Nothing Special   »   [go: up one dir, main page]

JP6108545B2 - Square secondary battery and battery pack - Google Patents

Square secondary battery and battery pack Download PDF

Info

Publication number
JP6108545B2
JP6108545B2 JP2013134955A JP2013134955A JP6108545B2 JP 6108545 B2 JP6108545 B2 JP 6108545B2 JP 2013134955 A JP2013134955 A JP 2013134955A JP 2013134955 A JP2013134955 A JP 2013134955A JP 6108545 B2 JP6108545 B2 JP 6108545B2
Authority
JP
Japan
Prior art keywords
external terminal
positive
negative
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013134955A
Other languages
Japanese (ja)
Other versions
JP2015011807A (en
JP2015011807A5 (en
Inventor
博昭 江川
博昭 江川
池田 幸太郎
幸太郎 池田
勇人 小口
勇人 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013134955A priority Critical patent/JP6108545B2/en
Publication of JP2015011807A publication Critical patent/JP2015011807A/en
Publication of JP2015011807A5 publication Critical patent/JP2015011807A5/ja
Application granted granted Critical
Publication of JP6108545B2 publication Critical patent/JP6108545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

この発明は、角形二次電池および組電池に関し、より詳細には、正・負極の外部端子にバスバーのような接合部材が接合される角形二次電池、および複数の角形二次電池を備える組電池に関する。   The present invention relates to a prismatic secondary battery and an assembled battery, and more particularly, a prismatic secondary battery in which a joining member such as a bus bar is joined to positive and negative external terminals, and a set including a plurality of prismatic secondary batteries. It relates to batteries.

電気自動車等の車両用の電源用電池として、エネルー密度の高いリチウムイオン電池やニッケル水素電池等の二次電池が用いられている。二次電池は、高い出力電圧と大電力を要求されるため、バスバー等の接合部材により直列に接続して組電池とされる。
バスバーによる接続は、十分な接続強度を確保し、また、接触抵抗を小さくするのに適した方法として、通常、レーザ等の溶接法による接合が用いられる。
Secondary batteries such as lithium-ion batteries and nickel-metal hydride batteries with high energy density are used as power source batteries for vehicles such as electric vehicles. Since the secondary battery is required to have a high output voltage and a large electric power, it is connected in series by a joining member such as a bus bar to form an assembled battery.
As for the connection by the bus bar, joining by a welding method such as a laser is usually used as a method suitable for ensuring sufficient connection strength and reducing the contact resistance.

角形二次電池とバスバーとの接合として、角形二次電池の正・負極の外部端子の上面に小突起を設け、バスバーに貫通孔を設けて小突起に嵌合し、バスバーと小突起の境界部にレーザを照射して接合する構造が知られている(例えば、特許文献1参照)。この特許文献1には、正・負極の外部端子を、鍛造や切削により形成することが記載されている。鍛造により形成すれば、切削により形成するよりも生産性を向上することができる。   As a junction between the prismatic secondary battery and the bus bar, a small protrusion is provided on the upper surface of the positive and negative external terminals of the prismatic secondary battery, a through hole is provided in the bus bar, and the small protrusion is fitted. There is known a structure in which a part is bonded by irradiating a laser (see, for example, Patent Document 1). This Patent Document 1 describes that positive and negative external terminals are formed by forging or cutting. If it forms by forging, productivity can be improved rather than forming by cutting.

特開2012−248451号公報JP 2012-248451 A

角形二次電池の小型化を図り、正・負極の外部端子の面積を小さくすると、特許文献1に記載の構造では、バスバーと小突起の境界部の面積が小さいため、接合力が不足する。また、正・負極の外部端子を鍛造により形成する場合には、正・負極の外部端子の上面周縁部に発生するばりにより、正・負極の外部端子の上面からバスバーが浮き上がり、接合力が一層不足する可能性がある。   When the size of the square secondary battery is reduced and the areas of the positive and negative external terminals are reduced, the structure described in Patent Document 1 has insufficient bonding force because the area of the boundary between the bus bar and the small protrusion is small. When the positive and negative external terminals are formed by forging, the bus bar is lifted from the upper surface of the positive and negative external terminals by the flash generated at the peripheral edge of the upper surface of the positive and negative external terminals, and the bonding force is further increased. There may be a shortage.

本発明の角形二次電池は、正極電極と負極電極とを有する発電要素が収納された電池容器の一側部面に、前記正極電極に接続された正極外部端子と、前記負極電極に接続された負極外部端子とが設けられ、板状のバスバーが前記正極外部端子および前記負極外部端子それぞれの外周側面に対向するように前記正極外部端子上および前記負極外部端子上に載置され、前記正極外部端子および前記負極外部端子それぞれの上面に溶接される角形二次電池であって、前記正極外部端子および前記負極外部端子のそれぞれは、上面と周側面とを有し、前記上面は中央部に平坦面と、前記平坦面の周縁部に形成され下面側に向けて漸次傾斜する傾斜面とを有し、前記傾斜面の前記平坦面からの深さは、前記傾斜面が前記周側面に達した位置において0.08mm〜0.2mmであり、前記正極外部端子および前記負極外部端子のそれぞれは、前記上面の周縁部に前記平坦面に達しない高さのばりを有する。
また、本発明の組電池は、上記角形二次電池を複数個と、隣接する前記角形二次電池の前記正極外部端子と前記負極外部端子とを接続するバスバーとを備え、前記バスバーは、前記正極外部端子および前記負極外部端子それぞれの外周側面に対向するように前記正極外部端子上および前記負極外部端子上に載置され、前記バスバーの一端と前記正極外部端子とは、前記バスバーを厚さ方向に貫通し、前記バスバーと前記正極外部端子の前記上面との境界部を超え、前記正極外部端子の内部に達する溶融部で接合され、前記バスバーの他端と前記負極外部端子とは、前記バスバーを厚さ方向に貫通し、前記バスバーと前記負極外部端子の前記上面との境界部を超え、前記負極外部端子の内部に達する溶融部で接合されている。
The prismatic secondary battery of the present invention has a positive electrode external terminal connected to the positive electrode and a negative electrode connected to one side surface of a battery container containing a power generation element having a positive electrode and a negative electrode. A negative electrode external terminal, and a plate-like bus bar is placed on the positive electrode external terminal and the negative electrode external terminal so as to face the outer peripheral side surfaces of the positive electrode external terminal and the negative electrode external terminal, respectively, and the positive electrode A prismatic secondary battery welded to the upper surface of each of the external terminal and the negative electrode external terminal, wherein each of the positive electrode external terminal and the negative electrode external terminal has an upper surface and a peripheral side surface, and the upper surface is at a central portion. A flat surface and an inclined surface that is formed at a peripheral edge of the flat surface and gradually inclines toward the lower surface. The depth of the inclined surface from the flat surface is such that the inclined surface reaches the peripheral side surface. 0. A 8Mm~0.2Mm, wherein each of the positive electrode external terminal and the negative electrode external terminal, having the burr height which does not reach a flat surface on the periphery of the top surface.
The assembled battery of the present invention includes a plurality of the rectangular secondary batteries and a bus bar connecting the positive external terminal and the negative external terminal of the adjacent square secondary battery, and the bus bar includes the The positive electrode external terminal and the negative electrode external terminal are placed on the positive electrode external terminal and the negative electrode external terminal so as to face the outer peripheral side surfaces of each of the positive electrode external terminal and the negative electrode external terminal. The other end of the bus bar and the negative electrode external terminal are bonded to each other at a melting portion that penetrates in the direction, exceeds the boundary between the bus bar and the upper surface of the positive electrode external terminal, and reaches the inside of the positive electrode external terminal. It penetrates the bus bar in the thickness direction, and is joined at a melted portion that reaches the inside of the negative electrode external terminal beyond the boundary between the bus bar and the upper surface of the negative electrode external terminal.

この発明によれば、平坦面からの深さが、周側面に達した位置において0.08mm〜0.2mmの傾斜面を設けたので、正・負極外部端子の上面周縁部にばりが発生した場合であっても、正・負極の外部端子とバスバーとの接合を、十分な接合強度を有するものとすることができる。   According to the present invention, since the inclined surface of 0.08 mm to 0.2 mm is provided at the position where the depth from the flat surface reaches the peripheral side surface, burr is generated at the peripheral portion of the upper surface of the positive / negative external terminal. Even in this case, the positive and negative external terminals and the bus bar can be bonded with sufficient bonding strength.

