JP6112970B2 - Permanent magnet rotating electric machine - Google Patents
Permanent magnet rotating electric machine Download PDFInfo
- Publication number
- JP6112970B2 JP6112970B2 JP2013111495A JP2013111495A JP6112970B2 JP 6112970 B2 JP6112970 B2 JP 6112970B2 JP 2013111495 A JP2013111495 A JP 2013111495A JP 2013111495 A JP2013111495 A JP 2013111495A JP 6112970 B2 JP6112970 B2 JP 6112970B2
- Authority
- JP
- Japan
- Prior art keywords
- holding member
- stator
- permanent magnet
- rotor
- rotor core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
この発明は、永久磁石を用いた永久磁石式回転電機に関するものであり、特に回転電機の高速化および高トルク化を図った永久磁石式回転電機に関するものである。 The present invention relates to a permanent magnet type rotating electrical machine using a permanent magnet, and more particularly to a permanent magnet type rotating electrical machine that achieves higher speed and higher torque of the rotating electrical machine.
産業用モータ、電気自動車及びハイブリッド自動車などの回転電機においては、小型化・高出力化のため、永久磁石を用いた回転電機が使用される。このような永久磁石式回転電機は外部からの界磁エネルギーが不要なため小型化を達成できる。また、永久磁石式回転電機において更なる高出力化を図ろうとすると、永久磁石を電磁鋼板等の磁性部材を積層して構成されている回転子の表面近くだけではなく、回転子のより内径側まで放射状に配置する場合がある。 In rotating electric machines such as industrial motors, electric cars, and hybrid cars, rotating electric machines using permanent magnets are used for miniaturization and high output. Such a permanent magnet type rotating electrical machine does not require external field energy, and thus can be miniaturized. Further, in the permanent magnet type rotating electric machine, when trying to further increase the output, the permanent magnet is not only near the surface of the rotor formed by laminating magnetic members such as electromagnetic steel plates, but also on the inner diameter side of the rotor. May be arranged radially.
このとき、永久磁石を放射状に配置すると、回転子の内径側で磁束が漏洩するため、トルクに寄与する有効な磁束量が減少する問題がある。この磁束の漏れを低減するために、回転子鉄心を周方向に分割して、コアと永久磁石を周方向に配列することにより、回転子内径側に空隙を設けている。また、分割したコア片にピンを通し、コア軸線方向端部にある端板においてピンと結合した永久磁石式電動機が考えられる。
しかしながら、回転子鉄心が分割されているために、高速化の要求に対しては、結合するピンを強固にする必要があり、またピンが永久磁石からの磁束を妨げ、結果的に有効な磁束が減少する課題ある。また、コアの剛性が低いことから、永久磁石に応力が集中して永久磁石が破損する問題がある。
At this time, if the permanent magnets are arranged radially, the magnetic flux leaks on the inner diameter side of the rotor, and there is a problem that the effective amount of magnetic flux contributing to the torque is reduced. In order to reduce the leakage of the magnetic flux, the rotor core is divided in the circumferential direction, and the core and the permanent magnet are arranged in the circumferential direction, thereby providing a gap on the rotor inner diameter side. Further, a permanent magnet type electric motor is conceivable in which a pin is passed through the divided core piece, and the end plate at the end in the core axial direction is coupled to the pin.
However, because the rotor core is divided, it is necessary to strengthen the pin to be coupled to meet the demand for high speed, and the pin prevents the magnetic flux from the permanent magnet, resulting in an effective magnetic flux. There is a problem that decreases. Further, since the core has low rigidity, there is a problem that stress is concentrated on the permanent magnet and the permanent magnet is damaged.
これらの問題を解決する手法の一例として、周方向に一体となったロータコアを積層して構成された回転子において、ロータコアに放射状に配置された永久磁石は、シャフト側に位置する長辺とロータコアの外周側に位置する短辺と互いに平行でない側辺とからなる台形形状とし、永久磁石の長辺に隣接するロータコアの一部を切除してエアギャップを形成し、そのエアギャップ内に非磁性材料(樹脂等)を配置した技術が提案されている(特許文献1参照)。
このような構成を採用することによって、回転子内径の漏れ磁束を低減しつつ機械強度を確保することができる。
As an example of a technique for solving these problems, in a rotor configured by stacking rotor cores integrated in the circumferential direction, permanent magnets arranged radially on the rotor core have long sides positioned on the shaft side and the rotor core. A trapezoidal shape consisting of a short side located on the outer circumference side and a side that is not parallel to each other, a part of the rotor core adjacent to the long side of the permanent magnet is cut away to form an air gap, and the non-magnetic inside the air gap A technique in which materials (resins and the like) are arranged has been proposed (see Patent Document 1).
By adopting such a configuration, it is possible to ensure the mechanical strength while reducing the leakage magnetic flux of the rotor inner diameter.
特許文献1では、回転子内径側の漏れ磁束低減のために、回転子内径側の磁石端部にエアギャップまたはそのエアギャップ内に非磁性材料(樹脂等)が周方向等間隔に設けられている。しかしながら、エアギャップ間の回転子鉄心内壁は機械的強度を保つ範囲で間隔を設ける必要があると考えられ、依然、十分に漏れ磁束を低減できない課題がある。 In Patent Document 1, in order to reduce leakage magnetic flux on the rotor inner diameter side, an air gap or a nonmagnetic material (resin or the like) is provided at equal intervals in the circumferential direction at the magnet end on the rotor inner diameter side. Yes. However, it is considered that the inner wall of the rotor core between the air gaps needs to be spaced within a range that maintains the mechanical strength, and there is still a problem that the leakage magnetic flux cannot be sufficiently reduced.
この発明は上記のような課題を解決するためになされたものであり、回転子内径側の漏れ磁束を低減しつつ、遠心力に対して十分な強度得られるように工夫した永久磁石式回転電機を得ることを目的とするものである。 The present invention has been made to solve the above-described problems, and is a permanent magnet type rotating electrical machine devised so as to obtain sufficient strength against centrifugal force while reducing leakage magnetic flux on the rotor inner diameter side. The purpose is to obtain.
この発明に係る永久磁石式回転電機は、固定子磁極を有する固定子鉄心および固定子磁極に巻回された固定子巻線を有する固定子と、固定子に対して回転する回転軸上に設けられた回転子から成り、回転子は、固定子磁極に対面して磁気的に結合される磁極を有する回転子鉄心と、磁極間に配置され、周方向に着磁されて軸方向に略直線状に配した永久磁石と、永久磁石の回転軸側端部付近の回転子鉄心に設けられた保持部材挿入孔に軸方向に貫通する非磁性の保持部材を備え、保持部材は保持部材挿入孔の周方向寸法より大きい部分を有するものである。 A permanent magnet type rotating electrical machine according to the present invention is provided on a stator core having a stator magnetic pole, a stator having a stator winding wound around the stator magnetic pole, and a rotating shaft that rotates with respect to the stator. The rotor is composed of a rotor core having a magnetic pole that is magnetically coupled to face the stator magnetic pole, and is disposed between the magnetic poles and is magnetized in the circumferential direction and substantially linear in the axial direction. And a non-magnetic holding member penetrating in the axial direction into a holding member insertion hole provided in the rotor core near the rotation shaft side end of the permanent magnet , and the holding member is a holding member insertion hole It has a part larger than the circumferential direction dimension .
この発明によれば、永久磁石の回転軸側端部に設けられた保持部材挿入孔に軸方向に貫通する非磁性の保持部材を設けているから、回転子内径側に漏れる磁束を低減して高トルクが得られ、また永久磁石が製作工程で破損することを抑制でき、回転子鉄心の機械強度を確保することができるので回転電機の高速化にも対応できる。 According to this invention, since the nonmagnetic holding member penetrating in the axial direction is provided in the holding member insertion hole provided at the rotation shaft side end of the permanent magnet, the magnetic flux leaking to the rotor inner diameter side is reduced. High torque can be obtained, permanent magnets can be prevented from being damaged during the manufacturing process, and the mechanical strength of the rotor core can be ensured, so that the speed of the rotating electrical machine can be increased.
実施の形態1.
以下、この発明の実施の形態1における永久磁石式回転電機を図1〜図6に基づいて説明する。
図1はこの発明の実施の形態1に係る永久磁石式回転電機の軸方向に垂直な断面図であり、図2は図1の回転子の一部を拡大したものであって、永久磁石の着磁方向と磁束の関係を示している。図3は保持部材を挿入し、回転子鉄心の劣化による透磁率が低下した領域を示している。図4は磁性部材である電磁鋼板等における劣化の有無によるB―H特性の比較を表したものである。図5は保持部材と保持部材挿入孔の斜視図を表したものである。図6は永久磁石式回転電機の分解斜視模式図である。
なお、この実施の形態では、回転電機として、縦埋込(スポーク)型の永久磁石式同期モータを例に説明する。
Embodiment 1 FIG.
Hereinafter, a permanent magnet type rotating electrical machine according to Embodiment 1 of the present invention will be described with reference to FIGS.
1 is a cross-sectional view perpendicular to the axial direction of a permanent magnet type rotating electric machine according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged view of a part of the rotor of FIG. The relationship between the magnetization direction and the magnetic flux is shown. FIG. 3 shows a region where the holding member is inserted and the magnetic permeability is lowered due to deterioration of the rotor core. FIG. 4 shows a comparison of BH characteristics depending on the presence or absence of deterioration in an electromagnetic steel sheet or the like as a magnetic member. FIG. 5 is a perspective view of the holding member and the holding member insertion hole. FIG. 6 is an exploded perspective schematic view of a permanent magnet type rotating electrical machine.
In this embodiment, a vertical embedded (spoke) type permanent magnet synchronous motor will be described as an example of a rotating electrical machine.
図1〜図3に示すように、この発明の実施の形態1に係る永久磁石式回転電機10は、環状の固定子1と、固定子1の内側に配置されて固定子1に対して回転する回転軸2上に設けられた回転子3から成り、固定子1と回転子3が同一の回転軸2を中心として構成されている。
固定子1は固定子磁極(ティース)11を有する固定子鉄心12および固定子磁極11に巻回された固定子巻線13で構成されている。回転子3は固定子磁極11に対面して磁気的に結合される磁極を有する回転子鉄心31と、各磁極間に配置され、周方向に着磁されて軸方向に略直線状に配した複数の永久磁石32と、永久磁石32の回転軸側端部付近の回転子鉄心に設けられた保持部材挿入孔33に軸方向に貫通する非磁性の保持部材34で構成されている。
As shown in FIGS. 1 to 3, the permanent magnet type rotating electric machine 10 according to the first embodiment of the present invention is arranged on the inner side of the annular stator 1 and the stator 1 and rotates with respect to the stator 1. The rotor 1 is provided on the rotating shaft 2 and the stator 1 and the rotor 3 are configured around the same rotating shaft 2.
The stator 1 includes a stator core 12 having a stator magnetic pole (tooth) 11 and a stator winding 13 wound around the stator magnetic pole 11. The rotor 3 has a rotor core 31 having magnetic poles that are magnetically coupled to face the stator magnetic pole 11, and is arranged between the magnetic poles. The rotor 3 is magnetized in the circumferential direction and arranged substantially linearly in the axial direction. A plurality of permanent magnets 32 and a nonmagnetic holding member 34 penetrating in the axial direction through a holding member insertion hole 33 provided in the rotor core near the rotating shaft side end of the permanent magnet 32 are configured.
永久磁石32は、回転軸2を中心として放射状に、周方向に同極が対向するように回転子鉄心31に埋め込まれており、また、永久磁石32は回転軸2を中心として、径方向に長手となる形状となっており、回転子鉄心31に永久磁石32が縦長に埋め込まれた縦埋込(スポーク)型の埋込磁石回転電機となっている。
なお、永久磁石32はフェライト磁石を使用して構成されるが、ネオジム等の希土類磁石、サマリウムコバルト磁石など他の磁石でも良い。
The permanent magnet 32 is embedded in the rotor core 31 so that the same poles are opposed to each other in the circumferential direction in a radial manner around the rotation axis 2, and the permanent magnet 32 is arranged in the radial direction around the rotation axis 2. It has a longitudinal shape, and is a vertically embedded (spoke) embedded magnet rotating electrical machine in which a permanent magnet 32 is vertically embedded in a rotor core 31.
In addition, although the permanent magnet 32 is configured using a ferrite magnet, other magnets such as a rare earth magnet such as neodymium and a samarium cobalt magnet may be used.
回転子鉄心31は、固定子1と対向する位置に永久磁石32を保持する鍔35を有しており、磁性部材を通しボルトまたはピン、カシメなどによって軸線方向に積層して構成してある。また、固定子1も同様に、磁性部材を積層して構成されている。ここでは、永久磁石32の数(極数)は8個、固定子磁極11の数(またはスロット数)は12個となっており、極数とスロット数は2:3であるが、これ以外の極数とスロット数の組合せでも問題ない。
また、図1に示す実施の形態では、固定子1を外側に、回転子3を内側に配置したインナーロータ型の回転電機であるが、固定子1と回転子3の位置が入れ替わったアウターロータ型の回転電機でも問題ない。
The rotor core 31 has a flange 35 that holds the permanent magnet 32 at a position facing the stator 1, and is configured by laminating a magnetic member in the axial direction with bolts, pins, caulking, or the like. The stator 1 is similarly configured by laminating magnetic members. Here, the number of permanent magnets 32 (the number of poles) is 8, the number of stator magnetic poles 11 (or the number of slots) is 12, and the number of poles and the number of slots is 2: 3. There is no problem with the combination of the number of poles and the number of slots.
Further, in the embodiment shown in FIG. 1, an inner rotor type rotating electrical machine in which the stator 1 is disposed on the outside and the rotor 3 is disposed on the inside, the outer rotor in which the positions of the stator 1 and the rotor 3 are interchanged. There is no problem with the type of rotating electrical machine.
保持部材34は、回転軸2側の永久磁石32端部周辺に、回転軸2を中心として周方向等間隔に配列され、回転子鉄心31に設けられた保持部材挿入孔33に埋め込まれている。なお、保持部材34はSUS304等の非磁性鋼が使用されるが、アルミニウム合金、セラミック、チタンなど他の非磁性材料でも良い。 The holding members 34 are arranged at equal intervals in the circumferential direction around the rotating shaft 2 around the end of the permanent magnet 32 on the rotating shaft 2 side, and are embedded in holding member insertion holes 33 provided in the rotor core 31. . The holding member 34 is made of nonmagnetic steel such as SUS304, but may be other nonmagnetic materials such as aluminum alloy, ceramic, and titanium.
図2に示すように、永久磁石32の着磁方向36は、黒太矢印で示した通り、略周方向に着磁され、隣り合う永久磁石32の着磁方向は逆である。また、永久磁石32の作る磁束37は、概ね図2の白抜き細矢印で示したように分布している。
たとえば、磁束37は、隣り合う永久磁石32同士の間の回転子鉄心31を、略径方向外方または内方に向かって通っている。この磁束37が固定子1の固定子巻線13と鎖交することで、トルクが生じる。
As shown in FIG. 2, the magnetization direction 36 of the permanent magnet 32 is magnetized in the substantially circumferential direction as indicated by the thick black arrow, and the magnetization directions of the adjacent permanent magnets 32 are opposite. Further, the magnetic flux 37 generated by the permanent magnet 32 is generally distributed as shown by the white thin arrows in FIG.
For example, the magnetic flux 37 passes through the rotor core 31 between the adjacent permanent magnets 32 substantially outward or inward in the radial direction. Torque is generated by the magnetic flux 37 interlinking with the stator winding 13 of the stator 1.
一方、概ね図2の白抜き細矢印で示す漏れ磁束37aは、永久磁石32から回転軸2側の回転子鉄心31を通り、同一の永久磁石32に向かって通っている。この漏れ磁束37aは固定子1の固定子巻線13と鎖交しないことから、トルクには寄与しない磁束であり、低減する必要がある。たとえば、漏れ磁束37aが通る磁路の磁気抵抗を上げるために、回転子鉄心31を磁極毎に周方向に切り離す方法がある。
しかしながら、回転子鉄心31を切り離すと高速回転時に遠心力により、回転子鉄心31が破損する恐れがある。また、回転子鉄心31からの応力が永久磁石32にかかると、永久磁石32が破損して回転子3と固定子1間の空隙に入り、永久磁石式同期モータ自体が故障する問題が考えられる。
On the other hand, the leakage magnetic flux 37 a indicated by the outlined thin arrow in FIG. 2 passes from the permanent magnet 32 through the rotor core 31 on the rotating shaft 2 side toward the same permanent magnet 32. Since this leakage magnetic flux 37a does not interlink with the stator winding 13 of the stator 1, it is a magnetic flux that does not contribute to torque and needs to be reduced. For example, there is a method of separating the rotor core 31 in the circumferential direction for each magnetic pole in order to increase the magnetic resistance of the magnetic path through which the leakage magnetic flux 37a passes.
However, if the rotor core 31 is separated, the rotor core 31 may be damaged by centrifugal force during high-speed rotation. Further, when the stress from the rotor iron core 31 is applied to the permanent magnet 32, the permanent magnet 32 is broken and enters the gap between the rotor 3 and the stator 1, and the permanent magnet type synchronous motor itself may break down. .
この発明では、前述の漏れ磁束37aを低減するために、永久磁石32の回転軸側端部付近の回転子鉄心31に保持部材挿入孔33を設け、この保持部材挿入孔33に非磁性の保持部材34を軸方向に貫通して設けることにより、回転子鉄心31の透磁率が小さくなる部分を設ける。このようにすることで、回転子鉄心31を周方向に一体にできるため機械的強度を確保しつつ、漏れ磁束を低減することができる。 In the present invention, in order to reduce the above-described leakage magnetic flux 37 a, the holding member insertion hole 33 is provided in the rotor core 31 near the rotating shaft side end of the permanent magnet 32, and the non-magnetic holding is held in the holding member insertion hole 33. By providing the member 34 penetrating in the axial direction, a portion where the magnetic permeability of the rotor core 31 is reduced is provided. By doing in this way, since the rotor core 31 can be united in the circumferential direction, leakage magnetic flux can be reduced, ensuring mechanical strength.
なお、保持部材挿入孔33に保持部材34を挿入する場合、後述するように保持部材34の周方向寸法は保持部材挿入孔33の周方向寸法より少し大きくなっている。したがって保持部材挿入孔33に保持部材34を挿入することによって、回転子鉄心31に応力が加わった箇所が生じる。この応力が加わった箇所は、図3に示すようにコア劣化部38となり、このコア劣化部38は保持部材挿入孔33間の回転子鉄心内壁から周方向に大きくした寸法程度の回転子鉄心31を劣化させた領域となり、透磁率が低下する。 When the holding member 34 is inserted into the holding member insertion hole 33, the circumferential dimension of the holding member 34 is slightly larger than the circumferential dimension of the holding member insertion hole 33 as will be described later. Therefore, by inserting the holding member 34 into the holding member insertion hole 33, a location where stress is applied to the rotor core 31 is generated. The portion where the stress is applied becomes a core deteriorated portion 38 as shown in FIG. 3, and the core deteriorated portion 38 is a rotor core 31 having a size that is increased in the circumferential direction from the inner wall of the rotor core between the holding member insertion holes 33. As a result, the magnetic permeability decreases.
コア劣化部38による回転子鉄心31の劣化について図4を用いて説明する。図4は回転子鉄心31に用いる電磁鋼板において、劣化の有無によるB―H特性の比較を表したものである。
図4に示すように、電磁鋼板は圧縮または引っ張り応力を受けると劣化が生じて磁束密度が下がり透磁率が低下する。この発明は、保持部材34を保持部材挿入孔33に挿入して、保持部材挿入孔33周辺の回転子鉄心31に圧縮応力または引っ張り応力を与えて、回転子鉄心31に劣化したコア劣化部38を設けることで、コア劣化部38の透磁率が低下して漏れ磁束37aを低減できる。そして、回転子鉄心31のコア劣化部38は、保持部材34による圧縮応力が加わることで加工硬化し、さらに機械強度を高めることができる。
Deterioration of the rotor core 31 by the core deterioration part 38 will be described with reference to FIG. FIG. 4 shows a comparison of the BH characteristics depending on the presence or absence of deterioration in the electromagnetic steel sheet used for the rotor core 31.
As shown in FIG. 4, when an electrical steel sheet is subjected to compression or tensile stress, the magnetic steel sheet deteriorates, the magnetic flux density is lowered, and the magnetic permeability is lowered. In the present invention, the core deterioration portion 38 deteriorated in the rotor core 31 by inserting the holding member 34 into the holding member insertion hole 33 and applying a compressive stress or a tensile stress to the rotor core 31 around the holding member insertion hole 33. By providing, the magnetic permeability of the core degradation part 38 falls and the leakage magnetic flux 37a can be reduced. And the core degradation part 38 of the rotor iron core 31 is work-hardened by the compressive stress by the holding member 34 being added, and can raise mechanical strength further.
図5は保持部材34とコア劣化部38と保持部材挿入孔33の斜視図を表している。図5には示されていないが、保持部材挿入孔33は回転子鉄心31に設けられる。保持部材34の軸方向端面の断面形状は、保持部材挿入孔33と略同一形状からなり、軸方向に延設した構成となっている。但し、保持部材34が保持部材挿入孔33に圧入挿入されるように、保持部材34の周方向寸法は保持部材挿入孔33の周方向寸法より大きい部分を有している。
例えば、図5(a)に示すように、保持部材34は軸線方向に向かうほど周方向寸法が大きくなるテーパ形状となっている。また、図5(b)に示すように、保持部材34はその軸線方向の中点に向かうほど周方向寸法が大きくなる形状となっている。
FIG. 5 is a perspective view of the holding member 34, the core deterioration portion 38, and the holding member insertion hole 33. Although not shown in FIG. 5, the holding member insertion hole 33 is provided in the rotor core 31. The cross-sectional shape of the axial end surface of the holding member 34 is substantially the same shape as the holding member insertion hole 33, and is configured to extend in the axial direction. However, the circumferential dimension of the holding member 34 is larger than the circumferential dimension of the holding member insertion hole 33 so that the holding member 34 is press-fitted into the holding member insertion hole 33.
For example, as shown in FIG. 5A, the holding member 34 has a tapered shape in which the circumferential dimension increases toward the axial direction. Further, as shown in FIG. 5B, the holding member 34 has a shape in which the circumferential dimension increases toward the midpoint in the axial direction.
このような構成により、保持部材34の挿入時に保持部材挿入孔33周辺の回転子鉄心31へ圧縮応力をかけることができ、さらに保持部材34の保持部材挿入孔33への挿入が容易となり製作性が向上する。なお、前述では圧入による保持部材34の挿入方法を記載したが、保持部材34を冷やし嵌めにより挿入するようにしたり、回転子鉄心31を焼き嵌めして挿入するようにしてもよい。ただし、圧入代および嵌め代は回転子鉄心31と保持部材34の機械的強度が損なわない程度の寸法にする。 With such a configuration, it is possible to apply a compressive stress to the rotor core 31 around the holding member insertion hole 33 when the holding member 34 is inserted, and the insertion of the holding member 34 into the holding member insertion hole 33 becomes easy. Will improve. Although the method for inserting the holding member 34 by press fitting has been described above, the holding member 34 may be inserted by cold fitting, or the rotor core 31 may be shrink fitted and inserted. However, the press-fitting allowance and the fitting allowance are set to dimensions that do not impair the mechanical strength of the rotor core 31 and the holding member 34.
永久磁石32は、一般に機械的強度が弱いため応力を受けると破損の恐れがある。このため、保持部材挿入孔33の周方向寸法は、永久磁石32の周方向寸法以上にすることが望ましい。周方向寸法以上にすることで、永久磁石32への局所的応力差が緩和され、永久磁石32の割れを生じにくくする。
また、保持部材挿入孔33は、回転軸2の垂直方向断面において、永久磁石32の回転軸側端部の延長線よりも内径側の領域内に設けることで、保持部材34の挿入時の応力を永久磁石32に伝達することを緩和する。
Since the permanent magnet 32 is generally weak in mechanical strength, it may be damaged when subjected to stress. For this reason, it is desirable that the circumferential dimension of the holding member insertion hole 33 be equal to or larger than the circumferential dimension of the permanent magnet 32. By setting it to the dimension in the circumferential direction or more, the local stress difference to the permanent magnet 32 is relieved, and the permanent magnet 32 is hardly cracked.
In addition, the holding member insertion hole 33 is provided in a region on the inner diameter side of the extension line of the rotation shaft side end portion of the permanent magnet 32 in the vertical cross section of the rotation shaft 2, so that stress at the time of insertion of the holding member 34 is obtained. Is transmitted to the permanent magnet 32.
次に、機械的強度を確保しつつ、漏れ磁束37aを低減するために、保持部材挿入孔33間の回転子鉄心31の間隔を、機械的強度が損なわない程度に細くする。また、望ましくは、保持部材挿入孔33間の回転子鉄心31の間隔は平行にする。同様に、保持部材挿入孔33と回転軸2間の回転子鉄心31の間隔は、機械的強度が損なわない程度に細くする。 Next, in order to reduce the leakage magnetic flux 37a while ensuring the mechanical strength, the interval between the rotor cores 31 between the holding member insertion holes 33 is reduced to such an extent that the mechanical strength is not impaired. Desirably, the interval between the rotor cores 31 between the holding member insertion holes 33 is parallel. Similarly, the space | interval of the rotor core 31 between the holding member insertion hole 33 and the rotating shaft 2 is made thin so that mechanical strength may not be impaired.
図6は回転子3(回転子鉄心31、永久磁石32、保持部材34)の分解斜視模式図である。図6に示すように、永久磁石32および保持部材34は、回転子鉄心31に回転軸2を中心に周方向等間隔に配置され、軸線方向に挿入される。また、回転軸2が貫通し永久磁石32の軸方向端面と対向した、回転子鉄心31の半径より小さい径からなる端板39、ならびに回転子鉄心31と端板39を締結する通しボルトまたはピン(図示省略)を用いる場合がある。 FIG. 6 is an exploded perspective schematic view of the rotor 3 (rotor core 31, permanent magnet 32, holding member 34). As shown in FIG. 6, the permanent magnet 32 and the holding member 34 are arranged on the rotor core 31 at equal intervals in the circumferential direction around the rotary shaft 2 and are inserted in the axial direction. In addition, an end plate 39 having a diameter smaller than the radius of the rotor core 31, through which the rotary shaft 2 passes and facing the axial end surface of the permanent magnet 32, and a through bolt or pin for fastening the rotor core 31 and the end plate 39 together. (Not shown) may be used.
このように実施の形態1の発明は、回転子鉄心31を分割することなく、永久磁石32の回転軸側端部に設けられた保持部材挿入孔33に軸方向に貫通する非磁性の保持部材34を設けているから、漏れ磁束を低減して回転電機の出力密度を向上できる。また永久磁石32に応力はかけずに、保持部材34で回転子鉄心31に応力をかけて、回転子鉄心31の内周側を劣化させて透磁率を下げることで、より漏れ磁束を低減することができる。さらに、保持部材34は周方向のテーパ形状にすることで、保持部材挿入孔33への挿入が容易になり、組立性能が向上する。 As described above, the first embodiment of the present invention is a non-magnetic holding member that penetrates the holding member insertion hole 33 provided at the end of the permanent magnet 32 in the axial direction without dividing the rotor core 31. Since 34 is provided, the leakage flux can be reduced and the output density of the rotating electrical machine can be improved. Further, without applying stress to the permanent magnet 32, stress is applied to the rotor core 31 by the holding member 34, and the inner peripheral side of the rotor core 31 is deteriorated to lower the magnetic permeability, thereby further reducing the leakage magnetic flux. be able to. Furthermore, by making the holding member 34 tapered in the circumferential direction, the insertion into the holding member insertion hole 33 is facilitated, and the assembling performance is improved.
実施の形態2.
次に、この発明の実施の形態2における永久磁石式回転電機を図7に基づいて説明する。図7は実施の形態2における永久磁石式回転電機の分解斜視模式図である。
実施の形態1において、軸線方向に向かうほど周方向寸法が大きくなるテーパ形状を有する保持部材34(図5(a))を同じ方向から挿入した場合、図6の構成では、回転子鉄心31のコア劣化部38が軸線方向挿入側と反挿入側で偏りが生じてしまう。また、保持部材34の重心が軸線方向中点と異なるため、同一方向から挿入すると回転子3自体の重心が軸線方向中点からずれる場合がある。したがって、回転子3は磁気的、構造的にバランスが偏るため、スラスト力が生じる恐れがある。
Embodiment 2. FIG.
Next, a permanent magnet type rotating electrical machine according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 7 is an exploded perspective schematic view of the permanent magnet type rotating electric machine according to the second embodiment.
In Embodiment 1, when the holding member 34 (FIG. 5A) having a tapered shape whose circumferential dimension increases toward the axial direction is inserted from the same direction, in the configuration of FIG. The core deterioration portion 38 is biased between the axial insertion side and the non-insertion side. Further, since the center of gravity of the holding member 34 is different from the axial center point, the center of gravity of the rotor 3 itself may deviate from the axial center point when inserted from the same direction. Therefore, since the rotor 3 is magnetically and structurally unbalanced, a thrust force may be generated.
実施の形態2の発明は、このような磁気的、構造的にバランスが偏ることを抑制するようにした構成にしたもので、図7に示すように、保持部材34は、回転子鉄心31の軸方向長さと同じ長さの第一の保持部材34aと第二の保持部材34bに分け、その軸線方向端面の断面積が小さい面(テーパ形状は図示せず)から保持部材挿入孔33に周方向交互に軸線方向の両端から挿入するようにする。
こうして図6と同様に永久磁石32および第一の保持部材34aならびに第二の保持部材34bは、回転子鉄心31に回転軸2を中心に周方向等間隔に配置され、軸線方向に挿入される。
The invention of the second embodiment is configured to prevent such a magnetic and structural balance from being biased. As shown in FIG. 7, the holding member 34 includes the rotor core 31. The first holding member 34a and the second holding member 34b having the same length as the axial direction are divided, and the axial end face has a small cross-sectional area (tapered shape is not shown). Insert them alternately from both ends in the axial direction.
As in FIG. 6, the permanent magnet 32, the first holding member 34 a, and the second holding member 34 b are arranged at equal intervals in the circumferential direction around the rotating shaft 2 on the rotor core 31 and inserted in the axial direction. .
なお、図7では省略したが、回転軸2および永久磁石32の軸方向端面と対向し、回転子鉄心31の半径より小さい径からなる端板、ならびに回転子鉄心31と端板を締結する通しボルトまたはピンを用いる場合がある。
このように実施の形態2の発明は、回転子鉄心31の軸方向長さと同じ長さの第一の保持部材34aと第二の保持部材34bを、回転子鉄心31の両端から断面積の小さい面を対向させて周方向交互に配するようにしたから、軸線方向の上下で回転子鉄心31が劣化するため、回転子3の磁気的および構造的なバランスが良くなりスラスト力を抑制できる。
Although omitted in FIG. 7, the end plate which faces the axial end surfaces of the rotary shaft 2 and the permanent magnet 32 and has a diameter smaller than the radius of the rotor core 31, and the through which fastens the rotor core 31 and the end plate are fastened. Bolts or pins may be used.
As described above, according to the second embodiment, the first holding member 34 a and the second holding member 34 b having the same length as the axial length of the rotor core 31 are reduced in cross-sectional area from both ends of the rotor core 31. Since the surfaces are opposed to each other in the circumferential direction, the rotor core 31 deteriorates in the axial direction, so that the magnetic and structural balance of the rotor 3 is improved, and the thrust force can be suppressed.
実施の形態3.
次に、この発明の実施の形態3における永久磁石式回転電機を図8及び図9に基づいて説明する。図8は実施の形態3における永久磁石式回転電機の分解斜視模式図、図9は保持部材と保持部材挿入孔の斜視図を示したものである。
実施の形態1および2の発明は、回転子鉄心31と軸線寸法が略等しい保持部材34を各保持部材挿入孔33に軸線方向の一端からまたは両端から交互に挿入しており、テーパ形状からなる保持部材34を挿入する場合は、挿入側と反挿入側で回転子鉄心31への応力のかかり方が異なる。このため、反挿入側のコア劣化部38は、保持部材挿入側のコア劣化部38に比べて、劣化した領域が小さいもしくは劣化度合いが小さくなる場合がある。
Embodiment 3 FIG.
Next, a permanent magnet type rotating electrical machine according to Embodiment 3 of the present invention will be described with reference to FIGS. FIG. 8 is an exploded perspective schematic view of the permanent magnet type rotating electrical machine in the third embodiment, and FIG. 9 is a perspective view of the holding member and the holding member insertion hole.
In the first and second embodiments, the holding members 34 having substantially the same axial dimension as the rotor core 31 are inserted into the holding member insertion holes 33 alternately from one end or both ends in the axial direction, and have a tapered shape. When the holding member 34 is inserted, the method of applying stress to the rotor core 31 is different between the insertion side and the non-insertion side. For this reason, the non-insertion-side core deterioration part 38 may have a deteriorated area or a deterioration degree smaller than the core deterioration part 38 on the holding member insertion side.
実施の形態3の発明は、コア劣化部が軸線方向で均一になるようにした構成にしたもので、図8および図9に示すように、保持部材34は、回転子鉄心31の軸方向長さを略2等分した長さの第一の保持部材34cと第二の保持部材34dに分ける。そして第一の保持部材34cならびに第二の保持部材34dは、その軸線方向端面の断面積が小さい面(テーパ形状は図示せず)から保持部材挿入孔33に両端から挿入する。
こうして図6と同様に永久磁石32および第一の保持部材34cならびに第二の保持部材34dは、回転子鉄心31に回転軸2を中心に周方向等間隔に配置され、軸線方向に挿入される。
The invention of the third embodiment is configured such that the core deteriorated portion is uniform in the axial direction. As shown in FIGS. 8 and 9, the holding member 34 is the axial length of the rotor core 31. The length is divided into a first holding member 34c and a second holding member 34d having a length obtained by dividing the length into two equal parts. The first holding member 34c and the second holding member 34d are inserted into the holding member insertion hole 33 from both ends through a surface (tapered shape is not shown) having a small cross-sectional area of the axial end surface.
As in FIG. 6, the permanent magnet 32, the first holding member 34 c, and the second holding member 34 d are arranged at equal intervals in the circumferential direction around the rotating shaft 2 on the rotor core 31 and inserted in the axial direction. .
なお、図8では省略したが、回転軸2および永久磁石32の軸方向端面と対向し、回転子鉄心31の半径より小さい径からなる端板、ならびに回転子鉄心31と端板を締結する通しボルトまたはピンを用いる場合がある。
また、図9には、第一の保持部材34cならびに第二の保持部材34dと共に、コア劣化部38と保持部材挿入孔33の斜視図を表している。図9には示されていないが、第一の保持部材34cと第二の保持部材34dの間に回転子鉄心31が設けられる。
Although omitted in FIG. 8, an end plate that faces the axial end surfaces of the rotary shaft 2 and the permanent magnet 32 and has a diameter smaller than the radius of the rotor core 31, and a through hole that fastens the rotor core 31 and the end plate. Bolts or pins may be used.
9 shows a perspective view of the core deterioration portion 38 and the holding member insertion hole 33 together with the first holding member 34c and the second holding member 34d. Although not shown in FIG. 9, the rotor core 31 is provided between the first holding member 34c and the second holding member 34d.
図8に示すように、回転子鉄心31に埋め込まれた永久磁石32が、実施の形態1と同様に配置され、軸線方向を略2等分して第一の保持部材34cならびに第二の保持部材34dとなるように設けられている。
また図9に示すように、保持部材34c、34dの軸方向端面の断面形状は、保持部材挿入孔33と略同一形状からなり、軸方向に延設した構成となっている。保持部材34c、34dを保持部材挿入孔33に圧入する場合は、保持部材34c、34dの周方向寸法が保持部材挿入孔33の周方向寸法以上である部分を有する。好ましくは、軸線方向に向かうほど周方向寸法が大きくなるテーパ形状である。
As shown in FIG. 8, the permanent magnets 32 embedded in the rotor core 31 are arranged in the same manner as in the first embodiment, and the first holding member 34c and the second holding member are divided into approximately two equal parts in the axial direction. The member 34d is provided.
As shown in FIG. 9, the cross-sectional shape of the axial end surfaces of the holding members 34 c and 34 d is substantially the same shape as the holding member insertion hole 33, and is configured to extend in the axial direction. When the holding members 34 c and 34 d are press-fitted into the holding member insertion hole 33, the holding members 34 c and 34 d have a portion whose circumferential dimension is equal to or larger than the circumferential dimension of the holding member insertion hole 33. Preferably, the taper shape has a circumferential dimension that increases in the axial direction.
なお、前述では圧入による保持部材34の挿入方法を記載したが、保持部材34c、34dを冷やし嵌めにより挿入したり、または回転子鉄心31を焼き嵌めして挿入してもよい。ただし、圧入代および嵌め代は回転子鉄心31と保持部材34c、34dの機械的強度が損なわない程度の寸法にする。
そして、回転子鉄心31の軸線方向両端から第一の保持部材34cならびに第二の保持部材34dの断面積が小さいほうを対向するように保持部材挿入孔33に挿入することで、コア劣化部38を回転子鉄心31の両端付近の各保持部材挿入孔33周辺に設けることができる。
Although the method for inserting the holding member 34 by press-fitting has been described above, the holding members 34c and 34d may be inserted by cold fitting or the rotor core 31 may be shrink-fitted and inserted. However, the press-fitting allowance and the fitting allowance are set to dimensions that do not impair the mechanical strength of the rotor core 31 and the holding members 34c and 34d.
Then, by inserting the first holding member 34c and the second holding member 34d into the holding member insertion hole 33 from the opposite ends in the axial direction of the rotor core 31 so as to face each other, the core deterioration portion 38 is inserted. Can be provided around each holding member insertion hole 33 near both ends of the rotor core 31.
このように実施の形態3の発明は、保持部材34が回転子鉄心31の軸方向長さを略2等分した長さの第一の保持部材34cと第二の保持部材34dに分割され、断面積の小さい面を対向させて回転子鉄心31の両端から配するようにしたから、軸線方向の上下で回転子鉄心31が劣化するため、回転子3の磁気的および構造的なバランスが良くなりスラスト力を抑制できる。
また、実施の形態1、2に比べて回転子鉄心31に応力をかける面積が増えるためコア劣化領域を増やすことができ、さらに漏れ磁束を低減することができて出力を向上することができる。また、保持部材34が軸線方向に2分割されているため、保持部材内を流れる渦電流を低減することができる。
As described above, in the third embodiment, the holding member 34 is divided into the first holding member 34c and the second holding member 34d each having a length obtained by substantially dividing the axial length of the rotor core 31 into two equal parts. Since the surfaces having a small cross-sectional area face each other and are arranged from both ends of the rotor core 31, the rotor core 31 deteriorates in the upper and lower directions in the axial direction, so the magnetic and structural balance of the rotor 3 is good. The thrust force can be suppressed.
In addition, since the area where stress is applied to the rotor core 31 is increased as compared with the first and second embodiments, the core deterioration region can be increased, the leakage magnetic flux can be further reduced, and the output can be improved. Moreover, since the holding member 34 is divided into two in the axial direction, the eddy current flowing in the holding member can be reduced.
実施の形態4.
次に、この発明の実施の形態4における永久磁石式回転電機を図10及び図11に基づいて説明する。図10は実施の形態4における永久磁石式回転電機の分解斜視模式図、図11は保持部材と保持部材挿入孔の斜視図を示したものである。
実施の形態3の発明は、保持部材34が回転子鉄心31の軸方向長さを略2等分した長さの第一の保持部材34cと第二の保持部材34dに分割されていたが、実施の形態4の発明は、保持部材34を回転子鉄心31の周方向に略2等分したものである。
Embodiment 4 FIG.
Next, a permanent magnet type rotating electrical machine according to Embodiment 4 of the present invention will be described with reference to FIGS. FIG. 10 is an exploded perspective schematic view of the permanent magnet type rotating electric machine according to Embodiment 4, and FIG. 11 is a perspective view of the holding member and the holding member insertion hole.
In the invention of the third embodiment, the holding member 34 is divided into a first holding member 34c and a second holding member 34d having a length obtained by substantially dividing the axial length of the rotor core 31 into two equal parts. In the invention of the fourth embodiment, the holding member 34 is divided into approximately two equal parts in the circumferential direction of the rotor core 31.
図10および図11に示すように、第一及び第二の保持部材34e、34fは、回転子鉄心31の軸方向長さと略同じ長さで、保持部材34e、34fの軸線方向と垂直の断面形状は、保持部材挿入孔33の周方向を略2等分したものと略同一形状からなり、軸線方向に延設した構成となっている。
第一の保持部材34eならびに第二の保持部材34fは、その軸線方向端面の断面積が小さい面(テーパ形状は図示せず)から1つの保持部材挿入孔33に両端から挿入する。
こうして図6と同様に永久磁石32および第一の保持部材34eならびに第二の保持部材34fは、回転子鉄心31に回転軸2を中心に周方向等間隔に配置され、軸線方向に挿入される。
As shown in FIGS. 10 and 11, the first and second holding members 34e and 34f are substantially the same length as the axial length of the rotor core 31, and are perpendicular to the axial direction of the holding members 34e and 34f. The shape is substantially the same as that obtained by dividing the circumferential direction of the holding member insertion hole 33 into approximately two equal parts, and is configured to extend in the axial direction.
The first holding member 34e and the second holding member 34f are inserted into one holding member insertion hole 33 from both ends from a surface (taper shape is not shown) having a small cross-sectional area of the axial end surface thereof.
As in FIG. 6, the permanent magnet 32, the first holding member 34 e, and the second holding member 34 f are arranged at equal intervals in the circumferential direction around the rotating shaft 2 on the rotor core 31 and inserted in the axial direction. .
図10に示すように、回転子鉄心31に埋め込まれた永久磁石32が、実施の形態1と同様に配置され、周方向を略2等分して第一の保持部材34eならびに第二の保持部材34fが1つの保持部材挿入孔33に挿入されて設けられている。なお、図10では省略したが、実施の形態1〜3と同様に、回転子鉄心31および永久磁石32の軸方向端面と対向し、回転子鉄心31の半径より小さい径からなる端板、ならびに回転子鉄心31と端板を締結する通しボルトまたはピンを用いる場合がある。
また、図11には、第一の保持部材34eならびに第二の保持部材34fと共に、コア劣化部38と保持部材挿入孔33の斜視図を表している。図11には示されていないが、第一の保持部材34eと第二の保持部材34fの間に回転子鉄心31が設けられる。
As shown in FIG. 10, the permanent magnets 32 embedded in the rotor core 31 are arranged in the same manner as in the first embodiment, and the first holding member 34e and the second holding member are divided into substantially equal parts in the circumferential direction. A member 34 f is provided by being inserted into one holding member insertion hole 33. Although omitted in FIG. 10, as in the first to third embodiments, an end plate that faces the axial end surfaces of the rotor core 31 and the permanent magnet 32 and has a diameter smaller than the radius of the rotor core 31, and A through bolt or pin for fastening the rotor core 31 and the end plate may be used.
FIG. 11 shows a perspective view of the core deterioration portion 38 and the holding member insertion hole 33 together with the first holding member 34e and the second holding member 34f. Although not shown in FIG. 11, the rotor core 31 is provided between the first holding member 34e and the second holding member 34f.
第一の保持部材34eならびに第二の保持部材34fを保持部材挿入孔33に圧入する場合は、各保持部材34e、34fの周方向寸法が保持部材挿入孔33の略2等分以上である部分を有する。好ましくは、軸線方向に向かうほど周方向寸法が大きくなるテーパ形状である。
図11では、保持部材挿入孔33間の回転子鉄心31と接する面をテーパ形状にしたが、第一の保持部材34eと第二の保持部材34fが接する面をテーパ形状にしてもよい。または、回転子鉄心31と接する面と、保持部材34eと34fが接する面の両方をテーパ形状にしても問題ない。
In the case where the first holding member 34e and the second holding member 34f are press-fitted into the holding member insertion hole 33, the circumferential dimension of each holding member 34e, 34f is approximately equal to or more than half of the holding member insertion hole 33. Have Preferably, the taper shape has a circumferential dimension that increases in the axial direction.
In FIG. 11, the surface that contacts the rotor core 31 between the holding member insertion holes 33 is tapered, but the surface that contacts the first holding member 34e and the second holding member 34f may be tapered. Alternatively, both the surface in contact with the rotor core 31 and the surface in contact with the holding members 34e and 34f may be tapered.
なお、前述では圧入による保持部材34e、34fの挿入方法を記載したが、保持部材34e、34fを冷やし嵌めにより挿入する。または、回転子鉄心31を焼き嵌めして挿入してもよい。ただし、圧入代および嵌め代は回転子鉄心31と保持部材34e、34fの機械的強度が損なわない程度の寸法にする。
そして、第一の保持部材34eならびに第二の保持部材34fの断面積の小さい面を回転子鉄心31の両端から保持部材挿入孔33に挿入することで、コア劣化部38を回転子鉄心31両端付近の各保持部材挿入孔33周辺に設けることができる。
In the above description, the method for inserting the holding members 34e and 34f by press fitting is described. However, the holding members 34e and 34f are inserted by cold fitting. Alternatively, the rotor core 31 may be inserted by shrink fitting. However, the press-fitting allowance and the fitting allowance are set to dimensions that do not impair the mechanical strength of the rotor core 31 and the holding members 34e and 34f.
Then, by inserting the surfaces of the first holding member 34e and the second holding member 34f having small cross-sectional areas into the holding member insertion holes 33 from both ends of the rotor core 31, the core deterioration portion 38 is inserted into both ends of the rotor core 31. It can be provided around each holding member insertion hole 33 in the vicinity.
このように実施の形態4の発明は、保持部材34が保持部材挿入孔33の周方向寸法を略2等分した周方向寸法を有する第一の保持部材34eと第二の保持部材34fとに分割され、断面積の小さい面を対向させて回転子鉄心31の両端から配するようにしたから、回転子鉄心31に応力をかける面積が増えるためコア劣化領域を増やすことができ、さらに漏れ磁束を低減することができて出力を向上することができる。 As described above, according to the fourth embodiment, the holding member 34 is divided into the first holding member 34e and the second holding member 34f having a circumferential dimension obtained by dividing the circumferential dimension of the holding member insertion hole 33 into approximately two equal parts. Since it is divided and arranged from both ends of the rotor core 31 with the faces having a small cross-sectional area facing each other, the area where the stress is applied to the rotor core 31 is increased, so that the core deterioration region can be increased, and the leakage magnetic flux is further increased. Can be reduced and the output can be improved.
実施の形態5.
次に、この発明の実施の形態5における永久磁石式回転電機を図12に基づいて説明する。図12は実施の形態5に係る回転電機の軸方向に垂直な回転子の断面図の一部を示したものである。
図12に示すように、保持部材34は永久磁石32の回転軸側端部を包持するように、永久磁石32と接する面に永久磁石32の周方向寸法と略同一寸法の凹部34gを備えている。この凹部34gにより保持部材34に永久磁石32の回転軸側の一部を収納でき、また永久磁石32の固定子側端部を保持する鍔35と共に、保持部材34の径方向の移動を規定できる。
Embodiment 5. FIG.
Next, a permanent magnet type rotating electric machine according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 12 shows a part of a cross-sectional view of the rotor perpendicular to the axial direction of the rotating electrical machine according to the fifth embodiment.
As shown in FIG. 12, the holding member 34 includes a concave portion 34 g having substantially the same dimension as the circumferential direction dimension of the permanent magnet 32 on the surface in contact with the permanent magnet 32 so as to wrap the end portion on the rotating shaft side of the permanent magnet 32. ing. The concave portion 34g can accommodate a part of the rotating shaft side of the permanent magnet 32 in the holding member 34, and can regulate the radial movement of the holding member 34 together with the flange 35 that holds the stator side end of the permanent magnet 32. .
永久磁石32と保持部材34は凹部34gによる嵌合、更には接着等の手段により一体化できる。永久磁石32と保持部材34が一体化できたことで、永久磁石32を回転子鉄心31に挿入する製作工程時に割れや破損を防ぐことができる。前述したように、永久磁石32は周方向に着磁されており、永久磁石32の径方向に伸びる長辺と回転子鉄心31との磁気ギャップを限りなく小さくすることで、出力が向上する。
従って、永久磁石32と一体化した保持部材34は、永久磁石32の位置決めおよび保持が行えるので、永久磁石32の長辺と接する面は接着材等を使うことなく組み上げることが可能である。
The permanent magnet 32 and the holding member 34 can be integrated by means such as fitting by a concave portion 34g and further adhesion. Since the permanent magnet 32 and the holding member 34 can be integrated, cracking and breakage can be prevented during the manufacturing process of inserting the permanent magnet 32 into the rotor core 31. As described above, the permanent magnet 32 is magnetized in the circumferential direction, and the output is improved by reducing the magnetic gap between the long side extending in the radial direction of the permanent magnet 32 and the rotor core 31 as much as possible.
Therefore, since the holding member 34 integrated with the permanent magnet 32 can position and hold the permanent magnet 32, the surface in contact with the long side of the permanent magnet 32 can be assembled without using an adhesive or the like.
この実施の形態5では、実施の形態1の構造において保持部材34の形状を変形させた場合について述べたが、実施の形態2〜4の保持部材34の形状に、この実施の形態5の形状を適用した場合でも問題ない。
このように実施の形態5の発明は、保持部材34が永久磁石32の一部を包持するように、永久磁石と接する保持部材面に凹部34gを設けているから、永久磁石32の保持がしやすくなり、組み立て性能が向上する。
In the fifth embodiment, the case where the shape of the holding member 34 is deformed in the structure of the first embodiment has been described. However, the shape of the holding member 34 in the second to fourth embodiments is changed to the shape of the fifth embodiment. There is no problem even when applying.
As described above, in the fifth embodiment, the concave portion 34g is provided on the holding member surface in contact with the permanent magnet so that the holding member 34 covers a part of the permanent magnet 32. This improves the assembly performance.
実施の形態6.
次に、この発明の実施の形態6における永久磁石式回転電機を図13および図14に基づいて説明する。図13は実施の形態6に係る回転電機の回転子の側面図、図14は回転電機の軸方向に垂直な回転子の断面図の一部を示したものである。
これまで、実施の形態1から5では、保持部材34の周方向および径方向の形状を規定してきたが、実施の形態6の発明は、保持部材挿入孔33間の回転子鉄心31内壁の形状を規定したものである。
Embodiment 6 FIG.
Next, a permanent magnet type rotating electric machine according to Embodiment 6 of the present invention will be described with reference to FIGS. FIG. 13 is a side view of the rotor of the rotating electrical machine according to the sixth embodiment, and FIG. 14 is a partial cross-sectional view of the rotor perpendicular to the axial direction of the rotating electrical machine.
So far, in Embodiments 1 to 5, the shape of the holding member 34 in the circumferential direction and the radial direction has been defined. However, the invention of Embodiment 6 has the shape of the inner wall of the rotor core 31 between the holding member insertion holes 33. Is specified.
図13に示すように、回転子3における回転子鉄心31の端部付近をA−A断面とし、回転子鉄心31の中点付近をB−B断面とする。そして図14に示すように、保持部材挿入孔33の径方向に伸びる短辺と、隣接する保持部材挿入孔33の径方向に伸びる短辺を平行として、この2辺間の距離をLとする。
ここで、断面A−Aの内壁間距離L1と、断面B−Bの内壁間距離L2の関係がL1<L2となるように構成する。そして、保持部材34の周方向寸法は、B−B断面の保持部材挿入孔33の周方向寸法以上である部分を有する。
As shown in FIG. 13, the vicinity of the end portion of the rotor core 31 in the rotor 3 is an AA cross section, and the vicinity of the midpoint of the rotor core 31 is a BB cross section. Then, as shown in FIG. 14, the short side extending in the radial direction of the holding member insertion hole 33 and the short side extending in the radial direction of the adjacent holding member insertion hole 33 are parallel, and the distance between the two sides is L. .
Here, the relationship between the distance L1 between the inner walls of the section AA and the distance L2 between the inner walls of the section BB is configured to satisfy L1 <L2. And the circumferential direction dimension of the holding member 34 has a part which is more than the circumferential direction dimension of the holding member insertion hole 33 of a BB cross section.
このように保持部材挿入孔33間の回転子鉄心31の間隔Lを軸方向に沿って可変にすることで、保持部材34を挿入した場合に、保持部材挿入孔33間の回転子鉄心31に応力がかかることで回転子鉄心31にコア劣化部38が生じ、漏れ磁束を低減することができる。なおA−A断面からB−B断面の間に相当する回転子鉄心31のLの長さは、段階的に大きくしても良いし、連続的に大きくしても問題ない。また、A−A断面の反対側となる回転子鉄心31の端部は、B−B断面を中心に対称と考えてよい。 In this way, by making the interval L of the rotor core 31 between the holding member insertion holes 33 variable along the axial direction, when the holding member 34 is inserted, the rotor core 31 between the holding member insertion holes 33 is inserted into the rotor core 31. When the stress is applied, the core deterioration portion 38 is generated in the rotor core 31, and the leakage magnetic flux can be reduced. Note that the length of L of the rotor core 31 corresponding to the section from the AA cross section to the BB cross section may be increased stepwise or continuously. Further, the end of the rotor core 31 on the opposite side of the AA cross section may be considered symmetrical about the BB cross section.
保持部材34の形状は、保持部材挿入孔33の周方向寸法以上である部分を有し、軸線方向に直線的に伸ばした形状でも前述した効果が得られるが、回転子鉄心31の両端に向かうほど周方向寸法が小さくなるテーパ形状にすることで、より回転子鉄心31に応力をかけることができるため漏れ磁束を低減できる。ただし、Lの寸法および保持部材34の周方向寸法は回転子鉄心31と保持部材34の機械的強度が損なわない程度の寸法にする。
なお、図14には示されていないが、回転子鉄心31および永久磁石32の軸方向端面と対向し、回転子鉄心31の半径より小さい径からなる端板、ならびに回転子鉄心31と端板を締結する通しボルトまたはピンを用いる場合がある。
The shape of the holding member 34 has a portion that is equal to or larger than the circumferential dimension of the holding member insertion hole 33, and the above-described effect can be obtained even when the holding member 34 is linearly extended in the axial direction. Since the rotor core 31 can be stressed more by forming the taper shape with a smaller circumferential dimension, the leakage magnetic flux can be reduced. However, the dimension L and the circumferential dimension of the holding member 34 are set to such dimensions that the mechanical strength of the rotor core 31 and the holding member 34 is not impaired.
Although not shown in FIG. 14, an end plate which faces the axial end surfaces of the rotor core 31 and the permanent magnet 32 and has a diameter smaller than the radius of the rotor core 31, and the rotor core 31 and the end plate There may be a case where a through bolt or a pin is used to fasten.
このように実施の形態6の発明は、保持部材34間の間隔が、軸方向両端に向かうほど小さくなるようにしているから、回転子鉄心31を分割することなく、漏れ磁束を低減して回転電機の出力密度を向上できる。
なおこの発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
As described above, according to the sixth embodiment, the distance between the holding members 34 is reduced toward the both ends in the axial direction, so that the leakage magnetic flux is reduced and the rotation is performed without dividing the rotor core 31. The output density of the electric machine can be improved.
It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
1:固定子、2:回転軸、3:回転子、11:固定子磁極(ティース)、
12:固定子鉄心、13:固定子巻線、31:回転子鉄心、32:永久磁石、
33:保持部材挿入孔、34、34a〜34f:保持部材(第一、第二の保持部材)、
34g:凹部、35:鍔、36:着磁方向、37:磁束、38:コア劣化部、
39:端板。
1: Stator, 2: Rotating shaft, 3: Rotor, 11: Stator magnetic pole (tooth),
12: Stator core, 13: Stator winding, 31: Rotor core, 32: Permanent magnet,
33: holding member insertion hole, 34, 34a to 34f: holding members (first and second holding members),
34 g: recessed portion, 35: ridge, 36: magnetization direction, 37: magnetic flux, 38: core deteriorated portion,
39: End plate.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013111495A JP6112970B2 (en) | 2013-05-28 | 2013-05-28 | Permanent magnet rotating electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013111495A JP6112970B2 (en) | 2013-05-28 | 2013-05-28 | Permanent magnet rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014233100A JP2014233100A (en) | 2014-12-11 |
JP6112970B2 true JP6112970B2 (en) | 2017-04-12 |
Family
ID=52126214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013111495A Expired - Fee Related JP6112970B2 (en) | 2013-05-28 | 2013-05-28 | Permanent magnet rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6112970B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6017101B1 (en) * | 2015-05-28 | 2016-10-26 | 三菱電機株式会社 | Rotating electric machine |
DE112016002394T5 (en) | 2015-05-28 | 2018-02-15 | Mitsubishi Electric Corporation | ROTATING ELECTRIC MACHINE |
CN113972806B (en) * | 2017-07-21 | 2023-10-31 | 株式会社电装 | Rotary electric machine |
KR102132900B1 (en) * | 2018-12-20 | 2020-07-14 | 계양전기 주식회사 | Rotor assembly for spoke type motor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200701595A (en) * | 2005-06-28 | 2007-01-01 | Delta Electronics Inc | Motor rotor |
EP2568578A3 (en) * | 2011-09-07 | 2017-12-06 | Samsung Electronics Co., Ltd. | Motor and washing machine having the same |
KR101886154B1 (en) * | 2011-10-06 | 2018-08-08 | 삼성전자 주식회사 | Rotor of a motor and connecting pin for rotor |
-
2013
- 2013-05-28 JP JP2013111495A patent/JP6112970B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014233100A (en) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5722301B2 (en) | Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor | |
US8587175B2 (en) | Rotor of rotary electric machine | |
JP5141749B2 (en) | End plate and rotor of rotating electric machine using the same | |
CN110086274B (en) | Permanent magnet embedded motor and method for manufacturing the same | |
US20120200186A1 (en) | Rotor for electric rotating machine | |
US8937417B2 (en) | Rotating electric machine and wind power generation system | |
WO2014034344A1 (en) | Rotating electric machine | |
JP2011223836A (en) | Permanent magnet type revolving armature | |
JP2013021776A (en) | Rotary electric machine | |
US20180041080A1 (en) | Rotor, rotary electric machine, and method for manufacturing rotor | |
WO2016047078A1 (en) | Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine | |
US9800096B2 (en) | Interior permanent magnet synchronous motor with optimized thicknesses and sectional areas | |
WO2017195498A1 (en) | Rotor and rotary electric machine | |
JP2014155415A (en) | Embedded magnet rotor and method of manufacturing embedded magnet rotor | |
JP6112970B2 (en) | Permanent magnet rotating electric machine | |
JP6545387B2 (en) | Conscious pole rotor, motor and air conditioner | |
JP2013132124A (en) | Core for field element | |
JP4291211B2 (en) | Rotating electric machine rotor and rotating electric machine | |
WO2013111301A1 (en) | Rotor for synchronous electric motor, manufacturing method therefor, and synchronous electric motor | |
JP7038527B2 (en) | Manufacturing method of magnetic wedge for rotary electric machine, magnetic wedge for rotary electric machine, and rotary electric machine | |
JP6357859B2 (en) | Permanent magnet embedded rotary electric machine | |
JP6079132B2 (en) | Embedded magnet rotor | |
JP2020010539A (en) | Rotor and brushless motor | |
JP5750995B2 (en) | Synchronous motor | |
JP2011193627A (en) | Rotor core and rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170314 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6112970 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |