Nothing Special   »   [go: up one dir, main page]

JP6102408B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6102408B2
JP6102408B2 JP2013067111A JP2013067111A JP6102408B2 JP 6102408 B2 JP6102408 B2 JP 6102408B2 JP 2013067111 A JP2013067111 A JP 2013067111A JP 2013067111 A JP2013067111 A JP 2013067111A JP 6102408 B2 JP6102408 B2 JP 6102408B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
substrate
light
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013067111A
Other languages
Japanese (ja)
Other versions
JP2014192371A (en
Inventor
井上 光宏
光宏 井上
宏治 平田
宏治 平田
良平 稲沢
良平 稲沢
和田 聡
聡 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2013067111A priority Critical patent/JP6102408B2/en
Publication of JP2014192371A publication Critical patent/JP2014192371A/en
Application granted granted Critical
Publication of JP6102408B2 publication Critical patent/JP6102408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光装置、及びその製造方法に関する。   The present invention relates to a light emitting device and a manufacturing method thereof.

従来の発光装置として、AlN基板上に発光セルを搭載したものが知られている(例えば、特許文献1参照)。AlNは熱伝導率が高いため、AlN基板を用いることにより、発光装置の放熱特性を向上させることができる。   As a conventional light emitting device, a device in which a light emitting cell is mounted on an AlN substrate is known (for example, see Patent Document 1). Since AlN has high thermal conductivity, the heat dissipation characteristics of the light-emitting device can be improved by using an AlN substrate.

従来の他の発光装置として、貫通配線を設けたSi基板上に発光素子を搭載したものが知られている(例えば、特許文献2参照)。この発光素子は貫通電極に電気的に接続され、貫通電極を介してSi基板の背面の電極に接続される。   As another conventional light emitting device, a device in which a light emitting element is mounted on a Si substrate provided with a through wiring is known (for example, see Patent Document 2). This light emitting element is electrically connected to the through electrode, and is connected to the electrode on the back surface of the Si substrate through the through electrode.

特開2012−129546号公報JP 2012-129546 A 特開2006−135276号公報JP 2006-135276 A

AlNは高い熱伝導率を有するが、熱伝導率を向上させるためには結晶粒径を大きくする必要がある。AlNの結晶粒径が大きくなるほど、AlN基板の研磨工程やダイシング工程において基板表面からAlNの結晶粒子が脱落し易くなり、表面の平滑度が低下する。基板表面の平滑度が低いと、基板上に発光素子等の部材を形成する際に問題が生じる場合がある。   AlN has a high thermal conductivity, but it is necessary to increase the crystal grain size in order to improve the thermal conductivity. The larger the AlN crystal grain size, the easier the AlN crystal particles fall off from the substrate surface in the polishing process or dicing process of the AlN substrate, and the smoothness of the surface decreases. If the smoothness of the substrate surface is low, a problem may occur when a member such as a light emitting element is formed on the substrate.

例えば、基板表面上に形成される電極膜の平滑度も低くなるため、そこに発光素子をはんだ接続する場合に、はんだ中のボイド発生率が高くなる。このため、AlN基板上に発光素子をはんだ接続する場合、AlN基板の熱伝導率は高いものの、はんだ中のボイドにより発光素子からAlN基板へ熱が伝わりにくくなるため、装置の放熱特性が低くなるおそれがある。   For example, since the smoothness of the electrode film formed on the surface of the substrate is also lowered, the void generation rate in the solder is increased when the light emitting element is soldered thereto. For this reason, when the light emitting element is solder-connected on the AlN substrate, although the thermal conductivity of the AlN substrate is high, heat is not easily transmitted from the light emitting element to the AlN substrate due to voids in the solder, so the heat dissipation characteristics of the device are lowered. There is a fear.

本発明の目的の一つは、発光素子から基板へ、かつ基板の表面から裏面へ効果的に熱を逃がすことができる、放熱性に優れた発光装置、及びその製造方法を提供することにある。   One of the objects of the present invention is to provide a light emitting device excellent in heat dissipation and a method for manufacturing the same that can effectively release heat from the light emitting element to the substrate and from the front surface to the back surface of the substrate. .

本発明の一態様は、上記目的を達成するために、下記[1]〜[5]の発光装置の製造方法を提供する。   In order to achieve the above object, one embodiment of the present invention provides a method for manufacturing a light-emitting device according to any one of [1] to [5] below.

[1] 非導電性材料からなり、発光素子搭載部と発光素子搭載部を有する素子搭載基板の、前記発光素子搭載部と前記発光素子搭載部に対応する領域に複数の貫通孔を形成する工程と、前記複数の貫通孔を埋め、かつ、前記素子搭載基板の第1の主面及び第2の主面を覆う導電部材を形成する工程と、前記素子搭載基板の少なくとも前記第1の主面を露出させないように、前記導電部材の前記第1の主面及び前記第2の主面を覆う部分に平坦化処理を施す工程と、前記導電部材を前記素子搭載基板の面内方向に分離する工程と、前記導電部材の分離された異なる部分に、発光素子のn側電極とp側電極がそれぞれ電気的に接続されるように、前記発光素子を前記第1の主面側の前記素子搭載基板上に搭載する工程と、を含む発光装置の製造方法。 [1] Forming a plurality of through holes in a region corresponding to the light emitting element mounting portion and the light emitting element non- mounting portion of the element mounting substrate made of a non-conductive material and having a light emitting element mounting portion and a light emitting element non- mounting portion. Forming a conductive member that fills the plurality of through holes and covers the first main surface and the second main surface of the element mounting substrate, and at least the first of the element mounting substrate. A step of flattening a portion covering the first main surface and the second main surface of the conductive member so as not to expose the main surface; and the conductive member in an in-plane direction of the element mounting substrate. And separating the light emitting element on the first main surface side so that the n-side electrode and the p-side electrode of the light emitting element are electrically connected to the separated different portions of the conductive member, respectively. A light emitting device including a step of mounting on the element mounting substrate. Law.

[2] 前記発光素子は、前記素子搭載基板上にはんだ接続される、前記[1]に記載の発光装置の製造方法。 [2] The method for manufacturing a light-emitting device according to [1], wherein the light-emitting element is solder-connected on the element mounting substrate.

[3] 前記導電部材の前記複数の貫通孔内の部分の前記素子搭載基板中の体積占有率が13%以上である、前記[1]又は[2]に記載の発光装置の製造方法。 [3] The method for manufacturing a light-emitting device according to [1] or [2], wherein a volume occupancy ratio in the element mounting substrate of a portion in the plurality of through holes of the conductive member is 13% or more.

[4] 前記素子搭載基板はSi基板である、前記[1]〜[3]のいずれか1項に記載の発光装置の製造方法。 [4] The method for manufacturing a light-emitting device according to any one of [1] to [3], wherein the element mounting substrate is a Si substrate.

[5] 複数の発光素子を前記素子搭載基板上に搭載する、[1]〜[4]のいずれか1項に記載の発光装置の製造方法。 [5] The method for manufacturing a light emitting device according to any one of [1] to [4], wherein a plurality of light emitting elements are mounted on the element mounting substrate.

また、本発明の他の態様は、上記目的を達成するために、下記[6]の発光装置を提供する。   In order to achieve the above object, another aspect of the present invention provides a light emitting device of the following [6].

[6]前記[1]〜[5]のいずれか1項に記載の発光装置の製造方法により製造された、発光装置。 [6] A light-emitting device manufactured by the method for manufacturing a light-emitting device according to any one of [1] to [5].

本発明によれば、発光素子から基板へ、かつ基板の表面から裏面へ効果的に熱を逃がすことができる、放熱性に優れた発光装置、及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device excellent in heat dissipation which can escape heat effectively from a light emitting element to a board | substrate and from the surface of a board | substrate to a back surface, and its manufacturing method can be provided.

図1は、第1の実施の形態に係る発光装置の垂直断面図である。FIG. 1 is a vertical cross-sectional view of the light emitting device according to the first embodiment. 図2(a)〜(d)は、第1の実施の形態に係る導電部材の製造工程を示す拡大された垂直断面図である。2A to 2D are enlarged vertical cross-sectional views showing the manufacturing process of the conductive member according to the first embodiment. 図3(e)〜(g)は、第1の実施の形態に係る導電部材の製造工程を示す拡大された垂直断面図である。FIGS. 3E to 3G are enlarged vertical sectional views showing the manufacturing process of the conductive member according to the first embodiment. 図4(a)は、第1の実施の形態に係る発光装置の放熱経路を模式的に表す。図4(b)は、比較例に係る発光装置の放熱経路を模式的に表す。FIG. 4A schematically shows a heat dissipation path of the light emitting device according to the first embodiment. FIG. 4B schematically shows a heat dissipation path of the light emitting device according to the comparative example. 図5(a)は、第1の実施の形態に係る発光装置の拡大図である。図5(b)は、比較例に係る発光装置の拡大図である。FIG. 5A is an enlarged view of the light emitting device according to the first embodiment. FIG. 5B is an enlarged view of the light emitting device according to the comparative example. 図6は、導電部材の孔内部の基板中の体積占有率と基板の過渡熱抵抗との関係を表すグラフである。FIG. 6 is a graph showing the relationship between the volume occupation ratio in the substrate inside the hole of the conductive member and the transient thermal resistance of the substrate. 図7(a)は、第1の実施の形態に係る発光装置の動作時の温度分布を表すグラフである。図7(b)は、比較例に係る発光装置の動作時の温度分布を表すグラフである。FIG. 7A is a graph showing a temperature distribution during operation of the light emitting device according to the first embodiment. FIG. 7B is a graph showing a temperature distribution during operation of the light emitting device according to the comparative example. 図8は、第1の実施の形態に係る発光装置及び比較例に係る発光装置の温度分布の測定位置を示すための発光装置の模式的な上面図である。FIG. 8 is a schematic top view of the light emitting device for illustrating the measurement position of the temperature distribution of the light emitting device according to the first embodiment and the light emitting device according to the comparative example. 図9は、第2の実施の形態に係る発光装置の垂直断面図である。FIG. 9 is a vertical cross-sectional view of the light emitting device according to the second embodiment.

〔第1の実施の形態〕
(発光装置の構成)
図1は、第1の実施の形態に係る発光装置10の垂直断面図である。発光装置10は、複数の貫通孔を有する基板11と、基板11の複数の貫通孔内及び表面上に形成された導電部材12a、12bと、基板11の一方の面側(図1の上側)の導電部材12a、12b上にそれぞれ形成される電極膜13a、13bと、電極膜13a、13bに電気的に接続されるように基板11上に搭載される発光素子20と、を有する。
[First Embodiment]
(Configuration of light emitting device)
FIG. 1 is a vertical cross-sectional view of a light emitting device 10 according to the first embodiment. The light emitting device 10 includes a substrate 11 having a plurality of through holes, conductive members 12a and 12b formed in and on the plurality of through holes of the substrate 11, and one surface side of the substrate 11 (upper side in FIG. 1). Electrode films 13a and 13b formed on the conductive members 12a and 12b, respectively, and a light emitting element 20 mounted on the substrate 11 so as to be electrically connected to the electrode films 13a and 13b.

基板11は、Si、AlN等の非導電性材料からなる。基板11中の複数の貫通孔は、例えば、円柱状、又は多角柱状の孔である。   The substrate 11 is made of a nonconductive material such as Si or AlN. The plurality of through holes in the substrate 11 are, for example, cylindrical or polygonal column holes.