本発明に係る角形二次電池の一実施の形態の外観斜視図。1 is an external perspective view of an embodiment of a prismatic secondary battery according to the present invention. 図1に示された角形二次電池の分解斜視図。FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG. 1. 角形二次電池内に収納された発電要素の、捲回終端部側を展開した状態の斜視図。The perspective view of the state which expand | deployed the winding termination | terminus part side of the electric power generation element accommodated in the square secondary battery. (a)〜(d)は、鍛造により正・負極外部端子を作製する方法を示す模式的断面図。(A)-(d) is typical sectional drawing which shows the method of producing a positive / negative electrode external terminal by forging. 外部端子材と鍛造金型との隙間と溶接強度との関係を示す特性図。The characteristic view which shows the relationship between the clearance gap between an external terminal material and a forge metal mold | die, and welding strength. 正・負極外部端子の上面周縁部の拡大断面図。The expanded sectional view of the upper surface peripheral part of a positive / negative electrode external terminal. ばり高さの分布図。Distribution chart of beam height. 本発明の組電池の一実施の形態を説明するための図であり、(a)は組電池の上面図、(b)は、(a)におけるVIIIb−VIIIb線断面図。It is a figure for demonstrating one Embodiment of the assembled battery of this invention, (a) is a top view of an assembled battery, (b) is the VIIIb-VIIIb sectional view taken on the line in (a).

[角形二次電池の全体構造]
以下、この発明の角形二次電池および組電池の一実施の形態を図面と共に説明する。
図1は、本発明に係る角形二次電池の一実施の形態の外観斜視図であり、図2は、図1に示された角形二次電池の分解斜視図である。
以下の説明では、角形二次電池を、リチウムイオン電池として説明する。
角形二次電池C1は、電池缶1および電池蓋6を備える。電池缶1及び電池蓋6の材料としては、アルミニウムまたはアルミニウム合金等のアルミニウム系金属が用いられる。電池缶1は、矩形の底壁部22と、底壁部22から立ち上がる角筒状の側壁部21と、側壁部21の上端で上方に向かって開放された開口部1a(図2参照)とを有している。側壁部21は、一対の幅広面積部21aと一対の幅狭面積部21bとを有している。電池缶1内には、発電要素40(図3を参照)が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。
[Overall structure of prismatic secondary battery]
Hereinafter, an embodiment of a prismatic secondary battery and an assembled battery according to the present invention will be described with reference to the drawings.
FIG. 1 is an external perspective view of an embodiment of a prismatic secondary battery according to the present invention, and FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG.
In the following description, the square secondary battery is described as a lithium ion battery.
The square secondary battery C <b> 1 includes a battery can 1 and a battery lid 6. As a material of the battery can 1 and the battery lid 6, an aluminum-based metal such as aluminum or an aluminum alloy is used. The battery can 1 includes a rectangular bottom wall portion 22, a rectangular tubular side wall portion 21 rising from the bottom wall portion 22, and an opening 1 a (see FIG. 2) opened upward at the upper end of the side wall portion 21. have. The side wall part 21 has a pair of wide area part 21a and a pair of narrow area part 21b. In the battery can 1, a power generation element 40 (see FIG. 3) is housed, and the opening 1 a of the battery can 1 is sealed by the battery lid 6.

電池蓋6は、その周縁部が電池缶1の開口部1aの周縁部にレーザ溶接により接合される。電池缶1と電池蓋6によって密閉された電池容器10が構成される。電池蓋6には、正極外部端子8Aと、負極外部端子8Bが設けられている。
正極外部端子8Aと、負極外部端子8Bとは鍛造により形成されるものであるが、その形成方法については後述する。
正極外部端子8Aと負極外部端子8Bを介して発電要素40(図3を参照)に充電され、また外部負荷に電力が供給される。電池蓋6には、ガス排出弁12が一体的に設けられ、電池容器10内の圧力が上昇すると、ガス排出弁12が開いて内部からガスが排出され、電池容器10内の圧力が低減される。これによって、角形二次電池C1の安全性が確保される。
The battery lid 6 is joined at its peripheral edge to the peripheral edge of the opening 1 a of the battery can 1 by laser welding. A sealed battery container 10 is constituted by the battery can 1 and the battery lid 6. The battery lid 6 is provided with a positive external terminal 8A and a negative external terminal 8B.
The positive external terminal 8A and the negative external terminal 8B are formed by forging, and the formation method will be described later.
The power generation element 40 (see FIG. 3) is charged via the positive external terminal 8A and the negative external terminal 8B, and power is supplied to the external load. The battery cover 6 is integrally provided with a gas discharge valve 12. When the pressure in the battery container 10 rises, the gas discharge valve 12 opens to discharge gas from the inside, and the pressure in the battery container 10 is reduced. The Thereby, the safety of the square secondary battery C1 is ensured.

電池蓋6には、ガス排出弁12に隣接して注液栓11が設けられている。電池容器10内に発電要素40を収納し、電池容器10の開口部1aを電池蓋6により封口し、電池蓋6に設けられた注液口9から非水電解液を電池容器10内に注入した後、注液口9を注液栓11により封止する。   The battery lid 6 is provided with an injection stopper 11 adjacent to the gas discharge valve 12. The power generation element 40 is housed in the battery container 10, the opening 1 a of the battery container 10 is sealed with the battery lid 6, and the nonaqueous electrolyte is injected into the battery container 10 from the liquid injection port 9 provided in the battery lid 6. After that, the liquid injection port 9 is sealed with a liquid injection stopper 11.

非水電解液としては、例えば、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF6)を1モル/リットルの濃度で溶解したものを用いることができる。上記は一例であって、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにすればよく、本発明に用いられるリチウム塩や有機溶媒は特に制限されない。   As the non-aqueous electrolyte, for example, lithium hexafluorophosphate (LiPF6) was dissolved at a concentration of 1 mol / liter in a mixed solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. Things can be used. The above is an example, and a non-aqueous electrolytic solution in which a general lithium salt is used as an electrolyte and dissolved in an organic solvent may be used, and the lithium salt and the organic solvent used in the present invention are not particularly limited.

[発電要素]
図3は、発電要素40の斜視図である。図3では、発電要素40は、その捲回終端部側を展開した状態で図示されている。
発電要素40は、正極電極41と負極電極42とを、セパレータ43、44を介在して軸芯C−Cの周囲に捲回して、扁平直方体状に形成されている。
正極電極41は、例えば、アルミニウムまたはアルミニウム合金等のアルミニウム系金属からなる正極金属箔41aの表・裏両面に正極合剤が塗工された正極合剤塗工部41bを有する。正極合剤塗工部41bは、正極金属箔41aの一側縁に、正極金属箔41aが露出された正極合剤未塗工部41cが形成されるように正極金属箔41aに正極合剤を塗工して形成される。
負極電極42は、例えば、銅または銅合金等の銅系金属からなる負極金属箔42aの表・裏両面に負極合剤が塗工された負極合剤塗工部42bを有する。負極合剤塗工部42bは、負極合剤未塗工部42cが配置された側縁と対向する側縁である他側縁に、負極金属箔42aが露出された負極合剤未塗工部42cが形成されるように負極金属箔42aに負極合剤を塗工して形成される。
[Power generation element]
FIG. 3 is a perspective view of the power generation element 40. In FIG. 3, the power generation element 40 is illustrated in a state where the winding end portion side is developed.
The power generation element 40 is formed in a flat rectangular parallelepiped shape by winding a positive electrode 41 and a negative electrode 42 around the axis C-C with separators 43 and 44 interposed therebetween.
The positive electrode 41 includes, for example, a positive electrode mixture coating portion 41b in which a positive electrode mixture is coated on both the front and back surfaces of a positive electrode metal foil 41a made of aluminum metal such as aluminum or an aluminum alloy. The positive electrode mixture coating portion 41b applies the positive electrode mixture to the positive electrode metal foil 41a so that the positive electrode mixture uncoated portion 41c where the positive electrode metal foil 41a is exposed is formed on one side edge of the positive electrode metal foil 41a. It is formed by coating.
The negative electrode 42 includes, for example, a negative electrode mixture coating portion 42b in which a negative electrode mixture is coated on both the front and back surfaces of a negative electrode metal foil 42a made of copper-based metal such as copper or a copper alloy. The negative electrode mixture coated portion 42b is a negative electrode mixture uncoated portion in which the negative electrode metal foil 42a is exposed on the other side edge which is the side edge opposite to the side edge where the negative electrode mixture uncoated portion 42c is disposed. The negative electrode metal foil 42a is coated with a negative electrode mixture so that 42c is formed.

セパレータ43、44は、正極金属箔41aまたは負極金属箔42aを絶縁する役割を有している。負極電極42の負極合剤塗工部42bは、正極電極41の正極合剤塗工部41bよりも幅方向(X方向)および長手方向(Z方向)に大きく形成され、これにより正極合剤塗工部41bは、始端部から周端部までの全領域が負極合剤塗工部42bに覆われている。   The separators 43 and 44 have a role of insulating the positive electrode metal foil 41a or the negative electrode metal foil 42a. The negative electrode mixture coating portion 42b of the negative electrode 42 is formed larger in the width direction (X direction) and the longitudinal direction (Z direction) than the positive electrode mixture coating portion 41b of the positive electrode 41, whereby the positive electrode mixture coating is performed. As for the process part 41b, the whole area | region from a start end part to a peripheral end part is covered with the negative mix coating part 42b.

図3に図示されるように、発電要素40の外形形状は、高さ方向(Y方向)の両端部に形成された円弧部40Tと、両円弧部40Tの間に位置する一対の平坦部40Pとにより形成される扁平直方体状である。
発電要素40は、一方の円弧部40Tを下に向け、軸芯C−Cを電池缶1の底壁部22と平行にして、電池缶1内に収容されている。電池缶1内に収容された状態では、発電要素40の一対の平坦部40Pは、それぞれ、電池缶1の幅広面積部21aにほぼ平行に対面している。
As illustrated in FIG. 3, the outer shape of the power generation element 40 is an arc portion 40T formed at both ends in the height direction (Y direction) and a pair of flat portions 40P positioned between both arc portions 40T. It is a flat rectangular parallelepiped shape formed by.
The power generation element 40 is accommodated in the battery can 1 with one arc portion 40T facing downward and the axis C-C parallel to the bottom wall portion 22 of the battery can 1. In the state accommodated in the battery can 1, the pair of flat portions 40 </ b> P of the power generation element 40 face each other substantially parallel to the wide area portion 21 a of the battery can 1.

図2を参照して、角形二次電池C1の電池缶1には、絶縁シート2を介して発電要素40が収容されている。
上述した如く、発電要素40は、セパレータ43、44を介して正極電極41と負極電極42を扁平形状に捲回した電極群であり、捲回軸方向の両端面側には、正極合剤および負極合剤が塗布されていない正極合剤未塗工部41cおよび負極合剤未塗工部42cが設けられている。
発電要素40は、扁平形状に捲回されているため、断面半円形状の互いに対向する一対の湾曲部と、これら一対の湾曲部の間に連続して形成される平面部とを有している。発電要素40は、捲回軸方向が電池缶1の横幅方向に沿うように、一方の円弧部40T側から電池缶1内に挿入され、他方の一方の円弧部40T側が絶縁シート2の上部開口側に配置される。
With reference to FIG. 2, the power generation element 40 is accommodated in the battery can 1 of the square secondary battery C <b> 1 via the insulating sheet 2.
As described above, the power generation element 40 is an electrode group in which the positive electrode 41 and the negative electrode 42 are wound in a flat shape via the separators 43 and 44, and the positive electrode mixture and A positive electrode mixture uncoated portion 41c and a negative electrode mixture uncoated portion 42c to which no negative electrode mixture is applied are provided.
Since the power generation element 40 is wound in a flat shape, the power generation element 40 includes a pair of opposed curved portions having a semicircular cross section and a plane portion formed continuously between the pair of curved portions. Yes. The power generation element 40 is inserted into the battery can 1 from one arcuate portion 40T side so that the winding axis direction is along the lateral width direction of the battery can 1, and the other arcuate portion 40T side is the upper opening of the insulating sheet 2 Placed on the side.

発電要素40の平面部でかつ電極箔露出部である正極合剤未塗工部41cおよび負極合剤未塗工部42cは、少なくとも一部が束ねられて平板状とされており、それぞれ正極集電板4Aの一端と負極集電板4Bの一端に重ね合わされて接続されている。    The positive electrode mixture uncoated portion 41c and the negative electrode mixture uncoated portion 42c, which are the flat portion of the power generation element 40 and the electrode foil exposed portion, are at least partially bundled into a flat plate shape. It is overlapped and connected to one end of the electric plate 4A and one end of the negative electrode current collecting plate 4B.

正極集電板4Aの他端と負極集電板4Bの他端は、正極外部端子8Aと負極外部端子8Bにそれぞれ接続されている。正極集電板4Aには、過大電流が流れた場合に電流を遮断する電流遮断手段(ヒューズ)44が設けられている。電流遮断手段44は、例えば、正極集電板4Aの一部に狭い幅の箇所を設けて、かかる部分が過大電流により溶断して正極集電板4Aを発電要素40側と正極外部端子8A側に分離する構成を有している。尚、本実施形態では、電流遮断手段44は、正極集電板4Aに設けたが、負極集電板4Bに設けてもよく、或いは正極集電板4Aと負極集電板4Bの両方に設けてもよい。また、電流遮断手段44は、異常時に電流を遮断する構成であればよく、上記した構成に限定されるものではない。    The other end of the positive electrode current collector plate 4A and the other end of the negative electrode current collector plate 4B are connected to the positive electrode external terminal 8A and the negative electrode external terminal 8B, respectively. The positive current collector plate 4A is provided with a current interrupting means (fuse) 44 for interrupting the current when an excessive current flows. For example, the current interrupting means 44 is provided with a portion having a narrow width in a part of the positive electrode current collector plate 4A, and the portion is melted by an excessive current so that the positive electrode current collector plate 4A is separated from the power generation element 40 side and the positive electrode external terminal 8A side. It has the structure which isolate | separates into. In this embodiment, the current interrupting means 44 is provided on the positive current collector 4A, but may be provided on the negative current collector 4B, or provided on both the positive current collector 4A and the negative current collector 4B. May be. Further, the current interrupting means 44 may be any configuration as long as it interrupts the current in the event of an abnormality, and is not limited to the above configuration.

正極集電板4Aと負極集電板4B、および正極外部端子8Aと負極外部端子8Bを、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。
正極外部端子8Aは、バスバー50(図8参照)に溶接接合される溶接接合部13aと、正極集電板4Aに接続される正極接続部14aとが一体化して形成されている。負極外部端子8Bは、バスバー50に溶接接合される溶接接合部13bと、負極集電板4Bに接続される負極接続部14bとが一体化して形成されている。
In order to electrically insulate the positive electrode current collecting plate 4A and the negative electrode current collecting plate 4B, and the positive electrode external terminal 8A and the negative electrode external terminal 8B from the battery lid 6, respectively, a gasket 5 and an insulating plate 7 are provided on the battery lid 6. ing.
The positive external terminal 8A is formed by integrating a weld joint 13a welded to the bus bar 50 (see FIG. 8) and a positive electrode connection 14a connected to the positive current collector plate 4A. The negative external terminal 8B is formed by integrating a weld joint 13b welded to the bus bar 50 and a negative connection 14b connected to the negative current collector plate 4B.

正極接続部14a、負極接続部14bのそれぞれは、正極外部端子8A、負極外部端子8Bの下面から突出しており、その先端が電池蓋6の正極側貫通孔6A、負極側貫通孔6Bに挿入可能な円柱形状を有している。正極接続部14a、負極接続部14bは、電池蓋6を貫通して正極集電板4A、負極集電板4Bの正極集電板基部41A、負極集電板基部41Bよりも電池缶1の内部側に突出しており、先端がかしめられて、正極外部端子8A、負極外部端子8Bと、正極集電板4A、負極集電板4Bを電池蓋6に一体に固定している。    Each of the positive electrode connecting portion 14a and the negative electrode connecting portion 14b protrudes from the lower surfaces of the positive electrode external terminal 8A and the negative electrode external terminal 8B, and the tips thereof can be inserted into the positive electrode side through hole 6A and the negative electrode side through hole 6B. It has a cylindrical shape. The positive electrode connecting portion 14a and the negative electrode connecting portion 14b penetrate the battery lid 6 and are inside the battery can 1 more than the positive electrode current collector plate base 41A and the negative electrode current collector plate base 41B of the positive electrode current collector plate 4A and the negative electrode current collector plate 4B. The positive electrode external terminal 8 </ b> A, the negative electrode external terminal 8 </ b> B, the positive electrode current collector plate 4 </ b> A, and the negative electrode current collector plate 4 </ b> B are integrally fixed to the battery lid 6.

正極外部端子8Aおよび負極外部端子8Bのそれぞれと電池蓋6との間には、ガスケット5が介在されており、正極集電板4Aおよび負極集電板4Bのそれぞれと電池蓋6との間には、絶縁板7が介在されている。   Gasket 5 is interposed between each of positive electrode external terminal 8A and negative electrode external terminal 8B and battery cover 6, and between each of positive electrode current collector plate 4 A and negative electrode current collector plate 4 B and battery cover 6. Insulating plate 7 is interposed.

正極集電板4Aは、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41Aと、正極集電板基部41Aの側端で折曲されて、電池缶1の幅広面積部21aに沿って底壁部22側に向かって延出し、発電要素40の正極合剤未塗工部41cに対向して重ね合わされた状態で接続される正極側接続端部45Aを有している。負極集電板4Bは、電池蓋6の下面に対向して配置される矩形板状の負極集電板基部41Bと、負極集電板基部41Bの側端で折曲されて、電池缶1の幅広面積部21aに沿って底壁部22側に向かって延出し、発電要素40の負極合剤未塗工部42cに対向して重ね合わされた状態で接続される負極側接続端部45Bを有している。正極集電板基部41A、負極集電板基部41Bのそれぞれには、正極接続部14aが挿通される正極側開口孔43A、負極接続部14bが挿通される、負極側開口孔43Bがそれぞれ形成されている。   The positive electrode current collector plate 4A is bent at a rectangular plate-like positive electrode current collector plate base portion 41A disposed opposite to the lower surface of the battery lid 6 and the side end of the positive electrode current collector plate base portion 41A. It has a positive electrode side connection end 45A that extends toward the bottom wall portion 22 side along the wide area portion 21a and is connected in a state of being superimposed facing the positive electrode mixture uncoated portion 41c of the power generation element 40. doing. The negative electrode current collector plate 4B is bent at the rectangular plate-shaped negative electrode current collector plate base portion 41B disposed opposite to the lower surface of the battery lid 6 and the side end of the negative electrode current collector plate base portion 41B. A negative electrode side connection end 45B that extends toward the bottom wall portion 22 side along the wide area portion 21a and is connected in a state of being overlapped with the negative electrode mixture uncoated portion 42c of the power generation element 40 is provided. doing. Each of the positive electrode collector plate base 41A and the negative electrode collector plate base 41B is formed with a positive electrode side opening hole 43A through which the positive electrode connection part 14a is inserted and a negative electrode side opening hole 43B through which the negative electrode connection part 14b is inserted. ing.

[正・負極外部端子]
正極外部端子8Aはアルミニウム、アルミニウム合金等のアルミニウム系金属により形成され、負極外部端子8Bは、銅、銅合金等の銅系金属により形成されている。正極外部端子8Aと負極外部端子8Bとは、材料が異なる以外は、同一の構造を有する。このため、以下では、両部材を代表して正極外部端子8Aを例にして説明をするが、このことは負極外部端子8Bにおいても同じである。
上述した如く、正極外部端子8Aは、溶接接合部13aと、正極接続部14aとが一体化して形成されており、溶接接合部13aの上面には、バスバー50がレーザ溶接等の溶接により接合される(図8(a)、(b)参照)。
[Positive and negative external terminals]
The positive external terminal 8A is formed of an aluminum-based metal such as aluminum or an aluminum alloy, and the negative external terminal 8B is formed of a copper-based metal such as copper or a copper alloy. The positive external terminal 8A and the negative external terminal 8B have the same structure except that the materials are different. For this reason, in the following, the positive external terminal 8A will be described as an example on behalf of both members, but this also applies to the negative external terminal 8B.
As described above, the positive external terminal 8A is formed by integrating the weld joint 13a and the positive connection 14a, and the bus bar 50 is joined to the upper surface of the weld joint 13a by welding such as laser welding. (See FIGS. 8A and 8B).

溶接接合部13a(13b)は、(8.5mm〜10.5mm)×(10mm〜14mm)程度の矩形断面を有する直方体形状を有する。
図6は、溶接接合部13aの上部側の拡大断面図である。
溶接接合部13aの上面31は、中央部に形成された平坦面32と、溶接接合部13aの周縁部に形成された傾斜面33とを有する。傾斜面33は、平坦面32との境界から、溶接接合部13aの周側面35に向かうにしたがって、ほぼ直線的に溶接接合部13aの下面側に下降する傾斜している。つまり、傾斜面33は、周側面35の位置で、平坦面32からの深さEが最も深くなっている。後述する理由により、傾斜面33の最大の深さEは、傾斜面33が周側面35に達した位置において0.08mm〜0.2mmとなっている。傾斜面33の長さ、換言すれば、平坦面32と傾斜面33との境界から周側面35までの長さをDとした場合、傾斜面33の傾斜、すなわち、E/Dは、1/5以下とすることが好ましい。また、溶接接合部13aの面積を小さくするために、傾斜面33の長さDは、1.0mm以下とすることが好ましい。
The weld joint 13a (13b) has a rectangular parallelepiped shape having a rectangular cross section of about (8.5 mm to 10.5 mm) × (10 mm to 14 mm).
FIG. 6 is an enlarged cross-sectional view of the upper side of the weld joint 13a.
The upper surface 31 of the weld joint 13a has a flat surface 32 formed at the center and an inclined surface 33 formed at the peripheral edge of the weld joint 13a. The inclined surface 33 is inclined so as to descend from the boundary with the flat surface 32 toward the lower surface side of the weld joint 13a substantially linearly toward the peripheral side surface 35 of the weld joint 13a. That is, the inclined surface 33 has the deepest depth E from the flat surface 32 at the position of the peripheral side surface 35. For reasons described later, the maximum depth E of the inclined surface 33 is 0.08 mm to 0.2 mm at the position where the inclined surface 33 reaches the peripheral side surface 35. When the length of the inclined surface 33, in other words, the length from the boundary between the flat surface 32 and the inclined surface 33 to the peripheral side surface 35 is D, the inclination of the inclined surface 33, that is, E / D is 1 / 5 or less is preferable. In order to reduce the area of the weld joint 13a, the length D of the inclined surface 33 is preferably 1.0 mm or less.

[正・負極外部端子の製造方法]
正極外部端子8Aまたは負極外部端子8Bを鍛造により製造する方法を、図4(a)〜(d)を参照して説明する。ここでも、正・負極外部端子8A、8Bの代表として、正極外部端子8Aを製造する場合で説明する。
正極外部端子8Aを作製する外部端子材71を鍛造金型81内に収容する。外部端子材71は円柱体であり、鍛造金型81の内壁面81aとは隙間を有する径とされている。
鍛造金型81には、溶接接合部13aの周側面35と同一サイズの断面を有し、溶接接合部13aの高さより高い上部空間S1と、正極接続部14aと同一形状の下部空間S2とが形成されている。
[Method for manufacturing positive and negative external terminals]
A method of manufacturing the positive external terminal 8A or the negative external terminal 8B by forging will be described with reference to FIGS. Here, the case where the positive electrode external terminal 8A is manufactured as a representative of the positive and negative electrode external terminals 8A and 8B will be described.
The external terminal material 71 for producing the positive external terminal 8A is accommodated in the forging die 81. The external terminal material 71 is a cylindrical body, and has a diameter with a gap from the inner wall surface 81 a of the forging die 81.
The forging die 81 has an upper space S1 having a cross section of the same size as the peripheral side surface 35 of the weld joint 13a and a height higher than the height of the weld joint 13a, and a lower space S2 having the same shape as the positive electrode connection portion 14a. Is formed.

鍛造金型81内に収容された外部端子材71上に治具82を配置する。治具82の下端面83は、正極外部端子8Aの上面31と同一形状を有する。すなわち、治具82の下端面83には、正極外部端子8Aの平坦面32に対応する平坦面84と、下端面83の周縁部に形成され、正極外部端子8Aの傾斜面33と平行な傾斜面85が形成されている。   A jig 82 is arranged on the external terminal material 71 accommodated in the forging die 81. The lower end surface 83 of the jig 82 has the same shape as the upper surface 31 of the positive electrode external terminal 8A. That is, a flat surface 84 corresponding to the flat surface 32 of the positive electrode external terminal 8A and a peripheral portion of the lower end surface 83 are formed on the lower surface 83 of the jig 82, and the inclination is parallel to the inclined surface 33 of the positive electrode external terminal 8A. A surface 85 is formed.

治具82で外部端子材71を叩くと、治具82による圧縮荷重により外部端子材71が押し潰され、断面積が拡大すると共に、外部端子材71の下部側が変形し、鍛造金型81の下部空間S2内に押し込まれる(図4(b)参照)。また、外部端子材71の上面72は、治具82の下端面83の形状にならって、その周縁部に傾斜面74形成される。但し、最初のうちは、外部端子材71の最外周側に対応する一部の傾斜面74が形成され、この状態での傾斜面74の面積(幅)は、治具82の下端面83の傾斜面85の面積(幅)よりも小さい。   When the external terminal material 71 is hit with the jig 82, the external terminal material 71 is crushed by the compressive load applied by the jig 82, the cross-sectional area is enlarged, and the lower side of the external terminal material 71 is deformed. It is pushed into the lower space S2 (see FIG. 4B). Further, the upper surface 72 of the external terminal member 71 is formed with an inclined surface 74 at the peripheral edge thereof, following the shape of the lower end surface 83 of the jig 82. However, at first, a part of the inclined surface 74 corresponding to the outermost peripheral side of the external terminal material 71 is formed, and the area (width) of the inclined surface 74 in this state is that of the lower end surface 83 of the jig 82. It is smaller than the area (width) of the inclined surface 85.

さらに、治具82により圧縮荷重をかけると、外部端子材71の断面積がさらに拡大すると共に、外部端子材71の上面72の傾斜面74が鍛造金型82の傾斜面85と同じ面積(幅)になり、外部端子材71の上面72の中央部に、鍛造金型82の下端面83の平坦面84の面積(幅)と同じ面積(幅)の平坦面73が形成される(図4(c)参照)。
さらに鍛造を継続すると、外部端子材71の断面積が、鍛造金型81の上部空間S1の断面積と同一となり正極外部端子8Aが形成される(図4(d)参照)。
Furthermore, when a compressive load is applied by the jig 82, the cross-sectional area of the external terminal material 71 is further expanded, and the inclined surface 74 of the upper surface 72 of the external terminal material 71 has the same area (width) as the inclined surface 85 of the forging die 82. And a flat surface 73 having the same area (width) as the area (width) of the flat surface 84 of the lower end surface 83 of the forging die 82 is formed at the center of the upper surface 72 of the external terminal material 71 (FIG. 4). (See (c)).
When the forging is further continued, the cross-sectional area of the external terminal material 71 becomes the same as the cross-sectional area of the upper space S1 of the forging die 81, and the positive external terminal 8A is formed (see FIG. 4D).

図4(b)〜図4(d)に図示される鍛造行程中に、外部端子材71の傾斜面74の周縁部に、ダレやばりが生じることがある。ダレは外部端子材71の周縁部に、外部端子材71の充填が不足する場合に生じる。ばりは、主に、治具82による過押圧により、鍛造金型81と治具82の隙間(図示せず)に外部端子材71が充填されることにより生じる。   During the forging process illustrated in FIGS. 4B to 4D, sagging and flashing may occur at the peripheral edge of the inclined surface 74 of the external terminal material 71. The sagging occurs when the peripheral portion of the external terminal material 71 is insufficiently filled with the external terminal material 71. The flash is mainly generated when the external terminal material 71 is filled in a gap (not shown) between the forging die 81 and the jig 82 due to excessive pressing by the jig 82.

本実施形態では、正・負極外部端子8A、8Bの上面31にバスバー50が溶接される。従って、正・負極外部端子8A、8Bの上面31の周縁部に生じるダレに関しては、余り大きくならない限り、接合強度を確保することができる。
しかし、正・負極外部端子8A、8Bの上面31の周縁部に生じるばりは、バスバー50を正・負極外部端子8A、8Bの上面31から浮かせるため、接合強度を低下させる。
In the present embodiment, the bus bar 50 is welded to the upper surfaces 31 of the positive / negative external terminals 8A and 8B. Therefore, as for the sagging that occurs at the peripheral edge of the upper surface 31 of the positive / negative external terminals 8A, 8B, the bonding strength can be ensured as long as it does not become too large.
However, the flash generated at the periphery of the upper surface 31 of the positive / negative external terminals 8A, 8B causes the bus bar 50 to float from the upper surface 31 of the positive / negative external terminals 8A, 8B, thus reducing the bonding strength.

[ばりと接合強度の関係]
図5は、外部端子材と鍛造金型との隙間と溶接強度との関係を示す特性図である。
同図における接合強度は相対値である。また、隙間Eは、図6に図示された、周側面35の位置における平坦面32からの深さ、すなわち、傾斜面33の最大の深さである。
接合強度の測定は、正・負極外部端子8A、8Bの上面31上にバスバー50を載置し、バスバー50にレーザを照射しながら楕円形に走査してレーザ溶接した上で行った。外部端子材71の傾斜面74の傾斜角度は、1/5とし、外部端子材71と鍛造金型81との隙間は一定とした。外部端子材71の上面形状は、9.5mm×12.5mmの矩形形状である。
図5に図示されているように、正・負極外部端子8A、8Bとバスバー50の接合強度は、隙間Eが0.2mm程度以下では、平坦の場合とほぼ同一であった。
これにより、正・負極外部端子8A、8Bの傾斜面33の最大の深さEが、換言すれば、傾斜面33が周側面35に達した位置における平坦面32からの深さEが0.2mm以下であれば接合強度を低下せずに正・負極外部端子8A、8Bとバスバー50とを接合することができることが判る。
[Relationship between beam and bonding strength]
FIG. 5 is a characteristic diagram showing the relationship between the gap between the external terminal material and the forging die and the welding strength.
The bonding strength in the figure is a relative value. The gap E is the depth from the flat surface 32 at the position of the peripheral side surface 35 shown in FIG. 6, that is, the maximum depth of the inclined surface 33.
The measurement of the bonding strength was performed after placing the bus bar 50 on the upper surface 31 of the positive / negative external terminals 8A and 8B, performing elliptical scanning while irradiating the bus bar 50 with laser, and laser welding. The inclination angle of the inclined surface 74 of the external terminal material 71 was 1/5, and the gap between the external terminal material 71 and the forging die 81 was constant. The upper terminal shape of the external terminal material 71 is a rectangular shape of 9.5 mm × 12.5 mm.
As shown in FIG. 5, the bonding strength between the positive / negative external terminals 8A and 8B and the bus bar 50 was almost the same as the flat case when the gap E was about 0.2 mm or less.
Thereby, the maximum depth E of the inclined surface 33 of the positive / negative external terminals 8A, 8B is, in other words, the depth E from the flat surface 32 at the position where the inclined surface 33 reaches the peripheral side surface 35 is 0. It can be seen that the positive and negative external terminals 8A and 8B and the bus bar 50 can be joined without lowering the joining strength if it is 2 mm or less.

上記において、外部端子材71の傾斜面74の傾斜角度を1/5としたのは、傾斜角度をこれ以上にすると、治具82が、外部端子材71により集中応力を生じ、耐久性に支障を生じるためである。   In the above description, the inclination angle of the inclined surface 74 of the external terminal material 71 is set to 1/5. If the inclination angle is increased beyond this, the jig 82 generates concentrated stress on the external terminal material 71, which impairs durability. It is for producing.

図4(a)〜(d)に図示される鍛造により形成した正・負極外部端子8A、8Bの上面31の周縁部に形成されたばりの高さの分布が図7に図示されている。
図7から、ばりの高さは、0.07mm以下であることが判る。
このことから、正・負極外部端子8A、8Bの傾斜面33の最大の深さEを0.08mm以上とすれば、ばりは正・負極外部端子8A、8Bの上面31上に載置されたバスバー50に達することがなく、接合強度を低下することがないことが判る。
FIG. 7 shows the distribution of the height of the flash formed on the peripheral edge of the upper surface 31 of the positive / negative external terminals 8A and 8B formed by forging shown in FIGS. 4 (a) to 4 (d).
From FIG. 7, it can be seen that the height of the burr is 0.07 mm or less.
Therefore, if the maximum depth E of the inclined surface 33 of the positive / negative external terminals 8A, 8B is 0.08 mm or more, the beam is placed on the upper surface 31 of the positive / negative external terminals 8A, 8B. It can be seen that the bus bar 50 is not reached and the bonding strength is not lowered.

[組電池]
図8は、本発明の組電池の一実施の形態を説明するための図であり、図8(a)は組電池の上面図であり、図8(b)は、図8(a)におけるVIIIb−VIIIb線断面図である。
図8(a)に図示されるように、組電池100は、複数の角形二次電池C1を、複数個、厚さ方向に配列して構成されている。複数の角形二次電池C1は、隣接する角形二次電池C1を、幅広面積部21aを対向して、交互に反対向きにして配置されている。換言すれば、隣接する角形二次電池C1の異極性の外部端子同士が対向するように、つまり、正極外部端子8Aと負極外部端子8Bとが対向するように配置されている。
[Battery]
FIG. 8 is a diagram for explaining an embodiment of the assembled battery of the present invention, FIG. 8 (a) is a top view of the assembled battery, and FIG. 8 (b) is a diagram in FIG. 8 (a). It is a VIIIb-VIIIb line sectional view.
As shown in FIG. 8A, the assembled battery 100 is configured by arranging a plurality of rectangular secondary batteries C1 in the thickness direction. The plurality of prismatic secondary batteries C1 are arranged such that adjacent prismatic secondary batteries C1 are alternately opposed to each other with the wide area portion 21a facing each other. In other words, the different polarity external terminals of the adjacent rectangular secondary battery C1 are arranged to face each other, that is, the positive electrode external terminal 8A and the negative electrode external terminal 8B are arranged to face each other.

各角形二次電池C1の正極外部端子8Aと、隣接する角形二次電池C1の負極外部端子8Bとは、バスバー50により直列に接続されている。図8では、角形二次電池C1は3個として図示されているが、同様な接続を繰り返すことにより、多数の角形二次電池C1を、すべて、直列に接続することができる。   The positive electrode external terminal 8A of each square secondary battery C1 and the negative electrode external terminal 8B of the adjacent square secondary battery C1 are connected in series by a bus bar 50. In FIG. 8, three rectangular secondary batteries C1 are illustrated, but by repeating the same connection, a large number of rectangular secondary batteries C1 can all be connected in series.

バスバー50は、アルミニウム系金属により形成された正極側部51と、銅系金属により形成された負極側部52を有するクラッド材により形成されている。バスバー50の正極側部51を正極外部端子8Aの上面31上に載置し、負極側部52を負極外部端子8Bの上面上に載置し、正極側部51上からレーザを照射して正極外部端子8Aに接合する。また、負極側部52上からレーザを照射して負極外部端子8Bに接合する。
各接合は、レーザを照射しながら、楕円形に走査して行う。
The bus bar 50 is formed of a clad material having a positive electrode side portion 51 formed of an aluminum-based metal and a negative electrode side portion 52 formed of a copper-based metal. The positive electrode side portion 51 of the bus bar 50 is placed on the upper surface 31 of the positive electrode external terminal 8A, the negative electrode side portion 52 is placed on the upper surface of the negative electrode external terminal 8B, and the positive electrode side portion 51 is irradiated with laser from the positive electrode side portion. Bonded to the external terminal 8A. Further, the negative electrode side portion 52 is irradiated with a laser to be bonded to the negative electrode external terminal 8B.
Each bonding is performed by scanning an ellipse while irradiating a laser.

図8(b)に図示された正極側における断面図を例として説明すれば、レーザRは、バスバー50にほぼ垂直に照射される。レーザRの照射により、バスバー50が厚さ方向に溶融し、溶融部50Rが形成される。溶融部50Rは、バスバー50と正極外部端子8Aと境界面である正極外部端子8Aの上面31面を超え、正極外部端子8Aの内部に達する。レーザRをバスバー50の正極側部51上を楕円形状に走査することにより、バスバー50と正極外部端子8Aとが溶融部50Rで接合される。負極外部端子8Bとバスバー50の負極側部52との接合も同様に行うことができる。
バスバー50の厚さは、1.0mm〜1.5mm程度が好ましい。
If the cross-sectional view on the positive electrode side illustrated in FIG. 8B is described as an example, the laser R is applied to the bus bar 50 substantially perpendicularly. By irradiating the laser R, the bus bar 50 is melted in the thickness direction, and a melted part 50R is formed. The melting part 50R exceeds the upper surface 31 of the positive electrode external terminal 8A, which is a boundary surface between the bus bar 50 and the positive electrode external terminal 8A, and reaches the inside of the positive electrode external terminal 8A. By scanning the laser R on the positive electrode side portion 51 of the bus bar 50 in an elliptical shape, the bus bar 50 and the positive electrode external terminal 8A are joined at the melting portion 50R. The negative electrode external terminal 8B and the negative electrode side portion 52 of the bus bar 50 can be joined in the same manner.
The thickness of the bus bar 50 is preferably about 1.0 mm to 1.5 mm.

以上説明した通り、上記実施形態によれば、下記の効果を奏する。
(1)正・負極外部端子8A、8Bの上面31の周縁部に、周側面35に達した位置における平坦面32からの深さEが0.08mm〜0.2mm程度の傾斜面33を形成した。このため、鍛造により正・負極外部端子8A、8Bを作製した場合、正・負極外部端子8A、8Bの上面31の周縁部にばりが生じたとしても、レーザ溶接による接合強度の低下を無くすことができる。
As described above, according to the above embodiment, the following effects can be obtained.
(1) An inclined surface 33 having a depth E from the flat surface 32 at a position reaching the peripheral side surface 35 of about 0.08 mm to 0.2 mm is formed on the peripheral edge portion of the upper surface 31 of the positive / negative external terminals 8A and 8B. did. For this reason, when the positive / negative external terminals 8A and 8B are produced by forging, even if a flash occurs on the peripheral edge of the upper surface 31 of the positive / negative external terminals 8A and 8B, the decrease in the bonding strength due to laser welding is eliminated. Can do.

(2)正・負極外部端子8A、8Bの上面31の平坦面32の外周に形成する傾斜面33の傾斜角を、1/5以下とした。このため、外部端子材71により治具82の周縁部に生じる集中応力を小さくし、十分な耐久性を確保することができる。 (2) The inclination angle of the inclined surface 33 formed on the outer periphery of the flat surface 32 of the upper surface 31 of the positive / negative external terminals 8A and 8B is set to 1/5 or less. For this reason, the concentrated stress which arises in the peripheral part of the jig | tool 82 with the external terminal material 71 can be made small, and sufficient durability can be ensured.

(3)正・負極外部端子8A、8Bの上面31の平坦面32の外周に形成する傾斜面33の傾斜角を、1/5以下とすると共に、平坦面32と傾斜面33との境界から周側面35までの長さDを、1.0mm以下とした。このため、平坦面32に形成される傾斜面33の傾斜角が小さいにも拘らず、正・負極外部端子8A、8Bの上面31の面積を小さくすることができる。 (3) The inclination angle of the inclined surface 33 formed on the outer periphery of the flat surface 32 of the upper surface 31 of the positive / negative external terminals 8A and 8B is set to 1/5 or less and from the boundary between the flat surface 32 and the inclined surface 33. The length D to the peripheral side surface 35 was set to 1.0 mm or less. For this reason, although the inclination angle of the inclined surface 33 formed on the flat surface 32 is small, the area of the upper surface 31 of the positive / negative external terminals 8A and 8B can be reduced.

なお、上記一実施の形態では、電池容器10を電池缶1と電池蓋6とにより構成し、正極外部端子8Aおよび負極外部端子8Bを、電池蓋6に設ける構造として例示した。しかし、正極外部端子8Aおよび負極外部端子8Bを、電池缶1の幅狭面積部21bに設けたり、電池缶1に天井壁面を設け、この天井壁面に正極外部端子8Aおよび負極外部端子8Bを設けたりしてもよい。電池缶1に天井壁面を設ける場合には、電池缶1の底面を開口して、発電要素40等の収納口とする。   In the above embodiment, the battery container 10 is constituted by the battery can 1 and the battery lid 6, and the positive electrode external terminal 8 </ b> A and the negative electrode external terminal 8 </ b> B are exemplified as the structure provided on the battery lid 6. However, the positive electrode external terminal 8A and the negative electrode external terminal 8B are provided in the narrow area portion 21b of the battery can 1, or the battery can 1 is provided with a ceiling wall surface, and the positive electrode external terminal 8A and the negative electrode external terminal 8B are provided on the ceiling wall surface. Or you may. When the battery can 1 is provided with a ceiling wall surface, the bottom surface of the battery can 1 is opened to serve as a storage opening for the power generation element 40 and the like.

上記一実施の形態では、正・負極外部端子8A、8Bを四角柱形状として例示した。しかし、正・負極外部端子8A、8Bを、円柱形状、楕円や細長円の上面を有する柱形状、五角形以上の柱形状にしてもよい。   In the one embodiment, the positive / negative external terminals 8A and 8B are illustrated as a quadrangular prism shape. However, the positive / negative external terminals 8A and 8B may be formed in a columnar shape, a column shape having an upper surface of an ellipse or an ellipse, or a column shape of pentagon or more.

上記一実施の形態では、正・負極外部端子8A、8Bの傾斜面33を、直線的に下降する形状として例示したが、円弧状、楕円状等の曲線的に下降する形状としてもよい。   In the above embodiment, the inclined surfaces 33 of the positive and negative external terminals 8A and 8B are exemplified as a shape that descends linearly, but may be a shape that descends in a curved line such as an arc shape or an elliptical shape.

上記一実施の形態では、バスバー50をクラッド材として例示したが、鉄などの全体が単一の金属材料により形成するようにしてもよい。また、鉄などの金属表面に、めっきまたはコールドスプレイによりクロム等の被膜を形成するようにしてもよい。   In the above embodiment, the bus bar 50 is exemplified as the clad material, but the whole of iron or the like may be formed of a single metal material. Further, a film such as chromium may be formed on a metal surface such as iron by plating or cold spray.

上記一実施の形態では、組電池100を構成するすべての角形二次電池C1を直列に接続する構造として例示した。しかし、本発明は、角形二次電池C1を並列に、換言すれば、バスバー50介して、正極外部端子8A同士および負極外部端子8B同士を接合する構造に適用することもできる。   In the said one Embodiment, all the square secondary batteries C1 which comprise the assembled battery 100 were illustrated as a structure connected in series. However, the present invention can also be applied to a structure in which the rectangular secondary batteries C1 are connected in parallel, in other words, via the bus bar 50, the positive external terminals 8A and the negative external terminals 8B are joined together.

上記各実施形態では、角形二次電池C1をリチウムイオン電池として説明した。しかし、本発明は、ニッケル水素電池またはニッケル・カドミウム電池、鉛蓄電池のように水溶性電解液を用いる角形二次電池C1にも適用が可能である。   In the above embodiments, the square secondary battery C1 has been described as a lithium ion battery. However, the present invention can also be applied to a prismatic secondary battery C1 using a water-soluble electrolyte such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery.

その他、本発明は、発明の趣旨の範囲内において種々変形して適用することができ、要は、板状のバスバーが正極外部端子および負極外部端子それぞれの外周側面に対向するように正極外部端子上および負極外部端子上に載置され、正極外部端子および負極外部端子それぞれの上面に溶接される角形二次電池であって、正極外部端子および負極外部端子のそれぞれが、上面は中央部に平坦面を有すると共に、平坦面の周縁部に下面側に向けて漸次傾斜する傾斜面を有し、傾斜面の平坦面からの深さは、傾斜面が周側面に達した位置において0.08mm〜0.2mmであり、正極外部端子および負極外部端子のそれぞれは、上面の周縁部に平坦面に達しない高さのばりを有するものであればよい。
In addition, the present invention can be applied with various modifications within the scope of the invention. In short, the positive external terminal is such that the plate-like bus bar faces the outer peripheral side surfaces of the positive external terminal and the negative external terminal. A prismatic secondary battery mounted on the upper and negative electrode external terminals and welded to the upper surface of each of the positive electrode external terminal and the negative electrode external terminal. Each of the positive electrode external terminal and the negative electrode external terminal is flat at the center. And has an inclined surface that gradually slopes toward the lower surface side at the periphery of the flat surface, and the depth of the inclined surface from the flat surface is 0.08 mm to a position where the inclined surface reaches the peripheral side surface. It is 0.2 mm, and each of the positive electrode external terminal and the negative electrode external terminal only has to have a height flash that does not reach a flat surface at the periphery of the upper surface.

1 電池缶
6 電池蓋
8A 正極外部端子
8B 負極外部端子
10 電池容器
13a、13b 溶接接合部
14a 正極接続部
14b 負極接続部
21 側壁部
21a 幅広面積部
21b 幅狭面積部
31 上面
32 平坦面
33 傾斜面
35 周側面
40 発電要素
41 正極電極
42 負極電極
50 バスバー
50R 溶融部
71 外部端子材
81 鍛造金型
82 治具
100 組電池
C1 角形二次電池
S1 上部空間
S2 下部空間
DESCRIPTION OF SYMBOLS 1 Battery can 6 Battery cover 8A Positive electrode external terminal 8B Negative electrode external terminal 10 Battery container 13a, 13b Welding connection part 14a Positive electrode connection part 14b Negative electrode connection part 21 Side wall part 21a Wide area part 21b Narrow area part 31 Upper surface 32 Flat surface 33 Inclination Surface 35 Peripheral side surface 40 Power generation element 41 Positive electrode 42 Negative electrode 50 Bus bar 50R Melting part 71 External terminal material 81 Forging die 82 Jig 100 Battery assembly C1 Rectangular secondary battery S1 Upper space S2 Lower space

Claims (11)

正極電極と負極電極とを有する発電要素が収納された電池容器の一側部面に、前記正極電極に接続された正極外部端子と、前記負極電極に接続された負極外部端子とが設けられ、板状のバスバーが前記正極外部端子および前記負極外部端子それぞれの外周側面に対向するように前記正極外部端子上および前記負極外部端子上に載置され、前記正極外部端子および前記負極外部端子それぞれの上面に溶接される角形二次電池であって、
前記正極外部端子および前記負極外部端子のそれぞれは、上面と周側面とを有し、前記上面は中央部に平坦面と、前記平坦面の周縁部に形成され下面側に向けて漸次傾斜する傾斜面とを有し、前記傾斜面の前記平坦面からの深さは、前記傾斜面が前記周側面に達した位置において0.08mm〜0.2mmであり、
前記正極外部端子および前記負極外部端子のそれぞれは、前記上面の周縁部に前記平坦面に達しない高さのばりを有する、角形二次電池。
A positive electrode external terminal connected to the positive electrode and a negative electrode external terminal connected to the negative electrode are provided on one side surface of a battery container in which a power generation element having a positive electrode and a negative electrode is stored, Plate-shaped bus bars are placed on the positive external terminal and the negative external terminal so as to face the outer peripheral side surfaces of the positive external terminal and the negative external terminal, respectively. A prismatic secondary battery welded to the upper surface ,
Each of the positive electrode external terminal and the negative electrode external terminal has an upper surface and a peripheral side surface, and the upper surface is formed with a flat surface at the center and a slope formed gradually at the periphery of the flat surface toward the lower surface. And the depth of the inclined surface from the flat surface is 0.08 mm to 0.2 mm at a position where the inclined surface reaches the peripheral side surface,
Each of the positive electrode external terminal and the negative electrode external terminal is a prismatic secondary battery having a flash having a height that does not reach the flat surface at a peripheral portion of the upper surface.
請求項1に記載の角形二次電池において、
前記バスバーは、前記正極外部端子および前記負極外部端子それぞれの上面全体を覆って前記正極外部端子上および前記負極外部端子上に載置される、角形二次電池。
The prismatic secondary battery according to claim 1,
The bus bar is a prismatic secondary battery that covers the entire upper surface of each of the positive external terminal and the negative external terminal and is placed on the positive external terminal and the negative external terminal.
請求項1に記載の角形二次電池において、
前記傾斜面の前記平坦面から前記周側面間の長さは1.0mm以下である、角形二次電池。
The prismatic secondary battery according to claim 1,
The rectangular secondary battery, wherein a length between the flat surface of the inclined surface and the peripheral side surface is 1.0 mm or less.
請求項に記載の角形二次電池において、
前記傾斜面の傾斜角度は、1/5以下である、角形二次電池。
The prismatic secondary battery according to claim 3 ,
A prismatic secondary battery, wherein the inclined surface has an inclination angle of 1/5 or less.
請求項に記載の角形二次電池において、
前記正極外部端子はアルミニウム系金属により形成され、前記負極外部端子は銅系金属により形成されている、角形二次電池。
The prismatic secondary battery according to claim 4 ,
The prismatic secondary battery, wherein the positive external terminal is formed of an aluminum-based metal and the negative external terminal is formed of a copper-based metal.
請求項に記載の角形二次電池において、
前記正極外部端子および前記負極外部端子のそれぞれは、平面視で矩形形状である、角形二次電池。
The prismatic secondary battery according to claim 4 ,
Each of the positive electrode external terminal and the negative electrode external terminal is a rectangular secondary battery having a rectangular shape in plan view.
請求項に記載の角形二次電池において、
前記正極外部端子および前記負極外部端子のそれぞれの前記上面の周縁部に形成されたばりの高さは0.07mm以下である、角形二次電池。
The prismatic secondary battery according to claim 4 ,
A prismatic secondary battery in which a height of a flash formed on a peripheral portion of the upper surface of each of the positive electrode external terminal and the negative electrode external terminal is 0.07 mm or less.
請求項1乃至のいずれか一項に記載の複数の角形二次電池と、隣接する前記角形二次電池の前記正極外部端子と前記負極外部端子とを接続するバスバーとを備え、
前記バスバーは、前記正極外部端子および前記負極外部端子それぞれの外周側面に対向するように前記正極外部端子上および前記負極外部端子上に載置され、
前記バスバーの一端と前記正極外部端子とは、前記バスバーを厚さ方向に貫通し、前記バスバーと前記正極外部端子の前記上面との境界部を超え、前記正極外部端子の内部に達する溶融部で接合され、
前記バスバーの他端と前記負極外部端子とは、前記バスバーを厚さ方向に貫通し、前記バスバーと前記負極外部端子の前記上面との境界部を超え、前記負極外部端子の内部に達する溶融部で接合されている、組電池。
A plurality of prismatic secondary batteries according to any one of claims 1 to 7 , and a bus bar connecting the positive electrode external terminal and the negative electrode external terminal of the adjacent prismatic secondary battery,
The bus bar is placed on the positive external terminal and the negative external terminal so as to face the outer peripheral side surfaces of the positive external terminal and the negative external terminal,
One end of the bus bar and the positive external terminal are a melting part that penetrates the bus bar in the thickness direction, exceeds a boundary between the bus bar and the upper surface of the positive external terminal, and reaches the inside of the positive external terminal. Joined and
The other end of the bus bar and the negative electrode external terminal penetrate through the bus bar in the thickness direction, cross the boundary between the bus bar and the upper surface of the negative electrode external terminal, and reach the inside of the negative electrode external terminal The battery pack is joined by
請求項8に記載された組電池において、The assembled battery according to claim 8,
前記バスバーは、前記正極外部端子および前記負極外部端子それぞれの上面全体を覆って前記正極外部端子上および前記負極外部端子上に載置されている、組電池。The assembled battery, wherein the bus bar covers the entire upper surface of each of the positive external terminal and the negative external terminal and is placed on the positive external terminal and the negative external terminal.
請求項に記載の組電池において、
前記バスバーの厚さは、1.5mm以下である、組電池。
The assembled battery according to claim 8 ,
The battery pack has a thickness of 1.5 mm or less.
請求項に記載の組電池において、
前記バスバーは、前記一端がアルミニウム系金属により形成され、前記他端が銅系金属により形成されたクラッド材である、組電池。
The assembled battery according to claim 8 ,
The bus bar is an assembled battery in which the one end is a clad material formed of an aluminum-based metal and the other end of a copper-based metal.
JP2013134955A 2013-06-27 2013-06-27 Square secondary battery and battery pack Expired - Fee Related JP6108545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134955A JP6108545B2 (en) 2013-06-27 2013-06-27 Square secondary battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134955A JP6108545B2 (en) 2013-06-27 2013-06-27 Square secondary battery and battery pack

Publications (3)

Publication Number Publication Date
JP2015011807A JP2015011807A (en) 2015-01-19
JP2015011807A5 JP2015011807A5 (en) 2015-12-10
JP6108545B2 true JP6108545B2 (en) 2017-04-05

Family

ID=52304813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134955A Expired - Fee Related JP6108545B2 (en) 2013-06-27 2013-06-27 Square secondary battery and battery pack

Country Status (1)

Country Link
JP (1) JP6108545B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681543B2 (en) * 2016-07-21 2020-04-15 パナソニックIpマネジメント株式会社 Weld metal member and battery having the weld metal member
JP6814389B2 (en) * 2017-04-10 2021-01-20 トヨタ自動車株式会社 Batteries
JP7081929B2 (en) * 2018-01-31 2022-06-07 日東精工株式会社 Manufacturing method of external terminal for battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198842A (en) * 2009-02-24 2010-09-09 Hitachi Maxell Ltd Metal-pressed molding body and battery using the same
JP5528746B2 (en) * 2009-09-11 2014-06-25 三洋電機株式会社 Assembled battery
JP2011253779A (en) * 2010-06-04 2011-12-15 Nissan Motor Co Ltd Battery pack
JP2012138207A (en) * 2010-12-24 2012-07-19 Primearth Ev Energy Co Ltd Battery terminal and manufacturing method of the same
US9555505B2 (en) * 2011-03-03 2017-01-31 Showa Denko K.K. Forging method
JP2012248284A (en) * 2011-05-25 2012-12-13 Kojima Press Industry Co Ltd Battery holding connection structure

Also Published As

Publication number Publication date
JP2015011807A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5137918B2 (en) Secondary battery manufacturing method and secondary battery
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP6657843B2 (en) Rechargeable battery
JP6038802B2 (en) Battery pack and prismatic secondary battery for use in the battery pack
JP6363893B2 (en) Secondary battery
WO2009096160A1 (en) Secondary cell collector terminal board, secondary cell, and secondary cell manufacturing method
EP1779962A1 (en) Method for welding thin plates of different metal, joined body of thin plates of different metal, electric device, and electric device assembly
KR102209769B1 (en) Battery Module
US9017871B2 (en) Negative-electrode terminal for cell
JP5909504B2 (en) Welded structure in battery, method for forming the same, secondary battery cell, and secondary battery module
US9559347B2 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
JP6725351B2 (en) Electric storage element and method for manufacturing electric storage element
KR100599598B1 (en) Secondary battery, electrodes assembly and plate using the same
JP6192992B2 (en) Prismatic secondary battery
JP5957651B2 (en) Assembled battery
JP6108545B2 (en) Square secondary battery and battery pack
JP6184747B2 (en) Prismatic secondary battery
JP2015053129A (en) Square secondary battery
KR101182643B1 (en) Method for Production of Prismatic Battery Case
WO2013001644A1 (en) Assembled battery
KR101417280B1 (en) Secondary battery and method for fabricating the same
JP6133680B2 (en) Prismatic secondary battery
US11640880B2 (en) Energy storage device
JP6971990B2 (en) A method for manufacturing a secondary battery, a method for manufacturing a secondary battery, and a method for manufacturing a conductive member for a secondary battery.
JP2015115223A (en) Method of manufacturing sealed battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6108545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees