Nothing Special   »   [go: up one dir, main page]

JP6126641B2 - Bearing with magnetic fluid seal - Google Patents

Bearing with magnetic fluid seal Download PDF

Info

Publication number
JP6126641B2
JP6126641B2 JP2015105197A JP2015105197A JP6126641B2 JP 6126641 B2 JP6126641 B2 JP 6126641B2 JP 2015105197 A JP2015105197 A JP 2015105197A JP 2015105197 A JP2015105197 A JP 2015105197A JP 6126641 B2 JP6126641 B2 JP 6126641B2
Authority
JP
Japan
Prior art keywords
ring
magnetic
magnetic fluid
bearing
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105197A
Other languages
Japanese (ja)
Other versions
JP2015148345A (en
Inventor
武恵 小原
武恵 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globeride Inc
Original Assignee
Globeride Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globeride Inc filed Critical Globeride Inc
Priority to JP2015105197A priority Critical patent/JP6126641B2/en
Publication of JP2015148345A publication Critical patent/JP2015148345A/en
Application granted granted Critical
Publication of JP6126641B2 publication Critical patent/JP6126641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、各種の動力伝達機構に配設され、回転軸を回転自在に支持すると共に、内部に異物が侵入しないようにする磁性流体シールを具備した軸受に関する。   The present invention relates to a bearing provided with a magnetic fluid seal that is disposed in various power transmission mechanisms and rotatably supports a rotating shaft and prevents foreign matter from entering inside.

一般的に、各種の駆動力伝達機構に設置される回転軸は、軸受を介して回転自在に支持されている。この場合、軸受は、内輪と外輪との間に周方向に沿って複数の転動体(転がり部材)を収容した、いわゆるボールベアリングを用いることが多く、このようなタイプの軸受を用いることで、回転軸の回転性能の向上を図っている。   Generally, a rotating shaft installed in various driving force transmission mechanisms is rotatably supported via a bearing. In this case, the bearing often uses a so-called ball bearing that accommodates a plurality of rolling elements (rolling members) along the circumferential direction between the inner ring and the outer ring. By using such a type of bearing, The rotational performance of the rotating shaft is improved.

このような軸受は、様々な駆動装置における駆動力伝達機構の回転軸の支持手段として用いられるが、駆動装置によっては、軸受部分を通過して、内部に埃、水分等の異物の侵入を防止したいことがある。また、軸受そのものに異物が侵入すると、回転性能が劣化したり、異音が生じる等の問題が生じる。このような問題の対策として、軸受に近接する回転軸の外周に、弾性材からなるシール部材を接触させて軸受部分の防水、防塵を図ることが行われているが、弾性材からなるシール部材の接触圧の影響で、回転軸の回転性能が低下してしまう。   Such a bearing is used as a support means for a rotating shaft of a driving force transmission mechanism in various driving devices. However, depending on the driving device, foreign matter such as dust and moisture can be prevented from entering inside the bearing portion. There is something I want to do. In addition, when foreign matter enters the bearing itself, problems such as deterioration in rotational performance and abnormal noise occur. As a countermeasure against such a problem, a seal member made of an elastic material is brought into contact with the outer periphery of the rotating shaft close to the bearing to make the bearing portion waterproof and dust-proof. However, the seal member made of an elastic material is used. The rotational performance of the rotating shaft is degraded due to the influence of the contact pressure.

そこで、回転軸の回転性能を低下させることなく、軸受部分に対する異物の侵入防止を図る構成として、磁性流体を用いた磁気シール機構を備えた軸受(磁性流体シール付き軸受)が知られている。例えば、特許文献1には、磁性体からなる2枚の極板で磁石を挟持し、これらの極板を外輪の内面に取着すると共に、内輪の内面との間の僅かな隙間に磁性流体を保持した構造が開示されている。また、特許文献2には、軸受の開口を閉塞するシール部材(蓋部材)の軸方向内面側に磁性流体を保持した構造が開示されており、特許文献3には、さらに奥まった位置に磁性流体が保持できるように、軸方向に沿って蓋部材と磁束環体を設置し、蓋部材に取着した磁極環体と磁束環体との間に磁性流体を保持した構造が開示されている。   Therefore, a bearing (magnetic fluid seal bearing) having a magnetic seal mechanism using a magnetic fluid is known as a configuration for preventing foreign matter from entering the bearing portion without deteriorating the rotational performance of the rotary shaft. For example, in Patent Document 1, a magnet is sandwiched between two pole plates made of a magnetic material, these pole plates are attached to the inner surface of the outer ring, and a magnetic fluid is placed in a slight gap between the inner ring and the inner ring. A structure that holds is disclosed. Patent Document 2 discloses a structure in which a magnetic fluid is held on the inner surface side in the axial direction of a seal member (lid member) that closes the opening of the bearing, and Patent Document 3 discloses a structure in which a magnetic fluid is further recessed. A structure is disclosed in which a lid member and a magnetic flux ring are installed along the axial direction so that the fluid can be held, and the magnetic fluid is held between the magnetic pole ring attached to the lid member and the magnetic flux ring. .

実開平1−91125号Utility Model 1-91125 実公平5−47855号Reality 5-47855 実公昭63−40652号Actual Kosho 63-40652

上記した特許文献1に開示されている磁性流体シール付き軸受は、軸受の開口端側付近に磁性流体を保持するため、外部材(特に布状物)に触れると磁性流体が吸着され易く、保管方法や作業環境に注意を必要とする。また、外輪や内輪の内面に周方向に沿うように磁性流体を保持するため、回転抵抗が大きくなってしまい、回転軸の回転性能に劣るという問題がある(図9から図11参照)。   The bearing with a magnetic fluid seal disclosed in the above-mentioned Patent Document 1 holds the magnetic fluid near the opening end side of the bearing. Therefore, when the outer member (especially cloth-like material) is touched, the magnetic fluid is easily adsorbed and stored. Requires attention to the method and working environment. Further, since the magnetic fluid is held along the circumferential direction on the inner surface of the outer ring or the inner ring, there is a problem that the rotational resistance increases and the rotational performance of the rotating shaft is inferior (see FIGS. 9 to 11).

上記した特許文献2や特許文献3に開示されている磁性流体シール付き軸受は、特許文献1に開示されている構造と比較して奥まった位置に磁性流体を保持するため、取扱性の向上は図れるものの、磁性流体の注入が難しいという問題がある。   Since the bearings with magnetic fluid seals disclosed in Patent Document 2 and Patent Document 3 described above hold the magnetic fluid in a recessed position compared to the structure disclosed in Patent Document 1, the handling property is improved. However, there is a problem that it is difficult to inject magnetic fluid.

本発明は、上記した問題に着目してなされたものであり、取扱性が良く、磁性流体の注入作業が容易に行え、さらに回転軸を支持した状態で回転軸の回転性能を低下させることのない(回転抵抗を最小限に抑えた)磁性流体シール付き軸受を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, has good handling properties, can easily perform the magnetic fluid injection work, and further reduces the rotational performance of the rotating shaft while supporting the rotating shaft. An object of the present invention is to provide a bearing with a ferrofluid seal that does not (rotation resistance is minimized).

