Nothing Special   »   [go: up one dir, main page]

JP6120083B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6120083B2
JP6120083B2 JP2013230408A JP2013230408A JP6120083B2 JP 6120083 B2 JP6120083 B2 JP 6120083B2 JP 2013230408 A JP2013230408 A JP 2013230408A JP 2013230408 A JP2013230408 A JP 2013230408A JP 6120083 B2 JP6120083 B2 JP 6120083B2
Authority
JP
Japan
Prior art keywords
battery
voltage
active material
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013230408A
Other languages
Japanese (ja)
Other versions
JP2015090806A (en
Inventor
博昭 池田
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013230408A priority Critical patent/JP6120083B2/en
Publication of JP2015090806A publication Critical patent/JP2015090806A/en
Application granted granted Critical
Publication of JP6120083B2 publication Critical patent/JP6120083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液を備えた二次電池(非水電解液二次電池)の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery (nonaqueous electrolyte secondary battery) provided with a nonaqueous electrolyte.

リチウムイオン二次電池(例えば特許文献1)その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。この種の電池の製造においては、電池ケースに正極と負極とからなる電極体を収容し、非水電解液を電池ケース内に注液した後、非水電解液を電極体に含浸させることにより電池組立体を構築する。次いで、構築した電池組立体に対してコンディショニング処理(初期充電)を行い、高温環境下で高温エージング処理を施した後、常温域で自己放電させて電圧降下量を計測し、初期の電圧低下が大きい電池(短絡電池)の選別(自己放電特性検査)が行われる。   Lithium ion secondary batteries (for example, Patent Document 1) and other non-aqueous electrolyte secondary batteries are becoming increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. In manufacturing this type of battery, an electrode body composed of a positive electrode and a negative electrode is accommodated in a battery case, a nonaqueous electrolyte is injected into the battery case, and then the electrode body is impregnated with the nonaqueous electrolyte. Build the battery assembly. Next, the battery assembly thus constructed is subjected to a conditioning process (initial charge), subjected to a high-temperature aging process in a high-temperature environment, and then self-discharged at room temperature to measure a voltage drop amount. Selection (self-discharge characteristic inspection) of large batteries (short-circuit batteries) is performed.

特開2004−220956号公報Japanese Patent Laid-Open No. 2004-220956

しかしながら、上述した電池の製造方法では、電池組立体に対して初期充電を行うと初期ガスが発生するため、そのままの状態で充放電すると、電極体のガス噛み部において充電ムラが生じ、電池特性が低下する要因になり得る。この問題に対処すべく、特許文献1には、予備充電後に減圧封口することで上記ガス発生による不具合を抑制することが記載されている。しかし、本発明者の知見によれば、初期ガスは、高電圧、高温ほど発生しやすいため、初期充電で発生するのは初期ガスの一部のみであり、封缶後に高電圧、高温になれば残りの初期ガスが発生する。特許文献1の手法によると、予備充電・封口前に発生した初期ガスによる影響を排除することはできるものの、予備充電・封口後(例えば高温エージング処理時)に発生した初期ガスによる影響を排除することができない。本発明は上記課題を解決するものである。   However, in the battery manufacturing method described above, initial gas is generated when the battery assembly is initially charged. Therefore, if charging and discharging is performed as it is, charging unevenness occurs in the gas biting portion of the electrode body, and battery characteristics are obtained. Can be a factor of lowering. In order to cope with this problem, Patent Document 1 describes that the above-described malfunction due to gas generation is suppressed by sealing under reduced pressure after preliminary charging. However, according to the inventor's knowledge, the initial gas is more likely to be generated at a higher voltage and temperature, so that only a part of the initial gas is generated by the initial charging, and can be increased to a high voltage and high temperature after sealing. The remaining initial gas is generated. According to the method of Patent Document 1, the influence of the initial gas generated before the preliminary charging / sealing can be eliminated, but the influence of the initial gas generated after the preliminary charging / sealing (for example, during high temperature aging treatment) is eliminated. I can't. The present invention solves the above problems.

本発明者は、上記課題を解決するために鋭意検討した結果、自己放電工程後の電池組立体を3.45V以下の低電圧域にて一定時間放置することにより、初期充電工程や高温エージング工程において発生したガスによる影響を排除して高性能な非水電解液二次電池が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor left the battery assembly after the self-discharge process in a low voltage region of 3.45 V or less for a certain period of time, thereby performing an initial charging process or a high temperature aging process. The inventors have found that a high-performance nonaqueous electrolyte secondary battery can be obtained by eliminating the influence of the gas generated in the above, and the present invention has been completed.

即ち、本発明によって提供される非水電解液二次電池の製造方法は、正極および負極を備える電極体と、非水電解液とを電池ケースに収容した電池組立体を構築する電池組立体構築工程と、前記電池組立体に対して、常温域で所定の電圧値まで充電処理を行う初期充電工程と、前記電池組立体を所定の高温域で一定時間保持する高温エージング工程と、前記電池組立体を常温域で一定時間自己放電させる自己放電工程と、前記自己放電工程後の電池組立体を3V〜3.45Vの低電圧域まで放電させた後、該低電圧域にて1〜3時間放置する低電圧放置工程と、を包含する。かかる製造方法によれば、自己放電工程後の電池組立体を3.45V以下の低電圧域にて一定時間放置することにより、電極体のガス噛み部(典型的には初期充電工程や高温エージング工程で生じた初期ガスに起因する電極体の液ムラ部分)に電解液が含浸する。そのため、該ガス噛み部による不具合(例えば電池容量の低下)を抑制することができる。   That is, the method for manufacturing a non-aqueous electrolyte secondary battery provided by the present invention is a battery assembly construction for constructing a battery assembly in which an electrode body including a positive electrode and a negative electrode and a non-aqueous electrolyte solution are housed in a battery case. An initial charging step for charging the battery assembly to a predetermined voltage value in a normal temperature range; a high temperature aging step for holding the battery assembly in a predetermined high temperature range for a predetermined time; and the battery set A self-discharge step of self-discharging the solid for a predetermined time in a normal temperature range, and discharging the battery assembly after the self-discharge step to a low voltage range of 3 V to 3.45 V, and then 1 to 3 hours in the low voltage range And a low voltage leaving step of leaving. According to such a manufacturing method, the battery assembly after the self-discharge process is allowed to stand for a certain period of time in a low voltage region of 3.45 V or less, so that the gas biting portion of the electrode body (typically the initial charging process or high-temperature aging). The electrolyte solution impregnates the liquid uneven part of the electrode body caused by the initial gas generated in the process. Therefore, the malfunction (for example, reduction of battery capacity) by this gas biting part can be controlled.

図1は一実施形態に係る非水電解液二次電池の製造フローを示す図である。FIG. 1 is a diagram showing a manufacturing flow of a non-aqueous electrolyte secondary battery according to an embodiment. 図2は一実施形態に係る製造方法の電圧変化の推移を示すグラフである。FIG. 2 is a graph showing a change in voltage change of the manufacturing method according to the embodiment. 図3は放置時間と初期容量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the standing time and the initial capacity. 図4は電圧調整したあとの電圧の推移を示すグラフである。FIG. 4 is a graph showing the transition of voltage after voltage adjustment. 図5は放置時間と電圧安定日数との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the standing time and the voltage stabilization days. 図6は各製造工程における正極および負極の状態を説明するための図である。FIG. 6 is a diagram for explaining the state of the positive electrode and the negative electrode in each manufacturing process.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「非水電解液二次電池」とは、非水電解液(典型的には、非水溶媒中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。また、「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。また、電極活物質とは、電荷担体となる化学種(リチウムイオン二次電池ではリチウムイオン)を可逆的に吸蔵および放出し得る材料をいう。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. The “non-aqueous electrolyte secondary battery” refers to a battery provided with a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent). The “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between positive and negative electrodes. The electrode active material refers to a material capable of reversibly occluding and releasing chemical species (lithium ions in a lithium ion secondary battery) serving as a charge carrier.

