Nothing Special   »   [go: up one dir, main page]

JP6191837B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP6191837B2
JP6191837B2 JP2015030912A JP2015030912A JP6191837B2 JP 6191837 B2 JP6191837 B2 JP 6191837B2 JP 2015030912 A JP2015030912 A JP 2015030912A JP 2015030912 A JP2015030912 A JP 2015030912A JP 6191837 B2 JP6191837 B2 JP 6191837B2
Authority
JP
Japan
Prior art keywords
cylinder
engine
combustion
fuel injection
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015030912A
Other languages
English (en)
Other versions
JP2016151268A (ja
Inventor
修平 新谷
修平 新谷
拓仁 奥村
拓仁 奥村
裕明 堀内
裕明 堀内
滋 中川
滋 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2015030912A priority Critical patent/JP6191837B2/ja
Priority to US15/007,468 priority patent/US10240491B2/en
Publication of JP2016151268A publication Critical patent/JP2016151268A/ja
Application granted granted Critical
Publication of JP6191837B2 publication Critical patent/JP6191837B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/009EGR combined with means to change air/fuel ratio, ignition timing, charge swirl in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

本発明は、エンジンの制御装置に係わり、特に、運転状態が所定の圧縮自己着火領域内にある場合、圧縮自己着火燃焼が行われ、運転状態が所定の火花点火領域内にある場合、火花点火燃焼が行われるエンジンの制御装置に関する。
従来、予混合圧縮自己着火(Homogeneous-Charge Compression Ignition:HCCI)による圧縮着火燃焼を行うエンジンが知られている。このHCCI燃焼を行うエンジンでは、吸気動作中の所定の開弁期間において排気弁を開くことにより、排気ポートから燃焼室へ既燃ガスを逆流させて燃焼室内の混合ガスの温度を上昇させる、いわゆる内部EGRシステムを利用している。
しかしながら、HCCI燃焼を安定して行うことができる運転領域は、エンジンの運転状態が相対的に低負荷側且つ低回転側の領域(HCCI領域)に限られている。そこで、HCCI燃焼を行うエンジンでは、エンジンの運転状態がHCCI領域にある場合にHCCI燃焼を行い、運転状態がHCCI領域外の相対的に高負荷側且つ高回転側の運転領域にある場合には火花点火(Spark Ignition:SI)燃焼を行うようになっている。
例えば、エンジンの運転状態がHCCI領域内にあり、HCCI燃焼で運転されている場合において、ドライバがアクセルを踏み込んだことによりエンジンに対する要求負荷が増大し、エンジンの運転領域がHCCI領域からSI燃焼を行う領域(SI領域)に入った場合には、排気バルブの作動モードをHCCI燃焼用の作動モードからSI燃焼用の作動モードへ切り替えると共に、燃料の噴射量や噴射時期等の燃焼制御パラメータをHCCI燃焼用の設定値からSI燃焼用の設定値へ切り替える必要がある。
このように、HCCI燃焼とSI燃焼との間で燃焼方式を切り替える場合、排気バルブの作動モードが切り替わる過渡期において、HCCI燃焼には内部EGR量が不足する一方、SI燃焼には内部EGR量が過剰となり、燃焼の不安定化やノッキングの発生を招くことがある。
これに対し、例えば特許文献1に記載されたエンジンの制御装置では、燃焼方式の切替時において、気筒内に略均一な予混合気を形成した後に、圧縮行程で燃料噴射弁により燃料を噴射させて、点火プラグ周りに偏在する成層化混合気を形成し、この成層化混合気に点火して燃焼させる(成層化火花点火燃焼)ことにより、予混合気の自己着火を誘発するようにしている。このように点火プラグ周りの成層化混合気の火花点火燃焼によって予混合気の自己着火をアシストすることにより、燃焼の不安定化を防止すると共に、自己着火燃焼によって必要なエンジン出力が得られるようになっている。
特許第4737103号明細書
ところで、上述した成層化火花点火燃焼では、点火プラグ周りに形成したリッチな混合気が燃焼する際に窒素酸化物の生成量が増大するので、エミッション性能の悪化を招く。また、燃料噴射量の増加に伴って燃費が悪化する。
従って、燃焼方式の切替時に成層化火花点火燃焼を行う期間をできる限り短縮することが望ましいが、上述した従来技術では、成層化火花点火燃焼を行う期間を、燃焼方式の切替開始からの時間や燃焼サイクル数によって規定しているため、SI燃焼やHCCI燃焼を安定して行うことができる状況にも関わらず成層化火花点火燃焼が継続されることがあり、エミッション性能や燃費の向上の余地がある。
本発明は、上述した従来技術の問題点を解決するためになされたものであり、エンジンの燃焼をHCCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる、エンジンの制御装置を提供することを目的とする。
上記の目的を達成するために、本発明のエンジンの制御装置は、運転状態が所定の圧縮自己着火領域内にある場合、圧縮自己着火燃焼が行われ、運転状態が所定の火花点火領域内にある場合、火花点火燃焼が行われるエンジンの制御装置であって、エンジンの排気バルブの作動モードを変化させる排気側可変バルブ機構と、エンジンの運転状態に対応した燃料噴射時期に燃料噴射を行うようにエンジンの燃料噴射弁を制御する燃料噴射制御手段と、エンジンの運転状態が圧縮自己着火領域内にある場合、排気側可変バルブ機構により、吸気行程において排気バルブを開弁させて既燃ガスを排気ポートから気筒内へ再導入させる第1の作動モードで排気バルブを作動させ、エンジンの運転状態が火花点火領域内にある場合、排気側可変バルブ機構により、第1の作動モードにおける排気バルブの閉弁時期よりも進角した時期に排気バルブを閉弁させる第2の作動モードで排気バルブを作動させる可変バルブ機構制御手段と、エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合を気筒内の状態量として推定する筒内状態量推定手段とを有し、可変バルブ機構制御手段は、エンジンの運転状態が圧縮自己着火領域から火花点火領域へ切り替わった場合、排気バルブの作動モードを第1の作動モードから第2のモードへ切り替え、燃料噴射制御手段は、エンジンの運転状態が圧縮自己着火領域から火花点火領域へ切り替わった場合において、筒内状態量推定手段により推定された気筒内の状態量が圧縮自己着火燃焼を行うことのできる所定の圧縮自己着火燃焼閾値範囲内である場合、圧縮自己着火燃焼に対応した燃料噴射時期を設定し、気筒内の状態量が圧縮自己着火燃焼閾値範囲外となり且つ火花点火燃焼を行うことのできる所定の火花点火燃焼閾値範囲内に入っていない場合、吸気行程で気筒内に略均一な予混合気を形成した後に圧縮行程で燃料噴射を行うことによりエンジンの点火プラグ周辺に成層化混合気を形成し、その成層化混合気を火花点火して予混合気と共に燃焼させる成層火花点火燃焼に対応した燃料噴射時期を設定し、成層火花点火燃焼に対応した燃料噴射時期に燃料噴射を行っている場合において、気筒内の状態量が火花点火燃焼閾値範囲内に入った場合、燃料噴射時期を成層火花点火燃焼に対応した燃料噴射時期から火花点火燃焼に対応した燃料噴射時期に切り替えることにより、成層火花点火燃焼に対応した燃料噴射時期が設定されるのは、第1の作動モードから第2の作動モードへの切替において可変バルブ機構制御手段が排気バルブの閉弁時期の進角を開始した後且つその進角量が第2の作動モードにおける目標値に到達するよりも前の期間に限られることを特徴とする。
このように構成された本発明においては、燃料噴射制御手段は、エンジンの運転状態が火花点火領域と圧縮自己着火領域との間で切り替わったとき、筒内状態量推定手段により推定された気筒内の状態量に基づいて燃料噴射時期を設定するので、燃焼の安定性に相関がある気筒内の既燃ガス量に応じた適切な燃料噴射時期を設定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼と火花点火燃焼との間で切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