上記した目的を達成するために、本発明に係る磁性流体シール付き軸受は、内輪と、この内輪の軸方向における長さよりも長く形成され、内輪の露出端面から軸方向に突出することで径方向内側にスペース部分を形成した伸長円筒部を具備した外輪と、前記内輪と外輪との間に介装される複数の転動体と、基端が前記外輪の伸長円筒部の内面側に固定され、先端が前記内輪の露出端面との間で隙間を形成するように露出端面側に屈曲された磁性材料で構成されるリング状の磁性部材と、前記リング状の磁性部材の基端側の複数の転動体側に止着され、軸方向に着磁されたリング状の磁石と、前記磁性部材の前記屈曲された屈曲部の端面と該端面と対向する前記内輪の露出端面との間の隙間に保持される磁性流体と、を有することを特徴とする。 In order to achieve the above-described object, a bearing with a magnetic fluid seal according to the present invention is formed longer than the length of the inner ring in the axial direction of the inner ring, and protrudes in the axial direction from the exposed end surface of the inner ring. An outer ring having an elongated cylindrical part formed with a space inside, a plurality of rolling elements interposed between the inner ring and the outer ring, and a base end fixed to the inner surface side of the elongated cylindrical part of the outer ring, A ring-shaped magnetic member made of a magnetic material bent toward the exposed end surface so that a tip forms a gap with the exposed end surface of the inner ring, and a plurality of base-end-side side members of the ring-shaped magnetic member In the gap between the ring-shaped magnet fixed to the rolling element side and magnetized in the axial direction, and the end face of the bent portion of the magnetic member and the exposed end face of the inner ring facing the end face A magnetic fluid to be retained

上記した構成によれば、外輪の伸長円筒部の内面に固定された保持板の磁性領域と内輪の露出端面との間に保持される磁性流体によって、内部に水分や埃などの異物が侵入することが防止され、回転軸の回転性能を低下させることなくシール性を高めることが可能となる。また、磁性流体は、軸方向外方に向けて露出することなく、外輪の伸長円筒部の内面に固定された保持板によって遮蔽された状態になるため、布状物のような他物に触れて吸着され難くなり、取扱性が向上する。さらに、内輪が短く形成されているため、磁性流体の注入作業が行い易いと共に、複数の転動体に対して回転抵抗となるような径方向の磁力(内輪と外輪が引き合う方向の磁力)が作用しないため、回転軸の回転性能が低下するのを防止することが可能となる。   According to the configuration described above, foreign matters such as moisture and dust enter the inside by the magnetic fluid held between the magnetic region of the holding plate fixed to the inner surface of the elongated cylindrical portion of the outer ring and the exposed end face of the inner ring. Thus, the sealing performance can be improved without deteriorating the rotational performance of the rotating shaft. In addition, the magnetic fluid is not exposed to the outside in the axial direction and is shielded by a holding plate fixed to the inner surface of the elongated cylindrical portion of the outer ring, so that it touches another object such as a cloth. This makes it difficult to absorb and improves handling. Furthermore, since the inner ring is formed short, it is easy to inject the magnetic fluid, and a radial magnetic force (magnetic force in the direction in which the inner ring and the outer ring attract) acts on a plurality of rolling elements. Therefore, it is possible to prevent the rotational performance of the rotating shaft from being deteriorated.

なお、上記した外輪の伸長円筒部の内面に固定される保持板は、内輪の露出端面との間で磁性流体を保持するために、磁気回路を形成する磁石を保持した非磁性体として構成しても良いし、保持板そのものが内輪の露出端面に対向する対向部を具備した磁性を有する磁性部材として構成されていても良い。すなわち、本発明では、外輪よりも軸方向に短くなった内輪の露出端面側に磁性流体が保持され、この磁性流体が、軸方向の外方において遮蔽された状態になっていれば、磁性流体の保持構造については適宜変形することが可能である。   The holding plate fixed to the inner surface of the elongated cylindrical portion of the outer ring is configured as a non-magnetic material that holds a magnet that forms a magnetic circuit in order to hold the magnetic fluid between the exposed end face of the inner ring. Alternatively, the holding plate itself may be configured as a magnetic member having magnetism having a facing portion that faces the exposed end surface of the inner ring. That is, in the present invention, if the magnetic fluid is held on the exposed end surface side of the inner ring which is shorter in the axial direction than the outer ring, and the magnetic fluid is shielded on the outer side in the axial direction, the magnetic fluid The holding structure can be appropriately modified.

本発明によれば、取扱性が良く、磁性流体の注入作業が容易に行え、回転軸を支持した状態で回転軸の回転性能を低下させることのない磁性流体シール付き軸受が得られる。   According to the present invention, it is possible to obtain a bearing with a magnetic fluid seal that is easy to handle, can easily inject magnetic fluid, and does not deteriorate the rotational performance of the rotating shaft while supporting the rotating shaft.

本発明に係る磁性流体シール付き軸受の第1の実施形態を示す図であり、軸方向に沿った断面図。It is a figure which shows 1st Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and sectional drawing along an axial direction. 図1の要部拡大図。The principal part enlarged view of FIG. 本発明に係る磁性流体シール付き軸受の第2の実施形態を示す図であり、軸方向に沿った要部拡大断面図。It is a figure which shows 2nd Embodiment of the bearing with a magnetic fluid seal concerning this invention, and is a principal part expanded sectional view along the axial direction. 本発明に係る磁性流体シール付き軸受の第3の実施形態を示す図であり、軸方向に沿った要部拡大断面図。It is a figure which shows 3rd Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and is a principal part expanded sectional view along the axial direction. 本発明に係る磁性流体シール付き軸受の第4の実施形態を示す図であり、軸方向に沿った断面図。It is a figure which shows 4th Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and sectional drawing along an axial direction. 本発明に係る磁性流体シール付き軸受の第5の実施形態を示す図であり、軸方向に沿った要部拡大断面図。It is a figure which shows 5th Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and is a principal part expanded sectional view along the axial direction. 本発明に係る磁性流体シール付き軸受の第6の実施形態を示す図であり、軸方向に沿った要部拡大断面図。It is a figure which shows 6th Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and is a principal part expanded sectional view along the axial direction. 本発明に係る磁性流体シール付き軸受の第7の実施形態を示す図であり、軸方向に沿った要部拡大断面図。It is a figure which shows 7th Embodiment of the bearing with a magnetic fluid seal which concerns on this invention, and is a principal part expanded sectional view along the axial direction. 従来の磁性流体シール付き軸受の構成を示す図であり、(a)は軸方向に沿った断面図、(b)は要部拡大図。It is a figure which shows the structure of the conventional bearing with a magnetic fluid seal, (a) is sectional drawing along an axial direction, (b) is a principal part enlarged view. 図9に示す磁性流体シール付き軸受の軸方向と直交する方向の断面図。Sectional drawing of the direction orthogonal to the axial direction of the bearing with a magnetic fluid seal shown in FIG. (a)及び(b)は、それぞれ図10に示す従来の磁性流体シール付き軸受の問題点を説明する断面図。(A) And (b) is sectional drawing explaining the problem of the conventional bearing with a magnetic fluid seal shown in FIG. 10, respectively.

以下、図面を参照しながら本発明に係る磁性流体シール付き軸受の実施形態について説明する。
図1及び図2は、本発明に係る磁性流体シール付き軸受の第1の実施形態を示す図であり、図1は軸方向に沿った断面図、図2は図1の要部拡大図である。
Hereinafter, embodiments of a bearing with a magnetic fluid seal according to the present invention will be described with reference to the drawings.
1 and 2 are views showing a first embodiment of a magnetic fluid seal bearing according to the present invention. FIG. 1 is a sectional view along an axial direction, and FIG. 2 is an enlarged view of a main part of FIG. is there.

本実施形態に係る磁性流体シール付き軸受(以下、軸受と称する)1は、円筒状の内輪3と、これを囲繞する円筒状の外輪5と、前記内輪3と外輪5との間に介装される複数の転動体(転がり部材)10とを備えている。前記転動体10は、周方向に延出するリテーナ(保持器)11に保持されており、内輪3と外輪5を相対的に回転可能としている。   A magnetic fluid seal bearing (hereinafter referred to as a bearing) 1 according to this embodiment includes a cylindrical inner ring 3, a cylindrical outer ring 5 surrounding the inner ring 3, and an inner ring 3 and an outer ring 5. And a plurality of rolling elements (rolling members) 10. The rolling element 10 is held by a retainer (cage) 11 extending in the circumferential direction, and the inner ring 3 and the outer ring 5 are relatively rotatable.

前記内輪3、外輪5及び転動体10は、磁性を有する材料、例えばクロム系ステンレス(SUS440C)によって形成されており、前記リテーナ11は、耐食性、耐熱性に優れた材料、例えばステンレス材(SUS304)によって形成されている。また、前記外輪5は、内輪3の軸方向Xにおける長さ(軸方向長さ)よりも長く形成されており、前記内輪3の一方の露出端面3aから軸方向に突出する伸長円筒部5aを具備している。なお、本実施形態の外輪5は、内輪3の他方の露出端面3bとは略同一となるように構成されている(後述する第7実施形態のように、外輪5は、一方の露出端面3aに加え、他方の露出端面3bからも軸方向に突出した伸長円筒部を備えていても良い)。   The inner ring 3, the outer ring 5 and the rolling element 10 are made of a magnetic material, for example, chromium-based stainless steel (SUS440C), and the retainer 11 is made of a material having excellent corrosion resistance and heat resistance, for example, stainless steel (SUS304). Is formed by. The outer ring 5 is formed longer than the length (axial direction length) in the axial direction X of the inner ring 3, and an elongated cylindrical part 5 a protruding in the axial direction from one exposed end surface 3 a of the inner ring 3 is provided. It has. Note that the outer ring 5 of the present embodiment is configured to be substantially the same as the other exposed end surface 3b of the inner ring 3 (as in the seventh embodiment described later, the outer ring 5 has one exposed end surface 3a. In addition, an elongated cylindrical portion protruding in the axial direction from the other exposed end surface 3b may also be provided.

上記したように、外輪5が内輪3の露出端面3aから軸方向に突出することで、伸長円筒部5aの径方向内側には、スペースSが生じる。本発明では、このスペース部分に磁性流体シール(磁気シール機構)20を配設している。以下、本実施形態の磁性流体シール20の構成について説明する。   As described above, the outer ring 5 protrudes in the axial direction from the exposed end surface 3a of the inner ring 3, so that a space S is generated on the radially inner side of the elongated cylindrical portion 5a. In the present invention, a magnetic fluid seal (magnetic seal mechanism) 20 is disposed in this space portion. Hereinafter, the configuration of the magnetic fluid seal 20 of the present embodiment will be described.

磁性流体シール20は、前記外輪5の伸長円筒部5aの内面に固定され、磁石を保持する保持板21を備えている。この場合、保持板21は、内輪3の露出端面3aとの間で磁性領域を発生させるような構造であれば良く、本実施形態では、真鍮、アルミ合金、樹脂、或いは金属補強された弾性材などの非磁性材料で、中央に開口領域21aを有するリング形状に形成されており、伸長円筒部5aの内面に固定されて軸方向Xに対して直交する方向に延在している。そして、径方向内側となる先端には、リング状に形成された磁石25が内輪3の露出端面3aに対向するように止着されており、これにより、保持板21に上記磁性領域を形成している。
このような構造では、リング状の磁石25を保持板21と共に予めユニット化することが可能であり、磁性流体シール20の構造を簡略化することが可能となる。
The magnetic fluid seal 20 includes a holding plate 21 that is fixed to the inner surface of the elongated cylindrical portion 5a of the outer ring 5 and holds a magnet. In this case, the holding plate 21 only needs to have a structure that generates a magnetic region with the exposed end surface 3a of the inner ring 3. In this embodiment, the elastic material is reinforced with brass, aluminum alloy, resin, or metal. Is formed in a ring shape having an opening region 21a in the center, and is fixed to the inner surface of the elongated cylindrical portion 5a and extends in a direction perpendicular to the axial direction X. A ring-shaped magnet 25 is fixed to the radially inner tip so as to face the exposed end surface 3a of the inner ring 3, thereby forming the magnetic region in the holding plate 21. ing.
In such a structure, the ring-shaped magnet 25 can be unitized with the holding plate 21 in advance, and the structure of the magnetic fluid seal 20 can be simplified.

本実施形態では、リング形状の保持板21は、その中間部分が軸方向外側に向かって膨出するように屈曲形成されており、その先端の軸方向内側に、リング状の凹所21bを形成している。このリング状の凹所21bは、内輪3の露出端面3aと対向するように形成されており、この部分にリング状の磁石25が露出端面3aと所定間隔Gを置いて対向するように取着されている。したがって、保持板21は、リング状の磁石25を保持した際、軸方向に対して厚肉化することなく、省スペース化が図れるようになっている(本実施形態では、保持板21は、リング状の磁石25を凹所21bに取着すると、保持板21の内面側が略面一状になるように構成されている)。なお、前記リング状の磁石25は、軸方向外側25aがS極、軸方向内側25bがN極となっており、これにより、前記所定間隔Gを経由して内輪3との間で磁気回路を形成する(磁束方向の概略を矢印で示す)。   In this embodiment, the ring-shaped holding plate 21 is bent so that an intermediate portion thereof bulges outward in the axial direction, and a ring-shaped recess 21b is formed on the inner side in the axial direction of the tip. doing. The ring-shaped recess 21b is formed so as to face the exposed end surface 3a of the inner ring 3, and is attached so that the ring-shaped magnet 25 faces the exposed end surface 3a with a predetermined gap G at this portion. Has been. Therefore, when holding the ring-shaped magnet 25, the holding plate 21 can save space without being thickened in the axial direction (in this embodiment, the holding plate 21 is When the ring-shaped magnet 25 is attached to the recess 21b, the inner surface of the holding plate 21 is configured to be substantially flush). The ring-shaped magnet 25 has an S pole on the outer side in the axial direction 25 and an N pole on the inner side in the axial direction 25b, whereby a magnetic circuit is connected to the inner ring 3 via the predetermined interval G. (The outline of the magnetic flux direction is indicated by an arrow).

上記したリング状の磁石25は、予め保持板21の凹所21bに取着され、この状態で軸受1に圧入される。この圧入に際しては、保持板21の周端部が、軸受1の外輪5の内面に形成された段部5bに当て付いて位置決めされる。このように、外輪5に対して保持板21を圧入した後、スポイト等の注入部材を利用して、中央の開口領域21aを介して磁性流体27を前記所定間隔Gの部分に注入する。   The ring-shaped magnet 25 described above is attached in advance to the recess 21b of the holding plate 21 and is press-fitted into the bearing 1 in this state. At the time of the press-fitting, the peripheral end portion of the holding plate 21 is positioned by abutting against a step portion 5 b formed on the inner surface of the outer ring 5 of the bearing 1. Thus, after press-fitting the holding plate 21 into the outer ring 5, the magnetic fluid 27 is injected into the portion of the predetermined interval G through the central opening region 21a using an injection member such as a syringe.

注入される磁性流体27は、例えばFe34のような磁性微粒子を、界面活性剤およびベースオイルに分散させて構成されたものであり、粘性があって磁石を近づけると反応する特性を備えている。このため、磁性流体27は、上記したように、リング状の磁石25と、磁性材料で構成される内輪3の露出端面3aとの間で形成される磁気回路によって、前記所定間隔Gに全周に亘って安定して保持され、軸受1の内部(転動体側)をシールする。 The magnetic fluid 27 to be injected is formed by dispersing magnetic fine particles such as Fe 3 O 4 in a surfactant and a base oil, and has a characteristic of reacting when the magnet is brought close to the magnet. Yes. For this reason, as described above, the magnetic fluid 27 is entirely surrounded at the predetermined interval G by the magnetic circuit formed between the ring-shaped magnet 25 and the exposed end surface 3a of the inner ring 3 made of a magnetic material. The inside of the bearing 1 (the rolling element side) is sealed.

上記した構成では、所定間隔Gは、保持板21に取着されるリング状の磁石25と、内輪3の径方向内面3c(この内面3cは、図示されていない回転軸が嵌入される部分となる)との間の隙間Dよりも小さくなるように設定されていることが好ましい。
これは、嵌入される回転軸が磁性材料で形成されていると、間隔Dの部分に磁性流体が移動してしまうことが考えられるが、上記のように(G<D)となるように設定しておくことで、所定間隔Gに安定した量の磁性流体27を保持させておくことができ、シール効果を高めることが可能となる。
In the above-described configuration, the predetermined gap G includes the ring-shaped magnet 25 attached to the holding plate 21 and the radially inner surface 3c of the inner ring 3 (this inner surface 3c is a portion into which a rotating shaft (not shown) is inserted. It is preferable that the gap D is set to be smaller than the gap D.
This is because if the rotating shaft to be inserted is made of a magnetic material, the magnetic fluid may move to the portion of the interval D, but it is set so that (G <D) as described above. By doing so, a stable amount of the magnetic fluid 27 can be held at the predetermined interval G, and the sealing effect can be enhanced.

また、上記した構成では、保持板21に対して、軸方向外方から、リング状のシールド(密閉板)30を圧入固定することが好ましい。このような密閉板30は、耐食性、耐熱性に優れた材料、例えばステンレス材(SUS304)によって形成することが可能であり、周端部に圧入屈曲部30aを形成し、この部分を弾性変形させながら、外輪5の内面に形成された段部5cに嵌入することで、前記保持板21の圧入によるシールに加え、外輪5の内面に沿って水分や埃等が、内部に侵入することを確実に防止することが可能となる。なお、前記中間部分が屈曲した保持板21には、軸方向外方の周縁部にリング状の凹部21cが形成されており、この凹所21cを利用してシールド30の圧入屈曲部30aを配置できるようにすることで、軸方向のコンパクト化を図ることが可能となる。   In the above-described configuration, it is preferable that the ring-shaped shield (sealing plate) 30 is press-fitted and fixed to the holding plate 21 from the outside in the axial direction. Such a sealing plate 30 can be formed of a material excellent in corrosion resistance and heat resistance, such as stainless steel (SUS304), and a press-fitting bent portion 30a is formed at the peripheral end portion, and this portion is elastically deformed. However, by fitting into the step portion 5c formed on the inner surface of the outer ring 5, in addition to the seal by press-fitting the holding plate 21, it is ensured that moisture, dust and the like enter the inside along the inner surface of the outer ring 5. Can be prevented. The holding plate 21 having the bent middle portion is formed with a ring-shaped recess 21c at the outer peripheral edge in the axial direction, and the press-fitting bent portion 30a of the shield 30 is arranged using the recess 21c. By making it possible, it becomes possible to achieve compactness in the axial direction.

次に、上記した軸受1の作用効果について説明する。
上記したように、磁性流体シール20は、内輪3に対して外輪5を軸方向に突出させ、この外輪5の伸長円筒部5aの内面に固定された保持板21の磁性を有する領域(本実施形態ではリング状の磁石25を取着した領域)と内輪3の露出端面3aとの間に磁性流体27を保持する構成のため、そのようなシール構造を有する軸受の軸方向寸法をコンパクト化できると共に、磁性流体27によって、内部に水分や埃などの異物が侵入することが防止され、回転軸の回転性能を低下させることなくシール性を高めることが可能となる。
Next, the effect of the bearing 1 described above will be described.
As described above, the magnetic fluid seal 20 projects the outer ring 5 in the axial direction with respect to the inner ring 3, and the magnetic region of the holding plate 21 fixed to the inner surface of the elongated cylindrical portion 5 a of the outer ring 5 (this embodiment) In the configuration, the magnetic fluid 27 is held between the region where the ring-shaped magnet 25 is attached) and the exposed end surface 3a of the inner ring 3, so that the axial dimension of the bearing having such a seal structure can be made compact. At the same time, the magnetic fluid 27 prevents foreign matter such as moisture and dust from entering the inside, and the sealing performance can be improved without deteriorating the rotational performance of the rotating shaft.

また、磁性流体27は、軸方向外方に向けて露出することなく、外輪の伸長円筒部の内面に固定された保持板21によって遮蔽された状態になるため、布状物のような他物に触れて吸着され難くなり、取扱性の向上が図れると共に、内輪3が短く形成されていることから、磁性流体27の注入作業が行い易くなる。また、保持される磁性流体27は、水や埃が侵入した場合、上記したように、保持板21によって、軸方向外方側からの侵入圧を受けることがない(直接的な水圧等が作用しない)ため、耐水性、防塵性を高めることが可能となる。   Further, the magnetic fluid 27 is shielded by the holding plate 21 fixed to the inner surface of the elongated cylindrical portion of the outer ring without being exposed outward in the axial direction. Since the inner ring 3 is formed short, the magnetic fluid 27 can be easily injected. Further, when water or dust enters the magnetic fluid 27 to be held, as described above, the holding plate 21 does not receive the penetration pressure from the axially outer side (direct water pressure or the like acts). Therefore, it is possible to improve water resistance and dust resistance.

また、本実施形態の構成では、シールド30を含め、リング状の磁石25を保持板21に取着しておき、これを外輪5に圧入して、所定領域に磁性流体27を注入するだけの簡単な構造であり、かつ、外輪5の伸長円筒部5a及び保持板21の形状により、これらを効率良く配置したことで、軸受全体としてコンパクト化を図ることが容易になる。   Further, in the configuration of the present embodiment, the ring-shaped magnet 25 including the shield 30 is attached to the holding plate 21, and this is press-fitted into the outer ring 5 to inject the magnetic fluid 27 into a predetermined region. Since the structure is simple and these are efficiently arranged by the shape of the elongated cylindrical portion 5a of the outer ring 5 and the holding plate 21, it becomes easy to make the entire bearing compact.

さらに、上記したように、本実施形態の構成では、外輪5の伸長円筒部5aの内面に固定した保持板21の磁性領域と、内輪3の露出端面3aとの間に磁性流体27を軸方向Xに沿って保持するため、従来の構成と比較すると、複数の転動体に対して回転抵抗となるような径方向の磁力(内輪と外輪が引き合う方向の磁力)が作用しなくなり、回転軸の回転性能が低下するのを防止することが可能となる。   Furthermore, as described above, in the configuration of the present embodiment, the magnetic fluid 27 is axially disposed between the magnetic region of the holding plate 21 fixed to the inner surface of the elongated cylindrical portion 5 a of the outer ring 5 and the exposed end surface 3 a of the inner ring 3. Since it is held along X, the radial magnetic force (magnetic force in the direction in which the inner ring and the outer ring attract each other) that acts as rotational resistance on a plurality of rolling elements does not act on the plurality of rolling elements. It is possible to prevent the rotational performance from being lowered.

以下、このような作用効果について、図9から図11を参照して具体的に説明する。
なお、これらの図に示す軸受81は、上述した特許文献1に開示されているように、内輪83と外輪85との間の空間部に磁性流体シール90を配置したものである。磁性流体シール90は、リング状の磁石92を挟持保持した一対のポールピース95の先端と内輪83の径方向外側面83aとの間に、磁性流体97を保持した構成となっている。また、内輪83と外輪85との間には、リテーナ88によって、複数の転動体87が保持されている。
Hereinafter, such an effect will be specifically described with reference to FIGS. 9 to 11.
In addition, the bearing 81 shown in these drawings has a magnetic fluid seal 90 disposed in a space between the inner ring 83 and the outer ring 85 as disclosed in Patent Document 1 described above. The magnetic fluid seal 90 has a configuration in which a magnetic fluid 97 is held between the distal ends of a pair of pole pieces 95 holding and holding a ring-shaped magnet 92 and the radially outer surface 83a of the inner ring 83. A plurality of rolling elements 87 are held between the inner ring 83 and the outer ring 85 by a retainer 88.

通常、軸受を構築するに際しては、リテーナ88に保持される転動体87は、内輪83と外輪85の中心軸Xに対して、360°に亘って転動に支障が生じないように、図10に示すように、所定のクリアランス(例えば、径方向の内外の隙間C1及びC2合わせて3ミクロン程度)をもって設置される。ところが、図9に示すようなリング状の磁石92の配置態様によれば、設置後、リング状の磁石92が、360°の全周に亘って均一に内輪と外輪を引き付けることはなく、360°の範囲の内、必ず、どこかで内輪83と外輪85が引き付け合う位置が生じる。これは、磁石92のずれ、各アッセンブリの誤差、組み込み時のずれ等が生じていることによるものであり、磁石92は、内輪と外輪が最も近くなっている位置でより強い吸引作用を生じさせることから、結果として、内外輪の360°の範囲のいずれかに、ラジアル方向の吸引力発生位置(最大磁界位置)が生じることとなる。   Normally, when the bearing is constructed, the rolling element 87 held by the retainer 88 is not affected by rolling over 360 ° with respect to the central axis X of the inner ring 83 and the outer ring 85 as shown in FIG. As shown in FIG. 2, the filter is installed with a predetermined clearance (for example, about 3 microns in total in the radial direction inside and outside gaps C1 and C2). However, according to the arrangement of the ring-shaped magnets 92 as shown in FIG. 9, the ring-shaped magnets 92 do not attract the inner ring and the outer ring uniformly over the entire 360 ° circumference after installation. Within the range of °, there is always a position where the inner ring 83 and the outer ring 85 attract each other. This is due to the occurrence of misalignment of the magnet 92, errors in each assembly, misalignment at the time of assembly, and the like. The magnet 92 causes a stronger attracting action at the position where the inner ring and the outer ring are closest. As a result, a radial attractive force generation position (maximum magnetic field position) occurs in any of the 360 ° ranges of the inner and outer rings.

図11では、便宜上、そのような最大磁界位置が時計の12時の位置で生じるものとして示しており、この12時の位置では、(a)に示すように、ラジアル方向の磁界が強く作用して内輪83と外輪85の距離が最も近くなっており(矢印で示すように引き付け合う)、これに伴い、6時の位置では、内輪83と外輪85の距離が最も離れた状態となる。すなわち、図に示すように、軸受の転動体87が8個設置されて(転動体の間隔は45°)転動するケースを仮定すると、(a)に示す時計の12時の位置では、転動体87が通過できるように、内外輪の隙間d1は、転動体87が押し広げて最も広くなった状態となる。一方、転動体87が12時の位置から最も離れる(b)に示す位置(12時の位置から、22.5°ずれた位置)では、内外輪の間隔d2は最も狭くなった状態となる。   In FIG. 11, for the sake of convenience, such a maximum magnetic field position is shown as occurring at the 12 o'clock position of the watch, and at this 12 o'clock position, as shown in FIG. Accordingly, the distance between the inner ring 83 and the outer ring 85 is the shortest (attracting as indicated by an arrow). Accordingly, at the 6 o'clock position, the distance between the inner ring 83 and the outer ring 85 is the farthest. That is, as shown in the figure, assuming a case where eight rolling elements 87 of the bearing are installed (the rolling element interval is 45 °) and rolling, at the 12 o'clock position of the timepiece shown in FIG. In order to allow the moving body 87 to pass through, the gap d1 between the inner and outer rings is in a state of being widest as the rolling element 87 expands. On the other hand, at the position shown in (b) where the rolling element 87 is farthest from the 12 o'clock position (a position deviated by 22.5 ° from the 12 o'clock position), the distance d2 between the inner and outer rings is the smallest.

このように、内輪83及び外輪85は、回転軸が回転して転動体87が転動する際、最大磁界位置において、互いの距離が近づいたり離れるように動作し、これが、転動体87に対してエネルギー損失を発生させる要因となる。すなわち、内輪83に対して嵌合された回転軸が回転すると、図11(a)及び(b)に示すように、内輪及び外輪が12時の位置で接近/離反を繰り返し、転動体には12時の位置で大きなエネルギー損失が作用することになるため、結果として、回転軸の回転性能が低下することとなる。なお、図において、d3,d4は、内外輪の本来の中心位置Xに対する相対的な上下の変動範囲を示しており、回転軸の回転に伴って転動体87が転動する際、内輪及び外輪は、この範囲内で上下に変動を繰り返す(d1−d2=d4−d3)。   In this way, the inner ring 83 and the outer ring 85 operate so that the distance from each other approaches or separates at the maximum magnetic field position when the rolling element 87 rolls as the rotation shaft rotates. This causes energy loss. That is, when the rotating shaft fitted to the inner ring 83 rotates, as shown in FIGS. 11A and 11B, the inner ring and the outer ring repeatedly approach / separate at the 12 o'clock position. Since a large energy loss acts at the 12 o'clock position, as a result, the rotational performance of the rotating shaft is degraded. In the figure, d3 and d4 indicate the vertical fluctuation range relative to the original center position X of the inner and outer rings, and when the rolling element 87 rolls along with the rotation of the rotating shaft, the inner and outer rings Repeatedly fluctuates up and down within this range (d1-d2 = d4-d3).

また、回転軸が回転して最終的に停止しようとすると、転動体87は、12時の位置で嵌まり込むように停止することはなく、必ず、停止直前に反転動作が生じてしまう。すなわち、図示しない回転軸が時計回り方向に回転しており、最終的に停止する直前には、公転する転動体87は、図11(a)に示す内輪と外輪の間隔が広くなっている12時の位置で停止することはなく、図11(b)に示す位置となるように、反時計回り方向に戻される現象が生じるようになる。したがって、従来の構成では、回転軸を回転方向に沿ってスムースに停止させることができない状態となっている。   Further, when the rotating shaft rotates and finally stops, the rolling element 87 does not stop so as to be fitted at the 12 o'clock position, and a reversal operation is always generated immediately before stopping. That is, a rotating shaft (not shown) rotates clockwise, and immediately before the final stop, the revolving rolling element 87 has a wider interval between the inner ring and the outer ring shown in FIG. There is no stop at the hour position, and a phenomenon of returning to the counterclockwise direction occurs so that the position shown in FIG. Therefore, in the conventional configuration, the rotation shaft cannot be smoothly stopped along the rotation direction.

これに対し、上述した実施形態では、流体磁性シール20のリング状の磁石25は、内輪と外輪をラジアル方向に引き付け合う方向に設置されるのではなく、内輪3を軸方向に引き付けるだけであるため、上記したような転動体に対するラジアル方向の負荷が作用することはない。すなわち、転動体が転動する際、エネルギー損失が小さいことから、回転軸の回転が軽くなる(回転性能が向上する)とともに、回転軸の停止がスムースに行えるようになる。   On the other hand, in the embodiment described above, the ring-shaped magnet 25 of the fluid magnetic seal 20 is not installed in a direction that attracts the inner ring and the outer ring in the radial direction, but only attracts the inner ring 3 in the axial direction. Therefore, the radial load on the rolling elements as described above does not act. That is, when the rolling element rolls, energy loss is small, so that the rotation of the rotating shaft is lightened (rotational performance is improved) and the rotating shaft can be smoothly stopped.

次に、本発明の別の実施形態について説明する。
以下に説明する実施形態では、上記した第1の実施形態と同一の構成要素については、同一の参照符号を付し、その詳細な説明については省略する。
Next, another embodiment of the present invention will be described.
In the embodiment described below, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3は、本発明に係る磁性流体シール付き軸受の第2の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
この実施形態では、上記した第1の実施形態で示したリング状の磁石25の内周面に、360°に亘ってリング状の磁束漏洩防止部材32を止着している。このような磁束漏洩防止部材32は、SUS440Cのような磁性材料で構成することができ、予めリング状の磁石25と共に保持板21と一体化しておくことが可能である。
FIG. 3 is a view showing a second embodiment of the magnetic fluid seal bearing according to the present invention, and is an enlarged cross-sectional view of the main part along the axial direction.
In this embodiment, the ring-shaped magnetic flux leakage prevention member 32 is fixed to the inner peripheral surface of the ring-shaped magnet 25 shown in the first embodiment over 360 °. Such a magnetic flux leakage prevention member 32 can be made of a magnetic material such as SUS440C, and can be integrated with the holding plate 21 together with the ring-shaped magnet 25 in advance.

このような構成では、図の矢印で示すような磁束が生じることで回転体側への磁束漏洩を抑制することが可能となる。すなわち、内輪3の露出端面3aとの間の磁束密度が高まり、磁性流体27の保持効率の向上が図れるようになる。   In such a configuration, magnetic flux leakage to the rotating body side can be suppressed by generating magnetic flux as indicated by arrows in the figure. That is, the magnetic flux density with the exposed end surface 3a of the inner ring 3 is increased, and the retention efficiency of the magnetic fluid 27 can be improved.

図4は、本発明に係る磁性流体シール付き軸受の第3の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
この実施形態では、符号32aで示すように、上記した第2の実施形態で示したリング状の磁束漏洩防止部材32を断面凹形状としており、この凹部内にリング状の磁石25を止着して保持板21に保持させている。
FIG. 4 is a view showing a third embodiment of the bearing with a magnetic fluid seal according to the present invention, and is an enlarged sectional view of a main part along the axial direction.
In this embodiment, as indicated by reference numeral 32a, the ring-shaped magnetic flux leakage prevention member 32 shown in the second embodiment is formed in a concave cross section, and the ring-shaped magnet 25 is fixed in the recess. Is held by the holding plate 21.

このような磁束漏洩防止部材32aによれば、図の矢印で示すように、回転体側に加え外輪側への磁束漏洩も抑制することが可能となる。すなわち、内輪3の露出端面3aとの間の磁束密度をより高めることが可能となって、さらに磁性流体27の保持効率の向上が図れるようになる。   According to such a magnetic flux leakage prevention member 32a, it is possible to suppress magnetic flux leakage to the outer ring side in addition to the rotating body side, as indicated by the arrows in the figure. That is, the magnetic flux density with the exposed end surface 3a of the inner ring 3 can be further increased, and the holding efficiency of the magnetic fluid 27 can be further improved.

図5は、本発明に係る磁性流体シール付き軸受の第4の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
この実施形態では、上述した各実施形態におけるシールド30を排除しており、これにより、軸受を軸方向によりコンパクト化することが可能となる。
FIG. 5 is a view showing a fourth embodiment of the magnetic fluid seal bearing according to the present invention, and is an enlarged cross-sectional view of the main part along the axial direction.
In this embodiment, the shield 30 in each of the above-described embodiments is eliminated, whereby the bearing can be made more compact in the axial direction.

図6は、本発明に係る磁性流体シール付き軸受の第5の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
上述した実施形態では、外輪の伸長円筒部に、非磁性材料で構成された保持板21を固定し、保持板21に磁性を有する領域(リング状の磁石25を取着した領域)を形成して内輪3の露出端面3aとの間に磁性流体27を保持させていたが、本実施形態のように、保持板に代えて、例えば、SUS440Cのような磁性材料で構成される磁性部材41を配設しても良い。この場合、磁性部材41は、リング状に形成され、その先端(径方向内側)が、内輪3の露出端面側に屈曲されており、その屈曲部41aの端面41bを内輪3の露出端面3aと対向させ、両者の間に磁性流体27を保持させている。
FIG. 6 is a view showing a fifth embodiment of the magnetic fluid seal bearing according to the present invention, and is an enlarged cross-sectional view of a main part along the axial direction.
In the above-described embodiment, the holding plate 21 made of a nonmagnetic material is fixed to the elongated cylindrical portion of the outer ring, and a magnetic region (a region where the ring-shaped magnet 25 is attached) is formed on the holding plate 21. The magnetic fluid 27 is held between the exposed end surface 3a of the inner ring 3 and the magnetic member 41 made of a magnetic material such as SUS440C is used instead of the holding plate as in the present embodiment. It may be arranged. In this case, the magnetic member 41 is formed in a ring shape, and its tip (inner side in the radial direction) is bent toward the exposed end surface side of the inner ring 3, and the end surface 41b of the bent portion 41a is connected to the exposed end surface 3a of the inner ring 3. The magnetic fluid 27 is held between them.

そして、磁性部材41の基端側の軸方向内側には、リング状の磁石25が取着されており、磁性部材41に対して矢印M1,M2で示すような磁束を発生させている。この場合、磁石25の止着位置については、適宜、変形することが可能である。
このような構成においても、上述した実施形態と同様な作用効果が得られると共に、構造を簡略化して軸方向の省スペース化を図ることが可能となる。
A ring-shaped magnet 25 is attached on the inner side in the axial direction on the proximal end side of the magnetic member 41, and a magnetic flux as indicated by arrows M1 and M2 is generated with respect to the magnetic member 41. In this case, the fixing position of the magnet 25 can be appropriately modified.
Even in such a configuration, the same effects as those of the above-described embodiment can be obtained, and the structure can be simplified to save the space in the axial direction.

図7は、本発明に係る磁性流体シール付き軸受の第6の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
本実施形態では、図6に示した実施形態の磁性部材41の軸方向外方、及び外輪の内面側を樹脂等の非磁性材料で構成される非磁性体42で覆っており、これにより、図6に示す外輪側で発生する磁束M2を弱くして、内輪側で発生する磁束M1を高めるようにしている。
このような非磁性体42を設置することで、内輪3の露出端面3aとの間の磁束密度を高めることが可能となり、磁性流体27の保持効率の向上が図れるようになる。
FIG. 7 is a view showing a sixth embodiment of the bearing with a magnetic fluid seal according to the present invention, and is an enlarged sectional view of a main part along the axial direction.
In the present embodiment, the outer side in the axial direction of the magnetic member 41 of the embodiment shown in FIG. 6 and the inner surface side of the outer ring are covered with a non-magnetic body 42 made of a non-magnetic material such as resin. The magnetic flux M2 generated on the outer ring side shown in FIG. 6 is weakened to increase the magnetic flux M1 generated on the inner ring side.
By installing such a non-magnetic body 42, it is possible to increase the magnetic flux density with the exposed end surface 3a of the inner ring 3, and the retention efficiency of the magnetic fluid 27 can be improved.

図8は、本発明に係る磁性流体シール付き軸受の第7の実施形態を示す図であり、軸方向に沿った要部拡大断面図である。
上述した実施形態では、いずれも軸受1の片方側の外輪5に伸長円筒部5aを形成し、ここに流体磁性シール20を配設することで、軸受内部、及びそれよりもさらに軸方向内側の各種機能部材をシールするよう構成したが、図に示すように、軸受1の両側に伸長円筒部5aを形成し、それぞれに流体磁性シール20を配設するようにしても良い。
FIG. 8 is a view showing a seventh embodiment of the bearing with a magnetic fluid seal according to the present invention, and is an enlarged sectional view of a main part along the axial direction.
In the above-described embodiments, the elongated cylindrical portion 5a is formed on the outer ring 5 on one side of the bearing 1, and the fluid magnetic seal 20 is disposed here, so that the inside of the bearing and further axially inside thereof can be provided. Although various functional members are configured to be sealed, as shown in the drawing, the elongated cylindrical portions 5a may be formed on both sides of the bearing 1, and the fluid magnetic seal 20 may be disposed on each.

このような構成によれば、回転軸の回転性能を低下させることなく、軸受の内部に、水分、埃等が侵入することを確実に防止することが可能になる。
なお、図において、軸方向の両サイドに配設される磁性流体シール20は、上述した第1の実施形態と同様な構成となっているが、上述した第2から第6実施形態のように構成されていても良い。
According to such a configuration, it is possible to reliably prevent moisture, dust and the like from entering the bearing without deteriorating the rotational performance of the rotating shaft.
In the figure, the magnetic fluid seals 20 disposed on both sides in the axial direction have the same configuration as in the first embodiment described above, but as in the second to sixth embodiments described above. It may be configured.

以上、本発明の実施形態について説明したが、本発明は、上記した実施形態に限定されることはなく、種々変形することが可能である。
本発明は、軸受1の外輪5に伸長円筒部5aを形成し、ここに流体磁性シール20を配設して、内輪3の露出端面3aとの間に磁性流体27を保持するように構成されていれば良く、上記した保持板21や磁性部材41の形状については種々変形することが可能である。また、上述した実施形態では、保持板21にリング状の磁石25を取着し、内輪3の露出端面3aとの間で直接、磁性流体27を保持したが、保持板21に、磁石を挟持した極板(ポールピース)を露出端面3aに対向するように配設しても良い。
As mentioned above, although embodiment of this invention was described, this invention is not limited to above-described embodiment, It can change variously.
The present invention is configured such that an elongated cylindrical portion 5 a is formed in the outer ring 5 of the bearing 1, and a fluid magnetic seal 20 is disposed therein to hold the magnetic fluid 27 between the exposed end surface 3 a of the inner ring 3. The shape of the holding plate 21 and the magnetic member 41 described above can be variously modified. In the above-described embodiment, the ring-shaped magnet 25 is attached to the holding plate 21 and the magnetic fluid 27 is held directly between the exposed end surface 3 a of the inner ring 3, but the magnet is held between the holding plate 21. The electrode plate (pole piece) may be disposed so as to face the exposed end surface 3a.

1 磁性流体シール付き軸受
3 内輪
3a 露出端面
5 外輪
5a 伸長円筒部
10 転動体
20 磁性流体シール
21 保持板
25 磁石
27 磁性流体
41 磁性部材
DESCRIPTION OF SYMBOLS 1 Bearing with magnetic fluid seal 3 Inner ring 3a Exposed end surface 5 Outer ring 5a Extending cylindrical part 10 Rolling element 20 Magnetic fluid seal 21 Holding plate 25 Magnet 27 Magnetic fluid 41 Magnetic member

Claims (3)

内輪と、
この内輪の軸方向における長さよりも長く形成され、内輪の露出端面から軸方向に突出することで径方向内側にスペース部分を形成した伸長円筒部を具備した外輪と、
前記内輪と外輪との間に介装される複数の転動体と、
基端が前記外輪の伸長円筒部の内面側に固定され、先端が前記内輪の露出端面との間で隙間を形成するように露出端面側に屈曲された磁性材料で構成されるリング状の磁性部材と、
前記リング状の磁性部材の基端側の複数の転動体側に止着され、軸方向に着磁されたリング状の磁石と、
前記磁性部材の前記屈曲された屈曲部の端面と該端面と対向する前記内輪の露出端面との間の隙間に保持される磁性流体と、
を有することを特徴とする磁性流体シール付き軸受。
Inner ring,
An outer ring that is formed longer than the length of the inner ring in the axial direction, and has an elongated cylindrical part that forms a space portion radially inward by protruding in the axial direction from the exposed end surface of the inner ring;
A plurality of rolling elements interposed between the inner ring and the outer ring;
A ring-shaped magnet composed of a magnetic material having a proximal end fixed to the inner surface side of the elongated cylindrical portion of the outer ring and a distal end bent to the exposed end surface side so as to form a gap with the exposed end surface of the inner ring. Members,
A ring-shaped magnet fixed to the plurality of rolling elements on the base end side of the ring-shaped magnetic member and magnetized in the axial direction;
A magnetic fluid held in a gap between an end surface of the bent portion of the magnetic member and the exposed end surface of the inner ring facing the end surface;
A bearing with a magnetic fluid seal, comprising:
前記外輪の伸長円筒部の内面には段が形成されており、
前記リング状の磁石は、前記段部に当て付けられて固定され、前記リング状の磁性部材は、基端が前記外輪の伸長円筒部の内面に固定されている、
ことを特徴とする請求項1に記載の磁性流体シール付き軸受。
A step portion is formed on the inner surface of the elongated cylindrical portion of the outer ring,
The ring-shaped magnet is fixed by being applied to the stepped portion, and the base end of the ring-shaped magnetic member is fixed to the inner surface of the elongated cylindrical portion of the outer ring.
The bearing with a magnetic fluid seal according to claim 1.
前記外輪の伸長円筒部の内面には段が形成されており、
前記リング状の磁性部材及びリング状の磁石は、前記段に当て付けられて固定される非磁性体で覆われている、
ことを特徴とする請求項1に記載の磁性流体シール付き軸受。
A step portion is formed on the inner surface of the elongated cylindrical portion of the outer ring,
The ring-shaped magnetic member and the ring-shaped magnet are covered with a non-magnetic material that is fixed to the stepped portion .
The bearing with a magnetic fluid seal according to claim 1.
JP2015105197A 2015-05-25 2015-05-25 Bearing with magnetic fluid seal Active JP6126641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105197A JP6126641B2 (en) 2015-05-25 2015-05-25 Bearing with magnetic fluid seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105197A JP6126641B2 (en) 2015-05-25 2015-05-25 Bearing with magnetic fluid seal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011121207A Division JP5752486B2 (en) 2011-05-31 2011-05-31 Bearing with magnetic fluid seal

Publications (2)

Publication Number Publication Date
JP2015148345A JP2015148345A (en) 2015-08-20
JP6126641B2 true JP6126641B2 (en) 2017-05-10

Family

ID=53891848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105197A Active JP6126641B2 (en) 2015-05-25 2015-05-25 Bearing with magnetic fluid seal

Country Status (1)

Country Link
JP (1) JP6126641B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506352A (en) * 2018-03-27 2018-09-07 北京化工大学 A kind of sealing bearing and mechanical equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123754U (en) * 1983-02-08 1984-08-20 内山工業株式会社 Bearing sealed structure
JPS6328920U (en) * 1986-08-08 1988-02-25
JPS63101520A (en) * 1987-08-08 1988-05-06 Nippon Seiko Kk Closed type rolling bearing
JPS6439931U (en) * 1987-09-03 1989-03-09

Also Published As

Publication number Publication date
JP2015148345A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
RU2578628C1 (en) Bearing with ferrofluid seal
JP6464407B2 (en) Magnetic fluid seal assembly method and magnetic fluid seal
JP6574118B2 (en) Bearing with magnetic fluid seal
CN107795583B (en) Bearing unit with magnetic fluid seal and drive motor
JP5752486B2 (en) Bearing with magnetic fluid seal
KR102338654B1 (en) Bearing with magnetic fluid seal and reel for fishing including the same
JP6126641B2 (en) Bearing with magnetic fluid seal
JP2018119681A (en) Seal structure of rotary machine, rotary machine, and seal member
JP7123899B2 (en) sealing device
JP5932141B2 (en) Rotating machine rotor
JPWO2014061156A1 (en) Electric motor and manufacturing method
JP2007239774A (en) Shield member for rolling bearing and rolling bearing
JP6231468B2 (en) Bearing with magnetic fluid seal, and fishing reel provided with magnetic fluid seal bearing
JP7016591B2 (en) Sealing device
EP3382224B1 (en) Ferrofluid seal-equipped bearing
JP6462339B2 (en) Bearing with magnetic fluid seal and fishing reel provided with the bearing
JP6687787B2 (en) Bearing with magnetic fluid seal
US20120062079A1 (en) Rotor for Motor
JP6722095B2 (en) Bearing with magnetic fluid seal
JP2018091357A (en) Bearing with magnetic fluid seal
JP6276130B2 (en) Bearing with magnetic fluid seal
JP6074468B2 (en) Bearing with magnetic fluid seal
JP2019173842A (en) Rolling bearing
JP6680715B2 (en) Bearing with magnetic fluid seal
JPS63303273A (en) Sealing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170407

R150 Certificate of patent or registration of utility model

Ref document number: 6126641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250