導電部材12a、12bは、Cu等の導電性材料からなる。導電部材12a、12bは、基板11の複数の貫通孔を埋める孔内部12vと、基板11の表面及び裏面を覆う表面部12sを含む。表面部12sの表面はCMP(Chemical Mechanical Polishing)等の平坦化処理により平坦化されている。なお、表面部12sは、少なくとも基板11の発光素子20側の主面上に形成されていればよい。   The conductive members 12a and 12b are made of a conductive material such as Cu. The conductive members 12 a and 12 b include a hole interior 12 v that fills the plurality of through holes of the substrate 11, and a front surface portion 12 s that covers the front surface and the back surface of the substrate 11. The surface of the surface portion 12s is flattened by a flattening process such as CMP (Chemical Mechanical Polishing). Note that the surface portion 12s may be formed on at least the main surface of the substrate 11 on the light emitting element 20 side.

電極膜13a、13bは、Au、Ag等の導電性材料からなる。電極膜13a、13bは、それぞれ導電部材12a、12bに電気的に接続される。電極膜13a、13bは薄膜であり、導電部材12a、12bの表面部12sよりも薄い。なお、発光装置10は電極膜13a、13bを有さず、導電部材12a、12bを電極として用いてもよい。   The electrode films 13a and 13b are made of a conductive material such as Au or Ag. The electrode films 13a and 13b are electrically connected to the conductive members 12a and 12b, respectively. The electrode films 13a and 13b are thin films and are thinner than the surface portions 12s of the conductive members 12a and 12b. The light emitting device 10 does not have the electrode films 13a and 13b, and the conductive members 12a and 12b may be used as electrodes.

発光素子20は、例えば、図1に示されるようなフリップチップ型のLEDチップである。発光素子20は、素子基板21と、発光層及びそれを挟むクラッド層を含む結晶層22と、結晶層22に接続されるn側電極23aとp側電極23bを有する。   The light emitting element 20 is, for example, a flip chip type LED chip as shown in FIG. The light emitting element 20 includes an element substrate 21, a crystal layer 22 including a light emitting layer and a clad layer sandwiching the light emitting layer, and an n-side electrode 23a and a p-side electrode 23b connected to the crystal layer 22.

発光素子20のn側電極23aとp側電極23bは、はんだバンプ等のはんだ層14を介して電極膜13a、13bにそれぞれ接続される。発光装置10が電極膜13a、13bを有さない場合は、n側電極23aとp側電極23bは、導電部材12a、12bの表面部12sに接続される。   The n-side electrode 23a and the p-side electrode 23b of the light emitting element 20 are connected to the electrode films 13a and 13b via the solder layer 14 such as a solder bump, respectively. When the light emitting device 10 does not have the electrode films 13a and 13b, the n-side electrode 23a and the p-side electrode 23b are connected to the surface portion 12s of the conductive members 12a and 12b.

(発光装置の製造)
以下に、本実施の形態に係る発光装置10の製造工程の一例を説明する。
(Manufacture of light emitting devices)
Below, an example of the manufacturing process of the light-emitting device 10 which concerns on this Embodiment is demonstrated.

図2(a)〜(d)、図3(e)〜(g)は、第1の実施の形態に係る導電部材12a、12bの製造工程を示す拡大された垂直断面図である。   FIGS. 2A to 2D and FIGS. 3E to 3G are enlarged vertical sectional views showing manufacturing steps of the conductive members 12a and 12b according to the first embodiment.

まず、図2(a)に示されるように、熱酸化処理等により、Si基板である基板11の両側の主面上にシリコン酸化膜30を形成する。ここで、基板11の両側の主面のうち、発光素子20を搭載する側の面を第1の主面11aとし、その反対側の主面を第2の主面11bとする。   First, as shown in FIG. 2A, silicon oxide films 30 are formed on the principal surfaces on both sides of the substrate 11 which is a Si substrate by thermal oxidation or the like. Here, of the main surfaces on both sides of the substrate 11, a surface on which the light emitting element 20 is mounted is a first main surface 11a, and a main surface on the opposite side is a second main surface 11b.

次に、図2(b)に示されるように、フォトリソグラフィにより形成されるマスクを用いたドライエッチングにより、基板11及びシリコン酸化膜30に複数の貫通孔31を形成する。この工程で行われるドライエッチングは、例えば、深堀RIE(Deep-Reactive Ion Etching)である。   Next, as shown in FIG. 2B, a plurality of through holes 31 are formed in the substrate 11 and the silicon oxide film 30 by dry etching using a mask formed by photolithography. The dry etching performed in this step is, for example, deep RIE (Deep-Reactive Ion Etching).

次に、図2(c)に示されるように、熱酸化処理等により、貫通孔31の内面及びシリコン酸化膜30の表面にシリコン酸化膜32を形成する。シリコン酸化膜32の厚さは、例えば1μm程度であり、シリコン酸化膜32により導電部材12a、12bの孔内部12vと基板11との絶縁が確保される。   Next, as shown in FIG. 2C, a silicon oxide film 32 is formed on the inner surface of the through hole 31 and the surface of the silicon oxide film 30 by thermal oxidation or the like. The thickness of the silicon oxide film 32 is, for example, about 1 μm, and the silicon oxide film 32 ensures insulation between the hole interiors 12 v of the conductive members 12 a and 12 b and the substrate 11.

次に、図2(d)に示されるように、スパッタリングにより、シリコン酸化膜32上にTiN、SiN等からなるバリア層33を形成する。   Next, as shown in FIG. 2D, a barrier layer 33 made of TiN, SiN or the like is formed on the silicon oxide film 32 by sputtering.

次に、図3(e)に示されるように、スパッタリングにより、バリア層33上に無電解銅等からなる電極用シード層34を形成する。   Next, as shown in FIG. 3E, an electrode seed layer 34 made of electroless copper or the like is formed on the barrier layer 33 by sputtering.

次に、図3(f)に示されるように、電解めっきにより、電極用シード層34上にCuをめっきし、導電部材12を形成する。導電部材12は、複数の貫通孔31を埋め、かつ、基板11の第1の主面11a及び第2の主面11bを覆うように形成される。   Next, as shown in FIG. 3F, Cu is plated on the electrode seed layer 34 by electrolytic plating to form the conductive member 12. The conductive member 12 is formed so as to fill the plurality of through holes 31 and cover the first main surface 11 a and the second main surface 11 b of the substrate 11.

次に、図3(g)に示されるように、少なくとも基板11の第1の主面11aを露出させないように、すなわち、少なくとも第1の主面11a上に表面部12sを形成するように、導電部材12の基板11の第1の主面11a及び第2の主面11bを覆う部分にCMP等の平坦化処理を施す。   Next, as shown in FIG. 3G, at least the first main surface 11a of the substrate 11 is not exposed, that is, at least the surface portion 12s is formed on the first main surface 11a. A planarization process such as CMP is performed on a portion of the conductive member 12 covering the first main surface 11a and the second main surface 11b of the substrate 11.

その後、フォトリソグラフィにより形成されるマスクを用いたドライエッチングにより、導電部材12の基板11の第1の主面11a及び第2の主面11bを覆う部分にエッチングを施し、導電部材12を基板11の面内方向に分離し、導電部材12aと導電部材12bを形成する。   Thereafter, the portion of the conductive member 12 covering the first main surface 11a and the second main surface 11b of the conductive member 12 is etched by dry etching using a mask formed by photolithography, and the conductive member 12 is removed from the substrate 11. The conductive member 12a and the conductive member 12b are formed.

そして、導電部材12a、12bにn側電極23aとp側電極23bがそれぞれ電気的に接続されるように、発光素子20を基板11上に搭載する。   Then, the light emitting element 20 is mounted on the substrate 11 so that the n-side electrode 23a and the p-side electrode 23b are electrically connected to the conductive members 12a and 12b, respectively.

なお、上述のシリコン酸化膜30、シリコン酸化膜32、バリア層33、及び電極用シード層34の図1における図示は省略している。   Note that the silicon oxide film 30, the silicon oxide film 32, the barrier layer 33, and the electrode seed layer 34 are not shown in FIG.

(発光装置の放熱特性)
以下に、本実施の形態の発光装置の放熱特性について、比較例を用いて説明する。
(Heat dissipation characteristics of light emitting device)
Hereinafter, heat dissipation characteristics of the light-emitting device of this embodiment will be described using a comparative example.

図4(a)は、第1の実施の形態に係る発光装置10の放熱経路を模式的に表す。図4(b)は、比較例に係る発光装置100の放熱経路を模式的に表す。図4(a)、(b)において、導電部材中を通る矢印は発光素子20で発生した熱の主な放熱経路を表す。   FIG. 4A schematically shows a heat radiation path of the light emitting device 10 according to the first embodiment. FIG. 4B schematically shows a heat dissipation path of the light emitting device 100 according to the comparative example. 4A and 4B, arrows passing through the conductive member represent main heat dissipation paths for heat generated in the light emitting element 20.

図4(b)に示される比較例に係る発光装置100は、導電部材101が表面部12sに対応する部分を含まず、孔内部12vに対応する貫通孔内の部分のみで構成される点において、第1の実施の形態に係る発光装置10と異なる。   In the light emitting device 100 according to the comparative example shown in FIG. 4B, the conductive member 101 does not include a portion corresponding to the surface portion 12s, and is configured only by a portion in the through hole corresponding to the hole interior 12v. This is different from the light emitting device 10 according to the first embodiment.

発光装置100では、複数の導電部材101が分離して基板11中に形成されており、基板11を隔てて隣接する導電部材101間の熱の移動が少ない。このため、発光素子20直下の導電部材101のみが、発光素子20で発生した熱の主な放熱経路として機能する。なお、膜厚の薄い電極膜13a、13bは、放熱経路としてはほとんど機能しない。   In the light emitting device 100, the plurality of conductive members 101 are separated and formed in the substrate 11, and heat transfer between the conductive members 101 adjacent to each other with the substrate 11 is small. For this reason, only the conductive member 101 directly under the light emitting element 20 functions as a main heat dissipation path for the heat generated in the light emitting element 20. The thin electrode films 13a and 13b hardly function as a heat dissipation path.

一方、発光装置10においては、導電部材12a、12bの表面部12sが放熱経路として機能するため、発光素子20で発生した熱が表面部12sを通って広範囲の孔内部12vへ伝わり、放熱される。すなわち、発光装置10は、導電部材12a、12bが表面部12sを有するため、導電部材12a、12bの広範囲の領域が放熱経路として機能する。このため、第1の実施の形態に係る発光装置10は、比較例に係る発光装置100よりも放熱特性に優れる。なお、導電部材12a、12bの表面部12sが少なくとも基板11の第1の主面11a側に存在すれば、優れた放熱特性が得られる。   On the other hand, in the light emitting device 10, since the surface portions 12s of the conductive members 12a and 12b function as a heat dissipation path, the heat generated in the light emitting element 20 is transmitted through the surface portion 12s to the wide hole interior 12v and radiated. . That is, in the light emitting device 10, since the conductive members 12a and 12b have the surface portion 12s, a wide area of the conductive members 12a and 12b functions as a heat dissipation path. For this reason, the light emitting device 10 according to the first embodiment is more excellent in heat dissipation characteristics than the light emitting device 100 according to the comparative example. In addition, if the surface portion 12s of the conductive members 12a and 12b exists at least on the first main surface 11a side of the substrate 11, excellent heat dissipation characteristics can be obtained.

図5(a)は、第1の実施の形態に係る発光装置10の拡大図である。図5(b)は、比較例に係る発光装置200の拡大図である。図5(a)、(b)にそれぞれ示される発光装置10、200は、AlN基板等の表面に比較的大きな凹凸を有する基板を基板11として有する。   FIG. 5A is an enlarged view of the light emitting device 10 according to the first embodiment. FIG. 5B is an enlarged view of the light emitting device 200 according to the comparative example. The light emitting devices 10 and 200 shown in FIGS. 5A and 5B respectively have a substrate 11 having a relatively large unevenness on the surface such as an AlN substrate.

図5(b)に示される比較例に係る発光装置200は、導電部材12a、12bを有さない点において、第1の実施の形態に係る発光装置10と異なる。   The light emitting device 200 according to the comparative example shown in FIG. 5B is different from the light emitting device 10 according to the first embodiment in that the light emitting device 200 does not include the conductive members 12a and 12b.

発光装置200では、基板11の凹凸を有する表面上に電極膜13a、13bを直接形成するため、電極膜13a、13bにも凹凸が形成される。そして、凹凸を有する電極膜13a、13b上に形成されるはんだ層14中にはボイドが発生し易い。はんだ層14はボイドを含むと熱伝導性が低下するため、発光素子20で発生した熱が基板11側へ逃げ難くなる。このため、基板11の熱伝導率が高い場合であっても、はんだ層14中のボイドにより、発光装置200の放熱特性が低下する。   In the light emitting device 200, since the electrode films 13a and 13b are directly formed on the surface of the substrate 11 having the unevenness, the unevenness is also formed in the electrode films 13a and 13b. And it is easy to generate a void in the solder layer 14 formed on the uneven electrode films 13a and 13b. If the solder layer 14 contains voids, the thermal conductivity is lowered, so that the heat generated in the light emitting element 20 is difficult to escape to the substrate 11 side. For this reason, even if the thermal conductivity of the substrate 11 is high, the heat dissipation characteristics of the light emitting device 200 are degraded by the voids in the solder layer 14.

一方、発光装置10においては、導電部材12a、12bの平坦化された表面部12s上に電極膜13a、13bが形成されるため、基板11の表面に凹凸が存在する場合であっても、電極膜13a、13bは平坦に形成される。このため、はんだ層14中におけるボイドの発生を抑え、発光素子20で発生した熱を効率よく基板11側へ逃がすことができる。このように、発光素子20が表面に凹凸を有する基板11上にはんだ接続される場合には、放熱特性を向上させるために導電部材12a、12bの存在がより重要になる。なお、導電部材12a、12bの表面部12sは、少なくとも基板11の第1の主面11a側に存在すれば、はんだ層14中におけるボイドの発生を抑えることができる。   On the other hand, in the light emitting device 10, since the electrode films 13a and 13b are formed on the planarized surface portion 12s of the conductive members 12a and 12b, the electrode 11 The films 13a and 13b are formed flat. For this reason, generation | occurrence | production of the void in the solder layer 14 can be suppressed, and the heat | fever generate | occur | produced in the light emitting element 20 can be efficiently released to the board | substrate 11 side. As described above, when the light emitting element 20 is soldered on the substrate 11 having an uneven surface, the presence of the conductive members 12a and 12b becomes more important in order to improve the heat dissipation characteristics. If the surface portion 12s of the conductive members 12a and 12b exists at least on the first main surface 11a side of the substrate 11, the generation of voids in the solder layer 14 can be suppressed.

図6は、導電部材12a、12bの孔内部12vの基板11中の体積占有率(以下、「体積占有率」と表す)と基板11の過渡熱抵抗との関係を表すグラフである。ここで、基板11に単発パルスを加えた時に発生する熱を印加した電力で割った物が熱抵抗値であり、この熱抵抗値をパルス時間単位で表したものが過渡熱抵抗である。   FIG. 6 is a graph showing the relationship between the volume occupancy ratio (hereinafter referred to as “volume occupancy ratio”) in the substrate 11 of the holes 12 v inside the conductive members 12 a and 12 b and the transient thermal resistance of the substrate 11. Here, the thing obtained by dividing the heat generated when a single pulse is applied to the substrate 11 by the applied electric power is the thermal resistance value, and the thermal resistance value expressed in units of pulse time is the transient thermal resistance.

図6には、体積占有率が0%、7.07%、14.4%、19.6%であるときの過渡熱抵抗率の測定値がそれぞれマーク“◇”でプロットされている。また、マーク“◆”は、各体積占有率における“◇”の平均値を表し、点線は、体積占有率7.07%、14.4%、19.6%における“◆”の座標から導かれた近似直線である。   In FIG. 6, the measured values of the transient thermal resistivity when the volume occupancy is 0%, 7.07%, 14.4%, and 19.6% are plotted with marks “◇”, respectively. The mark “◆” represents the average value of “◇” in each volume occupancy, and the dotted line is derived from the coordinates of “♦” at the volume occupancy 7.07%, 14.4%, 19.6%. Approximated straight line.

この過渡熱抵抗率を測定した発光装置10の基板11はSi基板であり、導電部材12a、12bはCuからなる。なお、体積占有率19.6%は、製造工程上のほぼ上限値であり、これ以上の体積占有率で孔内部12vを形成することは困難である。   The substrate 11 of the light emitting device 10 whose transient thermal resistivity is measured is a Si substrate, and the conductive members 12a and 12b are made of Cu. The volume occupancy of 19.6% is almost the upper limit in the manufacturing process, and it is difficult to form the hole interior 12v with a volume occupancy higher than this.

また、図6の右端には、比較例に係る発光装置の過渡熱抵抗率の測定値がマーク“○”でプロットされている。また、マーク“●”は、“○”の平均値を表す。この比較例に係る発光装置は、AlN基板を有し、導電部材12a、12bを有さず、図5(b)に示される発光装置200と同じ構造を有する。   Further, at the right end of FIG. 6, measured values of transient thermal resistivity of the light emitting device according to the comparative example are plotted with a mark “◯”. The mark “●” represents the average value of “◯”. The light emitting device according to this comparative example has an AlN substrate, does not have the conductive members 12a and 12b, and has the same structure as the light emitting device 200 shown in FIG.

なお、この過渡熱抵抗率を測定した発光装置10の基板11の面積と、比較例に係る発光装置のAlN基板の面積は同じである。   Note that the area of the substrate 11 of the light emitting device 10 in which the transient thermal resistivity was measured is the same as the area of the AlN substrate of the light emitting device according to the comparative example.

図6は、発光装置10の体積占有率が増加するほど過渡熱抵抗率が低下し、体積占有率がおよそ13%以上であるときに、過渡熱抵抗率の平均値が比較例に係る発光素子の過渡熱抵抗率の平均値以下になることを示している。すなわち、孔内部12vの基板11中の体積占有率を13%以上にすることにより、導電部材12a、12bを備えた基板11の過渡熱抵抗率が、熱伝導率の高いAlN基板の過渡熱抵抗率以下になることを示している。   FIG. 6 shows that when the volume occupancy of the light emitting device 10 increases, the transient thermal resistivity decreases, and when the volume occupancy is approximately 13% or more, the average value of the transient thermal resistivity is a light emitting element according to a comparative example. It shows that it becomes below the average value of the transient thermal resistivity. That is, by setting the volume occupancy ratio of the hole interior 12v in the substrate 11 to 13% or more, the transient thermal resistance of the substrate 11 including the conductive members 12a and 12b is the transient thermal resistance of the AlN substrate having high thermal conductivity. It shows that it becomes below the rate.

図7(a)は、第1の実施の形態に係る発光装置10の動作時の温度分布を表すグラフである。図7(b)は、比較例に係る発光装置の動作時の温度分布を表すグラフである。   FIG. 7A is a graph showing a temperature distribution during operation of the light emitting device 10 according to the first embodiment. FIG. 7B is a graph showing a temperature distribution during operation of the light emitting device according to the comparative example.

図8は、第1の実施の形態に係る発光装置10及び比較例に係る発光装置の温度分布の測定位置を示すための発光装置の模式的な上面図である。図7(a)、(b)の測定値は、図8中の矢印で表される直線上の温度分布を測定して得られたものである。なお、図8においては、導電部材12a、12bの図示が省略されている。   FIG. 8 is a schematic top view of the light emitting device for illustrating the measurement positions of the temperature distribution of the light emitting device 10 according to the first embodiment and the light emitting device according to the comparative example. The measured values in FIGS. 7A and 7B are obtained by measuring the temperature distribution on the straight line represented by the arrow in FIG. In FIG. 8, the conductive members 12a and 12b are not shown.

ここで、温度分布を測定した発光装置10の基板11は、一辺の長さが3.5mmの正方形のSi基板である。また、導電部材12a、12bは、Cuからなり、孔内部12vの基板11中の体積占有率が19.6%である。   Here, the substrate 11 of the light-emitting device 10 whose temperature distribution was measured is a square Si substrate having a side length of 3.5 mm. The conductive members 12a and 12b are made of Cu, and the volume occupancy ratio of the inside 12v of the hole in the substrate 11 is 19.6%.

比較例に係る発光装置は、図5(b)に示される発光装置200と同じ構造を有し、基板11として一辺の長さが3.5mmの正方形のAlN基板を有する。なお、導電部材12a、12bは有さない。   The light emitting device according to the comparative example has the same structure as the light emitting device 200 shown in FIG. 5B, and has a square AlN substrate having a side length of 3.5 mm as the substrate 11. Note that the conductive members 12a and 12b are not provided.

発光装置10、比較例に係る発光装置は、いずれも一辺の長さが1mmの正方形の同じLEDチップを発光素子20として有する。また、発光装置10、比較例に係る発光装置は、いずれも表面に電極を有するAl基板35上に設置され、Al基板35の電極を介して発光素子20へ電源が供給される。   The light emitting device 10 and the light emitting device according to the comparative example both have the same square LED chip having a side length of 1 mm as the light emitting element 20. The light emitting device 10 and the light emitting device according to the comparative example are both installed on an Al substrate 35 having electrodes on the surface, and power is supplied to the light emitting element 20 through the electrodes of the Al substrate 35.

図7(a)、(b)、図8のA、Bは、温度分布の測定領域である直線上の発光素子10の両端の位置を表し、C、Dは、基板11の両端の位置を表す。   7A, 7 </ b> B, and 8 </ b> A, 8 </ b> A and 8 </ b> B represent the positions of both ends of the light emitting element 10 on a straight line that is a temperature distribution measurement region, and C and D represent the positions of both ends of the substrate 11. Represent.

図7(a)、(b)は、発光装置10の温度が、比較例に係る発光装置の温度よりも、全体的に低いことを示している。このことは、発光装置10が、熱伝導率の高いAlN基板を有する発光装置と同等、又はより優れた放熱特性を有することを示している。   FIGS. 7A and 7B show that the temperature of the light emitting device 10 is generally lower than the temperature of the light emitting device according to the comparative example. This indicates that the light-emitting device 10 has a heat dissipation characteristic that is equal to or better than that of a light-emitting device having an AlN substrate with high thermal conductivity.

また、図7(a)、(b)に示される温度Tは、点C、Dにおける温度と点A、Bにおける温度の中間の温度である。複数の発光素子20を並べて設置する場合に、隣接する発光素子20の温度分布曲線の温度Tより高い部分が重なり合うと、重ね合わされた温度が発光素子20のジャンクション温度を超える。このため、点Aの位置と温度がTである位置との距離(点Bの位置と温度がTである位置との距離)を、隣接する発光素子20の間隔の最小値に設定することが求められる。   Further, the temperature T shown in FIGS. 7A and 7B is an intermediate temperature between the temperature at the points C and D and the temperature at the points A and B. In the case where a plurality of light emitting elements 20 are installed side by side, if the portions of the temperature distribution curve of adjacent light emitting elements 20 that are higher than the temperature T overlap, the superposed temperature exceeds the junction temperature of the light emitting elements 20. For this reason, the distance between the position of the point A and the position where the temperature is T (the distance between the position of the point B and the position where the temperature is T) may be set to the minimum value of the interval between the adjacent light emitting elements 20. Desired.

このことから、発光装置10において複数の発光素子20を搭載する場合の間隔の最小値は0.3mmと設定され、比較例に係る発光装置において複数の発光素子20を搭載する場合の間隔の最小値は0.1mmと設定される。そして、ここから、発光装置10における発光素子20の間隔の、発光素子20の幅に対する比の最小値を0.3と設定し、比較例に係る発光装置における発光素子20の間隔の、発光素子20の幅に対する比の最小値を0.1と設定することができる。   From this, the minimum value of the interval when mounting the plurality of light emitting elements 20 in the light emitting device 10 is set to 0.3 mm, and the minimum interval when mounting the plurality of light emitting elements 20 in the light emitting device according to the comparative example is set. The value is set to 0.1 mm. From here, the minimum value of the ratio of the interval between the light emitting elements 20 in the light emitting device 10 to the width of the light emitting element 20 is set to 0.3, and the light emitting elements in the interval between the light emitting elements 20 in the light emitting device according to the comparative example are set. The minimum value of the ratio to the width of 20 can be set to 0.1.

上記のように、発光装置10において複数の発光素子20を搭載する場合の間隔の最小値は、熱伝導率の高いAlN基板を有する発光装置のものとの差が小さい。この結果は、発光装置10に複数の発光素子20を十分高密度に配置できることを示している。   As described above, the minimum value of the interval when mounting the plurality of light emitting elements 20 in the light emitting device 10 is small from that of the light emitting device having the AlN substrate having high thermal conductivity. This result indicates that a plurality of light emitting elements 20 can be arranged in the light emitting device 10 with a sufficiently high density.

〔第2の実施の形態〕
第2の実施の形態は、基板11上に複数の発光素子20を搭載する形態である。第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Second Embodiment]
In the second embodiment, a plurality of light emitting elements 20 are mounted on the substrate 11. The description of the same points as in the first embodiment will be omitted or simplified.

図9は、第2の実施の形態に係る発光装置300の垂直断面図である。発光装置300は、複数の貫通孔を有する基板11と、基板11の複数の貫通孔内及び表面上に形成された導電部材12c、12d、12eと、基板11の一方の面側(図1の上側)の導電部材12c、12d、12e上にそれぞれ形成される電極膜13c、13d、13eと、電極膜13c、13dに電気的に接続されるように基板11上に搭載される発光素子20aと、電極膜13d、13eに電気的に接続されるように基板11上に搭載される発光素子20bと、を有する。   FIG. 9 is a vertical cross-sectional view of the light emitting device 300 according to the second embodiment. The light emitting device 300 includes a substrate 11 having a plurality of through holes, conductive members 12c, 12d, and 12e formed in and on the plurality of through holes of the substrate 11, and one surface side of the substrate 11 (see FIG. 1). Electrode films 13c, 13d, and 13e formed on the upper conductive members 12c, 12d, and 12e, and a light-emitting element 20a mounted on the substrate 11 so as to be electrically connected to the electrode films 13c and 13d, And a light emitting element 20b mounted on the substrate 11 so as to be electrically connected to the electrode films 13d and 13e.

発光素子20aと発光素子20bの間隔Dは、例えば、導電部材12c、12d、12eの孔内部12vの基板11中の体積占有率が19.6%である場合には、間隔Dの発光素子20a、20bの幅に対する比の最小値が0.3となるように設定される。   The distance D between the light emitting element 20a and the light emitting element 20b is, for example, when the volume occupancy in the substrate 11 in the holes 12v of the conductive members 12c, 12d, and 12e is 19.6%. , 20b is set so that the minimum value of the ratio to the width is 0.3.

(実施の形態の効果)
上記実施の形態によれば、表面部12s及び孔内部12vを有する導電部材を設けることにより、発光装置の放熱特性を大きく向上させることができる。また、発光装置が優れた放熱特性を有するため、複数の発光素子を十分高密度に配置することができる。
(Effect of embodiment)
According to the above embodiment, the heat dissipation characteristics of the light emitting device can be greatly improved by providing the conductive member having the surface portion 12s and the hole interior 12v. In addition, since the light-emitting device has excellent heat dissipation characteristics, a plurality of light-emitting elements can be arranged with a sufficiently high density.

以上、本発明の実施の形態を説明したが、本発明は、上記の実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

また、上記の実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   Moreover, said embodiment does not limit the invention which concerns on a claim. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

10、300 発光装置
11 基板
11a 第1の主面
11b 第2の主面
12、12a、12b、12c、12d、12e 導電部材
12s 表面部
12v 孔内部
14 はんだ層
20、20a、20b 発光素子
23a n側電極
23b p側電極
31 貫通孔
DESCRIPTION OF SYMBOLS 10, 300 Light-emitting device 11 Board | substrate 11a 1st main surface 11b 2nd main surface 12, 12a, 12b, 12c, 12d, 12e Conductive member 12s Surface part 12v Inside of hole 14 Solder layer 20, 20a, 20b Light-emitting element 23a n Side electrode 23b P side electrode 31 Through hole

Claims (6)

非導電性材料からなり、発光素子搭載部と発光素子搭載部を有する素子搭載基板の、前記発光素子搭載部と前記発光素子搭載部に対応する領域に複数の貫通孔を形成する工程と、
前記複数の貫通孔を埋め、かつ、前記素子搭載基板の第1の主面及び第2の主面を覆う導電部材を形成する工程と、
前記素子搭載基板の少なくとも前記第1の主面を露出させないように、前記導電部材の前記第1の主面及び前記第2の主面を覆う部分に平坦化処理を施す工程と、
前記導電部材を前記素子搭載基板の面内方向に分離する工程と、
前記導電部材の分離された異なる部分に、発光素子のn側電極とp側電極がそれぞれ電気的に接続されるように、前記発光素子を前記第1の主面側の前記素子搭載基板上に搭載する工程と、
を含む発光装置の製造方法。
Forming a plurality of through holes in a region corresponding to the light emitting element mounting portion and the light emitting element non- mounting portion of an element mounting substrate made of a non-conductive material and having a light emitting element mounting portion and a light emitting element non- mounting portion; ,
Forming a conductive member that fills the plurality of through holes and covers the first main surface and the second main surface of the element mounting substrate;
Applying a planarization process to a portion covering the first main surface and the second main surface of the conductive member so as not to expose at least the first main surface of the element mounting substrate;
Separating the conductive member in an in-plane direction of the element mounting substrate;
The light emitting element is placed on the element mounting substrate on the first main surface side so that the n-side electrode and the p-side electrode of the light emitting element are electrically connected to different separated portions of the conductive member, respectively. Mounting process,
A method for manufacturing a light-emitting device including:
前記発光素子は、前記素子搭載基板上にはんだ接続される、
請求項1に記載の発光装置の製造方法。
The light emitting element is solder-connected on the element mounting substrate.
The manufacturing method of the light-emitting device of Claim 1.
前記導電部材の前記複数の貫通孔内の部分の前記素子搭載基板中の体積占有率が13%以上である、
請求項1又は2に記載の発光装置の製造方法。
The volume occupancy in the element mounting substrate of the portions in the plurality of through holes of the conductive member is 13% or more.
The manufacturing method of the light-emitting device of Claim 1 or 2.
前記素子搭載基板はSi基板である、
請求項1〜3のいずれか1項に記載の発光装置の製造方法。
The element mounting substrate is a Si substrate;
The manufacturing method of the light-emitting device of any one of Claims 1-3.
複数の発光素子を前記素子搭載基板上に搭載する、
請求項1〜4のいずれか1項に記載の発光装置の製造方法。
Mounting a plurality of light emitting elements on the element mounting substrate;
The manufacturing method of the light-emitting device of any one of Claims 1-4.
請求項1〜5のいずれか1項に記載の発光装置の製造方法により製造された、発光装置。   The light-emitting device manufactured by the manufacturing method of the light-emitting device of any one of Claims 1-5.
JP2013067111A 2013-03-27 2013-03-27 Light emitting device and manufacturing method thereof Active JP6102408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067111A JP6102408B2 (en) 2013-03-27 2013-03-27 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067111A JP6102408B2 (en) 2013-03-27 2013-03-27 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014192371A JP2014192371A (en) 2014-10-06
JP6102408B2 true JP6102408B2 (en) 2017-03-29

Family

ID=51838356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067111A Active JP6102408B2 (en) 2013-03-27 2013-03-27 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6102408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728949B2 (en) * 2015-05-28 2020-07-22 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US10283688B2 (en) 2016-08-22 2019-05-07 Nichia Corporation Light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163765A (en) * 1992-11-27 1994-06-10 Nippon Avionics Co Ltd Aluminum nitride heat sink and its manufacture
JP2009117536A (en) * 2007-11-05 2009-05-28 Towa Corp Resin-sealed light emitter, and manufacturing method thereof
KR20100003321A (en) * 2008-06-24 2010-01-08 삼성전자주식회사 Light emitting element, light emitting device comprising the same, and fabricating method of the light emitting element and the light emitting device
TW201218467A (en) * 2010-10-29 2012-05-01 Foxsemicon Integrated Tech Inc Light emitting element
JP5887638B2 (en) * 2011-05-30 2016-03-16 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. Light emitting diode

Also Published As

Publication number Publication date
JP2014192371A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5295932B2 (en) Semiconductor package, evaluation method thereof, and manufacturing method thereof
JP2006190951A (en) Light emitting diode package and its manufacturing process
JP2008544540A5 (en)
US9870931B2 (en) Package carrier and manufacturing method thereof
EP2124265A2 (en) Light-emitting diode chip package body and method for manufacturing the same
CN106298742B (en) Semiconductor package assembly and a manufacturing method thereof
JP6102408B2 (en) Light emitting device and manufacturing method thereof
JP2018117149A (en) Surface mountable semiconductor device
KR101236086B1 (en) Thermally efficient packaging for a photonic device
CN105489580A (en) Semiconductor substrate and semiconductor packaging structure
JP2010251551A (en) Electronic circuit board and power semiconductor module
JP2011114154A (en) Light-emitting element and method of manufacturing light-emitting device using the same
WO2020031844A1 (en) Resistor
KR20090088633A (en) Radiant heat circuit board and method for manufacturing of radiant heat circuit board
JP6500210B2 (en) Metal plate resistor
KR20140096802A (en) Lighting device and backlight unit including the same
TW201712904A (en) Semiconductor chip
US20120070684A1 (en) Thermal conductivity substrate and manufacturing method thereof
US20150060929A1 (en) Ceramic circuit board and led package module using the same
JP5408583B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP2019197817A (en) Semiconductor device and manufacturing method of the semiconductor device
US10446731B2 (en) Light emitting device
JP2018133440A (en) Chip resistor
US20160064614A1 (en) Light emitting diode package and manufacturing method thereof
US20150372449A1 (en) Flip chip type laser diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150