特に、エンジンの運転状態が圧縮自己着火領域から火花点火領域へ切り替わった場合において、気筒内の状態が火花点火燃焼を安定して行うことができない状態である場合に、成層火花点火燃焼に対応した燃料噴射時期を設定するので、成層火花点火燃焼を行う期間を必要な期間に限定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼から火花点火燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、エンジンの運転状態が圧縮自己着火領域から火花点火領域へ切り替わった場合において、気筒内の状態が圧縮自己着火燃焼を行うことのできる状態である場合、圧縮自己着火燃焼を維持するので、成層火花点火燃焼を行う期間を必要な期間に確実に限定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼から火花点火燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、成層火花点火燃焼を行っている間も筒内状態を推定し、気筒内の状態が火花点火燃焼を安定して行うことのできる状態になった場合には直ちに火花点火燃焼に移行するので、成層火花点火燃焼を行う期間を必要な期間に確実に限定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼から火花点火燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、燃料噴射制御手段は、エンジンの運転状態が火花点火領域と圧縮自己着火領域との間で切り替わったとき、エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合に基づいて燃料噴射時期を設定するので、より適切な燃料噴射時期を設定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼と火花点火燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、本発明において、好ましくは、燃料噴射制御手段は、エンジンの運転状態が火花点火領域から圧縮自己着火領域へ切り替わった場合において、筒内状態量推定手段により推定された気筒内の状態量が圧縮自己着火燃焼を行うことのできる所定の圧縮自己着火燃焼閾値範囲内である場合、圧縮自己着火燃焼に対応した燃料噴射時期を設定し、筒内状態量推定手段により推定された気筒内の状態量が圧縮自己着火燃焼閾値範囲外である場合、吸気行程で気筒内に略均一な予混合気を形成した後に圧縮行程で燃料噴射を行うことによりエンジンの点火プラグ周辺に成層化混合気を形成し、その成層化混合気を火花点火して予混合気と共に燃焼させる成層火花点火燃焼に対応した燃料噴射時期を設定する。
このように構成された本発明においては、エンジンの運転状態が火花点火領域から圧縮自己着火領域へ切り替わった場合において、気筒内の状態が圧縮自己着火燃焼を安定して行うことができない状態である場合に、成層火花点火燃焼に対応した燃料噴射時期を設定するので、成層火花点火燃焼を行う期間を必要な期間に限定することができ、これにより、エンジンの燃焼を火花点火燃焼から圧縮自己着火燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、本発明において、好ましくは、エンジンの制御装置は、更に、エンジンの気筒内の温度に関する気筒内の状態量を取得する副筒内状態量取得手段を有し、燃料噴射制御手段は、エンジンの運転状態が火花点火領域と圧縮自己着火領域との間で切り替わったとき、筒内状態量推定手段により推定された気筒内の状態量及び副筒内状態量取得手段により取得された気筒内の状態量に基づいて燃料噴射時期を設定する。
このように構成された本発明においては、燃料噴射制御手段は、エンジンの運転状態が火花点火領域と圧縮自己着火領域との間で切り替わったとき、副筒内状態量推定手段により推定された気筒内の温度に関する状態量に基づいて燃料噴射時期を設定するので、燃焼の安定性に相関がある気筒内の温度に応じてより適切な燃料噴射時期を設定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼と火花点火燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、本発明において、好ましくは、筒内状態量推定手段は、エンジンの吸気バルブを通過した吸気に対する、エンジンの吸気通路に還流された既燃ガスの割合として外部既燃ガス率を算出すると共に、エンジンの気筒内に導入された総ガス量の内、吸気行程において排気バルブを開弁させたことにより排気ポートから気筒内へ再導入された既燃ガスが占める内部既燃ガス率を算出し、算出した外部既燃ガス率及び内部既燃ガス率に基づき、エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合を推定する。
このように構成された本発明においては、エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合を一層正確に推定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼と火花点火燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、本発明において、好ましくは、副筒内状態量取得手段は、吸気行程においてエンジンの吸気バルブが閉じたタイミングにおける気筒内の容積及び圧力と、エンジンの気筒内に導入された総ガス量とに基づき、エンジンの気筒内の温度を取得する。
このように構成された本発明においては、エンジンの気筒内の温度を一層正確に推定することができ、これにより、エンジンの燃焼を圧縮自己着火燃焼と火花点火燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
本発明によるエンジンの制御装置によれば、エンジンの燃焼をHCCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
本発明の実施形態によるエンジンの制御装置が適用されたエンジンの概略構成図である。 本発明の実施形態によるエンジンの制御装置に関する電気的構成を示すブロック図である。 本発明の実施形態によるエンジンの運転領域の説明図である。 本発明の実施形態による吸気バルブ及び排気バルブのリフトカーブを示す線図であり、(a)はエンジンのHCCI領域の低負荷側、(b)はエンジンのHCCI領域の高負荷側、(c)はエンジンのSI領域における吸気バルブ及び排気バルブのリフトカーブを示す線図である。 本発明の実施形態によるエンジンの燃焼制御処理のフローチャートである。 図5に示したエンジンの燃焼制御処理における筒内EGR率推定処理のフローチャートである。 図5に示したエンジンの燃焼制御処理における筒内温度推定処理のフローチャートである。 HCCI燃焼、成層化SI燃焼、及びSI燃焼のそれぞれにおける燃料噴射時期を示す概略図である。 本発明の実施形態によるエンジンの運転領域がHCCI領域における低負荷側領域からSI領域へ切り替わるときの、筒内状態量と燃料噴射時期との関係を示すタイミングチャートである。 本発明の実施形態によるエンジンの運転領域がHCCI領域における高負荷側領域からSI領域へ切り替わるときの、筒内状態量と燃料噴射時期との関係を示すタイミングチャートである。
以下、添付図面を参照して、本発明の実施形態によるエンジンの制御装置を説明する。
[装置構成]
図1は、本発明の実施形態によるエンジンの制御装置が適用されたエンジン(エンジン本体)1の概略構成を示し、図2は、本発明の実施形態によるエンジンの制御装置を示すブロック図である。
エンジン1は、車両に搭載されると共に、少なくともガソリンを含有する燃料が供給されるガソリンエンジンである。エンジン1は、複数の気筒18が設けられたシリンダブロック11(なお、図1では、1つの気筒のみを図示するが、例えば4つの気筒が直列に設けられる)と、このシリンダブロック11上に配設されたシリンダヘッド12と、シリンダブロック11の下側に配設され、潤滑油が貯留されたオイルパン13とを有している。各気筒18内には、コンロッド142を介してクランクシャフト15と連結されているピストン14が往復動可能に嵌挿されている。ピストン14の頂面には、ディーゼルエンジンでのリエントラント型のようなキャビティ141が形成されている。キャビティ141は、ピストン14が圧縮上死点付近に位置するときには、後述するインジェクタ67に相対する。シリンダヘッド12と、気筒18と、キャビティ141を有するピストン14とは、燃焼室19を画定する。なお、燃焼室19の形状は、図示する形状に限定されるものではない。例えばキャビティ141の形状、ピストン14の頂面形状、及び、燃焼室19の天井部の形状等は、適宜変更することが可能である。
このエンジン1は、理論熱効率の向上や、後述する圧縮着火燃焼の安定化等を目的として、15以上の比較的高い幾何学的圧縮比に設定されている。なお、幾何学的圧縮比は15以上20以下程度の範囲で、適宜設定すればよい。
シリンダヘッド12には、気筒18毎に、吸気ポート16及び排気ポート17が形成されていると共に、これら吸気ポート16及び排気ポート17には、燃焼室19側の開口を開閉する吸気バルブ21及び排気バルブ22がそれぞれ配設されている。
吸気バルブ21及び排気バルブ22をそれぞれ駆動する動弁系の内、排気側には、排気バルブ22の作動モードを通常モードと特殊モードとに切り替える、例えば油圧作動式の可変バルブリフト機構(図2参照。以下、VVL(Variable Valve Lift)と称する)71と、クランクシャフト15に対する排気カムシャフトの回転位相を変更することが可能な位相可変機構(以下、VVT(Variable Valve Timing)と称する)75と、が設けられている。VVL71は、その構成の詳細な図示は省略するが、カム山を一つ有する第1カムとカム山を2つ有する第2カムとの、カムプロフィールの異なる2種類のカム、及び、その第1及び第2カムのいずれか一方のカムの作動状態を選択的に排気バルブ22に伝達するロストモーション機構を含んで構成されている。第1カムの作動状態を排気バルブ22に伝達しているときには、排気バルブ22は、排気行程中において一度だけ開弁される通常モードで作動するのに対し、第2カムの作動状態を排気バルブ22に伝達しているときには、排気バルブ22が、排気行程中において開弁すると共に、吸気行程中においても開弁するような、いわゆる排気の二度開きを行う特殊モードで作動する。VVL71の通常モードと特殊モードとは、エンジンの運転状態に応じて切り替えられる。具体的には、特殊モードは、内部EGRに係る制御の際に利用される。なお、排気バルブ22を電磁アクチュエータによって駆動する電磁駆動式の動弁系を採用してもよい。
なお、内部EGRの実行は、排気二度開きのみによって実現されるのではない。例えば吸気バルブ21を二回開く、吸気の二度開きによって内部EGR制御を行ってもよいし、排気行程乃至吸気行程において吸気バルブ21及び排気バルブ22の双方を閉じるネガティブオーバーラップ期間を設けて既燃ガスを気筒18内に残留させる内部EGR制御を行ってもよい。
VVT75は、液圧式、電磁式又は機械式の公知の構造を適宜採用すればよく、その詳細な構造についての図示は省略する。排気バルブ22は、VVT75によって、その開弁時期及び閉弁時期を、所定の範囲内で連続的に変更可能である。
VVL71及びVVT75を備えた排気側の動弁系と同様に、吸気側には、図2に示すように、VVL74とVVT72とが設けられている。吸気側のVVL74は、排気側のVVL71とは異なる。吸気側のVVL74は、吸気バルブ21のリフト量を相対的に大きくする大リフトカムと、吸気バルブ21のリフト量を相対的に小さくする小リフトカムとの、カムプロフィールの異なる2種類のカム、及び、大リフトカム及び小リフトカムのいずれか一方のカムの作動状態を選択的に吸気バルブ21に伝達するロストモーション機構を含んで構成されている。VVL74が大リフトカムの作動状態を吸気バルブ21に伝達しているときには、吸気バルブ21は、相対的に大きいリフト量で開弁すると共に、その開弁期間も長くなる。これに対し、VVL74が小リフトカムの作動状態を吸気バルブ21に伝達しているときには、吸気バルブ21は、相対的に小さいリフト量で開弁すると共に、その開弁期間も短くなる。大リフトカムと小リフトカムとは、閉弁時期又は開弁時期を同じにして切り替わるように設定されている。
吸気側のVVT72は、排気側のVVT75と同様に、液圧式、電磁式又は機械式の公知の構造を適宜採用すればよく、その詳細な構造についての図示は省略する。吸気バルブ21もまた、VVT72によって、その開弁時期及び閉弁時期を、所定の範囲内で連続的に変更可能である。なお、吸気側にVVL74を適用せずに、VVT72のみを適用し、吸気バルブ21の開弁時期及び閉弁時期のみを変更するようにしてもよい。
シリンダヘッド12にはまた、気筒18毎に、気筒18内に燃料を直接噴射する(直噴)インジェクタ67が取り付けられている。インジェクタ67は、その噴口が燃焼室19の天井面の中央部分から、その燃焼室19内に臨むように配設されている。インジェクタ67は、エンジン1の運転状態に応じて設定された噴射タイミングでかつ、エンジン1の運転状態に応じた量の燃料を、燃焼室19内に直接噴射する。この例において、インジェクタ67は、詳細な図示は省略するが、複数の噴口を有する多噴口型のインジェクタである。これによって、インジェクタ67は、燃料噴霧が、燃焼室19の中心位置から放射状に広がるように、燃料を噴射する。ピストン14が圧縮上死点付近に位置するタイミングで、燃焼室19の中央部分から放射状に広がるように噴射された燃料噴霧は、ピストン頂面に形成されたキャビティ141の壁面に沿って流動する。キャビティ141は、ピストン14が圧縮上死点付近に位置するタイミングで噴射された燃料噴霧を、その内部に収めるように形成されている、と言い換えることが可能である。この多噴口型のインジェクタ67とキャビティ141との組み合わせは、燃料の噴射後、混合気形成期間を短くすると共に、燃焼期間を短くする上で有利な構成である。なお、インジェクタ67は、多噴口型のインジェクタに限定されず、外開弁タイプのインジェクタを採用してもよい。
図外の燃料タンクとインジェクタ67との間は、燃料供給経路によって互いに連結されている。この燃料供給経路上には、燃料ポンプ63とコモンレール64とを含みかつ、インジェクタ67に、比較的高い燃料圧力で燃料を供給することが可能な燃料供給システム62が介設されている。燃料ポンプ63は、燃料タンクからコモンレール64に燃料を圧送し、コモンレール64は圧送された燃料を、比較的高い燃料圧力で蓄えることが可能である。インジェクタ67が開弁することによって、コモンレール64に蓄えられている燃料がインジェクタ67の噴口から噴射される。ここで、燃料ポンプ63は、図示は省略するが、プランジャー式のポンプであり、エンジン1によって駆動される。このエンジン駆動のポンプを含む構成の燃料供給システム62は、30MPa以上の高い燃料圧力の燃料を、インジェクタ67に供給することを可能にする。燃料圧力は、最高で120MPa程度に設定してもよい。インジェクタ67に供給される燃料の圧力は、後述するように、エンジン1の運転状態に応じて変更される。なお、燃料供給システム62は、この構成に限定されるものではない。
シリンダヘッド12にはまた、燃焼室19内の混合気に強制点火する点火プラグ25が取り付けられている。点火プラグ25は、この例では、エンジン1の排気側から斜め下向きに延びるように、シリンダヘッド12内を貫通して配置されている。点火プラグ25の先端は、圧縮上死点に位置するピストン14のキャビティ141内に臨んで配置される。
エンジン1の一側面には、図1に示すように、各気筒18の吸気ポート16に連通するように吸気通路30が接続されている。一方、エンジン1の他側面には、各気筒18の燃焼室19からの既燃ガス(排気ガス)を排出する排気通路40が接続されている。
吸気通路30の上流端部には、吸入空気を濾過するエアクリーナ31が配設され、その下流側には、各気筒18への吸入空気量を調節するスロットル弁36が配設されている。また、吸気通路30における下流端近傍には、サージタンク33が配設されている。このサージタンク33よりも下流側の吸気通路30は、気筒18毎に分岐する独立通路とされ、これら各独立通路の下流端が各気筒18の吸気ポート16にそれぞれ接続されている。
吸気通路30におけるスロットル弁36とサージタンク33との間には、気筒18に導入する新気にオゾンを添加するオゾン発生器(O3発生器)76が介設されている。オゾン発生器76は、吸気に含まれる酸素を原料ガスとして、無声放電によりオゾンを生成する。つまり、電極に対して、図外の電源から高周波交流高電圧を印加することにより、放電間隙において無声放電が発生し、そこを通過する空気(つまり、吸気)がオゾン化される。こうしてオゾンが添加された吸気は、サージタンク33から吸気ポート16を介して、各気筒18内に導入される。オゾン発生器76の電極に対する電圧の印加態様を変更する、及び/又は、電圧を印加する電極の数を変更することによって、オゾン発生器76を通過した後の、吸気中のオゾン濃度を調整することが可能である。PCM10は、こうしたオゾン発生器76に対する制御を通じて、気筒18内に導入する吸気中のオゾン濃度の調整を行う。
排気通路40の上流側の部分は、気筒18毎に分岐して排気ポート17の外側端に接続された独立通路と該各独立通路が集合する集合部とを有する排気マニホールドによって構成されている。この排気通路40における排気マニホールドよりも下流側には、排気ガス中の有害成分を浄化する排気浄化装置として、直キャタリスト41とアンダーフットキャタリスト42とがそれぞれ接続されている。直キャタリスト41及びアンダーフットキャタリスト42はそれぞれ、筒状ケースと、そのケース内の流路に配置した、例えば三元触媒とを備えて構成されている。
吸気通路30におけるサージタンク33とスロットル弁36との間の部分と、排気通路40における直キャタリスト41よりも上流側の部分とは、排気ガスの一部を吸気通路30に還流するためのEGR通路50を介して接続されている。このEGR通路50は、排気ガスをエンジン冷却水によって冷却するためのEGRクーラ52が配設された主通路51を含んで構成されている。主通路51には、排気ガスの吸気通路30への還流量を調整するためのEGR弁511が配設されている。
エンジン1は、パワートレイン・コントロール・モジュール(以下、PCMという)10によって制御される。PCM10は、CPU、メモリ、カウンタタイマ群、インターフェース及びこれらのユニットを接続するパスを有するマイクロプロセッサで構成されている。このPCM10が制御器を構成する。
PCM10には、図1、2に示すように、各種のセンサSW1、SW2、SW4〜SW16の検出信号が入力される。具体的には、PCM10には、エアクリーナ31の下流側で、新気の流量を検出するエアフローセンサSW1の検出信号と、新気の温度を検出する吸気温度センサSW2の検出信号と、EGR通路50における吸気通路30との接続部近傍に配置されかつ、外部EGRガスの温度を検出するEGRガス温センサSW4の検出信号と、吸気ポート16に取り付けられかつ、気筒18内に流入する直前の吸気の温度を検出する吸気ポート温度センサSW5の検出信号と、シリンダヘッド12に取り付けられかつ、気筒18内の圧力を検出する筒内圧センサSW6の検出信号と、排気通路40におけるEGR通路50の接続部近傍に配置されかつ、それぞれ排気温度及び排気圧力を検出する排気温センサSW7及び排気圧センサSW8の検出信号と、直キャタリスト41の上流側に配置されかつ、排気中の酸素濃度を検出するリニアO2センサSW9の検出信号と、直キャタリスト41とアンダーフットキャタリスト42との間に配置されかつ、排気中の酸素濃度を検出するラムダO2センサSW10の検出信号と、エンジン冷却水の温度を検出する水温センサSW11の検出信号と、クランクシャフト15の回転角を検出するクランク角センサSW12の検出信号と、車両のアクセルペダル(図示省略)の操作量に対応したアクセル開度を検出するアクセル開度センサSW13の検出信号と、吸気側及び排気側のカム角センサSW14、SW15の検出信号と、燃料供給システム62のコモンレール64に取り付けられかつ、インジェクタ67に供給する燃料圧力を検出する燃圧センサSW16の検出信号と、EGR弁511の開度を検出するEGR弁開度センサSW17の検出信号と、EGR弁511の前後の差圧を検出するEGR弁差圧センサSW18の検出信号と、スロットル弁36の開度を検出するスロットル弁開度センサSW19の検出信号と、スロットル弁36の前後の差圧を検出するスロットル弁差圧センサSW20の検出信号と、吸気ポート16の近傍に配置され吸気圧力を検出する吸気圧センサSW21の検出信号と、が入力される。
PCM10は、これらの検出信号に基づいて種々の演算を行うことによってエンジン1や車両の状態を判定し、これに応じてインジェクタ67、点火プラグ25、吸気バルブ側のVVT72及びVVL74、排気バルブ側のVVT75及びVVL71、燃料供給システム62、各種の弁(スロットル弁36、EGR弁511)のアクチュエータ、並びに、オゾン発生器76へ制御信号を出力する。こうしてPCM10は、エンジン1を運転する。詳細は後述するが、PCM10は、本発明におけるエンジンの制御装置に相当し、燃料噴射制御手段、可変バルブ機構制御手段、筒内状態量推定手段、及び副筒内状態量推定手段として機能する。
[運転領域]
次に、図3を参照して、本発明の実施形態によるエンジンの運転領域について説明する。図3は、エンジン1の運転制御マップの一例を示している。このエンジン1は、燃費の向上や排気エミッション性能の向上を目的として、エンジン負荷が相対的に低い低負荷域では、点火プラグ25による点火を行わずに、予混合圧縮自己着火(Homogeneous-Charge Compression Ignition:HCCI)による圧縮着火燃焼を行う。しかしながら、エンジン1の負荷が高くなるに従って、圧縮着火燃焼では、燃焼が急峻になりすぎてしまい、例えば燃焼騒音等の問題を引き起こすことになる。そこで、このエンジン1では、エンジン負荷が相対的に高い高負荷域では、圧縮着火燃焼を止めて、点火プラグ25を利用した強制点火燃焼(ここでは火花点火燃焼(Spark Ignition:SI))に切り替える。このように、このエンジン1は、エンジン1の運転状態、特にエンジン1の負荷に応じて、予混合圧縮自己着火燃焼を行うHCCIモードと、火花点火燃焼を行うSIモードとを切り替えるように構成されている。但し、モード切り替えの境界線は、図例に限定されるものではない。
[吸気バルブ及び排気バルブの動作]
次に、図4を参照して、本発明の実施形態による吸気バルブ及び排気バルブの動作を説明する。図4は、本発明の実施形態による吸気バルブ及び排気バルブのリフトカーブを示す線図であり、(a)はエンジンのHCCI領域の低負荷側、(b)はエンジンのHCCI領域の高負荷側、(c)はエンジンのSI領域における吸気バルブ及び排気バルブのリフトカーブの一例を示している。
吸気側のVVL74における小リフトカムのプロフィールは、図4(a)及び(b)に実線で例示するように、相対的に小さいリフト量の1つのカム山を有し、吸気側のVVL74における大リフトカムのプロフィールは、図4(c)に実線で例示するように、相対的に大きいリフト量の1つのカム山を有している。
VVL74が小リフトカムの作動状態を吸気バルブ21に伝達しているときには、図4(a)及び(b)に示すように、吸気バルブ21は、相対的に小さいリフト量で開弁すると共に、その開弁期間も短くなる。これに対し、VVL74が大リフトカムの作動状態を吸気バルブ21に伝達しているときには、図4(c)に示すように、吸気バルブ21は、相対的に大きいリフト量で開弁すると共に、その開弁期間も長くなる。図4の例では、大リフトカムと小リフトカムとは、開弁時期を同じにして切り替わるように設定されているので、VVL74が大リフトカムの作動状態を吸気バルブ21に伝達している場合、吸気バルブ21の閉弁時期は圧縮行程中まで遅れるように設定され、遅閉じミラーサイクルが実現される。
排気側のVVL71における第1カムのカムプロフィールは、図4(a)及び(b)に破線で例示するように、リフトカーブにおける閉弁側に、クランク角の進行に対してリフトを略一定に維持するリフト棚部222を有し、第2カムのカムプロフィールは、図4(c)に破線で例示するように、リフト棚部を有さずに、一つのカム山を有する。
排気側のVVL71のロストモーション機構が、第1カムの作動状態を排気バルブ22に伝達しているときには、図4(a)及び(b)に破線で例示するように、排気バルブ22は、開弁をした後、クランク角の進行に伴いリフト量が次第に大きくなり、少なくとも排気行程中で所定のピークに至った後、リフト棚部222において所定リフト量を維持した上で、閉弁に至る特殊モードで作動をする。これに対し、ロストモーション機構が、第2カムの作動状態を排気バルブ22に伝達しているときには、図4(c)に破線で例示するように、排気バルブ22は開弁をした後、クランク角の進行に伴いリフト量が次第に大きくなり、少なくとも排気行程中で所定のピークに至った後、リフト量が次第に小さくなって、そのまま閉弁する通常モードで作動をする。VVL71の通常モードと特殊モードとは、エンジン1の運転状態に応じて切り替えられ、具体的に、特殊モードは、内部EGRガスを気筒18内に導入する際に利用され、通常モードは、それ以外のときに利用される。以下の説明においては、VVL71を通常モードで作動させることを、「VVL71をオフにする」といい、VVL71を特殊モードで作動させ、内部EGR制御を行うことを、「VVL71をオンにする」という場合がある。
ここで、図4(a)及び(b)を参照しながら、排気側のVVL71における第1カムのカムプロフィールについて、さらに詳細に説明をする。図4(a)の破線は、排気バルブ22の閉時期の位相を最も遅角側に設定したときの、排気バルブ22のリフトカーブ221であり、図3(b)の破線は、排気バルブ22の閉時期の位相を最も進角側に設定したときの、排気弁22のリフトカーブ221である。第1カムは、上述の通り、そのリフトカーブ221における閉弁側にリフト棚部222を有するように構成されている。ここで、リフトカーブ221における閉弁側とは、リフトカーブ221におけるピークを挟んだ両側を、開弁側と閉弁側とに分けたときの閉弁側に相当する。図4(a)に示すように、VVT75によって排気バルブ22の閉時期の位相を遅角したときに、リフト棚部222は、吸気行程の、少なくとも前半に位置するようになる。ここでいう「前半」は、吸気行程を前半と後半とに2等分したときの前半に相当する。従って、排気行程中に排気ポート17に排出された排気ガスの一部は、吸気行程時に排気バルブ22が開弁することに伴い、気筒18内に戻される。こうして、排気ガスの一部が、実質的に、気筒18内に残留することになる(つまり、内部EGR制御)。
リフト棚部222のリフト量は、リフトカーブ221のピークよりも低いリフト量に設定されている。図4(a)に示すように、VVT75によって排気バルブ22の開閉時期の位相を遅角したときに、リフト棚部222は上死点(Top Dead Center:TDC)に位置する場合がある。そのため、実施形態では、リフト棚部222のリフト量は、上死点に位置するピストン14の上面と干渉しない限度において、最大リフト量となるように設定される。こうすることで、内部EGRの最大量を、できるだけ多い量に設定することが可能になる。例えば、リフト棚部222のリフト量は、リフトカーブ221のピークにおけるリフト量に対して、1/2以下の範囲で、適宜、設定することが可能である。
また、リフト棚部222の長さ(つまり、クランク角の進行方向の長さ)は、設定可能な最大リフト量に基づいて、要求される最大の内部EGRガス量を満足することができるように設定される。
なお、排気バルブ22の特殊モードにおいては、図4に示したように、排気行程での開弁後、リフト棚部222を通じて開弁状態を維持した上で、吸気行程で閉弁するようなカムプロフィールの代わりに、排気行程での開弁後に一旦閉弁をした後、吸気行程で再び開弁するようなカムプロフィールを採用してもよい。
[エンジンの燃焼方式の切替制御]
次に、図5乃至8を参照して、本発明の実施形態によるエンジンの燃焼制御処理を説明する。図5は、本発明の実施形態によるエンジンの燃焼制御処理のフローチャートであり、図6は、図5に示したエンジンの燃焼制御処理における筒内EGR率推定処理のフローチャートであり、図7は、図5に示したエンジンの燃焼制御処理における筒内温度推定処理のフローチャートである。また、図8は、HCCI燃焼、成層化SI燃焼、及びSI燃焼のそれぞれにおける燃料噴射時期を示す概略図である。
図5に示す燃焼制御処理は、PCM10によって、車両の運転時に所定の周期で繰り返し実行される。
図5に示すように、エンジン1の燃焼制御処理が開始されると、まず、ステップS1において、PCM10は、各種のセンサから入力された検出信号等に基づき、エンジン1の運転状態を取得する。
次に、ステップS2において、PCM10は、各種のセンサから入力された検出信号等に基づき、エンジン1に要求される運転状態を取得する。例えば、PCM10は、アクセル開度センサSW13から入力されたアクセル開度や、ステップS1において取得したエンジン1の運転状態に基づき、エンジン1に要求される運転状態を取得する。
次に、ステップS3において、PCM10は、ステップS2において取得したエンジン1に対する要求運転状態がSI領域内に含まれるか否かを判定する。その結果、エンジン1に対する要求運転状態がSI領域内に含まれる場合、ステップS4に進み、PCM10は、エンジン1がSI燃焼中か否かを判定する。その結果、エンジン1がSI燃焼中である場合、PCM10は、SI燃焼のための制御を継続し、燃焼制御処理を終了する。
一方、ステップS4において、エンジン1がSI燃焼中ではない場合、エンジン1はHCCI燃焼からSI燃焼への切替中ということになる。そこで、ステップS5に進み、PCM10は、筒内EGR率推定処理を実行し、エンジン1の気筒18内に導入された総ガス量に占める既燃ガス量の割合、即ちEGR率を気筒18内の状態量として推定する。
図6に示すように、筒内EGR率推定処理が開始されると、ステップS21において、PCM10は、EGR弁開度センサSW17から入力されたEGR弁511の開度、及び、EGR弁差圧センサSW18から入力されたEGR弁511の前後の差圧に基づき、このEGR弁511を通過した既燃ガスの流量を算出する。
次に、ステップS22において、PCM10は、スロットル弁開度センサSW19から入力されたスロットル弁36の開度、及び、スロットル弁差圧センサSW20から入力されたスロットル弁36の前後の差圧に基づき、このスロットル弁36を通過した新気の流量を算出する。
次に、ステップS23において、PCM10は、吸気側カム角センサSW14から入力された吸気バルブ21のカム角に基づき吸気バルブ21のリフト量を推定し、吸気圧センサSW21から入力された吸気圧及び筒内圧センサSW6から入力された気筒18内の圧力に基づき、吸気バルブ21の前後の差圧を推定し、吸気バルブ21のリフト量と前後差圧とに基づき、この吸気バルブ21を通過した吸気(EGR通路50から還流された既燃ガスと新気との混合ガス)の流量を算出する。
次に、ステップS24において、PCM10は、EGR弁511を通過した既燃ガスの流量、スロットル弁36を通過した新気の流量、及び、吸気バルブ21を通過した吸気の流量に基づき、吸気バルブ21の閉時期における外部EGR率(吸気バルブ21を通過した吸気(EGR通路50から還流された既燃ガスと新気との混合ガス)に対する、EGR通路50から還流された既燃ガスの割合)を算出する。
次に、ステップS25において、PCM10は、排気側カム角センサSW15から入力された排気バルブ22のカム角に基づき排気バルブ22のリフト量を推定し、排気圧センサSW8から入力された排気圧及び筒内圧センサSW6から入力された気筒18内の圧力に基づき、排気バルブ22の前後の差圧を推定し、排気バルブ22のリフト量と前後差圧とに基づき、吸気行程中の排気バルブ22の二度開きにより気筒18内に再導入された既燃ガスの流量を算出する。
次に、ステップS26において、PCM10は、排気バルブ22を通過して気筒18内に再導入された既燃ガスの流量と、吸気バルブ21の閉時期までに気筒18内に導入された総ガス量(吸気バルブ21を通過した吸気流量と排気バルブ22から再導入された既燃ガス流量とを合わせたもの)とに基づき、吸気バルブ21の閉時期における内部EGR率(気筒18内に導入された総ガス量の内、排気バルブ22から気筒18内に再導入された既燃ガス流量(内部EGRガス流量)が占める割合)を算出する。
次に、ステップS27において、PCM10は、ステップS24で算出した外部EGR率と、ステップS26で算出した内部EGR率とに基づき、吸気バルブ21の閉時期におけるEGR率(気筒18内に導入された総ガス量に占める既燃ガス量の割合)を算出する。ステップS24の後、PCM10は筒内EGR率推定処理を終了し、図5のメインルーチンに戻る。
図5に戻り、ステップS5における筒内EGR率推定処理が終了すると、ステップS6に進み、PCM10は、筒内温度推定処理を実行し、エンジン1の気筒18内の温度を気筒18内の状態量として推定する。
図7に示すように、筒内温度推定処理が開始されると、ステップS31において、PCM10は、吸気側VVT72の位相角及び吸気側VVL74の設定状態に基づき、吸気バルブ21の閉時期における気筒18内の容積を算出する。
次に、ステップS32において、PCM10は、筒内圧センサSW6から入力された気筒18内の圧力に基づき、吸気バルブ21の閉時期における気筒18内の圧力を取得する。
次に、ステップS33において、PCM10は、吸気バルブ21の閉時期における気筒18内の容積、圧力、及び、吸気バルブ21の閉時期までに気筒18内に導入された総ガス量に基づき、状態方程式から吸気バルブ21の閉時期における気筒18内の温度を算出する。ステップS33の後、PCM10は筒内温度推定処理を終了し、図5のメインルーチンに戻る。
図5に戻り、ステップS6における筒内温度推定処理が終了すると、ステップS7に進み、PCM10は、ステップS5で推定した気筒18内のEGR率及びステップS6で推定した気筒18内の温度が、それぞれ、圧縮自己着火(Compression Ignition:CI)燃焼を行うことのできるCI燃焼閾値範囲内か否かを判定する。このCI燃焼閾値範囲は、CI燃焼を安定して行うことのできる範囲であり、下限値と上限値とによって規定された所定の範囲として、例えばエンジン1の試験結果に基づき設定される。
その結果、気筒18内のEGR率及び温度が、それぞれ、CI燃焼閾値範囲内である場合、気筒18内の状態はCI燃焼を安定して行うことができる状態であるので、HCCI燃焼を継続する。以降、気筒18内のEGR率又は温度がCI燃焼閾値範囲外となるまで、ステップS5及びS6の処理を繰り返す。
HCCI燃焼を行う場合、図8に例示するように、燃料噴射時期は少なくとも吸気行程から圧縮行程中期までの期間内に設定される。この期間内にインジェクタ67が気筒18内に燃料を噴射することにより、均質な混合気を形成する。この混合気は、圧縮上死点付近において圧縮自己着火する。
一方、気筒18内のEGR率及び温度がCI燃焼閾値範囲内ではない場合(気筒18内のEGR率及び温度の何れか一方又は両方がCI燃焼閾値範囲外である場合)、ステップS8に進み、PCM10は、ステップS5で推定した気筒18内のEGR率及びステップS6で推定した気筒18内の温度が、それぞれ、SI燃焼を行うことのできるSI燃焼閾値範囲内か否かを判定する。このSI燃焼閾値範囲は、SI燃焼を安定して行うことのできる範囲であり、下限値と上限値とによって規定された所定の範囲として、例えばエンジン1の試験結果に基づき設定される。
その結果、気筒18内のEGR率及び温度がSI燃焼閾値範囲内ではない場合(気筒18内のEGR率及び温度の何れか一方又は両方がSI燃焼閾値範囲外である場合)、気筒18内の状態はCI燃焼及びSI燃焼のどちらも安定して行うことができない過渡的な状態であるので、ステップS9に進み、PCM10は、燃料噴射時期を、成層化SI燃焼に対応した時期に設定する。その後、PCM10はステップS5に戻る。
成層化SI燃焼を行う場合、図8に例示するように、燃料噴射時期は圧縮上死点付近の点火時期直前に設定される。この時期にインジェクタ67が気筒18内に燃料を噴射することにより、点火プラグ25の周辺に偏在する成層化混合気を形成し、この成層化混合気に点火して燃焼させることにより、気筒18の状態がCI燃焼及びSI燃焼のどちらも安定して行うことができない過渡的な状態であっても、成層化混合気を火花点火燃焼させることができ、燃焼の安定化を図ることができる。また、燃料噴射時期の切替直前に、HCCI燃焼に対応する燃料噴射時期(即ち吸気行程から圧縮行程中期までの期間内)に燃料が噴射され、予混合気が形成された場合であっても、点火プラグ25の周辺に形成した成層化混合気を火花点火燃焼によって予混合気の自己着火をアシストすることにより、燃焼の不安定化を防止することができる。
一方、ステップS8において、気筒18内のEGR率及び温度が、それぞれ、SI燃焼閾値範囲内である場合、気筒18内の状態はSI燃焼を安定して行うことができる状態であるので、ステップS10に進み、PCM10は、燃料噴射時期を、SI燃焼に対応した時期に設定する。その後、PCM10は燃焼制御処理を終了する。
SI燃焼を行う場合、図8に例示するように、燃料噴射時期は、吸気行程中の期間と、圧縮行程後期から膨張行程初期までの期間(リタード期間)に設定される。このように、燃料噴射時期を分割し、吸気行程中に燃料を噴射(前段噴射)すると共に、リタード期間において高い燃料圧力で気筒18内に燃料を噴射(リタード噴射)することにより、ノッキングを抑制しつつ点火時期を進角させることが可能になる。
また、図5のステップS3において、エンジン1に対する要求運転状態がSI領域内に含まれない(HCCI領域内に含まれる)場合、ステップS11に進み、PCM10は、エンジン1がHCCI燃焼中か否かを判定する。その結果、エンジン1がHCCI燃焼中である場合、PCM10は、HCCI燃焼のための制御を継続し、燃焼制御処理を終了する。
一方、ステップS11において、エンジン1がHCCI燃焼中ではない場合、エンジン1はSI燃焼からHCCI燃焼への切替中ということになる。そこで、ステップS12に進み、PCM10は、筒内EGR率推定処理を実行し、エンジン1の気筒18内に導入された総ガス量に占める既燃ガス量の割合、即ちEGR率を気筒18内の状態量として推定する。
ステップS12における筒内EGR率推定処理が終了すると、ステップS13に進み、PCM10は、筒内温度推定処理を実行し、エンジン1の気筒18内の温度を気筒18内の状態量として推定する。
ステップS13における筒内温度推定処理が終了すると、ステップS14に進み、PCM10は、ステップS12で推定した気筒18内のEGR率及びステップS13で推定した気筒18内の温度が、それぞれ、SI燃焼を行うことのできるSI燃焼閾値範囲内か否かを判定する。
その結果、気筒18内のEGR率及び温度が、それぞれ、SI燃焼閾値範囲内である場合、気筒18内の状態はSI燃焼を安定して行うことができる状態であるので、SI燃焼を継続する。以降、気筒18内のEGR率又は温度がSI燃焼閾値範囲外となるまで、ステップS12及びS13の処理を繰り返す。
一方、気筒18内のEGR率及び温度がSI燃焼閾値範囲内ではない場合(気筒18内のEGR率及び温度の何れか一方又は両方がSI燃焼閾値範囲外である場合)、ステップS15に進み、PCM10は、ステップS12で推定した気筒18内のEGR率及びステップS13で推定した気筒18内の温度が、それぞれ、CI燃焼を行うことのできるCI燃焼閾値範囲内か否かを判定する。
その結果、気筒18内のEGR率及び温度がCI燃焼閾値範囲内ではない場合(気筒18内のEGR率及び温度の何れか一方又は両方がCI燃焼閾値範囲外である場合)、気筒18内の状態はCI燃焼及びSI燃焼のどちらも安定して行うことができない過渡的な状態であるので、ステップS16に進み、PCM10は、燃料噴射時期を、成層化SI燃焼に対応した時期に設定する。その後、PCM10はステップS12に戻る。
一方、ステップS15において、気筒18内のEGR率及び温度が、それぞれ、CI燃焼閾値範囲内である場合、気筒18内の状態はCI燃焼を安定して行うことができる状態であるので、ステップS17に進み、PCM10は、燃料噴射時期を、HCCI燃焼に対応した時期に設定する。その後、PCM10は燃焼制御処理を終了する。
次に、図9及び図10により、エンジン1の運転領域がHCCI領域からSI領域へ切り替わるときの、筒内状態量と燃料噴射時期との関係を説明する。図9は、本発明の実施形態によるエンジンの運転領域がHCCI領域における低負荷側領域からSI領域へ切り替わるときの、筒内状態量と燃料噴射時期との関係を例示したタイミングチャートであり、図10は、本発明の実施形態によるエンジン1の運転領域がHCCI領域における高負荷側領域からSI領域へ切り替わるときの、筒内状態量と燃料噴射時期との関係を例示したタイミングチャートである。
図3において矢印Aで示したように、エンジン1の運転領域がHCCI領域における低負荷側領域からSI領域へ切り替わる場合(例えば、エンジン1の運転状態がHCCI領域における低負荷側領域内にある場合において、ドライバがアクセルを踏み込んだことによりエンジン1に対する要求負荷が急激に増大し、エンジン1の運転領域がHCCI領域からSI領域に入った場合)、吸気バルブ21及び排気バルブ22の作動モードを図4(a)に例示した状態から図4(c)に例示した状態まで切り替えることになり、作動モードの切替に比較的長い時間を要すると共に、気筒18内の状態が大きく変化することになる。
即ち、図9に示すように、時刻T0においてエンジン1の運転領域がHCCI領域からSI領域へ切り替わると、PCM10は、排気側のVVL71に作動モードの切替を指示すると共に、VVT75により排気バルブ22の閉時期の位相を進角させる。
VVL71の作動モードは、一定の応答遅れ時間が経過した後、時刻T1に特殊モードから通常モードに切り替わる。また、排気バルブ22の閉時期の位相の進角量は、指示値(図9において実線により示す)に対して遅れて変化し(図9において点線により示す)、時刻T2に目標値に到達する。
エンジン1の運転領域がHCCI領域からSI領域へ切り替わった直後(図9では時刻T3まで)は、VVL71の作動モードは切り替わらず、排気バルブ22の進角量の変化もわずかなので、図5の燃焼制御処理で推定した筒内EGR率及び筒内温度(何れも図9において実線により示す)はCI燃焼閾値範囲(図9において点線により示す)内に留まっている。従って、PCM10は、HCCI燃焼を継続する。
時刻T3を過ぎると、筒内EGR率及び筒内温度はCI燃焼閾値範囲外となり、且つ、SI燃焼閾値範囲内にも入っていない。従って、PCM10は、燃料噴射時期を成層化SI燃焼に対応した時期に設定する。
時刻T1においてVVL71の作動モードが特殊モードから通常モードに切り替わると、排気バルブ22の二度開きにより吸気行程中に気筒18内に既燃ガスが再導入されなくなるので、筒内EGR率及び筒内温度は何れもステップ的に低下する。これに伴い、筒内温度はSI燃焼閾値範囲内となるが、依然として排気バルブ22の閉時期の位相の進角量は目標値に到達しておらず、筒内EGR率はSI燃焼閾値範囲外であるので、PCM10は、成層化SI燃焼を継続する。
さらに、時刻T4になると、排気バルブ22の閉時期の位相の進角量は目標値に到達していないが、筒内EGR率及び筒内温度は何れもSI燃焼閾値範囲内となる。そこで、PCM10は、燃料噴射時期をSI燃焼に対応した時期に設定する。その後、時刻T2において排気バルブ22の閉時期の位相の進角量が目標値に到達し、エンジン1の燃焼の切替が完了する。
このように、成層化SI燃焼が行われるのは、筒内EGR率及び筒内温度がCI燃焼閾値範囲外、且つ、SI燃焼閾値範囲外の時刻T3からT4の期間に限られるので、従来のようにエンジン1の運転領域がHCCI領域からSI領域へ切り替わってから、排気バルブ22の閉時期の位相の進角量が目標値に到達し、エンジン1の燃焼の切替が完了するまでの時刻T0からT2の期間に成層化SI燃焼を行う場合と比較して、成層化SI燃焼を行う期間を短縮化できるので、エミッション性能や燃費の悪化を抑制できる。
一方、図3において矢印Bで示したように、エンジン1の運転領域がHCCI領域における高負荷側領域からSI領域へ切り替わる場合(例えば、エンジン1の運転状態がHCCI領域における高負荷側領域内にある場合において、ドライバがアクセルを徐々に踏み増したことによりエンジン1に対する要求負荷が緩やかに増大し、エンジン1の運転領域がHCCI領域からSI領域に入った場合)、吸気バルブ21及び排気バルブ22の作動モードを図4(b)に例示した状態から図4(c)に例示した状態まで切り替えることになるので、作動モードの切替に要する時間は比較的短く、気筒18内の状態も大きく変化しない。
即ち、図10に示すように、時刻T0においてエンジン1の運転領域がHCCI領域からSI領域へ切り替わると、PCM10は、排気側のVVL71に作動モードの切替を指示すると共に、VVT75により排気バルブ22の閉時期の位相を進角させる。
VVL71の作動モードは、一定の応答遅れ時間が経過した後、時刻T1に特殊モードから通常モードに切り替わる。また、排気バルブ22の閉時期の位相の進角量は、指示値(図10において実線により示す)に対して遅れて変化し(図10において点線により示す)、時刻T2に目標値に到達するが、その変化量は小さい。
エンジン1の運転領域がHCCI領域からSI領域へ切り替わった後においても、VVL71の作動モードは切り替わらず、排気バルブ22の進角量の変化もわずかなので、図5の燃焼制御処理で推定した筒内EGR率及び筒内温度(何れも図10において実線により示す)は時刻T5までCI燃焼閾値範囲(図10において点線により示す)内に留まっている。従って、PCM10は、HCCI燃焼を継続する。なお、筒内EGR率は、エンジン1の運転領域がHCCI領域からSI領域へ切り替わった直後からSI燃焼閾値範囲内にも入っている。
時刻T5を過ぎると、筒内温度はCI燃焼閾値範囲外となるが、SI燃焼閾値範囲内に入る。また、上述したように、筒内EGR率は既にSI燃焼閾値範囲内に入っている。従って、PCM10は、燃料噴射時期をSI燃焼に対応した時期に設定する。その後、時刻T2において排気バルブ22の閉時期の位相の進角量が目標値に到達し、エンジン1の燃焼の切替が完了する。
このように、HCCI燃焼とSI燃焼との切替前後における気筒18内の状態変化が小さく、切替の過渡期であっても気筒18内の状態がHCCI燃焼又はSI燃焼の何れかを安定して行える状態である場合には、成層化SI燃焼を経由することなく燃焼の切替を行うので、従来のようにエンジン1の運転領域がHCCI領域からSI領域へ切り替わってから、排気バルブ22の閉時期の位相の進角量が目標値に到達し、エンジン1の燃焼の切替が完了するまでの時刻T0からT2の期間に成層化SI燃焼を行う場合と比較して、エミッション性能や燃費の悪化を大幅に抑制できる。
次に、本発明の実施形態のさらなる変形例を説明する。
まず、上述した実施形態では、VVL71は、油圧で作動し、カム山を一つ有する第1カムとカム山を2つ有する第2カムとの、カムプロフィールの異なる2種類のカム、及び、その第1及び第2カムのいずれか一方のカムの作動状態を選択的に排気バルブ22に伝達するロストモーション機構を含んで構成されていると説明したが、これとは異なる構成のVVLを用いてもよく、電磁駆動や空気圧駆動のVVLを用いてもよい。
また、上述した実施形態では、PCM10は、気筒18内のEGR率及び温度がCI燃焼及びSI燃焼のどちらも安定して行うことができない過渡的な状態である場合、燃料噴射時期を成層化SI燃焼に対応した時期に設定すると説明したが、そのような過渡的な筒内状態でも安定した燃焼を行うことができる燃焼方式であれば、成層化SI燃焼とは異なる燃焼方式を採用してもよい。
次に、上述した本発明の実施形態及び本発明の実施形態の変形例によるエンジンの制御装置1の作用効果を説明する。
まず、PCM10は、エンジン1の運転状態がSI領域とCI領域との間で切り替わったとき、気筒18内の既燃ガス量に関する状態量に基づいて燃料噴射時期を設定するので、燃焼の安定性に相関がある気筒18内の既燃ガス量に応じた適切な燃料噴射時期を設定することができ、これにより、エンジン1の燃焼をCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、PCM10は、エンジン1の運転状態がCI領域からSI領域へ切り替わった場合において、気筒18内の状態がSI燃焼を安定して行うことができない状態である場合に、成層SI燃焼に対応した燃料噴射時期を設定するので、成層SI燃焼を行う期間を必要な期間に限定することができ、これにより、エンジン1の燃焼をCI燃焼からSI燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、PCM10は、エンジン1の運転状態がCI領域からSI領域へ切り替わった場合において、気筒18内の状態がCI燃焼を行うことのできる状態である場合、CI燃焼を維持するので、成層SI燃焼を行う期間を必要な期間に確実に限定することができ、これにより、エンジン1の燃焼をCI燃焼からSI燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、PCM10は、成層SI燃焼を行っている間も筒内状態を推定し、気筒18内の状態がSI燃焼を安定して行うことのできる状態になった場合には直ちにSI燃焼に移行するので、成層SI燃焼を行う期間を必要な期間に確実に限定することができ、これにより、エンジン1の燃焼をCI燃焼からSI燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、PCM10は、エンジン1の運転状態がSI領域からCI領域へ切り替わった場合において、気筒18内の状態がCI燃焼を安定して行うことができない状態である場合に、成層SI燃焼に対応した燃料噴射時期を設定するので、成層SI燃焼を行う期間を必要な期間に限定することができ、これにより、エンジン1の燃焼をSI燃焼からCI燃焼へ切り替える際に、エミッション性能や燃費の悪化を抑制しつつ、燃焼の不安定化を防止することができる。
また、PCM10は、エンジン1の運転状態がSI領域とCI領域との間で切り替わったとき、気筒18内の温度に関する状態量に基づいて燃料噴射時期を設定するので、燃焼の安定性に相関がある気筒18内の温度に応じてより適切な燃料噴射時期を設定することができ、これにより、エンジン1の燃焼をCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、PCM10は、エンジン1の運転状態がSI領域とCI領域との間で切り替わったとき、エンジン1の気筒18内に導入された総ガス量にEGR率に基づいて燃料噴射時期を設定するので、より適切な燃料噴射時期を設定することができ、これにより、エンジン1の燃焼をCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、PCM10は、吸気バルブ21の閉時期における外部EGR率と内部EGR率とに基づき、吸気バルブ21の閉時期におけるEGR率を算出するので、吸気バルブ21の閉時期におけるEGR率を一層正確に推定することができ、これにより、エンジン1の燃焼をCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
また、PCM10は、吸気バルブ21の閉時期における気筒18内の容積、圧力、及び、吸気バルブ21の閉時期までに気筒18内に導入された総ガス量に基づき、吸気バルブ21の閉時期における気筒18内の温度を算出するので、エンジン1の気筒18内の温度を一層正確に推定することができ、これにより、エンジン1の燃焼をCI燃焼とSI燃焼との間で切り替える際に、エミッション性能や燃費の悪化を一層効果的に抑制しつつ、燃焼の不安定化をより確実に防止することができる。
1 エンジン(エンジン本体)
10 PCM
16 吸気ポート
17 排気ポート
18 気筒
22 排気バルブ
71 VVL(排気側)
74 VVL(吸気側)
75 VVT(排気側)

Claims (5)

  1. 運転状態が所定の圧縮自己着火領域内にある場合、圧縮自己着火燃焼が行われ、運転状態が所定の火花点火領域内にある場合、火花点火燃焼が行われるエンジンの制御装置であって、
    上記エンジンの排気バルブの作動モードを変化させる排気側可変バルブ機構と、
    上記エンジンの運転状態に対応した燃料噴射時期に燃料噴射を行うように上記エンジンの燃料噴射弁を制御する燃料噴射制御手段と、
    上記エンジンの運転状態が上記圧縮自己着火領域内にある場合、上記排気側可変バルブ機構により、吸気行程において上記排気バルブを開弁させて既燃ガスを排気ポートから気筒内へ再導入させる第1の作動モードで上記排気バルブを作動させ、上記エンジンの運転状態が上記火花点火領域内にある場合、上記排気側可変バルブ機構により、上記第1の作動モードにおける上記排気バルブの閉弁時期よりも進角した時期に上記排気バルブを閉弁させる第2の作動モードで上記排気バルブを作動させる可変バルブ機構制御手段と、
    上記エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合を上記気筒内の状態量として推定する筒内状態量推定手段とを有し、
    上記可変バルブ機構制御手段は、上記エンジンの運転状態が上記圧縮自己着火領域から上記火花点火領域へ切り替わった場合、上記排気バルブの作動モードを上記第1の作動モードから上記第2のモードへ切り替え、
    上記燃料噴射制御手段は、
    上記エンジンの運転状態が上記圧縮自己着火領域から上記火花点火領域へ切り替わった場合において、上記筒内状態量推定手段により推定された上記気筒内の状態量が圧縮自己着火燃焼を行うことのできる所定の圧縮自己着火燃焼閾値範囲内である場合、圧縮自己着火燃焼に対応した燃料噴射時期を設定し、
    上記気筒内の状態量が上記圧縮自己着火燃焼閾値範囲外となり且つ火花点火燃焼を行うことのできる所定の火花点火燃焼閾値範囲内に入っていない場合、吸気行程で気筒内に略均一な予混合気を形成した後に圧縮行程で燃料噴射を行うことにより上記エンジンの点火プラグ周辺に成層化混合気を形成し、その成層化混合気を火花点火して上記予混合気と共に燃焼させる成層火花点火燃焼に対応した燃料噴射時期を設定し、
    上記成層火花点火燃焼に対応した燃料噴射時期に燃料噴射を行っている場合において、上記気筒内の状態量が上記火花点火燃焼閾値範囲内に入った場合、燃料噴射時期を上記成層火花点火燃焼に対応した燃料噴射時期から上記火花点火燃焼に対応した燃料噴射時期に切り替えることにより、上記成層火花点火燃焼に対応した燃料噴射時期が設定されるのは、上記第1の作動モードから上記第2の作動モードへの切替において上記可変バルブ機構制御手段が上記排気バルブの閉弁時期の進角を開始した後且つその進角量が上記第2の作動モードにおける目標値に到達するよりも前の期間に限られることを特徴とするエンジンの制御装置。
  2. 上記燃料噴射制御手段は、上記エンジンの運転状態が上記火花点火領域から上記圧縮自己着火領域へ切り替わった場合において、上記筒内状態量推定手段により推定された上記気筒内の状態量が上記圧縮自己着火燃焼閾値範囲内である場合、圧縮自己着火燃焼に対応した燃料噴射時期を設定し、上記筒内状態量推定手段により推定された上記気筒内の状態量が上記圧縮自己着火燃焼閾値範囲外である場合、上記成層火花点火燃焼に対応した燃料噴射時期を設定する、請求項1に記載のエンジンの制御装置。
  3. 更に、上記エンジンの気筒内の温度に関する上記気筒内の状態量を取得する副筒内状態量取得手段を有し、
    上記燃料噴射制御手段は、上記エンジンの運転状態が上記火花点火領域と上記圧縮自己着火領域との間で切り替わったとき、上記筒内状態量推定手段により推定された上記気筒内の状態量及び上記副筒内状態量取得手段により取得された上記気筒内の状態量に基づいて燃料噴射時期を設定する、請求項1又は2に記載のエンジンの制御装置。
  4. 上記筒内状態量推定手段は、上記エンジンの吸気バルブを通過した吸気に対する、上記エンジンの吸気通路に還流された既燃ガスの割合として外部既燃ガス率を算出すると共に、上記エンジンの気筒内に導入された総ガス量の内、吸気行程において上記排気バルブを開弁させたことにより排気ポートから気筒内へ再導入された既燃ガスが占める内部既燃ガス率を算出し、上記算出した外部既燃ガス率及び内部既燃ガス率に基づき、上記エンジンの気筒内に導入された総ガス量に占める既燃ガス量の割合を推定する、請求項1乃至3の何れか1項に記載のエンジンの制御装置。
  5. 上記副筒内状態量取得手段は、吸気行程において上記エンジンの吸気バルブが閉じたタイミングにおける気筒内の容積及び圧力と、上記エンジンの気筒内に導入された総ガス量とに基づき、上記エンジンの気筒内の温度を取得する、請求項に記載のエンジンの制御装置。
JP2015030912A 2015-02-19 2015-02-19 エンジンの制御装置 Active JP6191837B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015030912A JP6191837B2 (ja) 2015-02-19 2015-02-19 エンジンの制御装置
US15/007,468 US10240491B2 (en) 2015-02-19 2016-01-27 Control system of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030912A JP6191837B2 (ja) 2015-02-19 2015-02-19 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2016151268A JP2016151268A (ja) 2016-08-22
JP6191837B2 true JP6191837B2 (ja) 2017-09-06

Family

ID=56689805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030912A Active JP6191837B2 (ja) 2015-02-19 2015-02-19 エンジンの制御装置

Country Status (2)

Country Link
US (1) US10240491B2 (ja)
JP (1) JP6191837B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601234B1 (ko) * 2014-11-18 2016-03-08 현대자동차주식회사 냉각수 제어밸브를 갖는 엔진시스템
JP6414143B2 (ja) * 2016-06-16 2018-10-31 トヨタ自動車株式会社 内燃機関の制御装置
KR101956030B1 (ko) * 2016-11-11 2019-03-08 현대자동차 주식회사 엔진 시스템 제어 방법 및 장치
US10677143B2 (en) * 2016-11-22 2020-06-09 Mazda Motor Corporation Control device for compression self-ignition engine
WO2018096652A1 (ja) * 2016-11-25 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
US10954869B1 (en) * 2020-02-18 2021-03-23 Ford Global Technologies, Llc System and method to reduce engine hydrocarbon emissions
JP2021139331A (ja) * 2020-03-05 2021-09-16 マツダ株式会社 多気筒エンジン
JP7566243B2 (ja) * 2021-03-26 2024-10-15 マツダ株式会社 エンジンシステム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253426B2 (ja) * 1999-09-14 2009-04-15 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3931549B2 (ja) * 2000-10-19 2007-06-20 日産自動車株式会社 内燃機関のバルブタイミング制御装置
JP2004316593A (ja) * 2003-04-18 2004-11-11 Toyota Industries Corp 予混合圧縮自着火式内燃機関
US6968825B2 (en) * 2003-06-06 2005-11-29 Mazda Motor Corporation Control device for spark-ignition engine
JP2005120942A (ja) * 2003-10-17 2005-05-12 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
US7992541B2 (en) * 2006-03-14 2011-08-09 Ford Global Technologies, Llc System and method for controlling auto-ignition
JP2007247479A (ja) * 2006-03-15 2007-09-27 Hitachi Ltd 圧縮着火式内燃機関の制御装置
EP1953375A1 (en) * 2007-01-30 2008-08-06 Mazda Motor Corporation Method and computer program product of operating an internal combustion engine as well as engine operating system
JP4737103B2 (ja) * 2007-01-30 2011-07-27 マツダ株式会社 ガソリンエンジンの制御装置
JP2008291720A (ja) * 2007-05-23 2008-12-04 Honda Motor Co Ltd 内燃機関の制御装置
JP2009085175A (ja) * 2007-10-02 2009-04-23 Mazda Motor Corp ガソリンエンジンの制御装置
US7565892B1 (en) * 2008-02-01 2009-07-28 Gm Global Technology Operations, Inc. Method and apparatus for controlling mode transition in a spark-ignition direct-injection internal combustion engine
US7966991B2 (en) * 2009-03-25 2011-06-28 GM Global Technology Operations LLC Method and apparatus for controlling combustion mode transitions in an internal combustion engine
JP4873038B2 (ja) * 2009-03-31 2012-02-08 マツダ株式会社 過給機付き直噴エンジン
US8191519B2 (en) * 2009-04-24 2012-06-05 GM Global Technology Operations LLC Method and apparatus for operating an internal combustion engine
JP5364636B2 (ja) * 2010-04-05 2013-12-11 本田技研工業株式会社 内燃機関の制御装置
US8955492B2 (en) * 2010-05-24 2015-02-17 GM Global Technology Operations LLC Control strategy for transitions between homogeneous-charge compression-ignition and spark-ignition combustion modes
US8433500B2 (en) * 2010-06-01 2013-04-30 GM Global Technology Operations LLC System and method for improved transitions between engine combustion modes
JP5500104B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
US9429096B2 (en) * 2011-09-15 2016-08-30 Robert Bosch Gmbh Predictive modeling and reducing cyclic variability in autoignition engines
US9002623B2 (en) * 2012-08-02 2015-04-07 GM Global Technology Operations LLC Fully flexible exhaust valve actuator control systems and methods
JP5915472B2 (ja) * 2012-09-07 2016-05-11 マツダ株式会社 火花点火式直噴エンジン
CN104603425B (zh) * 2012-09-07 2017-06-06 马自达汽车株式会社 火花点火式发动机
JP5994700B2 (ja) * 2013-03-25 2016-09-21 マツダ株式会社 火花点火式エンジンの制御装置

Also Published As

Publication number Publication date
US10240491B2 (en) 2019-03-26
US20160245128A1 (en) 2016-08-25
JP2016151268A (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6191837B2 (ja) エンジンの制御装置
US9719441B2 (en) Control device for compression ignition-type engine
JP6103261B2 (ja) 圧縮着火式エンジンの制御装置
US9850828B2 (en) Control device for compression ignition-type engine
JP2015063940A (ja) 圧縮着火式エンジンの制御装置
JP6350970B2 (ja) エンジンの制御装置
JP6292408B2 (ja) エンジンの制御装置
JP6213175B2 (ja) 圧縮着火式エンジンの制御装置
JP6241678B2 (ja) エンジンの制御装置
JP6131803B2 (ja) 圧縮着火式エンジンの制御装置
JP6268863B2 (ja) 圧縮着火式エンジンの制御装置
JP6191836B2 (ja) エンジンの制御装置
JP2016011588A (ja) 往復動ピストンエンジンの動弁制御装置
JP2016023589A (ja) 圧縮着火式エンジンの制御装置
JP6248542B2 (ja) 圧縮着火式エンジンの制御装置
JP6331229B2 (ja) エンジンの制御装置
JP6079973B2 (ja) エンジンの制御装置
JP2016011589A (ja) エンジンの動弁制御装置
JP6315410B2 (ja) エンジンの制御装置
JP6245454B2 (ja) エンジンの制御装置
JP6244882B2 (ja) 直噴エンジンの制御装置
JP6268862B2 (ja) 圧縮着火式エンジンの制御装置
JP6241679B2 (ja) エンジンの制御装置
JP6350973B2 (ja) エンジンの制御装置
JP2015151884A (ja) エンジンのブローバイガス還流制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6191837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150