Nothing Special   »   [go: up one dir, main page]

JP6166170B2 - Composite substrate and manufacturing method thereof - Google Patents

Composite substrate and manufacturing method thereof Download PDF

Info

Publication number
JP6166170B2
JP6166170B2 JP2013259487A JP2013259487A JP6166170B2 JP 6166170 B2 JP6166170 B2 JP 6166170B2 JP 2013259487 A JP2013259487 A JP 2013259487A JP 2013259487 A JP2013259487 A JP 2013259487A JP 6166170 B2 JP6166170 B2 JP 6166170B2
Authority
JP
Japan
Prior art keywords
substrate
support substrate
piezoelectric
cavity
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013259487A
Other languages
Japanese (ja)
Other versions
JP2015119219A (en
Inventor
裕二 堀
裕二 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013259487A priority Critical patent/JP6166170B2/en
Publication of JP2015119219A publication Critical patent/JP2015119219A/en
Application granted granted Critical
Publication of JP6166170B2 publication Critical patent/JP6166170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、複合基板及びその製法に関する。   The present invention relates to a composite substrate and a manufacturing method thereof.

近年、半導体製造プロセスを応用した微小電気機械システム(MEMS:Micro Electoro Mechanical Sysem)の研究・開発が盛んに行われている。こうしたMEMSに利用可能な基本的構造の一つとして、キャビティを有する支持基板と、このキャビティを覆うようにして支持基板に接合された圧電薄板とを備えたものが挙げられる。この基本的な構造は、MEMSのほかに、弾性波デバイスなどにも利用可能である。こうした基本的な構造を作製するには、例えば、以下の2つの方法がある。第1の方法は、キャビティを有する支持基板に、このキャビティを覆うようにして厚めの圧電基板を接合し、接合後、圧電基板を薄く研磨する方法である(例えば非特許文献1参照)。第2の方法は、キャビティを有する支持基板のキャビティを犠牲層で充填しておき、支持基板の犠牲層側と厚めの圧電基板とを接合し、圧電基板を薄く研磨したあと、犠牲層をエッチングする方法である。キャビティ内の犠牲層をエッチングする技術については、例えば非特許文献2に開示されている。   In recent years, research and development of micro electro mechanical systems (MEMS) using semiconductor manufacturing processes have been actively conducted. One of the basic structures that can be used for such MEMS includes a support substrate having a cavity and a piezoelectric thin plate bonded to the support substrate so as to cover the cavity. This basic structure can be used not only for MEMS but also for elastic wave devices and the like. For example, there are the following two methods for producing such a basic structure. The first method is a method in which a thick piezoelectric substrate is bonded to a support substrate having a cavity so as to cover the cavity, and after bonding, the piezoelectric substrate is thinly polished (see, for example, Non-Patent Document 1). In the second method, the cavity of the support substrate having cavities is filled with a sacrificial layer, the sacrificial layer side of the support substrate is bonded to a thick piezoelectric substrate, the piezoelectric substrate is polished thinly, and then the sacrificial layer is etched. It is a method to do. A technique for etching the sacrificial layer in the cavity is disclosed in Non-Patent Document 2, for example.

IEEE/MTT-S International Microwave Symposium, 2007, p873-876IEEE / MTT-S International Microwave Symposium, 2007, p873-876 RF MEMSとその応用(大和田邦樹著、ケイラボ出版,2004年)62頁RF MEMS and its applications (Kuniki Owada, Kei Labo Publishing, 2004) p. 62

しかしながら、第1の方法では、圧電基板を研磨したとき、圧電基板のうちキャビティの直上の部分とそうでない部分とで研磨後の厚みが大きく異なってしまうという問題があった。圧電基板の面内厚み分布が大きいと、圧電MEMSを作製した場合に所望の特性が得にくいため、好ましくない。一方、第2の方法では、キャビティが犠牲層で充填されているため、研磨後の圧電基板の面内厚み分布は小さいが、犠牲層をエッチングする工程が必要であり、更には犠牲層を完全に除去できなかったり、圧電基板がキャビティ内に張り付いてしまい素子が機能しないおそれがあった。こうしたことから、厚みの薄い圧電基板でありながら面内厚み分布の小さな複合基板を比較的簡単に製造する方法の開発が望まれていた。   However, in the first method, when the piezoelectric substrate is polished, there is a problem that the thickness after polishing differs greatly between the portion immediately above the cavity and the portion that is not in the piezoelectric substrate. When the in-plane thickness distribution of the piezoelectric substrate is large, it is difficult to obtain desired characteristics when the piezoelectric MEMS is manufactured, which is not preferable. On the other hand, in the second method, since the cavity is filled with the sacrificial layer, the in-plane thickness distribution of the polished piezoelectric substrate is small, but a step of etching the sacrificial layer is necessary, and the sacrificial layer is completely removed. There was a risk that the element could not be removed or the piezoelectric substrate stuck in the cavity and the element did not function. For these reasons, it has been desired to develop a method for relatively easily manufacturing a composite substrate having a small in-plane thickness distribution while being a thin piezoelectric substrate.

本発明は、このような課題を解決するためになされたものであり、圧電基板とキャビティを有する支持基板とを備えた複合基板であって、厚みの薄い圧電基板でありながら面内厚み分布の小さな複合基板を比較的簡単に製造することを主目的とする。   The present invention has been made to solve such a problem, and is a composite substrate including a piezoelectric substrate and a support substrate having a cavity, and has an in-plane thickness distribution while being a thin piezoelectric substrate. The main objective is to produce a small composite substrate relatively easily.

本発明は、上述の目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the above-mentioned object.

本発明の複合基板の製法は、
(a)表裏両面が平坦な第1支持基板と表裏両面が平坦な圧電基板とを有機接着層で貼り合わせた貼り合わせ基板を用意し、前記貼り合わせ基板の前記圧電基板の厚みが0.1〜3μmとなるように研磨を行う工程と、
(b)キャビティを有する第2支持基板を用意し、前記第2支持基板のうち前記キャビティが設けられた面と前記圧電基板のうち前記第1支持基板の接合面とは反対側の面とを直接接合する工程と、
(c)前記有機接着層をエッチングして前記圧電基板から前記第1支持基板を外すことにより、前記圧電基板と前記第2支持基板とが接合された複合基板を得る工程と、
を含むものである。
The method for producing the composite substrate of the present invention includes:
(A) A bonded substrate is prepared by bonding a first support substrate having flat front and back surfaces and a piezoelectric substrate having flat front and back surfaces with an organic adhesive layer, and the thickness of the piezoelectric substrate of the bonded substrate is 0.1. Polishing to have a thickness of ˜3 μm;
(B) A second support substrate having a cavity is prepared, and a surface of the second support substrate on which the cavity is provided and a surface of the piezoelectric substrate opposite to the bonding surface of the first support substrate are provided. Direct bonding,
(C) obtaining a composite substrate in which the piezoelectric substrate and the second support substrate are joined by etching the organic adhesive layer to remove the first support substrate from the piezoelectric substrate;
Is included.

この複合基板の製法では、まず、工程(a)で、貼り合わせ基板の圧電基板を研磨によって厚みが0.1〜3μmとなるようにする。研磨の一例としては、ラップ研磨機を用いてダイヤモンドスラリーによる表面を研磨し、続いて、コロイダルシリカを用いてCMP研磨機により精密研磨を行う。CMPとは、化学的機械的研磨(Chemical Mechanical Polishing)のことであり、研磨剤(砥粒)自体が有する表面化学作用または研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。貼り合わせ基板を構成する第1支持基板及び圧電基板はいずれもキャビティなどのない平坦な表面をもつ基板であるため、研磨後の圧電基板の面内厚み分布を非常に小さくすることができる(例えば±50nm以内)。次に、工程(b)で、第2支持基板のうち前記キャビティが設けられた面と圧電基板のうち第1支持基板の接合面とは反対側の面とを直接接合する。これにより、圧電基板が第1支持基板と第2支持基板とにより挟まれた3層構造となる。次に、工程(c)で、有機接着層をエッチングして圧電基板から第1支持基板を外すことにより、圧電基板と第2支持基板とが接合された複合基板を得る。得られた複合基板の圧電基板は、工程(a)終了時の面内厚み分布を維持している。以上のように、この複合基板の製法によれば、上述した第2の方法のようにキャビティに犠牲層を充填したりその犠牲層を除去したりする必要がないため、厚みの薄い圧電基板でありながら面内厚み分布の小さな複合基板を比較的簡単に製造することができる。   In this composite substrate manufacturing method, first, in step (a), the piezoelectric substrate of the bonded substrate is polished to a thickness of 0.1 to 3 μm. As an example of polishing, the surface of the diamond slurry is polished using a lapping machine, and then precision polishing is performed by a CMP machine using colloidal silica. CMP is chemical mechanical polishing, and the polishing agent and the polishing object are affected by the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid. This is a technique for increasing the mechanical polishing (surface removal) effect by relative motion and obtaining a high-speed and smooth polished surface. Since both the first support substrate and the piezoelectric substrate constituting the bonded substrate are substrates having a flat surface without a cavity or the like, the in-plane thickness distribution of the piezoelectric substrate after polishing can be made extremely small (for example, Within ± 50 nm). Next, in the step (b), the surface of the second support substrate provided with the cavity is directly bonded to the surface of the piezoelectric substrate opposite to the bonding surface of the first support substrate. Accordingly, a three-layer structure in which the piezoelectric substrate is sandwiched between the first support substrate and the second support substrate is obtained. Next, in step (c), the organic adhesive layer is etched to remove the first support substrate from the piezoelectric substrate, thereby obtaining a composite substrate in which the piezoelectric substrate and the second support substrate are bonded. The obtained piezoelectric substrate of the composite substrate maintains the in-plane thickness distribution at the end of the step (a). As described above, according to the method of manufacturing the composite substrate, it is not necessary to fill the cavity with the sacrificial layer or to remove the sacrificial layer unlike the second method described above. However, a composite substrate having a small in-plane thickness distribution can be manufactured relatively easily.