ここで開示される製造方法は、自己放電工程後に低電圧放置工程を有することにより特徴付けられる製造方法であり、具体的には図1のフローチャートに示す各工程S10〜S60を包含する。また、各工程S10〜S60における電池組立体の電圧の変化の推移を図2に示す。以下、これらを参照しつつ、各工程について順に説明する。   The manufacturing method disclosed here is a manufacturing method characterized by having a low voltage standing step after the self-discharge step, and specifically includes steps S10 to S60 shown in the flowchart of FIG. Moreover, transition of the change of the voltage of the battery assembly in each process S10-S60 is shown in FIG. Hereinafter, each process will be described in order with reference to these.

<電池組立体構築工程(S10)>
ステップS10の電池組立体構築工程は、正極シートおよび負極シートを備える電極体と、非水電解液とを電池ケースに収容した電池組立体を構築する工程である。典型的には常温域において、電極体を電池ケースに収容し、次いで、非水電解液を電池ケース内に注液する。そして、非水電解液を電極体に含浸させることにより電池組立体を構築するとよい。非水電解液を電極体に含浸させる方法としては特に限定されない。例えば、電解液を注液した後、電池ケース内を減圧(負圧)して電極体に含浸させるとよい。この実施形態では、電極体の正極シートの端部に正極端子を、負極シートの端部に負極端子をそれぞれ接合し、電極体を直方体形状のハードケースに収容した後、非水電解液を注入する。そして、ハードケース内を真空引きして負圧にした状態で、該ケースの開口部に蓋体を装着し、レーザー溶接して接合することにより電池組立体を構築する。電池ケースとしては、例えばアルミニウム等の軽量な金属材製のものを好適に採用し得る。なお、ここでいう電池組立体とは、初期充電工程に先立った段階にまで組み立てられている電池全般をいい、典型的には封口(典型的には電池ケースが密閉)されているものをいう。
<Battery assembly construction process (S10)>
The battery assembly construction step of Step S10 is a step of constructing a battery assembly in which an electrode body including a positive electrode sheet and a negative electrode sheet and a nonaqueous electrolyte solution are accommodated in a battery case. Typically, in a normal temperature range, the electrode body is accommodated in a battery case, and then a non-aqueous electrolyte is poured into the battery case. The battery assembly may be constructed by impregnating the electrode body with a non-aqueous electrolyte. The method for impregnating the electrode body with the nonaqueous electrolytic solution is not particularly limited. For example, after pouring the electrolytic solution, the inside of the battery case may be depressurized (negative pressure) and impregnated in the electrode body. In this embodiment, the positive electrode terminal is joined to the end portion of the positive electrode sheet of the electrode body, the negative electrode terminal is joined to the end portion of the negative electrode sheet, and the electrode body is accommodated in a rectangular parallelepiped hard case, and then a nonaqueous electrolyte is injected. To do. Then, in a state in which the inside of the hard case is evacuated to a negative pressure, a battery is assembled by attaching a lid to the opening of the case and joining by laser welding. As the battery case, for example, a lightweight metal material such as aluminum can be preferably used. The battery assembly as used herein refers to all batteries assembled up to the stage prior to the initial charging process, and typically refers to a battery that is sealed (typically a battery case is sealed). .

正極シートは、帯状の正極集電体と正極活物質層とを備えている。正極集電体には、例えば、正極に適する金属箔(例えばアルミニウム箔)が好適に使用され得る。この実施形態では、正極集電体は、該正極集電体の長手方向に直交する幅方向の一方の端部に正極活物質層が形成されていない正極活物質層非形成部を有する。また、他方の端部には実質的に正極活物質層非形成部が設けられないように正極活物質層が形成されている。正極活物質層には、正極活物質や導電材やバインダが含まれている。正極活物質の例を挙げると、LiNi1/3Co1/3Mn1/3(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(リチウムニッケル酸化物)、LiCoO(リチウムコバルト酸化物)、LiMn(リチウムマンガン酸化物)などのリチウム遷移金属複合酸化物が挙げられる。導電材としてアセチレンブラック(AB)等の粉末状カーボンブラック材料を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVDF)等のバインダを添加することができる。 The positive electrode sheet includes a strip-shaped positive electrode current collector and a positive electrode active material layer. For the positive electrode current collector, for example, a metal foil (for example, aluminum foil) suitable for the positive electrode can be suitably used. In this embodiment, the positive electrode current collector has a positive electrode active material layer non-formation part in which a positive electrode active material layer is not formed at one end in the width direction orthogonal to the longitudinal direction of the positive electrode current collector. In addition, a positive electrode active material layer is formed so that a positive electrode active material layer non-formation portion is not substantially provided at the other end. The positive electrode active material layer includes a positive electrode active material, a conductive material, and a binder. Examples of positive electrode active materials include LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel cobalt manganese composite oxide), LiNiO 2 (lithium nickel oxide), LiCoO 2 (lithium cobalt oxide). And lithium transition metal composite oxides such as LiMn 2 O 4 (lithium manganese oxide). A powdery carbon black material such as acetylene black (AB) can be mixed as the conductive material. In addition to the positive electrode active material and the conductive material, a binder such as polyvinylidene fluoride (PVDF) can be added.

負極シートは、帯状の負極集電体と負極活物質層とを備えている。負極集電体には、例えば、負極に適する金属箔(例えば銅箔)が好適に使用され得る。この実施形態では、負極集電体は、該負極集電体の長手方向に直交する幅方向の一方の端部に負極活物質層が形成されていない負極活物質層非形成部を有する。また、他方の端部には実質的に負極活物質層非形成部が設けられないように負極活物質層が形成されている。負極活物質層には、負極活物質やバインダが含まれている。負極活物質としては、グラファイトカーボン、アモルファスカーボンなどの炭素系材料が挙げられる。また、かかる負極活物質の他に、スチレンブタジエンラバー(SBR)等のバインダを添加することができる。さらに、負極活物質やバインダの他に、カルボキシメチルセルロース(CMC)等の増粘剤を添加することができる。   The negative electrode sheet includes a strip-shaped negative electrode current collector and a negative electrode active material layer. For the negative electrode current collector, for example, a metal foil (for example, copper foil) suitable for the negative electrode can be suitably used. In this embodiment, the negative electrode current collector has a negative electrode active material layer non-formation part in which a negative electrode active material layer is not formed at one end in the width direction orthogonal to the longitudinal direction of the negative electrode current collector. Further, the negative electrode active material layer is formed at the other end so that the negative electrode active material layer non-formation portion is not substantially provided. The negative electrode active material layer contains a negative electrode active material and a binder. Examples of the negative electrode active material include carbon-based materials such as graphite carbon and amorphous carbon. In addition to the negative electrode active material, a binder such as styrene butadiene rubber (SBR) can be added. Furthermore, in addition to the negative electrode active material and the binder, a thickener such as carboxymethyl cellulose (CMC) can be added.

この実施形態では、電極体は、正極活物質層と負極活物質層との間にセパレータを介在させつつ、正極活物質層と負極活物質層とを重ね、かつ、捲回した電極体(捲回電極体)である。また、捲回電極体の捲回軸方向において、正極集電体と負極集電体とは、互いの電極活物質層非形成部が捲回軸方向の反対側に突出するように、配置されている。そして、負極活物質層の幅が正極活物質層の幅よりも広い。この場合、負極活物質層は、捲回電極体の捲回軸方向(幅方向)において、正極活物質層に対向している部位(対向部位)と、正極活物質層に対向していない部位(非対向部位)とを有する。   In this embodiment, the electrode body is formed by stacking and winding the positive electrode active material layer and the negative electrode active material layer while interposing a separator between the positive electrode active material layer and the negative electrode active material layer. A rotating electrode body). Further, in the winding axis direction of the wound electrode body, the positive electrode current collector and the negative electrode current collector are arranged so that the respective electrode active material layer non-forming portions protrude on the opposite side in the winding axis direction. ing. And the width | variety of a negative electrode active material layer is wider than the width | variety of a positive electrode active material layer. In this case, the negative electrode active material layer has a portion facing the positive electrode active material layer (opposite portion) and a portion not facing the positive electrode active material layer in the winding axis direction (width direction) of the wound electrode body. (Non-opposing part).

セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に採用し得る。非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等を用いることができる。また、上記支持塩としては、例えば、LiPF等のリチウム塩を用いることができる。一例として、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば質量比1:1)にLiPFを約1mol/Lの濃度で含有させた非水電解液が挙げられる。 As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. The non-aqueous electrolyte typically has a composition in which a supporting salt is contained in a suitable non-aqueous solvent. As the non-aqueous solvent, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like can be used. Moreover, as said support salt, lithium salts, such as LiPF 6 , can be used, for example. As an example, a nonaqueous electrolytic solution in which LiPF 6 is contained in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mass ratio of 1: 1) at a concentration of about 1 mol / L can be given.

<初期充電工程(S20)>
ステップS20の初期充電工程は、上記構築した電池組立体に対して、常温域で所定の電圧値まで充電処理を行う工程である。典型的には、該組立体の正極(正極端子)と負極(負極端子)の間に外部電源を接続し、所定の電圧まで充電(典型的には定電流定電圧充電)を行うとよい。ここで初期充電工程における常温域とは、典型的には常温とされる温度領域をいい、20℃±15℃を指すものとする。かかる初期充電処理において電池組立体が曝される温度としては、例えば5℃〜35℃の温度域から選択することができ、好ましくは20℃〜30℃である。また、初期充電処理における正負極端子間の電圧(典型的には最高到達電圧)は、使用する活物質や非水溶媒の種類等によっても異なり得るが、電池組立体のSOC(State of Charge:充電深度)が満充電時(典型的には電池の定格容量)の凡そ80%以上(典型的には90〜105%)の範囲にあるときに示し得る電圧範囲とすればよい(図2参照)。例えば4.2Vで満充電となる電池では、凡そ3.8〜4.2Vの範囲に調整することが好ましい。初期充電処理における充電レートは、従来の電池組立体を初期充電するときに一般的に採用され得る従来公知の充電レートと同様でよく、例えば0.1〜10C程度とするとよい。かかる充電処理は1回でもよいが、例えば放電処理を挟んで2回以上繰り返し行ってもよい。
<Initial charging step (S20)>
The initial charging step of step S20 is a step of charging the battery assembly constructed as described above up to a predetermined voltage value in the normal temperature range. Typically, an external power source is connected between the positive electrode (positive electrode terminal) and the negative electrode (negative electrode terminal) of the assembly, and charging to a predetermined voltage (typically constant current and constant voltage charging) is performed. Here, the normal temperature region in the initial charging step refers to a temperature region that is typically normal temperature, and refers to 20 ° C. ± 15 ° C. The temperature to which the battery assembly is exposed in the initial charging process can be selected from a temperature range of 5 ° C to 35 ° C, for example, and preferably 20 ° C to 30 ° C. Further, the voltage between the positive and negative terminals (typically the highest voltage reached) in the initial charging process may vary depending on the active material used, the type of the non-aqueous solvent, and the like, but the SOC (State of Charge) of the battery assembly: A voltage range that can be indicated when the (charge depth) is in the range of approximately 80% or more (typically 90 to 105%) of the full charge (typically the rated capacity of the battery) may be used (see FIG. 2). ). For example, in the case of a battery that is fully charged at 4.2 V, it is preferable to adjust to a range of about 3.8 to 4.2 V. The charging rate in the initial charging process may be the same as a conventionally known charging rate that can be generally adopted when initially charging a conventional battery assembly, and may be about 0.1 to 10 C, for example. Such a charging process may be performed once, but may be performed twice or more, for example, with a discharging process interposed therebetween.

<高温エージング工程(S30)>
ステップS30の高温エージング工程は、上記初期充電工程を終えた電池組立体を所定の高温域で一定時間保持(典型的には安置)する工程である。このように電池組立体を高温域で保持することにより、外部から電池内に金属異物が混入した場合であっても、該金属異物を金属イオンとして溶解し得、負極上に析出、成長することで電極体内で微小な内部短絡を発生させることができ、次工程の自己放電工程で検知することで、異物混入による短絡セルの流出を防ぎ得る。かかる高温エージング工程において、上記電池組立体の保持温度は、室温域より高い40℃〜85℃(例えば55℃〜70℃)であることが好ましい。かかる保持温度が40℃未満であると、上記金属異物の溶解が不十分になる場合がある。また、高温エージング工程における保持時間は、5時間以上250時間以下(例えば、昇温開始からの合計時間が100〜200時間、好ましくは150〜180時間)とすることが好ましい。電池組立体を加熱する手段としては、例えば、恒温槽や赤外線ヒーター等を適宜用いることができる。なお、電池電圧は、上記高温エージング工程の全体にわたって比較的高い端子間電圧範囲および/または比較的高いSOC範囲を維持することが好ましい(図2参照)。例えば4.2Vで満充電となる電池では、正負極間の電圧が凡そ3.7〜4.2Vにある状態を保つ範囲で充放電を行うことが好ましい。
<High temperature aging process (S30)>
The high temperature aging process of step S30 is a process of holding (typically resting) the battery assembly after the initial charging process in a predetermined high temperature range for a certain period of time. By holding the battery assembly in a high temperature region in this way, even if metal foreign matter is mixed into the battery from the outside, the metal foreign matter can be dissolved as metal ions and deposited and grown on the negative electrode. Thus, a minute internal short-circuit can be generated in the electrode body, and by detecting in the next self-discharge process, it is possible to prevent the short-circuit cell from flowing out due to contamination of foreign matter. In such a high temperature aging step, the battery assembly is preferably maintained at a temperature of 40 ° C. to 85 ° C. (for example, 55 ° C. to 70 ° C.) higher than the room temperature region. When the holding temperature is lower than 40 ° C., the metal foreign matter may not be sufficiently dissolved. The holding time in the high temperature aging step is preferably 5 hours or more and 250 hours or less (for example, the total time from the start of temperature increase is 100 to 200 hours, preferably 150 to 180 hours). As a means for heating the battery assembly, for example, a thermostatic bath or an infrared heater can be used as appropriate. The battery voltage preferably maintains a relatively high voltage range between terminals and / or a relatively high SOC range throughout the high temperature aging process (see FIG. 2). For example, in a battery that is fully charged at 4.2 V, it is preferable to perform charging and discharging within a range in which the voltage between the positive and negative electrodes is maintained at approximately 3.7 to 4.2 V.

<セル自己放電工程(S40)>
ステップS40のセル自己放電工程は、上記高温エージング工程を終えた電池組立体を常温域で放置して一定時間自己放電させる工程である。このときの電圧降下量(放置前後の電池電圧差)を計測することにより、例えば製造条件に由来する何らかの影響(例えば高温エージング工程)に起因した内部短絡の有無を把握することができる。すなわち、内部短絡が生じている電池は、一定時間放置すると自己放電量が大きくなるので、電圧降下量も大きくなる。そのため、電圧降下量に基づいて、電池に内部短絡が生じているか否かを判断することができる。例えば、内部短絡の有無の判定基準となる閾値を予め設定しておき、電圧降下量が閾値を超えた場合に、その電池組立体を「内部短絡あり」と判定し、電圧降下量が閾値以下の場合にその電池組立体を「内部短絡なし」と判定するとよい。かかる判定結果に基づいて「内部短絡あり」と判定された電池組立体を取り除くことで、不具合品が後工程に流れることを防止し得る。なお、セル自己放電工程において電池組立体が曝される温度としては、常温とされる温度領域であればよく、例えば20℃±15℃であり、好ましくは15℃〜25℃である。また、セル自己放電工程における放置時間は特に限定されないが、概ね36時間〜200時間にすることが適当であり、好ましくは48時間〜150時間であり、特に好ましくは60時間〜120時間である。
<Cell self-discharge process (S40)>
The cell self-discharge process of step S40 is a process in which the battery assembly that has finished the high-temperature aging process is left in the normal temperature range and self-discharged for a predetermined time. By measuring the voltage drop amount (battery voltage difference before and after being left) at this time, it is possible to grasp the presence or absence of an internal short circuit due to some influence (for example, high temperature aging process) derived from manufacturing conditions. That is, a battery in which an internal short circuit has occurred has a large amount of voltage drop since it has a large self-discharge amount if left for a certain period of time. Therefore, it can be determined whether or not an internal short circuit has occurred in the battery based on the voltage drop amount. For example, a threshold value that is used as a criterion for determining whether or not there is an internal short circuit is set in advance, and when the voltage drop amount exceeds the threshold value, the battery assembly is determined as “with an internal short circuit”, and the voltage drop amount is equal to or less than the threshold value. In this case, the battery assembly may be determined as “no internal short circuit”. By removing the battery assembly determined to be “with internal short circuit” based on the determination result, it is possible to prevent the defective product from flowing to the subsequent process. In addition, the temperature at which the battery assembly is exposed in the cell self-discharge process may be a temperature range that is normal temperature, for example, 20 ° C. ± 15 ° C., preferably 15 ° C. to 25 ° C. In addition, the standing time in the cell self-discharge process is not particularly limited, but it is suitably about 36 hours to 200 hours, preferably 48 hours to 150 hours, and particularly preferably 60 hours to 120 hours.

<低電圧放置工程(S50)>
ステップS50の低電圧放置工程は、上記自己放電工程後の電池組立体をさらに3.45V以下の低電圧域まで放電させた後、該低電圧域にて1〜3時間放置する工程である。本発明者の知見によれば、電池組立体に対して初期充電および高温エージング処理を行うと、初期ガスが発生する。そのままの状態で充放電を行うと、電極体のガス噛み部において充電ムラが生じ、電池特性が低下する要因になり得る。これに対し、上記構成によれば、自己放電工程後の電池組立体を3.45V以下の低電圧域にて放置することにより、初期充電や高温エージング処理において初期ガスが発生した場合であっても、電極体のガス噛み部に電解液が含浸するため、その後の充放電処理において充電ムラが生じるような事態が生じ難い。そのため、該充電ムラに起因して電池性能(例えば電池容量)が低下する事象を抑制し得、高性能な電池を製造することができる。
<Low voltage leaving step (S50)>
The low voltage leaving step of step S50 is a step of discharging the battery assembly after the self-discharge step to a low voltage region of 3.45 V or less and then leaving it in the low voltage region for 1 to 3 hours. According to the knowledge of the present inventor, initial gas is generated when the battery assembly is subjected to initial charging and high temperature aging treatment. If charging / discharging is performed as it is, charging unevenness occurs in the gas biting portion of the electrode body, which may be a factor of deterioration of battery characteristics. On the other hand, according to the above configuration, the initial gas is generated in the initial charging or the high temperature aging process by leaving the battery assembly after the self-discharge process in a low voltage region of 3.45 V or less. However, since the electrolytic solution is impregnated in the gas biting portion of the electrode body, it is difficult for a situation in which uneven charging occurs in the subsequent charge / discharge treatment. Therefore, an event that battery performance (for example, battery capacity) decreases due to the uneven charging can be suppressed, and a high-performance battery can be manufactured.

低電圧放置工程における正負極端子間の電圧(放置電圧)は、概ね3V〜3.45V以下にすることが適当である。上記放置電圧が3.45Vよりも高すぎると、電極体のガス噛み部に電解液が含浸しにくくなり、上述した電池性能向上効果(例えば電池容量向上効果)が不十分になる場合がある。一方、上記放置電圧が3Vよりも低すぎると、放電時間が長くかかるためメリットがあまりない。低電圧放置工程における放置電圧としては、概ね3V以上3.45V以下であり、好ましくは3.1V以上3.4V以下であり、特に好ましくは3.2V以上3.3V以下である。   It is appropriate that the voltage between the positive and negative terminals (stand voltage) in the low voltage standing step is about 3 V to 3.45 V or less. If the neglected voltage is too higher than 3.45 V, it is difficult to impregnate the gas biting portion of the electrode body with the electrolytic solution, and the above-described battery performance improvement effect (for example, battery capacity improvement effect) may be insufficient. On the other hand, if the neglected voltage is too lower than 3V, there is not much merit because it takes a long discharge time. The standing voltage in the low voltage standing step is generally 3 V or more and 3.45 V or less, preferably 3.1 V or more and 3.4 V or less, and particularly preferably 3.2 V or more and 3.3 V or less.

上記低電圧放置工程における放置時間は、概ね1時間以上3時間以下とすることが適当である。上記放置時間が1時間よりも短すぎると、電極体のガス噛み部への電解液の含浸が不十分となり、上述した電池性能向上効果が得られない場合がある。電解液の含浸を良好にする観点からは、上記放置時間は、概ね1時間以上であり、好ましくは1.5時間以上であり、特に好ましくは2時間以上である。一方、上記放置時間が3時間よりも長すぎると、後述するスタック自己放電工程において電圧が安定するまでの時間が長大化し、スタック自己放電工程を迅速に行えない虞がある。電圧安定の観点からは、上記放置時間は、概ね3時間以下であり、好ましくは2.5時間以下である。また、上記低電圧放置工程において電池組立体が曝される温度としては、常温とされる温度領域であればよく、例えば20℃±15℃であり、好ましくは15℃〜30℃である。   It is appropriate that the standing time in the low voltage standing step is approximately 1 hour or more and 3 hours or less. If the standing time is shorter than 1 hour, the gas biting portion of the electrode body is not sufficiently impregnated with the electrolytic solution, and the above-described battery performance improvement effect may not be obtained. From the viewpoint of improving the impregnation of the electrolytic solution, the standing time is generally 1 hour or longer, preferably 1.5 hours or longer, particularly preferably 2 hours or longer. On the other hand, if the standing time is longer than 3 hours, the time until the voltage stabilizes in the stack self-discharge process, which will be described later, becomes long, and the stack self-discharge process may not be performed quickly. From the viewpoint of voltage stability, the standing time is generally 3 hours or less, and preferably 2.5 hours or less. In addition, the temperature at which the battery assembly is exposed in the low voltage standing step may be a temperature range that is normal temperature, for example, 20 ° C. ± 15 ° C., and preferably 15 ° C. to 30 ° C.

なお、上記低電圧放置工程は、電池組立体を治具で挟み込み、該電池組立体を押圧、拘束した状態で行ってもよい。その場合、上記低電圧放置工程は、3.45V以下の低電圧状態を維持するとともに、電池組立体に加わる荷重(拘束圧)が300kgf以下(例えば100kgf〜200kgf、好ましくは180kgf以下、例えば120kgf〜180kgf)となるように設定されていることが望ましい。このように、低電圧かつ低荷重下で電池組立体を放置することにより、電極体のガス噛み部に対する電解液の含浸性がより良く向上し、さらに高性能な電池を得ることができる。   Note that the low-voltage leaving step may be performed in a state where the battery assembly is sandwiched with a jig and the battery assembly is pressed and restrained. In this case, the low voltage leaving step maintains a low voltage state of 3.45 V or less, and a load (constraint pressure) applied to the battery assembly is 300 kgf or less (for example, 100 kgf to 200 kgf, preferably 180 kgf or less, for example, 120 kgf to It is desirable that the setting is 180 kgf). As described above, by leaving the battery assembly under a low voltage and a low load, the impregnation property of the electrolytic solution into the gas biting portion of the electrode body is further improved, and a battery with higher performance can be obtained.

<スタック自己放電工程(S60)>
ステップS60のスタック自己放電工程では、上記低電圧放置工程を終えた電池(単電池)を複数用意し、各電池の電圧調整(例えばSOC50%〜80%の調整)を行った後、複数の単電池を配列し該配列方向に拘束してなる組電池を構築する。そして、該組電池を常温域で放置して一定時間自己放電させる。このとき、組電池をなす各々の単電池についての電圧降下量(放置前後の電池電圧差)を計測することにより、例えば製造条件に由来する何らかの影響に起因した内部短絡の有無を把握することができる。つまり、内部短絡が生じている単電池は、放置すると自己放電量が大きくなるので、電圧降下量も大きくなる。そのため、電圧降下量に基づいて、組電池をなす各々の単電池について、内部短絡が生じているか否かを判断することができる。かかる判定結果に基づいて「内部短絡あり」と判定された単電池を取り除くことで、不具合品が市場に流れることを防止し得、信頼性の高い組電池を提供することができる。
<Stack self-discharge process (S60)>
In the stack self-discharge process of step S60, a plurality of batteries (single batteries) that have been subjected to the low-voltage standing process are prepared, and after adjusting the voltage of each battery (for example, adjusting SOC 50% to 80%), An assembled battery is constructed by arranging batteries and restraining them in the arrangement direction. Then, the assembled battery is left in a normal temperature range and self-discharged for a certain time. At this time, by measuring the voltage drop amount (battery voltage difference before and after being left) for each unit cell constituting the assembled battery, for example, it is possible to grasp the presence or absence of an internal short circuit due to some influence derived from the manufacturing conditions. it can. That is, since the unit cell in which an internal short circuit has occurred is left untreated, the amount of self-discharge increases, and the amount of voltage drop also increases. Therefore, based on the amount of voltage drop, it can be determined whether or not an internal short circuit has occurred for each unit cell constituting the assembled battery. By removing the single cell determined as “internal short circuit” based on the determination result, it is possible to prevent a defective product from flowing into the market and to provide a highly reliable assembled battery.

上記スタック自己放電工程では、前述のように電圧降下量に基づいて短絡セルを検出するため、電圧が急激に変化する領域で測定すると、電圧降下量がバラついて短絡セルの検出精度が低下する虞がある。したがって、上記スタック自己放電工程は、電圧調整(例えばSOC50%〜80%の調整)を行った後、電圧が安定するまで一定時間経過してから電圧降下量の計測を開始することが好ましい。上記電圧が安定するまでの一定時間としては、概ね24時間以下とすることが適当であり、好ましく18時間以下である。   In the stack self-discharge process, as described above, a short-circuited cell is detected based on the voltage drop amount. Therefore, if the voltage is measured in a region where the voltage changes rapidly, the voltage drop amount may vary and the detection accuracy of the short-circuit cell may be reduced. There is. Therefore, in the stack self-discharge process, it is preferable to start measuring the voltage drop after a certain time has elapsed until the voltage is stabilized after adjusting the voltage (for example, adjusting SOC of 50% to 80%). The fixed time until the voltage stabilizes is appropriately 24 hours or less, and preferably 18 hours or less.

ここで開示される方法によって製造された非水電解質二次電池ならびに組電池は、信頼性に優れたものであり得る。したがって各種用途に好適に利用することができる。なかでも、プラグインハイブリッド自動車(PHV)等の車両に搭載されるモーター用の動力源(駆動用電源)として好適に使用し得る。   The non-aqueous electrolyte secondary battery and the assembled battery manufactured by the method disclosed herein can be excellent in reliability. Therefore, it can be suitably used for various applications. Among these, it can be suitably used as a power source (drive power source) for a motor mounted on a vehicle such as a plug-in hybrid vehicle (PHV).

本発明に係る製造方法を用いて評価用セル(リチウムイオン二次電池)を構築し、電池の初期容量を評価した。この評価用セルは、正極集電体の上に正極活物質層が形成された正極シートと、負極集電体の上に負極活物質層が形成された負極シートとが、セパレータを介して捲回されてなる捲回電極体を備えている。捲回電極体の捲回軸方向において、負極活物質層の幅は、正極活物質層の幅よりも広い。そのため、負極活物質層は、上記捲回軸方向(幅方向)において、正極活物質層に対向している部位と、正極活物質層に対向していない部位とを有している。   An evaluation cell (lithium ion secondary battery) was constructed using the production method according to the present invention, and the initial capacity of the battery was evaluated. In this evaluation cell, a positive electrode sheet in which a positive electrode active material layer is formed on a positive electrode current collector and a negative electrode sheet in which a negative electrode active material layer is formed on a negative electrode current collector are arranged through a separator. A wound electrode body is provided. In the winding axis direction of the wound electrode body, the width of the negative electrode active material layer is wider than the width of the positive electrode active material layer. Therefore, the negative electrode active material layer has a portion facing the positive electrode active material layer and a portion not facing the positive electrode active material layer in the winding axis direction (width direction).

ここで、正極シートは、正極活物質層に含まれる正極活物質粒子としてLiNi1/3Co1/3Mn1/3粉末を用いた。導電材にアセチレンブラック(AB)、バインダとしてPVDFを用いた。LiNi1/3Co1/3Mn1/3とABとPVDFとを質量比率が91:6:3となるようにN−メチルピロリドン(NMP)と混合し、スラリー状組成物を調製した。この組成物を、長尺状アルミニウム箔(正極集電体)の両面に塗布して正極活物質層を形成した。得られた正極を乾燥およびプレスし、正極シートを作製した。 Here, the positive electrode sheet used LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder as the positive electrode active material particles contained in the positive electrode active material layer. Acetylene black (AB) was used as the conductive material, and PVDF was used as the binder. LiNi 1/3 Co 1/3 Mn 1/3 O 2 , AB and PVDF were mixed with N-methylpyrrolidone (NMP) so that the mass ratio was 91: 6: 3 to prepare a slurry-like composition. . This composition was applied to both sides of a long aluminum foil (positive electrode current collector) to form a positive electrode active material layer. The obtained positive electrode was dried and pressed to produce a positive electrode sheet.

負極シートは、負極活物質層に含まれる負極活物質粒子としてグラファイト粉末を用いた。バインダとしてスチレンブタジエンゴム(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)を用いた。グラファイトとSBRとCMCとを質量比率が98:1:3となるようにイオン交換水と混合し、スラリー状組成物を調製した。この組成物を、長尺状銅箔(負極集電体)の両面に塗布して負極活物質層を形成した。得られた負極を乾燥およびプレスし、負極シートを作製した。   The negative electrode sheet used graphite powder as negative electrode active material particles contained in the negative electrode active material layer. Styrene butadiene rubber (SBR) was used as the binder, and carboxymethyl cellulose (CMC) was used as the thickener. Graphite, SBR, and CMC were mixed with ion-exchanged water so that the mass ratio was 98: 1: 3 to prepare a slurry composition. This composition was applied to both sides of a long copper foil (negative electrode current collector) to form a negative electrode active material layer. The obtained negative electrode was dried and pressed to prepare a negative electrode sheet.

セパレータには、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造のものを用いた。また、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比率において、3:5:2で配合し、LiPFを1モル溶解させた非水電解液を用いた。 The separator used was a three-layer structure in which a polypropylene (PP) layer was laminated on both sides of a polyethylene (PE) layer. Further, a nonaqueous electrolytic solution in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 5: 2 and 1 mol of LiPF 6 was dissolved was used.

電池組立体の構築は、以下のようにして行った。まず、上記正極シートと負極シートとを、2枚のセパレータを介して重ね合わせて捲回し、得られた捲回電極体を側面方向から押しつぶして拉げさせることによって扁平形状に成形した。そして、かかる捲回電極体の正極集電体の端部に正極端子を、負極集電体の端部に負極端子を溶接によりそれぞれ接合した。この電極体を直方体形状のハードケースに収容し、非水電解液を注入した。そして、ハードケース内を真空引きして負圧にした状態で、該ケースの開口部に蓋体を装着し、レーザー溶接して接合することにより電池組立体を構築した。   The battery assembly was constructed as follows. First, the positive electrode sheet and the negative electrode sheet were overlapped and wound through two separators, and the obtained wound electrode body was formed into a flat shape by crushing it from the side surface and dragging it. And the positive electrode terminal was joined to the edge part of the positive electrode collector of this winding electrode body, and the negative electrode terminal was joined to the edge part of the negative electrode collector, respectively. This electrode body was housed in a rectangular parallelepiped hard case, and a non-aqueous electrolyte was injected. Then, in a state where the inside of the hard case was evacuated to a negative pressure, a battery was assembled by attaching a lid to the opening of the case and joining by laser welding.

次に、上記構築した電池組立体に5Aの定電流で正負極端子間電圧が4.0Vに到達するまで定電流充電を行った後、さらに該電圧で電流が0.1Aになるまで定電圧充電を行った(初期充電工程)。次に、上記初期充電工程後の電池組立体を恒温槽内に設置して60℃まで昇温し、昇温開始からの経過時間が160時間となるまでエージング処理を行った(高温エージング工程)。次に、上記電池組立体を20℃まで降温した後、5日間放置して自己放電させた(自己放電工程)。   Next, the battery assembly constructed above was charged with a constant current at a constant current of 5 A until the voltage between the positive and negative terminals reached 4.0 V, and then at a constant voltage until the current reached 0.1 A. Charging was performed (initial charging step). Next, the battery assembly after the initial charging step was placed in a thermostatic chamber, the temperature was raised to 60 ° C., and an aging treatment was performed until the elapsed time from the start of the temperature rising reached 160 hours (high temperature aging step). . Next, after the temperature of the battery assembly was lowered to 20 ° C., it was left to self-discharge for 5 days (self-discharge process).

次に、上記自己放電工程を終えた電池組立体を5Aの定電流で正負極端子間電圧が所定の放置電圧に到達するまで定電流充放電を行い、その状態で一定時間放置した(低電圧放置工程)。ここでは複数の電池組立体を用意し、放置電圧および放置時間を互いに異ならせて低電圧放置工程を行った。具体的には、放置電圧は3V、3.2V、3.45V、3.6V、3.8V、3.9Vの何れかに設定し、放置時間は0.5時間、1時間、3時間、5時間、12時間、24時間、48時間の何れかに設定した。このようにして評価用電池を作製した。かかる評価用電池の初期容量を評価した。結果を図3に示す。   Next, the battery assembly having undergone the above self-discharge process was charged and discharged at a constant current at a constant current of 5 A until the voltage between the positive and negative terminals reached a predetermined leaving voltage, and left in that state for a certain period of time (low voltage Neglect process). Here, a plurality of battery assemblies were prepared, and the low voltage standing step was performed by changing the standing voltage and the standing time from each other. Specifically, the leaving voltage is set to 3V, 3.2V, 3.45V, 3.6V, 3.8V, 3.9V, and the leaving time is 0.5 hours, 1 hour, 3 hours, It was set to 5 hours, 12 hours, 24 hours, or 48 hours. Thus, an evaluation battery was produced. The initial capacity of the evaluation battery was evaluated. The results are shown in FIG.

図3に示すように、低電圧放置工程において、放置電圧を3V〜3.45Vとし、放置時間を1時間以上とした各サンプルは、他のサンプルに比べて初期容量が大きかった。この結果から、低電圧放置工程において、放置電圧を3V〜3.45Vとし、放置時間を1時間以上とすることによって、初期容量が向上し得ることが確認された。   As shown in FIG. 3, in the low voltage standing step, each sample having a standing voltage of 3 V to 3.45 V and a standing time of 1 hour or more had a larger initial capacity than the other samples. From this result, it was confirmed that in the low voltage leaving step, the initial capacity can be improved by setting the leaving voltage to 3 V to 3.45 V and setting the standing time to 1 hour or more.

また、各サンプルの電池を複数個ずつ用意し、SOC60%に調整した後、各電池を配列しかつ配列方向に拘束してなる組電池を構築した。その後、拘束状態の組電池を常温域で放置し、各電池の電圧変化の推移を計測した。結果を図4に示す。図4のサンプル1は、低電圧放置工程の放置電圧を3.45V、放置時間を3時間とし、サンプル2は、放置電圧を3.45V、放置時間を5時間とし、サンプル3は、放置電圧を3.45V、放置時間を48時間とした。図4に示すように、サンプル1〜3の電池は何れも、電圧調整後に放置すると急激な電圧の低下が認められた。ただし、低電圧放置工程の放置時間を3時間としたサンプル1は、概ね1日で電圧が安定領域(即ちスタック自己放電工程において短絡セルの有無の判断を精度よく行える程度に電圧が安定している領域)に達し、サンプル2、3に比べて急激な電圧の低下が終了するまでの日数(以下、電圧安定日数という。)が短かった。   Also, a plurality of batteries of each sample were prepared and adjusted to SOC 60%, and then an assembled battery was constructed in which the batteries were arranged and restrained in the arrangement direction. Thereafter, the assembled battery in a restrained state was left in a room temperature range, and the change in voltage change of each battery was measured. The results are shown in FIG. Sample 1 in FIG. 4 has a neglected voltage of 3.45 V and a standing time of 3 hours in the low voltage leaving step, sample 2 has a standing voltage of 3.45 V and a standing time of 5 hours, and sample 3 has a standing voltage. Was 3.45 V, and the standing time was 48 hours. As shown in FIG. 4, when the batteries of Samples 1 to 3 were left after voltage adjustment, a rapid voltage drop was observed. However, in sample 1 in which the standing time in the low voltage standing step is 3 hours, the voltage is stable enough to accurately determine whether or not there is a short-circuited cell in the stack self-discharge step in about one day. The number of days (hereinafter referred to as voltage stabilization days) until the end of the rapid voltage drop was shorter than in Samples 2 and 3.

図5のグラフは、低電圧放置工程の放置電圧を3V、3.2V、3.45Vとした各サンプルについて、低電圧放置工程の放置時間と電圧安定日数との関係を示している。図5に示すように、放置時間が低減するに従い電圧安定日数は減少傾向となった。特に、放置時間を3時間以下とすることによって、概ね1日以下という極めて短い電圧安定日数を達成できた。電圧安定日数が短いほど、スタック自己放電工程において電圧が安定するまでの時間が短縮され、スタック自己放電工程を迅速に行うことが可能となる。この結果から、低電圧放置工程の放置時間は、概ね3時間以下とすることが好ましく、2時間以下とすることがより好ましい。   The graph of FIG. 5 shows the relationship between the standing time in the low voltage standing step and the voltage stabilization days for each sample in which the standing voltage in the low voltage standing step is 3V, 3.2V, and 3.45V. As shown in FIG. 5, the voltage stabilization days tended to decrease as the standing time decreased. In particular, by setting the standing time to 3 hours or less, it was possible to achieve an extremely short voltage stabilization day of approximately 1 day or less. The shorter the voltage stabilization days, the shorter the time until the voltage stabilizes in the stack self-discharge process, and the stack self-discharge process can be performed quickly. From this result, the standing time in the low voltage standing step is preferably about 3 hours or less, and more preferably 2 hours or less.

なお、低電圧放置工程の放置時間が短いほど電圧安定日数が短縮される理由としては、以下のように推測される。即ち、本発明者の知見によれば、図6(a)に示すように、電池組立体に対して初期充電が行われると、正極活物質層10からリチウムイオンが電解液中に放出される。この際、負極では、電解液中のリチウムイオンが負極活物質層20に入り込み、負極活物質層20に吸蔵されていく。また、リチウムイオンは、充電当初において負極活物質層20のうち正極活物質層10に対向している部位(対向部位)22に吸蔵されていき、充電が進むにつれて、正極活物質層10に対向していない部位(非対向部位)24にも拡散していくと考えられる。つまり、負極活物質層20の非対向部位24にもリチウムイオンが吸蔵されていく。   The reason why the number of days for voltage stabilization is shortened as the standing time in the low voltage standing step is shorter is estimated as follows. That is, according to the knowledge of the present inventor, as shown in FIG. 6A, when the battery assembly is initially charged, lithium ions are released from the positive electrode active material layer 10 into the electrolytic solution. . At this time, in the negative electrode, lithium ions in the electrolytic solution enter the negative electrode active material layer 20 and are occluded in the negative electrode active material layer 20. In addition, lithium ions are occluded in a portion (opposing portion) 22 facing the positive electrode active material layer 10 in the negative electrode active material layer 20 at the beginning of charging, and face the positive electrode active material layer 10 as charging progresses. It is thought that it diffuses also to the part (non-opposing part) 24 which is not. That is, lithium ions are also occluded in the non-facing portion 24 of the negative electrode active material layer 20.

一方、低電圧放置工程において放電処理が行われると、図6(b)に示すように、負極活物質層20に吸蔵されたリチウムイオンが電解液中に放出される。その際、まずは負極活物質層20のうち対向部位22から優先的にリチウムイオンが放出される。そして、リチウムイオンが放出されるにつれて(放電が進むにつれて)、負極活物質層20の対向部位22の電位は上がる。そして、徐々に、負極活物質層20の対向部位22と非対向部位24との電位差が拡大する。この電位差を解消するため、負極活物質層20の非対向部位24から対向部位22へとリチウムイオンが移動する(図6(b)の矢印参照)。このような非対向部位24から対向部位22へのリチウムイオンの移動は、低電圧放置工程の放置時間が長ければ長いほど増大する傾向がある。つまり、低電圧放置工程の放置時間が長ければ長いほど、非対向部位24のリチウムイオンの残存量が少なくなる。   On the other hand, when the discharge treatment is performed in the low voltage standing step, lithium ions occluded in the negative electrode active material layer 20 are released into the electrolytic solution as shown in FIG. 6B. At that time, first, lithium ions are preferentially released from the facing portion 22 of the negative electrode active material layer 20. As the lithium ions are released (as the discharge progresses), the potential of the facing portion 22 of the negative electrode active material layer 20 increases. Then, the potential difference between the facing portion 22 and the non-facing portion 24 of the negative electrode active material layer 20 gradually increases. In order to eliminate this potential difference, lithium ions move from the non-facing portion 24 of the negative electrode active material layer 20 to the facing portion 22 (see arrows in FIG. 6B). Such movement of lithium ions from the non-facing portion 24 to the facing portion 22 tends to increase as the standing time of the low-voltage standing step increases. That is, the longer the standing time in the low voltage standing step, the smaller the remaining amount of lithium ions in the non-facing portion 24.

その後、スタック自己放電工程を実施するための電圧調整(充電処理)が行われると、図6(c)に示すように、リチウムイオンが負極活物質層20に再び入り込み、負極活物質層20の対向部位22に吸蔵されていく。そして、充電が進むと、負極活物質層20がリチウムイオンを吸蔵することにともなって、負極活物質層20の対向部位22の電位が下がる。このため、負極活物質層20において対向部位22と非対向部位24との電位差が拡大する。この電位差を解消させるために、負極活物質層20の対向部位22から非対向部位24にリチウムイオンが移動する。   Thereafter, when voltage adjustment (charging process) for performing the stack self-discharge process is performed, lithium ions enter the negative electrode active material layer 20 again as shown in FIG. The opposite site 22 is occluded. As charging proceeds, the negative electrode active material layer 20 occludes lithium ions, and the potential of the facing portion 22 of the negative electrode active material layer 20 decreases. For this reason, in the negative electrode active material layer 20, the potential difference between the facing portion 22 and the non-facing portion 24 increases. In order to eliminate this potential difference, lithium ions move from the facing portion 22 of the negative electrode active material layer 20 to the non-facing portion 24.

ここで、負極活物質層20の非対向部位24のリチウムイオンの残存量が少ないと、対向部位22と非対向部位24との電位差が大きいため、対向部位22から非対向部位24に多量のリチウムイオンが移動する。そのため、電池電圧が安定するのに長時間を要する。一方、負極活物質層20の非対向部位24のリチウムイオンの残存量が多いと、対向部位22と非対向部位24との電位差が小さいため、対向部位22から非対向部位24にリチウムイオンが殆ど移動しない。そのため、電池電圧が比較的短時間で安定する。このような理由から、低電圧放置工程の放置時間が長いほど、電池電圧がより短時間で安定すると考えられる。   Here, when the remaining amount of lithium ions in the non-facing portion 24 of the negative electrode active material layer 20 is small, the potential difference between the facing portion 22 and the non-facing portion 24 is large. Ions move. Therefore, it takes a long time for the battery voltage to stabilize. On the other hand, if the remaining amount of lithium ions in the non-facing portion 24 of the negative electrode active material layer 20 is large, the potential difference between the facing portion 22 and the non-facing portion 24 is small. Do not move. Therefore, the battery voltage is stabilized in a relatively short time. For this reason, it is considered that the battery voltage is stabilized in a shorter time as the leaving time in the low voltage leaving step is longer.

以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明に係る二次電池は、上述した何れの実施形態にも限定されず、種々の変更が可能である。   Although the lithium ion secondary battery according to one embodiment of the present invention has been described above, the secondary battery according to the present invention is not limited to any of the above-described embodiments, and various modifications can be made.

上述したように、本発明は電池(例えば、リチウムイオン二次電池)の性能向上に寄与し得る。本発明は、ハイブリッド車や、電気自動車の駆動用電池など車両駆動電源用のリチウムイオン二次電池に好適である。すなわち、リチウムイオン二次電池は、例えば、自動車などの車両のモータ(電動機)を駆動させる車両駆動用電源として好適に利用され得る。車両駆動用電源は、複数の二次電池を組み合わせた組電池としてもよい。   As described above, the present invention can contribute to improving the performance of a battery (for example, a lithium ion secondary battery). The present invention is suitable for a lithium ion secondary battery for a vehicle driving power source such as a driving battery for a hybrid vehicle or an electric vehicle. That is, for example, the lithium ion secondary battery can be suitably used as a vehicle driving power source for driving a motor (electric motor) of a vehicle such as an automobile. The power source for driving the vehicle may be an assembled battery in which a plurality of secondary batteries are combined.

10 正極活物質層
20 負極活物質層
22 負極活物質層の対向部位
24 負極活物質層の非対向部位
S10 電池組立体構築工程
S20 初期充電工程
S30 高温エージング工程
S40 セル自己放電工程
S50 低電圧放置工程
S60 スタック自己放電工程


DESCRIPTION OF SYMBOLS 10 Positive electrode active material layer 20 Negative electrode active material layer 22 Opposite part 24 of negative electrode active material layer Non-opposite part of negative electrode active material layer S10 Battery assembly construction process S20 Initial charging process S30 High temperature aging process S40 Cell self-discharge process S50 Process S60 stack self-discharge process


Claims (1)

非水電解液二次電池を製造する方法であって:
正極および負極を備える電極体と、非水電解液とを電池ケースに収容した電池組立体を構築する電池組立体構築工程;
前記電池組立体に対して、常温域で所定の電圧値まで充電処理を行う初期充電工程;
前記電池組立体を所定の高温域で一定時間保持する高温エージング工程;
前記電池組立体を常温域で一定時間自己放電させる自己放電工程; および、
前記自己放電工程後の電池組立体を3V〜3.45Vの低電圧域まで放電させた後、該低電圧域にて1〜3時間放置する低電圧放置工程;
を包含する、非水電解液二次電池の製造方法。
A method of manufacturing a non-aqueous electrolyte secondary battery comprising:
A battery assembly construction process for constructing a battery assembly in which an electrode body including a positive electrode and a negative electrode and a nonaqueous electrolyte solution are housed in a battery case;
An initial charging step for charging the battery assembly to a predetermined voltage value in a normal temperature range;
A high temperature aging step of holding the battery assembly in a predetermined high temperature region for a predetermined time;
A self-discharge step of self-discharging the battery assembly for a predetermined time in a normal temperature range; and
The battery assembly after the self-discharge step is discharged to a low voltage range of 3V to 3.45V, and then left in the low voltage range for 1 to 3 hours;
A method for producing a non-aqueous electrolyte secondary battery.
JP2013230408A 2013-11-06 2013-11-06 Method for producing non-aqueous electrolyte secondary battery Active JP6120083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230408A JP6120083B2 (en) 2013-11-06 2013-11-06 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230408A JP6120083B2 (en) 2013-11-06 2013-11-06 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015090806A JP2015090806A (en) 2015-05-11
JP6120083B2 true JP6120083B2 (en) 2017-04-26

Family

ID=53194234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230408A Active JP6120083B2 (en) 2013-11-06 2013-11-06 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6120083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641756B2 (en) * 2015-07-21 2020-02-05 株式会社豊田自動織機 Manufacturing method of lithium ion secondary battery
CN107819093A (en) * 2017-10-17 2018-03-20 福建省致格新能源电池科技有限公司 A kind of method for eliminating resultant battery inflatable
KR20210004646A (en) 2019-07-05 2021-01-13 주식회사 엘지화학 Dignosis apparatus and method of battery cell
KR20210060825A (en) 2019-11-19 2021-05-27 주식회사 엘지에너지솔루션 Methods of activation for secondary battery
JP7561802B2 (en) 2022-09-22 2024-10-04 プライムプラネットエナジー&ソリューションズ株式会社 Method for testing short circuits in an electric storage device and method for manufacturing a connected device restraint

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP5464117B2 (en) * 2010-10-08 2014-04-09 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP5590012B2 (en) * 2011-11-30 2014-09-17 トヨタ自動車株式会社 Manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP2015090806A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6256761B2 (en) Secondary battery inspection method and manufacturing method
JP6135929B2 (en) Method for producing non-aqueous secondary battery
US9966638B2 (en) Manufacturing method for non-aqueous secondary battery
JP5408509B2 (en) Method for producing non-aqueous electrolyte type lithium ion secondary battery
JP6208708B2 (en) Lithium ion secondary battery and system using the same
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
JP5708977B2 (en) Assembled battery
JP5896024B2 (en) Charge control method and charge control device for secondary battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2017091923A (en) Capacity recovery method for lithium ion secondary battery
JP2009199929A (en) Lithium secondary battery
US11721833B2 (en) Method of producing lithium ion secondary battery and negative electrode material
JP5708510B2 (en) Non-aqueous electrolyte secondary battery
WO2013183460A1 (en) Lithium-ion secondary battery control system, battery system, and mobile body and power storage system equipped with same
JP2018106981A (en) Secondary battery
JP6038560B2 (en) Non-aqueous electrolyte battery storage or transport method, battery pack storage or transport method, and non-aqueous electrolyte battery charge state maintaining method
JP5978815B2 (en) Method for producing lithium ion secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP2017021989A (en) Nonaqueous electrolyte secondary battery
JP6315259B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5783415B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R151 Written notification of patent or utility model registration

Ref document number: 6120083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151