電圧も、併せて図示されている。これらスイッチングノードで発生する矩形波状の電圧を、入力回路を介して多段倍電圧整流回路に入力することにより、多段倍電圧整流回路に含まれる各キャパシタの電圧を均等化することが可能となる。
図4dのSEPICコンバータ、図4eのZetaコンバータ、図4fのCukコンバータではスイッチングノードがそれぞれ2つ存在するが、いずれのノードを用いてもよい。また、ここでは非絶縁型のPWM(Pulse Width Modulation)コンバータについて例を示したが、その他の非絶縁型コンバータやの絶縁型コンバータ(ハーフブリッジやフルブリッジ等)、共振形コンバータ等を用いることも可能である。ここで示したコンバータはいずれもダイオードを用いた単方向コンバータであるため、充電器のみ(もしくは放電器のみ)に用いることができる。ダイオードをスイッチに置き換えて、これらコンバータを双方向コンバータとして用いることで、後述のとおり本発明の充放電器を構成することができる。
例として、図4a〜図4fのコンバータのうち、図4dのSEPICコンバータの動作時における動作波形ならびに電流経路を、図5及び図6a,図6bにそれぞれ示す。図5のグラフにおいて、VQはスイッチQに印加される電圧(図6a中でスイッチQを流れている電流の向きに電流を流そうとする極性を正とする。)を表わし、VL2はインダクタL2に印加される電圧(図6a中でインダクタL2を流れている電流の向きに電流を流そうとする極性を負とする。)を表わし、iLは、インダクタL1を流れる電流(図5のグラフ中、L1)とインダクタL2を流れる電流(図5のグラフ中、L2)とを表わし、iDoはダイオードDoを順方向に流れる電流を表わす。
スイッチQがオンとなる期間では、キャパシタCin,CetからインダクタL1,L2にそれぞれ電圧が印加されることにより、インダクタL1,L2を流れる電流は直線的に増加する。このときスイッチQに印加されている電圧はゼロである(オン抵抗を無視した。)。スイッチQがオフとなる期間では、インダクタL1,L2を流れる電流はともにダイオードDoを介して負荷側へ流れる。インダクタL1の誘導起電力がスイッチQに印加されるが、スイッチQはオフであるため電流は流れない。またインダクタL2に対しては、キャパシタCoutから電圧が印加される(スイッチQのオン期間にキャパシタCetから印加されていた電圧とは逆の極性。)。このように、スイッチング動作に伴い、スイッチQの電圧VQならびにインダクタL2の電圧VL2はともに矩形波状電圧となる。
図7に、多段倍電圧整流回路、及び入力回路の一例が示されている。多段倍電圧整流回路は、直列接続されたキャパシタCout1〜Cout4の各々に対して、2つの直列接続されたダイオードD1,D2と、D3,D4と、D5,D6と、D7,D8と、をそれぞれ並列に接続し、更に、2つの直列接続されたダイオードの各々における中間点に中間キャパシタC1〜C4をそれぞれ接続してなる。
多段倍電圧整流回路に対しては、コンバータ内の素子から出力される電圧を多段倍電圧整流回路に入力するための入力回路が接続されている。図7の例において、入力回路は、コンバータ内の素子側に接続された第1のコイルと、任意のコアを介する等して第1のコイルと磁気的に結合され、更に多段倍電圧整流回路に接続された第2のコイルとを備えている。なお、第1のコイルに接続されているキャパシタCblockは、コンバータ内の素子から流れてくる電流の直流成分を遮断するためのブロッキングコンデンサである。また、第1のコイルと第2のコイルの巻数比をN:1とする。
入力回路の端子A−B間には、上述のコンバータの素子(スイッチングノード)で生成された矩形波状電圧が入力される。このとき、入力される矩形波状電圧の変化に応じてキャパシタCout1〜Cout4に充放電電流が流れ、多段倍電圧整流回路内の奇数番号のダイオードD1,D3,D5,D7と偶数番号のダイオードD2,D4,D6,D8が交互に導通する。
具体的には、図8中、VSNのグラフに示される矩形波状電圧(例えば、図5のVQ)が入力回路へと入力され、トランスによる変圧やブロッキングコンデンサCblockの直流成分除去作用を受けて多段倍電圧整流回路へと入力されるとき、モード1(図8中、VSNのグラフ参照)においては図9aに示すとおりの経路を電流が流れて、モード2(図8中、VSNのグラフ参照)においては図9bに示すとおりの経路を電流が流れる。
ここで、キャパシタCout1〜Cout4の容量が中間キャパシタC1〜C4の容量と比較して十分大きいとすれば、入力電圧VSNの動作周波数が十分高い場合、キャパシタCout1,Cout2,Cout3,Cout4の電圧VCout1,VCout2,VCout3,VCout4は1サイクル前後において不変であるとみなすことができる。モード1におけるVSNの大きさをEとし(したがって、第2のコイルから多段倍電圧整流回路に入力される電圧はE/Nである。)、モード1における中間キャパシタC1,C2,C3,C4の電圧の大きさをVC1a,VC2a,VC3a,VC4aとすれば、図9aの電流経路についてキルヒホッフの第2法則を適用することにより以下の式(1)が得られる。
Figure 0006127290
(1)
なお、VCout1〜VCout4については、図9a中でキャパシタCout3を流れている方向に電流を流す極性の電圧を正とし、Vc1a〜Vc4a(及び、後述のVc1b〜Vc4b)については、図9a中で中間キャパシタC1〜C4を流れている方向に電流を流す極性の電圧を負とした。
同様に、モード2におけるVSNの大きさを0とし(例えば図4dのSEPICコンバータに含まれるインダクタL2の電圧は正と負の値をとるが、電圧の基準点を負側の電圧と取ることにより、モード2におけるVSNをゼロとしてよい。)、中間キャパシタC1,C2,C3,C4の電圧の大きさをVC1b,VC2b,VC3b,VC4bとすれば、図9bの電流経路についてキルヒホッフの第2法則を適用することにより以下の式(2)が得られる。
Figure 0006127290
(2)
上記式(1),(2)より、中間キャパシタC1〜C4における、モード1とモード2の間での電圧変動△VC1=VC1a−VC1b,△VC2=VC2a−VC2b,△VC3=VC3a−VC3b,△VC4=VC4a−VC4bは以下のとおり計算される。
Figure 0006127290
(3)
中間キャパシタC1〜C4の容量をそれぞれG1,G2,G3,G4とした場合、中間キャパシタC1〜C4からキャパシタCout1〜Cout4に流れる電流IC1,IC2,IC3,IC4は、電流=周波数×電荷量=周波数×容量×電圧変動という関係から、
Figure 0006127290
(4)
となる。ここで、fはVSNの周波数である。ここで、オームの法則から、f×G1,f×G2,f×G3,f×G4はそれぞれ抵抗の逆数、つまりコンダクタンスの次元であることが分かる。
よって、上記式(4)から、図7の回路を図10のような等価回路に置き換えることができる。ここで等価電源Vdcは出力電圧E/Nの直流電源であり、等価抵抗R1〜R4は中間キャパシタC1〜C4の充放電動作を等価抵抗に置き換えたものであり、等価抵抗R1〜R4の抵抗値はそれぞれ、1/(f×G1),1/(f×G2),1/(f×G3),1/(f×G4)と表すことができる。G1〜G4が等しい場合、R1〜R4の値も等しくなるため、図10においてキャパシタCout1〜Cout4の各電圧が同じ場合は等価抵抗R1〜R4に流れる電流も等しくなる。つまりキャパシタCout1〜Cout4は均等に充電されることになる。
その結果、キャパシタCout1〜Cout4の電圧は定常状態で均等となる。定常状態におけるキャパシタCout1〜Cout4の各電圧はE/Nとなる(ただし、ダイオードにおける電圧降下は無視する)。
図4dのSEPICコンバータと、図7の入力回路及び多段倍電圧整流回路とを接続してなる、本発明の第1の実施形態である充電器に、4直列の蓄電セル群B1〜B4を接続した、均等化機能付充電システムの回路図を図11に示す。SEPICコンバータ内のキャパシタCetとダイオードDoとインダクタL2との接点で構成されるスイッチングノードが、入力回路を介して多段倍電圧整流回路に接続されている。SEPICコンバータの出力端子、すなわちダイオードDoはキャパシタCout1〜Cout4へと接続されており、またキャパシタCout1〜Cout4は蓄電セルB1〜B4に接続されている。したがって、蓄電セルB1〜B4はSEPICコンバータの出力電圧により直列に充電される。一方、多段倍電圧整流回路は蓄電セルB1〜B4の各々に対して接続されている。上記式(1)〜(4)を用いて説明したとおり、キャパシタCout1〜Cout4が均等に充電されるため、これらと並列に接続された蓄電セルB1〜B4に対しては、電圧ばらつきの状態に応じて電流が供給されて電圧ばらつきが解消される。SEPICコンバータはPWM制御を用いて蓄電セルB1〜B4の充電を行うが、入力電源Vinによる入力電圧の大きさ(Vinとする。)とB1〜B4の合計電圧Vtotalの関係は、時比率D(スイッチQのスイッチング1周期に対するオン期間の割合)を用いて次式で表される。
Figure 0006127290
(5)
上記式(1)〜(4)を用いて説明した均等化動作と、上記(5)式に従う充電動作とが並行して行われることにより、蓄電セルB1〜B4は均等に充電されると考えられる。
本発明の均等化機能付充電器では必要となるスイッチの数はコンバータ内で一つ(スイッチQ)のみであり、バランス機能を提供するための多段倍電圧整流回路自体はスイッチレスで構成可能である。図1や図2で示した従来の均等化回路と同様、少数個のスイッチで構成可能であるため、多数のスイッチを必要とする各種の従来方式と比較して回路構成を大幅に簡素化することができる。また、本均等化機能付充電器では充電機能を受け持つコンバータ部と均等化機能を受け持つ多段倍電圧整流回路とを、それぞれ最適に設計することにより、従来の均等化充電器と比較して小型かつ経済的な設計が可能になる。例えば、一般的に均等化に必要な電力は充電に必要なそれと比較して大幅に小さいため、コンバータには大電力用の素子を用い、多段倍電圧整流回路には小電力用の素子を用いるような設計が最適である。
図11ではSEPICコンバータ内のキャパシタCetとダイオードDoとインダクタL2との接点で構成されるスイッチングノードを、入力回路を介して多段倍電圧整流回路に接続した構成(矩形波状の電圧が印加されるインダクタ素子L2に入力回路を介して多段倍電圧整流回路を接続した構成)について示したが、もう一方のスイッチングノード、すなわちキャパシタCetとスイッチQとインダクタL1の接点で構成されるスイッチングノードを、入力回路を介して多段倍電圧整流回路に接続した場合(矩形波状の電圧が印加されるスイッチ素子Qに入力回路を介して多段倍電圧整流回路を接続した構成)においても同様の機能が得られる。また、SEPICコンバータ以外のコンバータを用いても均等化機能付充電器を構成することができる。
なお、多段倍電圧整流回路に対して均等化のための電圧を入力回路から入力する位置は、図7の態様に限らず任意である。一例として、多段倍電圧整流回路と入力回路との接続点を、図7の構成から変更したときの回路図を図12に示す。
図7の構成を用いた上述の例と同様に、キャパシタCout1〜Cout4の容量が中間キャパシタC1〜C4の容量と比較して十分大きいとして、図13aに示す電流経路(モード1)と図13bに示す電流経路(モード2)とについてキルヒホッフの第2法則を適用すれば、以下の式(6),(7)が得られる(各素子の電圧等、記号は上記式(1)〜(4)と同様に用いる。)。
Figure 0006127290
(6)
Figure 0006127290
(7)
上記式(6),(7)から上記式(3)が得られる。したがって、図12の構成においても、多段倍電圧整流回路の動作は図10の等価回路を用いて説明できる。
入力回路として共振回路を用いることも可能である。一例として、直列共振回路を入力回路とし、これに多段倍電圧整流回路を接続した構成の回路図を図14に示す。
共振インダクタLrと共振キャパシタCrにより直列共振タンクが構成されており、トランス以降の回路は図7で示したものと同じである。コンバータ内におけるスイッチングノードで発生した矩形波状電圧VSNが端子A−B間に印加されることで、多段倍電圧整流回路には正弦波状の交流電圧が入力される。
図14に示した回路をDCM(Discontinuous Conduction Mode)で動作させた場合の動作波形を図15に示す。iLrは共振インダクタLrに流れる電流(図14中の矢印方向に流れる電流を正とする。)を表わし、iD(2i-1)は奇数番号のダイオードD1,D3,D5,D7に流れる順方向電流を、iD(2i)は偶数番号のダイオードD2,D4,D6,D8に流れる順方向電流を、それぞれ表わす。
矩形波状電圧VSNが正(図14中、端子A側が高電圧)に切り替わったとき、共振インダクタLrには正の電流iLrが流れ始めるが(図15中、モード1)、その波形は共振インダクタLrと共振キャパシタCrとの共振現象により正弦波状となるため、いずれは下降して負となる(モード2)。iLrは極小値をとった後、再び上昇してゼロとなるが、本発明者の研究によれば、その後iLrはゼロの一定値をとる(モード3)。このタイミングで矩形波状電圧VSNが負に切り替えられると、共振インダクタLrには負の電流iLrが流れ始める(モード4)。共振インダクタLrと共振キャパシタCrとの共振現象によりiLrは正弦波状に変化し、いずれは上昇して正となる(モード5)。iLrは極大値をとった後、再び下降してゼロとなるが、本発明者の研究によれば、その後iLrはゼロの一定値をとる(モード6)。iLrが正のとき、多段倍電圧整流回路には図16aに示すとおりの経路で電流が流れ、iLrが負のとき、多段倍電圧整流回路には図16bに示すとおりの経路で電流が流れる。iLrが正弦波状に変化することに対応して、多段倍電圧整流回路内の各ダイオードを流れる電流も正弦波状に変化する(図15)。
以上のとおり、図14の多段倍電圧整流回路は、共振インダクタLrを流れる電流iLrの極性に応じて、図16a,図16bに示す2つの電流経路にて動作する。図16aに示す電流経路が実現されるとき(iLrが正のとき。図15中のモード1とモード5に相当)、多段倍電圧整流回路内の奇数番号のダイオードD(2i−1)(i=1…4)が導通する。一方、iLrが負のとき(図15中のモード2とモード4に相当)は多段倍電圧整流回路内の偶数番号のダイオードD(2i)が導通する。一方、モード3とモード6においては回路中に電流は流れない。DCMの動作が成立する(モード3,モード6の期間が存在する)ためには、直列共振回路に印加される電圧VSNがハイ及びローとなる期間のそれぞれが、直列共振回路の共振周期よりも長くなるようスイッチング周波数もしくは回路定数を決定する必要がある。
直列共振回路がDCMで動作するとき、各モードにおいて共振インダクタLrを流れる電流iLrを、時刻tの関数として以下の式(8)で表すことができる。
Figure 0006127290
(8)
ここで、|VSN|は矩形波入力電圧の電圧振幅、VPは第1のコイルに印加される電圧(図14)、Z0は共振回路の特性インピーダンス(共振インダクタのインダクタンスをLr、共振キャパシタの容量をCrとして、Z0=(Lr/Cr)0.5)、ω0は共振角周波数(frを直列共振回路の周波数として、ω0=2πfr)を表わす。
モード1〜モード2の動作と、モード4〜5の動作は対称動作である。したがって、iLrの絶対値平均電流は、上記式(8)中のモード1とモード2で表されるiLrの絶対値を半周期TS/2に亘って積分することで、次式(9)のように求められる。
Figure 0006127290
(9)
ここで、fSは矩形波状電圧VSNのスイッチング周波数である。このように、DCM動作ではスイッチング周波数fSもしくは回路定数Z0を適切に設定することで、電流制限のための回路やフィードバック制御を用いずとも回路内の電流を任意の値以下に設定することが可能である。
既に述べたとおり、直列共振回路がDCMで動作するためにはVSNがハイ及びローとなる期間のそれぞれが、共振回路の共振周期よりも長くなる必要があるため、次の不等式が満たされる必要がある。
Figure 0006127290
(10)
ここでDminはSEPICコンバータの動作時における最小時比率である。(5)式で示したように、コンバータにおいては入出力の電圧比に応じて時比率Dが変動するが、上記(10)式が満たされていれば、直列共振回路ならびに多段倍電圧整流回路には過大電流が流れることがないため充電器は安全に動作可能である。
一方、その他の共振回路においては時比率の変動により動作特性が大きく影響を受けるため、何らかの電流制限機能および回路が必要となる。これは時比率制御ではなく周波数制御を用いるような共振形コンバータの場合においても同様である。
図4dのSEPICコンバータと、図14の入力回路及び多段倍電圧整流回路とを接続してなる、本発明の第2の実施形態である充電器に、4直列の蓄電セル群B1〜B4を接続した、均等化機能付充電システムの回路図を図17に示す。既に述べたとおり、入力回路に矩形波状電圧が入力されたときには図16a,図16bに示される経路で多段倍電圧整流回路に電流が流れるため、定性的には上述の式(1)〜(4)による均等化動作と同様の均等化動作が行われて、蓄電セル群B1〜B4の電圧が均等化される。併せて、SEPICコンバータの出力電圧が蓄電セル群B1〜B4に印加され、これにより蓄電セルの充電が行われる。さらに、直列共振回路のDCM動作による電流制限機能を利用することで、別個の電流制限機能、電流制限回路が不要となる。
なお、図17においてはSEPICコンバータ内のキャパシタCetとダイオードDoとインダクタL2との接点で構成されるスイッチングノードを多段倍電圧整流回路に接続した構成について示されているが、もう一方のスイッチングノード、すなわちキャパシタCetとスイッチQとインダクタL1との接点で構成されるスイッチングノードを多段倍電圧整流回路に接続しても同様の均等化機能が得られる。また、SEPICコンバータ以外のコンバータを用いても本発明の均等化機能付き充電器を構成することができる。また、以上では直列共振形の多段倍電圧整流回路について示したが、その他の共振方式を採用することも可能である。
本発明の均等化機能付充電器(充電電力50W)を用いた実験結果を図18に示す。実験は静電容量が220Fの電気二重層キャパシタモジュールを4直列に接続し、充電には本発明の図17で示した充電器を、放電には電子負荷(定電流1.8A)をそれぞれ用い、充放電サイクルを行った。なお、充電器に用いた各要素のパラメータとして、まずSEPICコンバータについては、インダクタL1,L2のインダクタンスは100μH、キャパシタCetの容量は20μF、N−Ch MOSFETスイッチQのオン抵抗は150mΩ、ショットキーダイオードDoの順方向電圧降下は0.67Vであった。また多段倍電圧整流回路については、中間キャパシタC1〜C4の容量が33μF、キャパシタCout1〜Cout4の容量が66μF、ショットキーダイオードD1〜D8の順方向電圧降下が0.43Vであり、入力回路については、共振インダクタLrのインダクタンスが15.2μH、共振キャパシタCrの容量が10nFであり、第1のコイルと第2のコイルとの巻数比が39:6であり、相互インダクタンスが3.09mHであった。各電気二重層キャパシタモジュールの初期電圧をばらつかせた状態から実験を行った。充電期間中は、本発明の充電器の均等化機能により電気二重層キャパシタモジュール電圧の標準偏差が徐々に低下していることから(図18中、標準偏差のグラフ)、電圧ばらつきが解消される方向に進んでいることがわかる。一方、放電期間中は定電流の電子負荷を用いて放電を行っているため標準偏差に大きな変化なく電圧ばらつきの状態に変化がないことが分かる。2サイクル終了時点で標準偏差は30mV程度まで下がっていることから、本発明の均等化機能付き充電器により電圧ばらつきが解消されることが示された。なお、図18中、モジュール電圧のグラフは各電気二重層キャパシタモジュールの電圧を、合計電圧及び電流のグラフは、各電気二重層キャパシタモジュールの電圧、電流の合計を、それぞれ表わしている。
以上、均等化機能付充電器の実施例について説明した。充電器は電力の伝送方向が一方向である単方向コンバータを用いて構成されるが、双方向コンバータを用いて、双方向電力伝送が可能なよう本発明の充電器を構成することにより、本発明の均等化機能付充放電器が得られる。一例において、図17の構成に含まれるSEPICコンバータ内のダイオードDoをスイッチに置き換え、コンバータを双方向SEPICコンバータとして使用することにより、本発明の充放電器が得られる。
まず、双方向SEPICコンバータの動作について、図19〜図23bを用いて説明する。図19は、SEPICコンバータ中のダイオードをスイッチに置き換えることで得られる双方向SEPICコンバータの回路図である。図19中の電源Vbatは、直列接続された蓄電セルB1〜B4(図11,図17)に対応する。電源Vinの電圧をVinとして、SEPICコンバータの出力電圧Vin×D/(1−D)が電源Vbatの電圧よりも大きい場合、双方向SEPICコンバータは電源Vbatを充電し(充電モード)、SEPICコンバータの出力電圧が電源Vbatの電圧よりも小さい場合、双方向SEPICコンバータは電源Vbatに放電動作を行わせる(放電モード)。
充電モード時における電流経路は図21a,図21bに示すとおりであり、図6a,図6bで示した電流経路と同様である。スイッチQaがオン、スイッチQbがオフとなるモード1(図21a)では電源VinとキャパシタCetからインダクタL1,L2にそれぞれ電圧が印加されることにより、インダクタL1,L2を流れる電流は直線的に増加する。このときスイッチQaに印加されている電圧はゼロである(オン抵抗を無視した。)。スイッチQaがオフ、スイッチQbがオンとなるモード2(図21b)では、インダクタL1,L2の電流はともにスイッチQbを介して電源Vbatへと流れる。インダクタL1の誘導起電力がスイッチQaに印加されるが、スイッチQaはオフであるため電流は流れない。またインダクタL2に対しては、キャパシタCoutから電圧が印加される(スイッチQaのオン期間にキャパシタCetから印加されていた電圧とは逆の極性。)。このように、スイッチング動作に伴い、スイッチQaの電圧VQaならびにインダクタL2の電圧VL2はともに矩形波電圧となる(図20)ため、これらの素子を、入力回路を介して多段倍電圧整流回路に接続することにより、蓄電セル電圧の均等化動作が可能となる。
放電モードにおける、各素子の電圧及び電流を図22に、電流経路を図23aと図23bにそれぞれ示す。スイッチQaがオフ、スイッチQbがオンとなるモード1(図23a)では電源Vbatの電圧がインダクタL2に、電源VbatとキャパシタCetの合計電圧がインダクタL1にそれぞれ印加されることにより、インダクタL1,L2の電流は直線的に増加する。スイッチQaにはインダクタL1から誘導起電力が印加されるが、スイッチQaはオフであるため電流は流れない。スイッチQaがオン、スイッチQbがオフとなるモード2(図23b)では、インダクタL1,L2の電流はともにスイッチQaを介して流れる。このとき、スイッチQaに印加される電圧はゼロであり、インダクタL2に対しては、キャパシタCetから、モード1において電源Vbatから印加されていた電圧とは逆の極性の電圧が印加される。したがって、スイッチング動作に伴い、スイッチQaの電圧VQaならびにインダクタL2の電圧VL2はともに矩形波状電圧となる。両方の期間を通じてインダクタL1の電流のみが電源Vinへと流れる。このように、スイッチング動作に伴い、スイッチQaの電圧VQaならびにインダクタL2の電圧VL2はともに矩形波電圧となる(図22)ため、これらの素子を、入力回路を介して多段倍電圧整流回路に接続することにより、蓄電セル電圧の均等化動作が可能となる。
図19の双方向SEPICコンバータを、入力回路(直列共振回路)を介して多段倍電圧整流回路へと接続してなる本発明の充放電器を、直列接続された蓄電セルB1〜B4に接続してなる充放電システムの回路図を、図24に示す。図17のシステムと同様に、入力回路に矩形波状電圧が入力されたときには図16a,図16bに示される経路で多段倍電圧整流回路に電流が流れるため、定性的には上述の式(1)〜(4)による均等化動作と同様の均等化動作が行われて、蓄電セル群B1〜B4の電圧が均等化される。併せて、双方向SEPICコンバータの出力電圧が蓄電セル群B1〜B4に印加され、これにより蓄電セルの充放電が行われる。図17のシステムと同様に、直列共振回路のDCM動作による電流制限機能を利用することで、別個の電流制限機能、電流制限回路が不要となる(ただし、本構成において直列共振回路を用いることは必須ではなく、図11に示される入力回路を用いてもよいし、あるいは後述の実施例4に示されるとおり、トランスを用いず単に導線で双方向コンバータと多段倍電圧整流回路とを接続してもよい)。
上述の各実施例は、いずれも入力回路としてトランスを含む回路を用いて、多段倍電圧整流回路に蓄電セル電圧均等化用の電圧を入力していた。しかしながら、本発明においてトランスを用いることは必須ではない。例えば、図4dや図19のSEPICコンバータ内のインダクタL2の両端に、導線(本実施例における「入力回路」である。)を介して直接多段倍電圧整流回路を接続した場合であっても、多段倍電圧入力回路にはインダクタL2から矩形波状電圧が入力され、図9a,図9bにおける電流経路と同様の経路を電流が流れるのであり、すなわち上述の式(1)〜(4)による均等化動作と同様の均等化動作が行われて蓄電セル群B1〜B4の電圧が均等化される。併せて、コンバータの出力電圧により蓄電セルB1〜B4が充電又は放電されるのであり、このような態様においても本発明の充電器、充放電器は動作可能である。
このときも、多段倍電圧整流回路に対して均等化のための電圧を入力回路から入力する位置は任意である。例えば図25に示す多段倍電圧整流回路において、同図に示すとおりの端子A−B間にコンバータ内素子からの矩形波状電圧VSNが入力されるとき、多段倍電圧整流回路内を流れる電流経路は図26a(モード1とする),図26b(モード2)に示す経路の間で切り替わるのであり、上記式(1)〜(4)と同様に各記号を定義すれば、キルヒホッフの第2法則より、モード1においては
Figure 0006127290
(11)
が成り立ち、モード2においては
Figure 0006127290
(12)
が成り立つ(矩形波状電圧VSNの波形は図8に示すとおりとした。また、VC1a〜VC4a,VC1b〜VC4bの極性は、上記式(1)〜(4)を導出した際とは逆に定義した。)。
上記式(11),(12)より、中間キャパシタC1〜C4における、モード1とモード2の間での電圧変動△VC1=VC1a−VC1b,△VC2=VC2a−VC2b,△VC3=VC3a−VC3b,△VC4=VC4a−VC4bは以下のとおり計算される。
Figure 0006127290
(13)
以上より、図25の多段倍電圧整流回路の動作も図10の等価回路を用いて説明できる。したがって、例えば図4dのSEPICコンバータ内のインダクタL2の両端を、図25の多段倍電圧整流回路の端子A,Bと、直接導線で接続し、更にSEPICコンバータの出力部を直列接続されたキャパシタC1〜C4の両端に接続してなる充電器によっても、蓄電セル群を均等に充電することが可能である。
本発明に従い、二次電池、電気二重層キャパシタ等の蓄電セルを均等に充電するための充電器、充放電器を構成することができる。本発明は、二次電池、電気二重層キャパシタ等の蓄電セルを用いる電源に広く適用できる。
B1〜B4 蓄電セル
Cout1〜Cout4 キャパシタ
C1〜C4 中間キャパシタ
D1〜D8 ダイオード
Cblock ブロッキングコンデンサ
Lr 共振インダクタ
Cr 共振キャパシタ
Vin,Vbat 電源
L1,L2 インダクタ
Q,Qa,Qb スイッチ
Do ダイオード
Cet キャパシタ

Claims (4)

  1. 直列接続された第1から第n(nは2以上の整数)のキャパシタの各々に対して、2つの直列接続されたダイオードを並列に接続し、更に、該2つの直列接続されたダイオードの各々における中間点に中間キャパシタを接続してなる、多段倍電圧整流回路と、
    動作時において矩形波状の電圧が印加される素子を備えた、コンバータと、
    前記素子から電圧の入力を受けて、前記多段倍電圧整流回路に対して電圧を出力する、入力回路と
    を備え、
    前記コンバータの出力部に前記直列接続された第1から第nのキャパシタを接続することにより、該コンバータの出力電圧によって該第1から第nのキャパシタを充電するとともに、前記素子から前記入力回路を介して前記多段倍電圧整流回路に電圧を入力することにより、該第1から第nのキャパシタを均等に充電するよう構成された
    ことを特徴とする、充電器。
  2. 前記入力回路が、前記素子に接続された第1のコイルと、該第1のコイルと磁気的に結合されて前記多段倍電圧整流回路に接続された第2のコイルとを備えたことを特徴とする、請求項1に記載の充電器。
  3. 前記第1のコイルに、直列接続されたインダクタとキャパシタとを含む直列共振回路が接続されていることを特徴とする、請求項2に記載の充電器。
  4. 請求項1乃至3のいずれか一項に記載の充電器において前記コンバータとして双方向コンバータを用いることにより構成される、充放電器。
JP2013112219A 2013-05-28 2013-05-28 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器 Expired - Fee Related JP6127290B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013112219A JP6127290B2 (ja) 2013-05-28 2013-05-28 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器
EP14804764.0A EP3007314B1 (en) 2013-05-28 2014-05-27 Charger-discharger with equalization function using both convertor and multi-stage voltage doubler rectifier circuit
PCT/JP2014/063932 WO2014192726A1 (ja) 2013-05-28 2014-05-27 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器
CN201480029896.4A CN105247757B (zh) 2013-05-28 2014-05-27 并用转换器及多段倍压整流电路且具有均衡功能的充放电器
KR1020157033385A KR102125595B1 (ko) 2013-05-28 2014-05-27 컨버터와 다단 배전압 정류회로를 병용한 균등화 기능을 구비한 충방전기
US14/892,860 US10069323B2 (en) 2013-05-28 2014-05-27 Charge-discharge device with equalization function using both convertor and multi-stage voltage doubler rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112219A JP6127290B2 (ja) 2013-05-28 2013-05-28 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器

Publications (2)

Publication Number Publication Date
JP2014233128A JP2014233128A (ja) 2014-12-11
JP6127290B2 true JP6127290B2 (ja) 2017-05-17

Family

ID=51988755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112219A Expired - Fee Related JP6127290B2 (ja) 2013-05-28 2013-05-28 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器

Country Status (6)

Country Link
US (1) US10069323B2 (ja)
EP (1) EP3007314B1 (ja)
JP (1) JP6127290B2 (ja)
KR (1) KR102125595B1 (ja)
CN (1) CN105247757B (ja)
WO (1) WO2014192726A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465358B2 (ja) * 2015-07-22 2019-02-06 日本蓄電器工業株式会社 電圧均等化回路システム
AU2015205956B1 (en) * 2015-07-24 2016-06-30 WiseTech Global (Licensing) Pty Ltd Circuits and methods for current drain of a battery for wireless sensor data transmission
TWI573381B (zh) * 2015-09-03 2017-03-01 財團法人國家實驗研究院 應用於無線功率傳輸系統之主僕式倍壓全波整流電路
KR102148059B1 (ko) * 2016-07-29 2020-08-25 주식회사 엘지화학 다이오드를 이용한 배터리 셀 밸런싱 시스템 및 방법
CN106129484B (zh) * 2016-08-31 2019-05-21 海赛普新能源高科技(江苏)有限公司 一种铅酸蓄电池电能回收装置
CN106169620B (zh) * 2016-08-31 2019-05-21 海赛普新能源高科技(江苏)有限公司 一种铅酸蓄电池电能回收方法及双向电子开关
WO2018068243A1 (zh) * 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 移动终端
US10333397B2 (en) * 2017-07-18 2019-06-25 Stmicroelectronics International N.V. Multi-stage charge pump circuit operating to simultaneously generate both a positive voltage and a negative voltage
US10205445B1 (en) * 2017-09-25 2019-02-12 Synopsys, Inc. Clock duty cycle correction circuit
CN107516749A (zh) * 2017-10-10 2017-12-26 西南交通大学 Zeta型双开关多路电池电压均衡拓扑及其控制方法
CN111756080B (zh) * 2019-03-29 2021-12-14 深圳市瑞能实业股份有限公司 一种电池组均衡方法
JP7096194B2 (ja) * 2019-04-04 2022-07-05 トヨタ自動車株式会社 直列接続された太陽電池又はその他の電源用の動作点制御回路装置
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter
CN110350864B (zh) * 2019-06-27 2022-03-29 西交利物浦大学 一种用于光伏组串部分遮蔽情况下的双开关电压均衡拓扑
CN110829533B (zh) * 2019-11-15 2024-03-29 上海科技大学 一种控制简单且无自恢复效应误差的精确电池均衡电路
US11545841B2 (en) * 2019-11-18 2023-01-03 Semiconductor Components Industries, Llc Methods and apparatus for autonomous balancing and communication in a battery system
CN111490572B (zh) * 2020-04-22 2021-09-28 杭州元色科技有限公司 采用倍压开关储能元件的均衡装置、方法及电池管理系统
CN111800007A (zh) * 2020-07-17 2020-10-20 广东工业大学 一种电压均衡电路
CN112265473B (zh) * 2020-10-19 2021-11-30 珠海格力电器股份有限公司 一种驱动装置
US12040702B2 (en) * 2021-06-24 2024-07-16 Murata Manufacturing Co., Ltd. Multi-level structures and methods for switched-mode power supplies
US11646665B2 (en) 2021-06-24 2023-05-09 Psemi Corporation Efficient bootstrap supply generators for multi-level power converters
US11923765B2 (en) 2021-11-01 2024-03-05 Psemi Corporation Multi-level power converters having a top and bottom high-voltage protective switches
US11936291B2 (en) * 2021-11-08 2024-03-19 Psemi Corporation Controlling charge-balance and transients in a multi-level power converter
US12155301B2 (en) 2021-11-08 2024-11-26 Murata Manufacturing Co., Ltd. Light-load recovery in a multi-level converter
CN118473065B (zh) * 2024-07-12 2024-09-27 武汉湖工富瑞能源技术有限公司 一种退役动力电池组的分层主动均衡电路及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132443A (ja) * 1997-07-09 1999-02-02 Sanken Electric Co Ltd 充電装置
DE102006028503A1 (de) * 2006-06-21 2007-12-27 Siemens Ag Vorrichtung und Verfahren zum Laden eines Energiespeichers
JP2011045162A (ja) 2009-08-19 2011-03-03 Japan Aerospace Exploration Agency 蓄電セルの充電回路
JP5424337B2 (ja) 2010-03-17 2014-02-26 独立行政法人 宇宙航空研究開発機構 時比率制御が可能な直列接続蓄電セル用均一充電器
JP5591002B2 (ja) * 2010-07-22 2014-09-17 新電元工業株式会社 電流共振型コンバータ及びその制御方法
JP5680353B2 (ja) 2010-08-24 2015-03-04 富士フイルム株式会社 水性インク組成物、インクジェット記録方法及びインクジェット印画物
JP2012090366A (ja) * 2010-10-15 2012-05-10 Jtekt Corp 電源装置及びこれを備えた電動パワーステアリング装置
JP5692723B2 (ja) 2011-03-03 2015-04-01 独立行政法人 宇宙航空研究開発機構 直列接続された蓄電セルの一石式電圧均等化回路
WO2012172472A1 (en) * 2011-06-17 2012-12-20 Koninklijke Philips Electronics N.V. Single switch driver device having lc filter, for driving a load, in particular an led unit

Also Published As

Publication number Publication date
US20160118817A1 (en) 2016-04-28
WO2014192726A1 (ja) 2014-12-04
US10069323B2 (en) 2018-09-04
EP3007314B1 (en) 2019-03-06
KR20160012142A (ko) 2016-02-02
EP3007314A4 (en) 2017-03-01
KR102125595B1 (ko) 2020-06-22
CN105247757B (zh) 2018-12-11
CN105247757A (zh) 2016-01-13
JP2014233128A (ja) 2014-12-11
EP3007314A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6127290B2 (ja) コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器
JP6082969B2 (ja) Pwm制御が可能なスイッチトキャパシタコンバータ
US20170163160A1 (en) Modular battery arrays and associated methods
US9660523B2 (en) System and method for reducing power loss in switched-capacitor power converters
TWI438599B (zh) 功率因數校正諧振式轉換器與並聯式功率因數校正諧振式轉換器
CN103326610A (zh) 电感型z源逆变器拓扑结构
US10084378B2 (en) Single-inductor multi-output converter
JP5130542B2 (ja) 降圧型スイッチングdc/dcコンバータ
Chen et al. A new bidirectional DC-DC converter with a high step-up/down conversion ratio for renewable energy applications
Uno High step-down converter integrating switched capacitor converter and PWM synchronous buck converter
Goodarzi et al. Design and implementing of a novel resonant switched-capacitor converter for improving balancing speed of lithium-ion battery cells
Hulea et al. An improved bidirectional hybrid switched capacitor converter
Veerachary et al. Design and analysis of enhanced gain buck-boost converter
Annapurani et al. Parallel-charge series-discharge inductor-based voltage boosting technique applied to a rectifier-fed positive output DC-DC converter
Han et al. Asymmetrical (n/m) X DC-DC converter for finer voltage regulation
Maroti et al. A high gain DC-DC converter using voltage multiplier
Axelrod et al. A family of modified zeta-converters with high voltage ratio for solar-pv systems
JP6679042B2 (ja) 充電器及び充放電器
CN104967329A (zh) 开关耦合电感型双自举三电平zeta变换器
Veerachary Design and analysis of a high gain boost converter
JP6651910B2 (ja) 太陽電池用コンバータシステム
Saikia et al. A Floating Capacitor Cubic-Cell Boost Converter for Photovoltaic application
Babaei et al. Calculation of switching current stress in high voltage gain boost dc-dc converter
Chauhan et al. ZCS Switched-Capacitor Cell Balancing Circuit with Bidirectional Buck-Boost Charging
Veerachary et al. Design and Analysis of Positive Output Double Gain Buck-Boost Converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6127290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees