JP6184552B2 - Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component - Google Patents
Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component Download PDFInfo
- Publication number
- JP6184552B2 JP6184552B2 JP2016095044A JP2016095044A JP6184552B2 JP 6184552 B2 JP6184552 B2 JP 6184552B2 JP 2016095044 A JP2016095044 A JP 2016095044A JP 2016095044 A JP2016095044 A JP 2016095044A JP 6184552 B2 JP6184552 B2 JP 6184552B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- paste
- contact angle
- resin layer
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、大電流密度での充放電に適した集電体、電極構造体、非水電解質電池、及び蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)に関する。 The present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, and a power storage component (such as an electric double layer capacitor and a lithium ion capacitor) suitable for charging and discharging at a large current density.
従来、リチウムイオン電池に代表される非水電解質電池は充電時間の短縮に対する要求があり、そのためには大電流密度で充電させる必要がある。特に、自動車用の非水電解質電池は十分な加速性能を得るために、大電流密度で放電できることも要求されている。このように大電流密度で充放電する場合において電池容量が低下しない特性(ハイレート特性)を向上させるには電池の内部抵抗の低減が重要である。内部抵抗には構成要素間の界面抵抗と電解液中の荷電粒子であるイオンの移動抵抗等があり、これらを低減する必要がある。この中で重要な内部抵抗のひとつが界面抵抗であり、この界面抵抗を低減させる方法のひとつとして構成要素間の密着性向上が効果的であることが知られている。 Conventionally, non-aqueous electrolyte batteries typified by lithium ion batteries have been required to shorten the charging time, and for this purpose, they must be charged at a high current density. In particular, non-aqueous electrolyte batteries for automobiles are required to be able to discharge at a high current density in order to obtain sufficient acceleration performance. Thus, in order to improve the characteristic (high rate characteristic) in which the battery capacity does not decrease when charging / discharging at a large current density, it is important to reduce the internal resistance of the battery. The internal resistance includes interfacial resistance between constituent elements and resistance to movement of ions as charged particles in the electrolyte, and these must be reduced. Of these, one of the important internal resistances is the interface resistance, and it is known that improving the adhesion between the components is effective as one of the methods for reducing the interface resistance.
例えば、集電体と活物質層の密着性を向上させる方法として、集電体として導電性樹脂で金属箔を被覆するものが従来提案されており、特許文献1にはヒドロキシアルキルキトサンで金属箔を被覆する技術が開示されている。 For example, as a method for improving the adhesion between the current collector and the active material layer, a current collector in which a metal foil is coated with a conductive resin has been proposed. Patent Document 1 discloses a metal foil made of hydroxyalkyl chitosan. Techniques for coating are disclosed.
しかしながら、本発明者らが実験を行ったところ、特許文献1に記載の技術では、必ずしも十分なハイレート特性が得られない場合があった。 However, as a result of experiments conducted by the present inventors, the technique described in Patent Document 1 may not always provide sufficient high rate characteristics.
本発明は、このような事情に鑑みてなされてものであり、非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させることができる集電体を提供することである。 The present invention has been made in view of such circumstances, and can reduce the internal resistance of a nonaqueous electrolyte battery, such as a nonaqueous electrolyte battery such as a lithium ion secondary battery, a capacitor for an electric double layer, a lithium ion capacitor, etc. It is an object of the present invention to provide a current collector that can be suitably used for such power storage components and can improve high-rate characteristics.
以下のような集電体を用いることにより、ハイレート特性に優れる非水電解質電池や、電気二重層キャパシタやリチウムイオンキャパシタ等の帯電部品を得ることができる。 By using the following current collector, it is possible to obtain a non-aqueous electrolyte battery excellent in high-rate characteristics, a charged component such as an electric double layer capacitor or a lithium ion capacitor.
すなわち、本発明によれば、
(1)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が15度以上50度以下であることを特徴とする集電体、
(2)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水系モデル活物質ペーストの接触角が10度以上50度以下であることを特徴とする集電体、
(3)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層はキトサン系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が15度以上50度以下であり且つ水系モデル活物質ペーストの接触角が10度以上50度以下であることを特徴とする集電体と、この集電体を具備した電極構造体、非水電解質電池、蓄電部品(例:電気二重層キャパシタ又はリチウムイオンキャパシタ)が提供される。
That is, according to the present invention,
(1) A current collector having a conductive resin layer on at least one surface of a conductive substrate, the resin layer containing a chitosan-based resin and a conductive material, and in a thermostatic chamber at 23 ° C. on the surface of the resin layer a current collector having a contact angle of 15 to 50 degrees as measured by the θ / 2 method;
(2) A current collector having a conductive resin layer on at least one surface of a conductive substrate, the resin layer containing a chitosan-based resin and a conductive material in a thermostatic chamber at 23 ° C. on the surface of the resin layer. a current collector characterized in that the contact angle of the aqueous model active material paste measured by the θ / 2 method is 10 degrees or more and 50 degrees or less;
(3) A current collector having a conductive resin layer on at least one surface of a conductive substrate, the resin layer containing a chitosan-based resin and a conductive material in a thermostatic chamber at 23 ° C. on the surface of the resin layer. The contact angle of the solvent-based model active material paste measured by the θ / 2 method is 15 degrees or more and 50 degrees or less, and the contact angle of the aqueous model active material paste is 10 degrees or more and 50 degrees or less And an electrode structure including the current collector, a nonaqueous electrolyte battery, and a power storage component (eg, an electric double layer capacitor or a lithium ion capacitor) are provided.
本発明は、樹脂層の状態をモデル活物質ペーストの接触角(以下、「ペースト接触角」と称する)で規定している点に特徴を有している。「モデル活物質ペースト」とは、実際に活物質層を形成する際に使用される活物質ペーストをモデル化したものである。活物質ペーストには、溶剤を用いて活物質をペースト化した溶剤系活物質ペーストと、水を用いて活物質をペースト化した水系活物質ペーストがあるので、モデル活物質ペーストにも溶剤系モデル活物質ペーストと水系モデル活物質ペーストがある。溶剤系活物質ペーストは、具体的には、「LiMn2O4粉末(Yunan Yuxihuilong technology製)を17.9質量部、バインダ樹脂にPVDF(キシダ化学製#1100)を1.1質量部(固形分として)、導電材にアセチレンブラック(電気化学製デンカブラックHS−100)を1.0質量部、溶剤にNMPを20質量部用いて、脱泡撹拌機にて3分撹拌して得られたペースト」と定義される。水系モデル活物質ペーストは、具体的には、「活物質にLiMn2O4粉末(Yunan Yuxihuilong technology製)を24質量部、バインダ樹脂に水分散型PTFE(ダイキン製ポリフロンD−1E)を0.28質量部(固形分として)、導電材にアセチレンブラック(電気化学製デンカブラックHS−100)を2.5質量部、水33質量部を用いて、ディスパにて2000rpm×1分撹拌後、撹拌機(プライミクス製フィルミックス40−40型、周速30m/s)にて30秒撹拌して得られたペースト」と定義される。 The present invention is characterized in that the state of the resin layer is defined by the contact angle of the model active material paste (hereinafter referred to as “paste contact angle”). The “model active material paste” is a model of an active material paste used when an active material layer is actually formed. There are two types of active material pastes: a solvent-based active material paste in which an active material is pasted using a solvent and a water-based active material paste in which an active material is pasted using water. There are active material paste and water-based model active material paste. Specifically, the solvent-based active material paste includes “LiMn 2 O 4 powder (manufactured by Yunan Yuxihuilong technology) 17.9 parts by mass, PVDF (Kishida Chemical # 1100) 1.1 parts by mass (solid) As a result, 1.0 parts by mass of acetylene black (Denka Black HS-100 manufactured by Electrochemical Co., Ltd.) as the conductive material and 20 parts by mass of NMP as the solvent were obtained by stirring for 3 minutes with a defoaming stirrer. It is defined as “paste”. Specifically, the water-based model active material paste is “LiMn 2 O 4 powder (manufactured by Yunan Yuxihuilong technology) as the active material and 24 parts by mass of water-dispersed PTFE (polyflon D-1E from Daikin) as the binder resin. 28 parts by mass (as solid content), 2.5 parts by mass of acetylene black (Denka Black HS-100 manufactured by Electrochemical Co., Ltd.) and 33 parts by mass of water as a conductive material, stirred at 2000 rpm for 1 minute in a disperser, and stirred It is defined as “a paste obtained by stirring for 30 seconds in a machine (Primics Filmmix 40-40, peripheral speed 30 m / s)”.
本発明者らは、非水電解質電池等のハイレート特性を向上させるべく鋭意検討を行なった際に、樹脂層表面のペースト接触角がハイレート特性に強く相関していることを見出した。また、ハイレート特性が向上するかどうかは、使用される活物質ペーストが溶剤系であるか水系であるかにも依存していることを見出した。そして、溶剤系活物質ペーストのペースト接触角(以下、「溶剤系ペースト接触角」と称する。)が15度以上50度以下であれば、使用される活物質ペーストが溶剤系である場合にハイレート特性が良好になり、水系活物質ペーストのペースト接触角(以下、「水系ペースト接触角」と称する。)が10度以上50度以下であれば、使用される活物質ペーストが水系である場合にハイレート特性が良好になることを見出した。また、この知見により、溶剤系ペースト接触角と水系ペースト接触角の両方が上記範囲内である場合には、実際に使用する活物質ペーストが溶剤系であるか水系であるかに関わらず、優れたハイレート特性が良好になることが分かった。従来は、活物質ペーストが溶剤系であるか水系であるかに関わらず優れた特性を示す樹脂層を形成することは困難であったが、本発明により、活物質ペーストの種類に関わらずハイレート特性を向上させることができる樹脂層の形成が可能になった。 The inventors of the present invention have found that the paste contact angle on the surface of the resin layer is strongly correlated with the high-rate characteristics when intensive studies were conducted to improve the high-rate characteristics of nonaqueous electrolyte batteries and the like. It has also been found that whether the high-rate characteristics are improved depends on whether the active material paste used is solvent-based or water-based. If the paste contact angle of the solvent-based active material paste (hereinafter referred to as “solvent-based paste contact angle”) is 15 degrees or more and 50 degrees or less, the high rate is obtained when the active material paste used is solvent-based. When the properties are good and the paste contact angle of the aqueous active material paste (hereinafter referred to as “aqueous paste contact angle”) is 10 degrees or more and 50 degrees or less, the active material paste used is aqueous. It has been found that the high rate characteristics are improved. In addition, based on this finding, when both the solvent-based paste contact angle and the water-based paste contact angle are within the above range, it is excellent regardless of whether the active material paste actually used is solvent-based or water-based. It was found that the high rate characteristics were improved. Conventionally, it has been difficult to form a resin layer that exhibits excellent characteristics regardless of whether the active material paste is solvent-based or water-based. It has become possible to form a resin layer capable of improving the characteristics.
本発明は2つの知見によって成立している。1つ目の知見は、ペースト接触角が特定の上限値以下である場合にハイレート特性が良好であるということである。接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであり、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。従って、接触角が上記上限値以下の場合に、導電性基材と樹脂層、及び樹脂層と活物質層との密着性が高くなり、ハイレート特性が良好になる。 The present invention is based on two findings. The first finding is that the high rate characteristic is good when the paste contact angle is below a specific upper limit value. The contact angle is one of indexes indicating whether different materials are likely to adhere to each other. The smaller the contact angle, the higher the adhesion between different materials. Therefore, when the contact angle is less than or equal to the above upper limit value, the adhesiveness between the conductive substrate and the resin layer, and between the resin layer and the active material layer is increased, and the high rate characteristic is improved.
もう一つの知見はペースト接触角が特定の下限値以上である場合にハイレート特性が良好であるということである。上記のように、接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであるので、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。本発明者らは、当初、好ましいペースト接触角の範囲には下限が無く、ペースト接触角が小さければ小さいほど、異なる材料間での密着性が向上してハイレート特性が向上するものと考えていたが、意外にもペースト接触角が上記下限値未満の場合に、ハイレート特性が悪化することを知見した。このような結果が得られた理由にはついては現在検討中であり必ずしも明らかではないが、ペースト接触角が小さすぎると、導電性基材と樹脂層との間の密着性が悪化することが原因ではないかと推測している。 Another finding is that the high rate characteristics are good when the paste contact angle is greater than or equal to a specific lower limit. As described above, the contact angle is one of the indexes indicating whether different materials are likely to adhere to each other. Therefore, the smaller the contact angle, the higher the adhesion between different materials. The inventors initially thought that there was no lower limit to the range of the preferred paste contact angle, and that the smaller the paste contact angle, the better the adhesion between different materials and the higher the high rate characteristics. However, it was surprisingly found that the high rate characteristics deteriorate when the paste contact angle is less than the lower limit. The reason why such a result was obtained is currently under investigation and is not necessarily clear, but if the paste contact angle is too small, the adhesion between the conductive substrate and the resin layer is deteriorated. I guess that.
ところで、樹脂層のペースト接触角は、樹脂層の材料組成によって一意的に定まるものではなく、樹脂層の形成方法が変わると大きく変化するものである。本発明者らが実際に実験を行ったところ、同じ組成の樹脂材であっても、乾燥温度・乾燥時間・乾燥方法を変化させることによって、樹脂層のペースト接触角が大きく変化し、例えば樹脂組成と乾燥温度が分かっていても、乾燥時間等の製造条件を変えるだけでペースト接触角は変化するので、本発明においてはペースト接触角を定めることが極めて重要であることを知見した。 By the way, the paste contact angle of the resin layer is not uniquely determined by the material composition of the resin layer, and changes greatly when the method of forming the resin layer changes. When the inventors actually conducted an experiment, even when the resin material has the same composition, the paste contact angle of the resin layer changes greatly by changing the drying temperature, drying time, and drying method. Even if the composition and the drying temperature are known, the paste contact angle changes only by changing the production conditions such as the drying time. Therefore, it was found that it is extremely important to determine the paste contact angle in the present invention.
以下、図1を用いて、本発明の一実施形態の集電体について説明する。
図1に示すように、本発明の集電体1は、導電性基材3の少なくとも片面に導電性を有する樹脂層(集電体用樹脂層)5を有する集電体1であり、導電性樹脂層5は、キトサン系樹脂と導電材を含み、樹脂層5表面の23℃の恒温室内でθ/2法によって測定した溶剤系ペースト接触角が15度以上50度以下であり、及び/又は、水系モデル活物質ペーストの接触角が10度以上50度以下である。
また、図2に示すように、集電体1の樹脂層5上に活物質層又は電極材層9を形成することによって、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体7を形成することができる。
以下、各構成要素について詳細に説明する。
Hereinafter, the current collector of one embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, a current collector 1 of the present invention is a current collector 1 having a conductive resin layer (current collector resin layer) 5 on at least one surface of a conductive base material 3. The conductive resin layer 5 includes a chitosan-based resin and a conductive material, and the solvent-based paste contact angle measured by the θ / 2 method in a thermostatic chamber at 23 ° C. on the surface of the resin layer 5 is 15 ° to 50 °, and / or Alternatively, the contact angle of the aqueous model active material paste is 10 degrees or more and 50 degrees or less.
Further, as shown in FIG. 2, by forming an active material layer or an electrode material layer 9 on the resin layer 5 of the current collector 1, it is used for a non-aqueous electrolyte battery, an electric double layer capacitor, or a lithium ion capacitor. As a result, a suitable electrode structure 7 can be formed.
Hereinafter, each component will be described in detail.
(1)導電性基材
本発明の導電性基材としては、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔が使用可能である。具体的には、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。正極としてアルミニウム箔を用いる場合、本発明はハイレート特性の向上を目的としていることから、導電性の高いJIS A1085などの純アルミニウム系を用いることが好ましい。導電性基材の厚さとしては、特に制限されるものではないが、0.5μm以上、50μm以下であることが好ましい。厚さが0.5μmより薄いと箔の強度が不足して樹脂層等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極材層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、十分な容量が得られなくなる場合がある。
(1) Conductive base material As the conductive base material of the present invention, various metal foils for non-aqueous electrolyte batteries, electric double layer capacitors, or lithium ion capacitors can be used. Specifically, aluminum, aluminum alloy, copper, stainless steel, nickel, etc. can be used. Among these, aluminum, an aluminum alloy, and copper are preferable from the balance between high conductivity and cost. When an aluminum foil is used as the positive electrode, the present invention aims at improving high rate characteristics, and therefore, it is preferable to use a pure aluminum system such as JIS A1085 having high conductivity. The thickness of the conductive substrate is not particularly limited, but is preferably 0.5 μm or more and 50 μm or less. If the thickness is less than 0.5 μm, the strength of the foil is insufficient and it may be difficult to form a resin layer or the like. On the other hand, if it exceeds 50 μm, other components, particularly the active material layer or the electrode material layer, must be thinned. Especially, non-aqueous electrolyte batteries, electric double layer capacitors, lithium ion capacitors and other power storage components In such a case, a sufficient capacity may not be obtained.
(2)導電性樹脂層
本発明では導電性基材の上に導電材を添加した樹脂層を形成する。導電性樹脂層の形成方法は特に限定されないが、樹脂の溶液や分散液、ペースト等を上記導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能であるが、特に制限されるものではない。本発明に用いる導電性樹脂層は、キトサン系樹脂でなければならない。これは種々の樹脂に導電材を添加して樹脂層の体積固有抵抗を調査した結果、ペースト接触角を規定したこれらの樹脂を用いると意外にも十分に低い抵抗が得られるという本発明者の知見に基づくものである。なお、この抵抗の違いは、同じ導電材を添加しても樹脂によって樹脂層中での分布状態が異なり、後述するペースト接触角の規定と相まって抵抗に差が出るためと推定される。
(2) Conductive resin layer In this invention, the resin layer which added the electrically conductive material on the conductive base material is formed. Although the formation method of a conductive resin layer is not specifically limited, It is preferable to apply | coat the solution, dispersion liquid, paste, etc. of resin on the said conductive base material. As a coating method, a roll coater, a gravure coater, a slit die coater or the like can be used, but is not particularly limited. The conductive resin layer used in the present invention must be a chitosan resin. As a result of investigating the volume resistivity of the resin layer by adding a conductive material to various resins, the inventors have surprisingly found that a sufficiently low resistance can be obtained by using these resins with a defined paste contact angle. Based on knowledge. Note that this difference in resistance is presumed to be because the distribution state in the resin layer differs depending on the resin even if the same conductive material is added, and the resistance is different in combination with the specification of the paste contact angle described later.
<キトサン系樹脂>
本発明において、キトサン系樹脂は、樹脂成分としてキトサン誘導体を含む樹脂である。キトサン系樹脂は、キトサン誘導体が100質量%であるものを使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくともキトサン誘導体を全樹脂成分に対して50質量%以上、特に80質量%以上含むことが好ましい。キトサン誘導体は、例えばヒドロキシアルキルキトサンであり、具体的には、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシブチルキトサン、グリセリル化キトサン、グリセリル化キトサン等が挙げられる。
キトサン系樹脂は、好ましくは、有機酸を含む。有機酸としては、ピロメリット酸、テレフタル酸などが挙げられる。有機酸の添加量は、キトサン誘導体100質量%に対して20〜300質量%が好ましく、50〜150質量%がさらに好ましい。有機酸の添加量が少なすぎるとキトサン誘導体の硬化が不十分になり、有機酸の添加量が多すぎると樹脂層の可撓性が低下するからである。
キトサン誘導体の重量平均分子量は、例えば、3万〜50万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
<Chitosan resin>
In the present invention, the chitosan resin is a resin containing a chitosan derivative as a resin component. As the chitosan-based resin, one having a chitosan derivative of 100% by mass can be used, but it can also be used in combination with other resin components. When used in combination, at least the chitosan derivative is 50% by mass with respect to the total resin components. % Or more, and particularly preferably 80% by mass or more. The chitosan derivative is, for example, hydroxyalkyl chitosan, and specific examples include hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxybutyl chitosan, glycerylated chitosan, glycerylated chitosan and the like.