本発明の複合基板の製法において、前記工程(b)では、前記第2支持基板と前記圧電基板とを接合する前に、前記圧電基板上に電極を形成し、前記第2支持基板の前記キャビティ内に前記電極が包含されるように前記第2支持基板と前記圧電基板とを直接接合してもよい。こうすれば、圧電基板のうちキャビティ側の表面に電極を持つ構造を容易に作製することができる。こうした複合基板の製法において、前記第2支持基板は、前記キャビティを複数有しており、前記圧電基板の前記電極は、前記キャビティのそれぞれに対応して形成されていてもよい。こうすれば、複合基板をキャビティごとにダイシングすることで、微小なサイズの複合基板を多数製造することができる。   In the method for producing a composite substrate of the present invention, in the step (b), before joining the second support substrate and the piezoelectric substrate, electrodes are formed on the piezoelectric substrate, and the cavity of the second support substrate is formed. The second support substrate and the piezoelectric substrate may be directly bonded so that the electrode is included therein. In this way, it is possible to easily produce a structure having electrodes on the cavity-side surface of the piezoelectric substrate. In such a composite substrate manufacturing method, the second support substrate may include a plurality of the cavities, and the electrodes of the piezoelectric substrate may be formed corresponding to the cavities. In this way, a large number of micro-sized composite substrates can be manufactured by dicing the composite substrate for each cavity.

本発明の複合基板は、
キャビティを有する支持基板と、
前記キャビティを覆うようにして前記支持基板に直接接合され、厚みが0.1〜3μmで面内の厚み分布が±50nm以内の圧電基板と、
前記圧電基板のうち前記支持基板の前記キャビティ内に位置する表面に形成された電極と、
を備えたものである。
The composite substrate of the present invention is
A support substrate having a cavity;
A piezoelectric substrate that is directly bonded to the support substrate so as to cover the cavity, has a thickness of 0.1 to 3 μm, and an in-plane thickness distribution within ± 50 nm;
An electrode formed on a surface of the piezoelectric substrate located in the cavity of the support substrate;
It is equipped with.

この複合基板は、上述した複合基板の製法によって得られるものである。上述した複合基板の製法は、従来の製法と比べて大きく異なるものである。その製法によって、圧電基板の厚みが0.1〜3μmと極めて薄いにもかかわらず面内の厚み分布が±50nmと非常に小さな複合基板が得られるようになったのである。その結果、この複合基板を用いて圧電MEMSや弾性波デバイスなどを作製すると、所望の特性を得ることができる。   This composite substrate is obtained by the above-described composite substrate manufacturing method. The manufacturing method of the composite substrate described above is significantly different from the conventional manufacturing method. By this manufacturing method, a composite substrate having a very small in-plane thickness distribution of ± 50 nm can be obtained even though the thickness of the piezoelectric substrate is as thin as 0.1 to 3 μm. As a result, desired characteristics can be obtained when a piezoelectric MEMS, an acoustic wave device, or the like is manufactured using the composite substrate.

複合基板10を模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing the composite substrate 10. 複合基板10の製造プロセスを模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a manufacturing process of the composite substrate 10. 研磨装置120の説明図。Explanatory drawing of the grinding | polishing apparatus 120. FIG.

次に、本発明の実施の形態を図面に基づいて説明する。図1は、複合基板10を模式的に示す断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing the composite substrate 10.

複合基板10は、支持基板22と圧電基板12とを備えている。支持基板22は、キャビティ24を有している。圧電基板12は、キャビティ24を覆うようにして支持基板22に直接接合されている。圧電基板12のうち支持基板22に対向する表面には、所定のパターンの電極14が形成されている。なお、以下では、支持基板22を第2支持基板22と称することもある。   The composite substrate 10 includes a support substrate 22 and a piezoelectric substrate 12. The support substrate 22 has a cavity 24. The piezoelectric substrate 12 is directly bonded to the support substrate 22 so as to cover the cavity 24. An electrode 14 having a predetermined pattern is formed on the surface of the piezoelectric substrate 12 facing the support substrate 22. Hereinafter, the support substrate 22 may be referred to as a second support substrate 22.

支持基板22の材質としては、シリコン、サファイア、窒化アルミニウム、アルミナ、無アルカリガラス、ホウ珪酸ガラス、石英ガラス、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶などが挙げられる。また、支持基板22の大きさは、特に限定するものではないが、例えば直径が50〜150mm、厚さが100〜1000μm、好ましくは150〜500μmである。   The material of the support substrate 22 is silicon, sapphire, aluminum nitride, alumina, alkali-free glass, borosilicate glass, quartz glass, lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate , Langasite, crystal and the like. Further, the size of the support substrate 22 is not particularly limited, but for example, the diameter is 50 to 150 mm, the thickness is 100 to 1000 μm, and preferably 150 to 500 μm.

圧電基板12の材質としては、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、硼酸リチウム、ランガサイト、水晶などが挙げられる。圧電基板12の大きさは、特に限定するものではないが、例えば直径が50〜150mm、厚さが0.1〜3μmである。また、圧電基板12の面内厚み分布は例えば±50nm以内である。   Examples of the material of the piezoelectric substrate 12 include lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate, langasite, and quartz. Although the magnitude | size of the piezoelectric substrate 12 is not specifically limited, For example, a diameter is 50-150 mm and thickness is 0.1-3 micrometers. The in-plane thickness distribution of the piezoelectric substrate 12 is, for example, within ± 50 nm.

この複合基板10は、更に圧電基板12の露出面に電極パターンを形成して圧電MEMSや弾性波デバイスとして利用可能である。   The composite substrate 10 can be used as a piezoelectric MEMS or an acoustic wave device by forming an electrode pattern on the exposed surface of the piezoelectric substrate 12.

こうした複合基板10を製造するプロセスについて、図2に基づいて以下に説明する。図2は、複合基板10の製造プロセスを模式的に示す断面図である。ここでは、工程(a)〜(c)の3つに分けて説明する。   A process for manufacturing such a composite substrate 10 will be described below with reference to FIG. FIG. 2 is a cross-sectional view schematically showing the manufacturing process of the composite substrate 10. Here, the steps (a) to (c) will be described separately.

・工程(a)
厚みが100〜1000μmの第1支持基板21と、厚みが100〜1000μmの圧電基板12とを有機接着層30で貼り合わせた貼り合わせ基板50を用意する。第1支持基板21及び圧電基板12の表裏両面は、いずれもキャビティなどのない平坦な面である。第1支持基板21の材質は、支持基板22で例示したものと同じである。なお、第1支持基板21と支持基板22とは同じ材質であってもよいし、異なる材質であってもよい。有機接着層30は、例えばエポキシ樹脂やアクリル樹脂などが挙げられる。この貼り合わせ基板50の圧電基板12の厚みが0.1〜3μmとなるように研磨を行う。貼り合わせ基板50を構成する第1支持基板21及び圧電基板12はいずれもキャビティなどのない平坦な表面をもつ基板であるため、研磨後の圧電基板12の面内厚み分布は非常に小さくなる(例えば±50nm以内)。研磨の一例としては、ラップ研磨機を用いてダイヤモンドスラリーによる表面を研磨し、続いて、コロイダルシリカを用いてCMP研磨機により精密研磨を行う。
・ Process (a)
A bonded substrate 50 in which a first support substrate 21 having a thickness of 100 to 1000 μm and a piezoelectric substrate 12 having a thickness of 100 to 1000 μm are bonded together with an organic adhesive layer 30 is prepared. Both the front and back surfaces of the first support substrate 21 and the piezoelectric substrate 12 are flat surfaces having no cavities or the like. The material of the first support substrate 21 is the same as that exemplified for the support substrate 22. The first support substrate 21 and the support substrate 22 may be made of the same material or different materials. Examples of the organic adhesive layer 30 include an epoxy resin and an acrylic resin. Polishing is performed so that the thickness of the piezoelectric substrate 12 of the bonded substrate 50 becomes 0.1 to 3 μm. Since both the first support substrate 21 and the piezoelectric substrate 12 constituting the bonded substrate 50 are substrates having a flat surface without a cavity or the like, the in-plane thickness distribution of the polished piezoelectric substrate 12 is very small ( For example, within ± 50 nm). As an example of polishing, the surface of the diamond slurry is polished using a lapping machine, and then precision polishing is performed by a CMP machine using colloidal silica.

CMPは、図3に示す研磨装置120を用いて行う。研磨装置120は、円盤状で径の大きな定盤122と、円盤状で径の小さな基板キャリア126と、研磨剤を含むスラリーを定盤122上へ供給するパイプ129とを備えている。定盤122は、裏面中央にシャフト122aを備えており、図示しない駆動モータでシャフト122aが回転駆動されることにより軸回転する。この定盤122は、表面に不織布などからなる研磨布124が取り付けられている。基板キャリア126は、上面中央にシャフト126aを備えており、図示しない駆動モータでシャフト126aが回転駆動されることにより軸回転する。また、基板キャリア126の下面には、凹部126bが形成されている。この基板キャリア126は、定盤122の中心からずれた位置に配置されている。パイプ129は、基板キャリア126の近傍に配置され、研磨剤を含むスラリーを研磨布124に供給する役割を果たす。この研磨装置120の使用方法について説明する。まず、基板キャリア126の下面に設けられた凹部126bに貼り合わせ基板50の第1支持基板側をワックスを用いて固定する。次に、貼り合わせ基板50の圧電基板12を研磨布124に接触させた状態で、パイプ129から研磨布124にスラリーを供給しながら定盤122及び基板キャリア126を軸回転させる。そして、圧電基板12が所定の厚みになるまで研磨を行う。   CMP is performed using a polishing apparatus 120 shown in FIG. The polishing apparatus 120 includes a disk-shaped surface plate 122 with a large diameter, a disk-shaped substrate carrier 126 with a small diameter, and a pipe 129 for supplying a slurry containing an abrasive onto the surface plate 122. The surface plate 122 includes a shaft 122a at the center of the back surface, and rotates when the shaft 122a is rotationally driven by a drive motor (not shown). The surface plate 122 has a polishing cloth 124 made of a nonwoven fabric or the like attached to the surface. The substrate carrier 126 has a shaft 126a at the center of the upper surface, and rotates when the shaft 126a is rotationally driven by a drive motor (not shown). A recess 126 b is formed on the lower surface of the substrate carrier 126. The substrate carrier 126 is arranged at a position shifted from the center of the surface plate 122. The pipe 129 is disposed in the vicinity of the substrate carrier 126 and serves to supply a slurry containing an abrasive to the polishing cloth 124. A method of using the polishing apparatus 120 will be described. First, the first support substrate side of the bonded substrate 50 is fixed to the recess 126b provided on the lower surface of the substrate carrier 126 using wax. Next, the surface plate 122 and the substrate carrier 126 are axially rotated while supplying the slurry from the pipe 129 to the polishing cloth 124 with the piezoelectric substrate 12 of the bonded substrate 50 in contact with the polishing cloth 124. Then, polishing is performed until the piezoelectric substrate 12 has a predetermined thickness.

・工程(b)
圧電基板12のうち第1支持基板21と接合している側とは反対側の面に電極14を形成する。電極14は、フォトリソグラフィー技術によって形成することができる。続いて、厚みが100〜500μmでキャビティ24を有する第2支持基板22を用意する。この第2支持基板22のキャビティ24内に電極14が包含されるように第2支持基板22と圧電基板12とを配置する。そして、第2支持基板22のうちキャビティ24が設けられた面と圧電基板12のうち第1支持基板21の接合面とは反対側の面とを直接接合する。直接接合は、圧電基板12と第2支持基板22のそれぞれの接合面を活性化した後、両接合面を向かい合わせにした状態で両基板12,22を押圧することにより行う。接合面の活性化は、例えば、接合面への不活性ガス(アルゴンなど)のイオンビームの照射のほか、プラズマや中性原子ビームの照射などが挙げられる。これにより、圧電基板12を第1支持基板21と第2支持基板22とで挟み込んだ3層構造体60を得る。
・ Process (b)
An electrode 14 is formed on the surface of the piezoelectric substrate 12 opposite to the side bonded to the first support substrate 21. The electrode 14 can be formed by a photolithography technique. Subsequently, a second support substrate 22 having a thickness of 100 to 500 μm and having a cavity 24 is prepared. The second support substrate 22 and the piezoelectric substrate 12 are arranged so that the electrode 14 is included in the cavity 24 of the second support substrate 22. Then, the surface of the second support substrate 22 where the cavity 24 is provided and the surface of the piezoelectric substrate 12 opposite to the bonding surface of the first support substrate 21 are directly bonded. The direct bonding is performed by activating the bonding surfaces of the piezoelectric substrate 12 and the second support substrate 22 and then pressing the substrates 12 and 22 with the bonding surfaces facing each other. Examples of the activation of the bonding surface include irradiation of an ion beam of an inert gas (such as argon) to the bonding surface, irradiation of plasma or a neutral atom beam, and the like. Thereby, a three-layer structure 60 in which the piezoelectric substrate 12 is sandwiched between the first support substrate 21 and the second support substrate 22 is obtained.

・工程(c)
3層構造体60の有機接着層30をエッチャントを用いてエッチングして、圧電基板12から第1支持基板21を外すことにより、圧電基板21と第2支持基板22とが接合された複合基板10を得る。エッチャントとしては、有機接着層30を溶解可能なものであれば特に限定するものではなく、例えば、酸性液でもよいし、アルカリ性液でもよい。酸性液としては、フッ硝酸、フッ酸、硝酸、硫酸、塩酸、これらの混合液などが挙げられる。これらは、必要に応じて、適宜水で希釈してもよい。また、アルカリ性溶液としては、KOH水溶液、NaOH水溶液などが挙げられる。またそのままの状態でのエッチングで時間がかかる場合には、第1支持基板側からハーフダイシングを行い、有機接着層30まで切り込みを入れた後でエッチングしてもよい。こうすれば、エッチングが容易に進む。あるいは接着剤の接合界面にブレードを入れて機械的に剥離することも可能である。
・ Process (c)
The composite substrate 10 in which the piezoelectric substrate 21 and the second support substrate 22 are bonded together by etching the organic adhesive layer 30 of the three-layer structure 60 using an etchant and removing the first support substrate 21 from the piezoelectric substrate 12. Get. The etchant is not particularly limited as long as it can dissolve the organic adhesive layer 30. For example, the etchant may be an acidic liquid or an alkaline liquid. Examples of the acidic liquid include hydrofluoric acid, hydrofluoric acid, nitric acid, sulfuric acid, hydrochloric acid, and a mixture thereof. These may be appropriately diluted with water as necessary. Examples of the alkaline solution include a KOH aqueous solution and a NaOH aqueous solution. Further, in the case where the etching in the state as it is takes time, half-dicing may be performed from the first support substrate side and the organic adhesive layer 30 may be cut and then etched. This facilitates etching. Alternatively, it is also possible to mechanically peel off by putting a blade at the bonding interface of the adhesive.

以上詳述した本実施形態の複合基板10の製法によれば、厚みの薄い圧電基板12でありながら面内厚み分布の小さな複合基板10を比較的簡単に製造することができる。具体的には、背景技術の欄で述べた第2の方法のようにキャビティ24に犠牲層を充填したりその犠牲層を除去したりする必要がない。   According to the manufacturing method of the composite substrate 10 of the present embodiment described in detail above, the composite substrate 10 having a small in-plane thickness distribution can be manufactured relatively easily even though the piezoelectric substrate 12 is thin. Specifically, unlike the second method described in the background art section, it is not necessary to fill the sacrificial layer into the cavity 24 or to remove the sacrificial layer.

また、圧電基板12のうちキャビティ24側の表面に電極14を持つ構造を容易に作製することができる。   In addition, a structure having the electrode 14 on the surface on the cavity 24 side of the piezoelectric substrate 12 can be easily manufactured.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態の第2支持基板22として、キャビティ24を複数有するものを使用し、圧電基板12の電極14は、キャビティ24のそれぞれに対応して複数形成されているものを使用してもよい。こうすれば、複合基板10をキャビティ24ごとにダイシングすることで、微小なサイズの複合基板を多数製造することができる。   For example, as the second support substrate 22 of the above-described embodiment, a substrate having a plurality of cavities 24 is used, and a plurality of electrodes 14 of the piezoelectric substrate 12 are formed corresponding to each of the cavities 24. Also good. In this way, by dicing the composite substrate 10 for each cavity 24, a large number of micro-sized composite substrates can be manufactured.

[実施例1]
第1支持基板として、厚みが500μmのSi(111)基板を用意し、圧電基板として、厚みが230μmのLiNbO3基板(LN基板)を用意した。Si基板にアクリル系の接着剤を用いてLN基板を貼り合わせ、貼り合わせ基板とした。定盤とセラミックス製の基板キャリアとを備えた研磨装置(図3参照)を用意し、貼り合わせ基板のSi基板側を基板キャリアにワックスを用いて固定し、LN基板の厚みが1.0μmになるまでCMPで片面研磨を行った。研磨後のLN基板の面内厚み分布を測定したところ、面内で±50nmの高精度薄膜が実現できていることが分かった。基板キャリアから貼り合わせ基板を剥離し、有機溶剤、純水を用いて十分な洗浄を行った。
[Example 1]
A Si (111) substrate having a thickness of 500 μm was prepared as a first support substrate, and a LiNbO 3 substrate (LN substrate) having a thickness of 230 μm was prepared as a piezoelectric substrate. The LN substrate was bonded to the Si substrate using an acrylic adhesive to obtain a bonded substrate. A polishing apparatus (see FIG. 3) provided with a surface plate and a ceramic substrate carrier is prepared, and the Si substrate side of the bonded substrate is fixed to the substrate carrier with wax so that the thickness of the LN substrate is 1.0 μm. One side polishing was performed by CMP until it became. When the in-plane thickness distribution of the polished LN substrate was measured, it was found that a high-precision thin film of ± 50 nm could be realized in the plane. The bonded substrate was peeled from the substrate carrier, and sufficient cleaning was performed using an organic solvent and pure water.

貼り合わせ基板のLN基板側に、予め用意したフォトマスクを用いてフォトリソグラフィー工程を実施し、多数の電極を形成した。また、その電極から配線を引き出すために、LN基板にφ15μmのビアホールを同時に形成した。次いで、第2支持基板として、1mm角、深さ50μmのキャビティを多数形成した厚みが200μmの無アルカリガラス基板を用意した。キャビティは、電極と1対1に対応するように形成した。続いて、貼り合わせ基板とガラス基板とを直接接合装置内に設置した。そして、貼り合わせ基板の圧電基板表面とガラス基板のキャビティ形成面にアルゴンのイオンビームを照射して表面を活性化させ、約200kgの加重をかけて両基板を接合した。これにより、LN基板をSi基板とガラス基板とで挟み込んだ3層構造体を得た。   A photolithography process was performed on the LN substrate side of the bonded substrate using a photomask prepared in advance to form a large number of electrodes. In addition, a via hole having a diameter of 15 μm was simultaneously formed in the LN substrate in order to draw the wiring from the electrode. Next, an alkali-free glass substrate having a thickness of 200 μm in which many cavities having a size of 1 mm square and a depth of 50 μm were formed was prepared as a second support substrate. The cavity was formed so as to correspond to the electrode on a one-to-one basis. Subsequently, the bonded substrate and the glass substrate were directly installed in the bonding apparatus. Then, the surface of the bonded substrate and the cavity forming surface of the glass substrate were irradiated with an argon ion beam to activate the surfaces, and both substrates were bonded under a load of about 200 kg. As a result, a three-layer structure in which the LN substrate was sandwiched between the Si substrate and the glass substrate was obtained.

3層構造体を装置内から取り出し、ガラス基板側をダイシングテープに貼り付け、ハーフダイシングを実施した。その後、KOH水溶液(40wt%)内に約10分浸漬することでアクリル系の接着層をエッチングした。その結果、Si基板が完全に剥離し、キャビティを持つガラス基板上にLN基板が接合された複合基板を得た。この複合基板は、キャビティを有するガラス基板と、キャビティを覆うようにしてガラス基板に直接接合され、厚みが1.0μmで面内厚み分布が±50nm以内のLN基板と、LN基板のうちガラス基板のキャビティ内に位置する表面に形成された電極とを備えていた。更に、この複合基板のLN基板にフォトリソグラフィーを実施し、必要な電極を形成することで、LN薄膜を利用した圧電素子を得た。このような圧電素子は例えば、共振器として利用することができる。   The three-layer structure was taken out from the apparatus, the glass substrate side was attached to a dicing tape, and half dicing was performed. Thereafter, the acrylic adhesive layer was etched by dipping in an aqueous KOH solution (40 wt%) for about 10 minutes. As a result, the Si substrate was completely peeled off to obtain a composite substrate in which the LN substrate was bonded onto the glass substrate having a cavity. The composite substrate includes a glass substrate having a cavity, an LN substrate that is directly bonded to the glass substrate so as to cover the cavity, and has a thickness of 1.0 μm and an in-plane thickness distribution within ± 50 nm, and among the LN substrates, a glass substrate And an electrode formed on the surface located in the cavity. Furthermore, photolithography was performed on the LN substrate of the composite substrate, and necessary electrodes were formed to obtain a piezoelectric element using an LN thin film. Such a piezoelectric element can be used as a resonator, for example.

10 複合基板、12 圧電基板、14 電極、21 第1支持基板、22 第2支持基板(支持基板)、24 キャビティ、30 有機接着層、50 貼り合わせ基板、60 3層構造体、120 研磨装置、122 定盤、122a シャフト、124 研磨布、126 基板キャリア、126a シャフト、126b 凹部、129 パイプ。 DESCRIPTION OF SYMBOLS 10 Composite substrate, 12 Piezoelectric substrate, 14 Electrode, 21 1st support substrate, 22 2nd support substrate (support substrate), 24 cavity, 30 Organic adhesive layer, 50 Bonded substrate, 60 3 layer structure, 120 Polishing apparatus, 122 surface plate, 122a shaft, 124 polishing cloth, 126 substrate carrier, 126a shaft, 126b recess, 129 pipe.

Claims (5)

(a)表裏両面が平坦な第1支持基板と表裏両面が平坦な圧電基板とを有機接着層で貼り合わせた貼り合わせ基板を用意し、前記貼り合わせ基板の前記圧電基板の厚みが0.1〜3μmとなるように研磨を行う工程と、
(b)キャビティを有する第2支持基板を用意し、前記第2支持基板のうち前記キャビティが設けられた面と前記圧電基板のうち前記第1支持基板の接合面とは反対側の面とを直接接合する工程と、
(c)前記有機接着層をエッチングして前記圧電基板から前記第1支持基板を外すことにより、前記圧電基板と前記第2支持基板とが接合された複合基板を得る工程と、
を含む複合基板の製法。
(A) A bonded substrate is prepared by bonding a first support substrate having flat front and back surfaces and a piezoelectric substrate having flat front and back surfaces with an organic adhesive layer, and the thickness of the piezoelectric substrate of the bonded substrate is 0.1. Polishing to have a thickness of ˜3 μm;
(B) A second support substrate having a cavity is prepared, and a surface of the second support substrate on which the cavity is provided and a surface of the piezoelectric substrate opposite to the bonding surface of the first support substrate are provided. Direct bonding,
(C) obtaining a composite substrate in which the piezoelectric substrate and the second support substrate are joined by etching the organic adhesive layer to remove the first support substrate from the piezoelectric substrate;
Of composite substrate containing
前記工程(b)では、前記第2支持基板と前記圧電基板とを接合する前に、前記圧電基板上に電極を形成し、前記第2支持基板の前記キャビティ内に前記電極が包含されるように前記第2支持基板と前記圧電基板とを直接接合する、
請求項1に記載の複合基板の製法。
In the step (b), before joining the second support substrate and the piezoelectric substrate, an electrode is formed on the piezoelectric substrate so that the electrode is included in the cavity of the second support substrate. Directly bonding the second support substrate and the piezoelectric substrate;
The method for producing a composite substrate according to claim 1.
前記第2支持基板は、前記キャビティを複数有しており、
前記圧電基板の前記電極は、前記キャビティのそれぞれに対応して形成されている、
請求項2に記載の複合基板の製法。
The second support substrate has a plurality of the cavities,
The electrodes of the piezoelectric substrate are formed corresponding to the cavities,
The manufacturing method of the composite substrate of Claim 2.
前記工程(c)では、前記有機接着層をエッチングする前に前記第1支持基板側からハーフダイシングを行い、前記有機接着層まで切り込みを入れる、
請求項1〜3のいずれか1項に記載の複合基板の製法。
In the step (c), half etching is performed from the first support substrate side before etching the organic adhesive layer, and a cut is made to the organic adhesive layer.
The manufacturing method of the composite substrate of any one of Claims 1-3.
キャビティを有する支持基板と、
前記キャビティを覆うようにして前記支持基板に直接接合され、厚みが0.1〜3μmで面内の厚み分布が±50nm以内の圧電基板と、
前記圧電基板の前記支持基板に対向する表面に形成された電極と、
を備えた複合基板。
A support substrate having a cavity;
A piezoelectric substrate that is directly bonded to the support substrate so as to cover the cavity, has a thickness of 0.1 to 3 μm, and an in-plane thickness distribution within ± 50 nm;
An electrode formed on a surface of the piezoelectric substrate facing the support substrate;
Composite substrate with
JP2013259487A 2013-12-16 2013-12-16 Composite substrate and manufacturing method thereof Active JP6166170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259487A JP6166170B2 (en) 2013-12-16 2013-12-16 Composite substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259487A JP6166170B2 (en) 2013-12-16 2013-12-16 Composite substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015119219A JP2015119219A (en) 2015-06-25
JP6166170B2 true JP6166170B2 (en) 2017-07-19

Family

ID=53531619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259487A Active JP6166170B2 (en) 2013-12-16 2013-12-16 Composite substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6166170B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088093A1 (en) * 2016-11-11 2018-05-17 信越化学工業株式会社 Composite substrate, surface acoustic wave device, and method for manufacturing composite substrate
DE112019004304T5 (en) * 2018-08-27 2021-05-27 Akoustis, Inc. HIGH PERFORMANCE ACOUSTIC VOLUME WAVE RESONATOR FILTER DEVICES
CN110492860A (en) * 2019-08-27 2019-11-22 南方科技大学 Thin film bulk acoustic wave resonator and its manufacturing method
CN114342255A (en) * 2019-09-05 2022-04-12 常州承芯半导体有限公司 Method for forming bulk acoustic wave resonance device
WO2023140270A1 (en) * 2022-01-19 2023-07-27 株式会社村田製作所 Method for manufacturing elastic wave element and elastic wave element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138555A (en) * 1998-10-30 2000-05-16 Matsushita Electric Ind Co Ltd Piezoelectric element and its manufacture
JP4963193B2 (en) * 2006-03-07 2012-06-27 日本碍子株式会社 Piezoelectric thin film device
US20070257580A1 (en) * 2006-05-05 2007-11-08 Fujifilm Dimatix, Inc. Polishing Piezoelectric Material
WO2010082571A1 (en) * 2009-01-15 2010-07-22 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
WO2013031651A1 (en) * 2011-09-02 2013-03-07 株式会社村田製作所 Elastic wave device and production method therefor

Also Published As

Publication number Publication date
JP2015119219A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6166170B2 (en) Composite substrate and manufacturing method thereof
TWI659609B (en) Composite substrate and manufacturing method thereof
JP5151104B2 (en) Manufacturing method of electronic parts
JP2013008915A (en) Substrate processing method and substrate processing apparatus
TWI424484B (en) Wafer grinding method and wafer
JP2010171955A (en) Method for manufacturing composite substrate and composite substrate
JP2010035156A (en) Mechanoelectrical transducer and manufacturing method of same
JP6220279B2 (en) Polishing method for composite substrate
TW201824729A (en) Electrostatic chuck and manufacturing method of electrostatic chuck capable of maintaining an adsorption force relative to a workpiece more satisfactorily after stopping the electric power supply to an electrode
JP5122731B2 (en) Manufacturing method of bonded wafer
WO2016093020A1 (en) Piezoelectric device and method for producing piezoelectric device
TW201919125A (en) Method of manufacturing small-diameter wafer
JP5198242B2 (en) Composite substrate, method of manufacturing acoustic wave device, and acoustic wave device
CN109972204B (en) Ultra-thin ultra-flat wafer and method for manufacturing the same
JP2019186323A (en) Polishing method of SiC substrate
JP5936312B2 (en) Processing method of semiconductor wafer
JP3520839B2 (en) Manufacturing method of piezoelectric vibrating reed
TW201207924A (en) Trimming thinning
JP2000228547A (en) Manufacture of piezoelectric board
JPH02185032A (en) Etching method and etching device
JP2008147833A (en) Piezoelectric thin film device
JP6561804B2 (en) Manufacturing method of semiconductor device
JP6796846B2 (en) Vibration detection element and its manufacturing method
JP2010153962A (en) Method of manufacturing composite substrate, and composite substrate
JP2012064961A (en) Method of manufacturing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170622

R150 Certificate of patent or registration of utility model

Ref document number: 6166170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150