The chitosan resin preferably contains an organic acid. Examples of organic acids include pyromellitic acid and terephthalic acid. The addition amount of the organic acid is preferably 20 to 300% by mass and more preferably 50 to 150% by mass with respect to 100% by mass of the chitosan derivative. This is because if the addition amount of the organic acid is too small, the chitosan derivative is not sufficiently cured, and if the addition amount of the organic acid is too large, the flexibility of the resin layer is lowered.
The weight average molecular weight of the chitosan derivative is, for example, 30,000 to 500,000, specifically, for example, 30,000, 40,000, 50,000, 60,000, 80,000, 90,000, 100,000, 150,000, It may be 200,000 or 500,000, and may be within a range between any two of the numerical values exemplified here. The weight average molecular weight means that measured by GPC (gel exclusion chromatograph).
<導電材>
本発明の導電性樹脂層は、導電性基材と活物質層又は電極材層との間に設けられ、この間を移動する電子の通路となるので、この樹脂層にも電子導電性が必要である。樹脂は絶縁性が高いので、電子伝導性を付与するために導電材を配合しなければならない。本発明に用いる導電材としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。導電材の添加量は、樹脂層の樹脂成分100質量%に対して30〜100重量%が好ましく、50〜80質量%がさらに好ましい。30質量%未満では樹脂層の体積固有抵抗が高くなり、100質量%を超えると導電性基材との密着性が低下するからである。導電材を樹脂成分液に分散するには公知の方法を用いることができ、例えば、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
<Conductive material>
The conductive resin layer of the present invention is provided between the conductive base material and the active material layer or the electrode material layer, and serves as a passage for electrons moving between them. Therefore, the resin layer also needs to have electronic conductivity. is there. Since the resin is highly insulating, a conductive material must be blended in order to impart electronic conductivity. As the conductive material used in the present invention, known carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable. As the carbon powder, acetylene black, ketjen black, furnace black, carbon nanotubes and the like can be used. The added amount of the conductive material is preferably 30 to 100% by weight, and more preferably 50 to 80% by weight with respect to 100% by weight of the resin component of the resin layer. If the amount is less than 30% by mass, the volume resistivity of the resin layer is increased, and if it exceeds 100% by mass, the adhesion to the conductive substrate is lowered. A known method can be used for dispersing the conductive material in the resin component liquid. For example, the conductive material can be dispersed by using a planetary mixer, a ball mill, a homogenizer, or the like.
<接触角>
本発明の樹脂層表面のペースト接触角は、溶剤系ペースト接触角が15度以上50度以下であり、及び/又は、水系モデル活物質ペーストの接触角が10度以上50度以下であることが必要である。単に樹脂に導電材を添加して樹脂層を形成しても、導電性基材と樹脂層の界面および樹脂層と活物質層の界面あるいは樹脂層と電極材層の界面に十分な密着性が得られない場合がある。これはキトサン系樹脂であっても樹脂の種類や形成条件によって、樹脂層の状態が変化するためである。特に密着性に影響が大きい表面性状として液体の濡れ性を示す接触角があり、実際に活物質層を形成する際に使用される活物質ペーストをモデル化したモデル活物質ペーストの接触角を測定することにより、集電体とその上に形成する活物質層や電極材層の密着性を評価することができる。この場合、樹脂層とペースト接触角について一見、ペースト接触角が小さいほど密着性が向上し、放電レートの向上が図れるように見えるが、接触角が小さすぎると、導電性基材との密着性や放電レート特性に悪影響を及ぼす可能性がでてくるため、本発明においてはペースト接触角を規定することが必要になる。なお、この点については後にも述べる。
<Contact angle>
The paste contact angle on the surface of the resin layer of the present invention is such that the solvent-based paste contact angle is 15 degrees or more and 50 degrees or less, and / or the contact angle of the aqueous model active material paste is 10 degrees or more and 50 degrees or less. is necessary. Even if a resin layer is formed simply by adding a conductive material to the resin, sufficient adhesion is obtained at the interface between the conductive base material and the resin layer, the interface between the resin layer and the active material layer, or the interface between the resin layer and the electrode material layer. It may not be obtained. This is because even if it is a chitosan resin, the state of the resin layer changes depending on the type and forming conditions of the resin. In particular, there is a contact angle that indicates wettability of the liquid as a surface property that has a large effect on adhesion, and the contact angle of a model active material paste that models the active material paste that is actually used when forming the active material layer is measured. By doing so, the adhesiveness between the current collector and the active material layer or electrode material layer formed thereon can be evaluated. In this case, it seems that the resin layer and the paste contact angle seem to improve the adhesion as the paste contact angle is small and the discharge rate can be improved, but if the contact angle is too small, the adhesion to the conductive substrate In the present invention, it is necessary to define the paste contact angle. This point will be described later.
本明細書において、ペースト接触角は、23℃の恒温室内でθ/2法によって測定して得られた値を意味する。ペースト接触角は接触角計を用いて測定することができる。集電体に樹脂層を形成した後、その表面にモデル活物質ペーストを数μリットル付着させて接触角を測定する。温度によってモデル活物質ペーストの表面張力が変化するので、ペースト接触角は、23℃の恒温室内で測定する。 In this specification, the paste contact angle means a value obtained by measurement by the θ / 2 method in a constant temperature room at 23 ° C. The paste contact angle can be measured using a contact angle meter. After forming a resin layer on the current collector, several μl of model active material paste is adhered to the surface and the contact angle is measured. Since the surface tension of the model active material paste varies depending on the temperature, the paste contact angle is measured in a thermostatic chamber at 23 ° C.
種々の条件にて樹脂層を形成してペースト接触角を測定した結果、上記上限値以下であれば、活物質層や電極材層と十分な密着性が得られることがわかった。また、ペースト接触角の異なる樹脂層を形成して、導電性基材と樹脂層の密着性の関係を調査した結果、樹脂層の表面のペースト接触角が上記下限値未満であるとハイレート特性が劣ることがわかった。原因は明らかではないが、導電性基材と樹脂層の微妙な密着状態の差を検出しているものと推定される。従って、ペースト接触角は、上記下限値以上であることが必要である。また、溶剤系ペースト接触角が19度以上42度以下の場合に、ハイレート特性が特に良好になることが実験により明らかになったので、ペースト接触角は19度以上42度以下が特に好ましい。 As a result of forming the resin layer under various conditions and measuring the paste contact angle, it was found that sufficient adhesion to the active material layer and the electrode material layer can be obtained if it is not more than the above upper limit value. In addition, as a result of forming a resin layer having a different paste contact angle and investigating the adhesive relationship between the conductive substrate and the resin layer, the high rate characteristic is obtained when the paste contact angle on the surface of the resin layer is less than the lower limit. I found it inferior. Although the cause is not clear, it is presumed that a subtle difference in adhesion between the conductive substrate and the resin layer is detected. Therefore, the paste contact angle needs to be equal to or greater than the lower limit. Also, experiments have shown that the high-rate characteristics are particularly good when the solvent-based paste contact angle is 19 degrees or more and 42 degrees or less. Therefore, the paste contact angle is particularly preferably 19 degrees or more and 42 degrees or less.
このように、本発明のペースト接触角の規定は、樹脂と活物質層又は電極材層との密着性だけでなく、導電性基材と樹脂層との密着性についても考慮したものであり、このようにペースト接触角の規定された本発明の集電体は、特に電極構造体として電池や帯電部品に用いるとハイレート特性を良好に付与できる。 Thus, the regulation of the paste contact angle of the present invention is not only about the adhesion between the resin and the active material layer or the electrode material layer, but also considering the adhesion between the conductive substrate and the resin layer, As described above, the current collector of the present invention in which the contact angle of paste is defined can give a high rate characteristic satisfactorily when used for a battery or a charged part as an electrode structure.
本発明の集電体を得るには、先に述べたアルミニウム箔等の導電性基材の少なくとも片面に樹脂層を公知の方法で形成して得ることができるが、上記ペースト接触角を有するものにする必要がある。例えば、塗工にて樹脂層を形成する場合、焼付温度と焼付時間がペースト接触角に影響する。焼付温度は導電性基材の到達温度として120〜250℃、焼付時間は15〜180秒が好ましい。このような条件で樹脂層を形成した場合に、その表面でのペースト接触角を上記範囲内に調整するのに寄与するからである。但し、ペースト接触角は、樹脂組成、樹脂液中の樹脂濃度、焼付温度、焼付時間、焼付方法などの種々の因子によって総合的に決定されるものであるので、焼付温度と焼付時間が上記範囲内であっても、ペースト接触角は上記下限値未満になったり、上記上限値を超えたりする場合がある。また、逆に焼付温度と焼付時間が上記範囲外であっても、ペースト接触角が上記範囲内になる場合がある。 In order to obtain the current collector of the present invention, a resin layer can be obtained by a known method on at least one surface of the conductive base material such as the aluminum foil described above, but the paste contact angle described above is obtained. It is necessary to. For example, when a resin layer is formed by coating, the baking temperature and baking time affect the paste contact angle. The baking temperature is preferably 120 to 250 ° C. as the temperature reached by the conductive substrate, and the baking time is preferably 15 to 180 seconds. This is because when the resin layer is formed under such conditions, it contributes to adjusting the paste contact angle on the surface within the above range. However, since the paste contact angle is comprehensively determined by various factors such as the resin composition, the resin concentration in the resin liquid, the baking temperature, the baking time, and the baking method, the baking temperature and baking time are within the above range. Even within the range, the paste contact angle may be less than the lower limit value or may exceed the upper limit value. Conversely, even if the baking temperature and baking time are outside the above ranges, the paste contact angle may be within the above ranges.
一般に焼付温度が高いほど、焼付時間が長いほど、ペースト接触角が大きくなる傾向がある。従って、ペースト接触角を上記範囲にするには、最初に、ある条件で樹脂層を形成し、形成した樹脂層においてペースト接触角を測定し、測定されたペースト接触角が上記下限値より小さければ、焼付温度を高くするか焼付時間を長くし、測定されたペースト接触角が上記上限値よりも大きければ焼付温度を低くするか焼付時間を短くする等の調整が必要である。従って、樹脂の組成や焼付温度のみではペースト接触角の値は決定されないが、上記の方法を用いれば、数回の試行錯誤を行うだけで、ペースト接触角を所望の値に設定することが可能である。 In general, the higher the baking temperature and the longer the baking time, the larger the paste contact angle. Therefore, in order to make the paste contact angle within the above range, first, a resin layer is formed under a certain condition, the paste contact angle is measured in the formed resin layer, and the measured paste contact angle is smaller than the lower limit value. If the baking temperature is increased or the baking time is increased, and the measured paste contact angle is larger than the upper limit, adjustments such as lowering the baking temperature or shortening the baking time are necessary. Therefore, the value of the paste contact angle is not determined only by the resin composition or baking temperature. However, if the above method is used, the paste contact angle can be set to a desired value with only a few trials and errors. It is.
本発明の集電体を用いれば、活物質層又は電極材層を形成し電解液が浸潤した状態においても、樹脂層と活物質層あるいは樹脂層と電極材層の界面に十分な密着性が確保できるだけでなく、導電性基材との界面にも十分な密着性の確保を兼ね備えることができる。また、充放電を繰り返した後においても大きな剥離は認められず、十分な密着性と優れた放電レート特性が得られる。 When the current collector of the present invention is used, even when an active material layer or an electrode material layer is formed and the electrolyte solution is infiltrated, sufficient adhesion is provided at the interface between the resin layer and the active material layer or the resin layer and the electrode material layer. In addition to ensuring, sufficient adhesion can also be secured at the interface with the conductive substrate. Further, even after repeated charge and discharge, no large peeling is observed, and sufficient adhesion and excellent discharge rate characteristics can be obtained.
樹脂層の厚さは0.1μm以上、5μm以下が好ましい。0.1μm未満では完全には被覆できない部分が発生して、十分な電池特性が得られない場合がある。5μmを超えると後述する電池や蓄電部品にする際、その分活物質層や電極材層を薄くせざるを得ない場合があることから十分な容量密度が得られない場合がある。また、リチウムイオン二次電池等の角型電池に用いる場合、電極構造体をセパレータと組み合わせて巻回した際、曲率半径が非常に小さい最内巻き部において、比較的硬い樹脂層に亀裂が入り、活物質層等と剥離する部分が発生する場合がある。さらに好ましくは0.3μm以上、3μm以下であることが好ましい。 The thickness of the resin layer is preferably 0.1 μm or more and 5 μm or less. If the thickness is less than 0.1 μm, a portion that cannot be completely coated is generated, and sufficient battery characteristics may not be obtained. If the thickness exceeds 5 μm, when the battery or power storage component described later is used, the active material layer or the electrode material layer may have to be thinned, so that a sufficient capacity density may not be obtained. In addition, when used in a prismatic battery such as a lithium ion secondary battery, when the electrode structure is wound in combination with a separator, a relatively hard resin layer is cracked at the innermost winding portion with a very small radius of curvature. In some cases, a part peeled off from the active material layer or the like may occur. More preferably, it is 0.3 to 3 μm.
本発明の集電体の製造方法は、特に制限されるものではないが、導電性基材に樹脂層を形成する際、導電性基材表面の密着性が向上するように導電性基材に公知の前処理を実施することも効果的である。特に圧延にて製造した金属箔を用いる場合、圧延油や磨耗粉が残留している場合があり、脱脂などによって除去することにより、密着性を向上させることができる。また、コロナ放電処理のような乾式活性化処理によっても密着性を向上させることができる。 Although the manufacturing method of the current collector of the present invention is not particularly limited, when the resin layer is formed on the conductive substrate, the conductive substrate is improved so that the adhesion of the surface of the conductive substrate is improved. It is also effective to perform a known pretreatment. In particular, when a metal foil produced by rolling is used, rolling oil or wear powder may remain, and adhesion can be improved by removing it by degreasing or the like. The adhesion can also be improved by a dry activation treatment such as a corona discharge treatment.
電極構造体
本発明の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質溶液等を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体(電池用部品を含む)を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
ここで、本発明において電極構造体として形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウムを用いた本発明の集電体に、活物質としてLiCoO2、LiMnO2、LiNiO2等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFや水分散型PTFEに分散したペーストを塗工・乾燥させることにより、本発明の正極構造体を得ることができる。
負極の電極構造体とする場合には、導電性基材として銅を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを活物質層形成用材料として塗工・乾燥させることにより、本発明の負極構造体を得ることができる。
Electrode Structure The electrode structure of the present invention can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector of the present invention. The electrode structure for an electrical storage component in which the electrode material layer is formed will be described later. First, in the case of an electrode structure in which an active material layer is formed, an electrode structure (battery component) for a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, using the electrode structure, a separator, a non-aqueous electrolyte solution, etc. Can be manufactured). In the electrode structure for a nonaqueous electrolyte battery and the nonaqueous electrolyte battery of the present invention, a member other than the current collector can be a known nonaqueous battery member.
Here, the active material layer formed as an electrode structure in the present invention may be conventionally proposed for non-aqueous electrolyte batteries. For example, the current collector of the present invention using aluminum as the positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as the active material, carbon black such as acetylene black as the conductive material, and PVDF as a binder Alternatively, the positive electrode structure of the present invention can be obtained by applying and drying a paste dispersed in water-dispersed PTFE.
In the case of a negative electrode structure, for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper as the conductive substrate, and these are thickeners. After dispersion in CMC, the negative electrode structure of the present invention can be obtained by applying and drying a paste mixed with SBR as a binder as an active material layer forming material.
非水電解質電池
本発明は非水電解質電池であってもよい。この場合、本発明の集電体を使用する以外には特に制限されるものではない。例えば、本発明の集電体を構成要素とする前記正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本発明の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPF6やLiBF4を溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
Nonaqueous electrolyte battery The present invention may be a nonaqueous electrolyte battery. In this case, there is no particular limitation other than using the current collector of the present invention. For example, the non-aqueous electrolyte battery of the present invention is sandwiched between separators impregnated with an electrolyte for a non-aqueous electrolyte battery having a non-aqueous electrolyte between the positive electrode structure and the negative electrode structure having the current collector of the present invention as a constituent element. A water electrolyte battery can be constructed. As the nonaqueous electrolyte and the separator, those used for known nonaqueous electrolyte batteries can be used. As the electrolytic solution, carbonates or lactones can be used as a solvent. For example, a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used. Can do. As the separator, for example, a film having a microporous made of polyolefin can be used.
蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
本発明の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本発明の集電体を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本発明の蓄電部品用電極構造体は本発明の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本発明の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
Power storage components (electric double layer capacitors, lithium ion capacitors, etc.)
The electric double layer capacitor, lithium ion capacitor, etc. of the present invention can also be applied to power storage components such as electric double layer capacitors and lithium ion capacitors that require high-speed charge / discharge at a large current density. is there. The electrode structure for a power storage component of the present invention is obtained by forming an electrode material layer on the current collector of the present invention. By using this electrode structure and a separator, an electrolytic solution, etc., an electric double layer capacitor, a lithium ion capacitor, etc. A power storage component can be manufactured. In the electrode structure and power storage component of the present invention, members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.
電極材層は正極、負極共、電極材、導電材、バインダよりなるものとすることができる。本発明においては、本発明の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、水分散型PTFE等を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本発明の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。 The electrode material layer can be made of an electrode material, a conductive material, and a binder for both the positive electrode and the negative electrode. In the present invention, an electricity storage component can be obtained after forming the electrode material layer on at least one side of the current collector of the present invention to form an electrode structure. Here, as the electrode material, those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used. For example, carbon powder or carbon fiber such as activated carbon or graphite can be used. As the conductive material, carbon black such as acetylene black can be used. As the binder, for example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), water-dispersed PTFE, or the like can be used. In addition, the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator. As the separator, for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used. For example, carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion. Can be used. A lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor. These production methods can be carried out according to known methods, except that the current collector of the present invention is used, and are not particularly limited.
以下、本発明の実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。 EXAMPLES Hereinafter, although the Example and comparative example of this invention are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
<1.集電体の評価>
<集電体の作製>
表1に示す樹脂と有機酸を表1に示す配合量でノルマルメチル2ピロリドン(NMP)に溶解し、アセチレンブラックを表1に示す配合量で混合し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けた。表1の温度はいずれも基材到達温度である。
<1. Evaluation of current collector>
<Preparation of current collector>
The resin and organic acid shown in Table 1 are dissolved in normal methyl 2-pyrrolidone (NMP) in the amount shown in Table 1, acetylene black is mixed in the amount shown in Table 1, and dispersed in a ball mill for 8 hours. did. This paint was applied to one side of an aluminum foil (JIS A1085) having a thickness of 20 μm with a bar coater and baked under the conditions shown in Table 1. The temperatures in Table 1 are all substrate arrival temperatures.
<樹脂層の厚さ測定>
樹脂層の厚さは、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から樹脂層の厚さを算出した。
<Measurement of resin layer thickness>
The thickness of the resin layer is calculated using the film thickness measuring instrument Keitaro G (manufactured by Seiko em) from the difference in thickness between the resin layer forming part and the unformed part (aluminum foil only part). did.
<樹脂層の電気抵抗>
樹脂層の上に1辺が20mmの立方体の銅製ブロック(樹脂に接触する面は鏡面仕上げ)を載せ、700gfの荷重をかけて、アルミ箔と銅製ブロックの間の電気抵抗を測定した。
<Electric resistance of resin layer>
A cubic copper block with a side of 20 mm was placed on the resin layer (the surface in contact with the resin was mirror-finished), and a load of 700 gf was applied to measure the electrical resistance between the aluminum foil and the copper block.
<ペースト接触角測定>
溶剤系又は水系ペースト接触角は接触角計(協和界面科学社製ドロップマスターDM−500)を用い、23℃の恒温室内にて2μリットルの溶剤系又は水系モデル活物質ペーストを樹脂層表面に付着させ、2秒後の接触角をθ/2法にて測定した。
<Measurement of paste contact angle>
Use a contact angle meter (Dropmaster DM-500, manufactured by Kyowa Interface Science Co., Ltd.) for the solvent or aqueous paste contact angle, and attach 2 μL of solvent or aqueous model active material paste to the resin layer surface in a constant temperature room at 23 ° C. The contact angle after 2 seconds was measured by the θ / 2 method.
<2.リチウムイオン電池の放電レート特性評価、電極寿命評価>
以下に示すように、溶媒系活物質ペーストを用いて活物質層を形成して形成したリチウムイオン電池の放電レート特性評価、電極寿命評価を測定した。
<2. Lithium-ion battery discharge rate characteristics evaluation, electrode life evaluation>
As shown below, discharge rate characteristic evaluation and electrode life evaluation of a lithium ion battery formed by forming an active material layer using a solvent-based active material paste were measured.
<リチウムイオン電池の製造方法>
正極には、活物質のLiCoO2と導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて前記各集電体に塗工したものを用いた。負極には、活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工したものを用いた。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPF6を添加した電解液を用いた。
<Method for producing lithium ion battery>
As the positive electrode, a paste obtained by dispersing a paste in which PVD (polyvinylidene fluoride) as a binder was dispersed in an active material of LiCoO 2 and a conductive material of acetylene black at a thickness of 70 μm was used. For the negative electrode, an active material graphite dispersed in CMC (carboxymethylcellulose) and then a paste mixed with a binder SBR (styrene butadiene rubber) was applied to a 20 μm thick copper foil at a thickness of 70 μm. It was. A coin battery was manufactured by sandwiching a polypropylene microporous separator between these electrode structures in a battery case. As the electrolytic solution, an electrolytic solution obtained by adding 1M LiPF 6 to a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.
<放電レート特性評価方法>
充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流レート1C、5C、10C、20Cの条件で、これらのリチウムイオン電池の放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)
<Discharge rate characteristics evaluation method>
The discharge capacities of these lithium ion batteries (0,0,5, 10 and 20 C) at a charge upper limit voltage of 4.2 V, a charge current of 0.2 C, a discharge end voltage of 2.8 V and a temperature of 25 ° C. 2C standard, unit%). (1C is the current value (A) when the current capacity (Ah) of the battery is taken out in one hour (h). At 20C, the current capacity of the battery can be taken out in 1 / 20h = 3 min. can do.)
<電極寿命の評価方法>
電解液温度40℃にて、上限電圧4.2V、充電電流20Cで充電した後、終了電圧2.8V、放電電流20Cで放電して、1サイクル目の放電容量に対して、放電容量が60%未満になる回数(最大500回)を測定し、以下の基準で評価した。
A:500回以上
B:450回以上500回未満
C:400回以上450回未満
D:400回未満
<Evaluation method of electrode life>
After charging at an electrolyte temperature of 40 ° C. with an upper limit voltage of 4.2 V and a charging current of 20 C, the battery was discharged at an end voltage of 2.8 V and a discharging current of 20 C, and the discharge capacity was 60 with respect to the discharge capacity of the first cycle. The number of times of less than% (up to 500 times) was measured and evaluated according to the following criteria.
A: 500 times or more B: 450 times or more and less than 500 times C: 400 times or more and less than 450 times D: Less than 400 times
<3.電気二重層キャパシタの放電レート特性評価、電極寿命評価>
以下に示すように、溶媒系電極材ペーストを用いて活物質層を形成して形成した電気二重層キャパシタの放電レート特性評価、電極寿命評価を測定した。
<3. Evaluation of discharge rate characteristics and electrode life of electric double layer capacitors>
As shown below, discharge rate characteristic evaluation and electrode life evaluation of an electric double layer capacitor formed by forming an active material layer using a solvent-based electrode material paste were measured.
<電気二重層キャパシタの製造方法>
電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて前記集電体電極に塗工し、正極、負極共同じ電極構造体とした。この電極構造体2枚に電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
<Method of manufacturing electric double layer capacitor>
A paste obtained by dispersing activated carbon as an electrode material and ketjen black as a conductive material in PVDF as a binder was applied to the current collector electrode at a thickness of 80 μm to form the same electrode structure for both the positive electrode and the negative electrode. The two electrode structures were fixed with an electric double layer capacitor non-woven fabric impregnated with an electrolytic solution therebetween, thereby constituting an electric double layer capacitor. The electrolytic solution used was propylene carbonate, which is a solvent, with 1.5 M TEMA (triethylmethylammonium) and tetrafluoroboric acid added.
<放電レート特性評価方法>
充電上限電圧2.8V、充電電流1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電電流レート100C、300C、500Cの条件で、これらの電気二重層キャパシタの放電容量(1C基準、単位%)を測定した。
<Discharge rate characteristics evaluation method>
Under the conditions of an upper limit charging voltage of 2.8 V, a charging current of 1 C, a charging end condition of 2 h, a discharge end voltage of 0 V, a temperature of 25 ° C., a discharge current rate of 100 C, 300 C, and 500 C, the discharge capacity of these electric double layer capacitors (1 C reference, Unit%) was measured.
<電極寿命の評価方法>
電解液温度40℃にて、上限電圧2.8 V、充電電流500Cで充電した後、放電電流500Cで終了電圧0Vまで放電して、1サイクル目の放電容量に対して、放電容量が80%未満になる回数(最大5000回)を測定し、以下の基準で評価した。
A:5000回以上
B:4500回以上5000回未満
C:4000回以上4500回未満
D:4000回未満
<Evaluation method of electrode life>
After charging at an electrolyte temperature of 40 ° C. with an upper limit voltage of 2.8 V and a charging current of 500 C, the discharging current is discharged to 500 V with a discharging current of 500 C and the discharging capacity is 80% of the discharging capacity of the first cycle. The number of times of being less than (maximum 5000 times) was measured and evaluated according to the following criteria.
A: 5000 times or more B: 4500 times or more and less than 5000 times C: 4000 times or more and less than 4500 times D: Less than 4000 times
評価結果を表1に示す。表1によれば、樹脂層の樹脂がキトサン誘導体(ヒドロキシアルキルキトサン)であり且つ樹脂層表面の溶剤系ペースト接触角が15度以上50度以下である全ての実施例では、溶剤系ペーストを用いて作製したリチウムイオン電池、電気二重層キャパシタの両方で、優れたハイレート特性、電池寿命を示した。これに対し、溶剤系ペースト接触角が小さすぎる比較例1や大きすぎる比較例2では、ハイレート特性が良好でなかった。また、樹脂層の樹脂としてエチルセルロースを用いた比較例3でもハイレート特性が良好でなかった。 The evaluation results are shown in Table 1. According to Table 1, in all examples in which the resin of the resin layer is a chitosan derivative (hydroxyalkylchitosan) and the solvent-based paste contact angle on the surface of the resin layer is 15 degrees to 50 degrees, a solvent-based paste is used. Both the lithium ion battery and the electric double layer capacitor produced in this way showed excellent high-rate characteristics and battery life. On the other hand, in Comparative Example 1 where the solvent-based paste contact angle is too small and Comparative Example 2 which is too large, the high rate characteristics were not good. Further, even in Comparative Example 3 using ethyl cellulose as the resin of the resin layer, the high rate characteristics were not good.
また、実施例1〜5を参照すると、ペースト接触角が19度以上42度以下の場合に特に優れたハイレート特性を示したことが分かる。さらに、実施例6〜9を参照すると、導電材の含有量は樹脂100質量部に対して50〜80質量部にした場合に特に優れたハイレート特性を示したことが分かる。 In addition, referring to Examples 1 to 5, it can be seen that particularly excellent high rate characteristics were exhibited when the paste contact angle was 19 degrees or more and 42 degrees or less. Furthermore, referring to Examples 6 to 9, it can be seen that when the content of the conductive material was 50 to 80 parts by mass with respect to 100 parts by mass of the resin, particularly excellent high rate characteristics were exhibited.
また、表1の結果によれば、水系モデル活物質ペーストの接触角が10度以上50度以下であっても、溶剤系ペーストを用いて作製したリチウムイオン電池や電気二重層キャパシタにおいて、放電レート特性が良好ではない場合がある。しかし、本発明者らの予備実験の結果によれば、水系モデル活物質ペーストの接触角が10度以上50度以下の場合には、水系ペーストを用いて作製したリチウムイオン電池や電気二重層キャパシタにおいて特に良好な結果が得られた。また、溶剤系ペースト接触角と水系モデル活物質ペースト接触角の両方が上記範囲内である場合には、リチウムイオン電池又は電気二重層キャパシタの作製に用いたペーストが溶媒系であっても水系であっても良好な結果が得られた。 Further, according to the results in Table 1, even when the contact angle of the aqueous model active material paste is 10 degrees or more and 50 degrees or less, in the lithium ion battery or electric double layer capacitor produced using the solvent-based paste, the discharge rate The characteristics may not be good. However, according to the results of preliminary experiments by the present inventors, when the contact angle of the aqueous model active material paste is 10 degrees or more and 50 degrees or less, a lithium ion battery or an electric double layer capacitor manufactured using the aqueous paste Especially good results have been obtained. In addition, when both the solvent-based paste contact angle and the water-based model active material paste contact angle are within the above ranges, even if the paste used for producing the lithium ion battery or the electric double layer capacitor is a solvent-based paste, Even so, good results were obtained.
1:集電体
3:導電性基材
5:樹脂層(集電体用樹脂層)
7:電極構造体
9:活物質層又は電極材層
1: Current collector
3: Conductive substrate 5: Resin layer (resin layer for current collector)
7: Electrode structure 9: Active material layer or electrode material layer
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016095044A JP6184552B2 (en) | 2016-05-11 | 2016-05-11 | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016095044A JP6184552B2 (en) | 2016-05-11 | 2016-05-11 | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011166793A Division JP6031223B2 (en) | 2011-07-29 | 2011-07-29 | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016197596A JP2016197596A (en) | 2016-11-24 |
JP6184552B2 true JP6184552B2 (en) | 2017-08-23 |
Family
ID=57358276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016095044A Expired - Fee Related JP6184552B2 (en) | 2016-05-11 | 2016-05-11 | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6184552B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208735A1 (en) * | 2018-04-26 | 2019-10-31 | 日東電工株式会社 | Positive electrode for electricity storage devices, and electricity storage device |
WO2019208733A1 (en) * | 2018-04-26 | 2019-10-31 | 日東電工株式会社 | Positive electrode for power storage device and power storage device |
JP2020072251A (en) * | 2018-04-26 | 2020-05-07 | 日東電工株式会社 | Positive electrode for power storage device and power storage device |
WO2019208734A1 (en) * | 2018-04-26 | 2019-10-31 | 日東電工株式会社 | Positive electrode for electricity storage devices, and electricity storage device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4866173B2 (en) * | 2006-01-25 | 2012-02-01 | 大日精化工業株式会社 | Hydroxyalkylated chitosan solution |
JP5038751B2 (en) * | 2006-08-04 | 2012-10-03 | 協立化学産業株式会社 | Coating liquid for electrode plate production, undercoat agent and use thereof |
JP2010109354A (en) * | 2008-09-30 | 2010-05-13 | Nippon Zeon Co Ltd | Method of manufacturing electrode for electrochemical element |
JP5284896B2 (en) * | 2009-07-13 | 2013-09-11 | 協立化学産業株式会社 | Electrode for lithium non-aqueous electrolyte battery, positive electrode current collector for lithium non-aqueous electrolyte battery, and method for producing the same |
WO2011024799A1 (en) * | 2009-08-27 | 2011-03-03 | 大日精化工業株式会社 | Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device |
TW201140911A (en) * | 2009-12-18 | 2011-11-16 | Showa Denko Kk | Coating solution |
-
2016
- 2016-05-11 JP JP2016095044A patent/JP6184552B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016197596A (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6121325B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP6185984B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery or power storage component | |
KR20070100353A (en) | Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof | |
JP5600576B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP6140073B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP5985161B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP6184552B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
WO2013154176A1 (en) | Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component | |
JP5780871B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP6130018B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP5788985B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, power storage component, nitrified cotton-based resin material | |
JP5788730B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
JP6031223B2 (en) | Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component | |
WO2017199798A1 (en) | Collector for electricity storage devices, method for producing same, electrode for electricity storage devices, method for producing electrode for electricity storage devices, slurry for forming protective layer, and electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170725 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6184552 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |