Nothing Special   »   [go: up one dir, main page]

JP6160864B2 - Nanofiber membrane distillation equipment - Google Patents

Nanofiber membrane distillation equipment Download PDF

Info

Publication number
JP6160864B2
JP6160864B2 JP2013162738A JP2013162738A JP6160864B2 JP 6160864 B2 JP6160864 B2 JP 6160864B2 JP 2013162738 A JP2013162738 A JP 2013162738A JP 2013162738 A JP2013162738 A JP 2013162738A JP 6160864 B2 JP6160864 B2 JP 6160864B2
Authority
JP
Japan
Prior art keywords
nanofiber
water
seawater
tank
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013162738A
Other languages
Japanese (ja)
Other versions
JP2015020163A (en
Inventor
光弘 高橋
光弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013162738A priority Critical patent/JP6160864B2/en
Publication of JP2015020163A publication Critical patent/JP2015020163A/en
Application granted granted Critical
Publication of JP6160864B2 publication Critical patent/JP6160864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、家庭用からプラント向きまで幅広い用途に適したナノファイバー膜蒸留装置に関するものである。  The present invention relates to a nanofiber membrane distillation apparatus suitable for a wide range of applications from home use to plants.

近年、世界中できれいな水が求められている。海や河川、地下水など水はどこにでも存在するが、これらは多くの塩分や重金属、バクテリアを含み安全に飲むことができない。中東などで淡水化施設を多く建築しているが、これらは都市部近郊に設立されるだけで地方には水を供給することが困難である。また、淡水化過程で非常に大きなエネルギーを使用するため二酸化炭素などを多く排出するなど環境に多大な影響を与えている。  In recent years, clean water has been demanded all over the world. Water exists everywhere, including the sea, rivers, and groundwater, but these contain a lot of salt, heavy metals, and bacteria that cannot be safely consumed. Many desalination facilities are built in the Middle East, etc., but these are only established near urban areas and it is difficult to supply water to rural areas. In addition, since a large amount of energy is used in the desalination process, a large amount of carbon dioxide and the like are discharged, which has a great influence on the environment.

例えば、海水または汚水を熱して蒸発させ、出て来た水蒸気を回収して冷やして真水を生成する多段フラッシュ法(蒸発法とも言う)がある。この方法は蒸発させるため、多量の熱を必要とするため、原子力発電所や火力発電所、ごみ焼却炉や製油所などで出る熱を2次利用して行うことが多い。  For example, there is a multi-stage flash method (also referred to as an evaporation method) in which seawater or sewage is heated to evaporate, and the water vapor that comes out is recovered and cooled to produce fresh water. Since this method evaporates and requires a large amount of heat, it is often performed by secondary use of heat generated in nuclear power plants, thermal power plants, waste incinerators, refineries, and the like.

また、水を通すが、塩分は通さない逆浸透膜という膜を用いて、圧力をかけることにより、真水を生成する逆浸透膜方法がある。この方法は、膜を通す際に非常に大きな圧力をかけてやる必要があるため、膜の性能が大事であり、尚且つ、消耗が激しいため維持コストがかかる。しかし、多段フラッシュ法に比べて、エネルギーコストが安いため、世界各地でRO膜を用いた大型プラントが稼動している。この方式は、金属イオンやホウ酸などが微量ですが漏えいする問題もある。  In addition, there is a reverse osmosis membrane method in which fresh water is generated by applying pressure using a membrane called a reverse osmosis membrane that allows water to pass through but does not pass salt. In this method, since it is necessary to apply a very large pressure when passing through the membrane, the performance of the membrane is important, and since the consumption is severe, the maintenance cost is high. However, since the energy cost is lower than that of the multistage flash method, large plants using RO membranes are operating all over the world. This method has a problem that metal ions, boric acid, and the like are leaked in a minute amount.

さらに、水蒸気は通すが水は通さない特殊な膜を用いた膜蒸留法がある。この方法は太陽熱温水器と、太陽光発電を用いて行うことができ、消耗品もほとんどないので、非常に低コストで操業することが可能な膜蒸留法がある。しかしこの方法は生産量が少量であるため実用化されていない。  Furthermore, there is a membrane distillation method using a special membrane that allows water vapor to pass but not water. This method can be performed using a solar water heater and solar power generation, and since there are few consumables, there is a membrane distillation method that can be operated at a very low cost. However, this method has not been put into practical use because of the small amount of production.

そこで本発明者はこれらの問題を解決しょうとしたもので、本発明の第1の目的は、家庭用からプラントまで対応ができるナノファイバー膜蒸留装置を提供しょうとしたことである。  Therefore, the present inventor tried to solve these problems, and the first object of the present invention was to provide a nanofiber membrane distillation apparatus that can be used from household use to plants.

本発明のもう1つの目的は、太陽光やバイオマスなどの熱を利用して少ないエネルギー消費量で淡水を安価に且つ大量に増水しょうとしたものである。  Another object of the present invention is to increase the amount of fresh water at a low cost and in a large amount with a small energy consumption by using heat such as sunlight and biomass.

本発明のもう1つの目的は、沸騰で発生する飛沫からナノファイバー膜が汚染するのを防止したことである。  Another object of the present invention is to prevent the nanofiber membrane from being contaminated by droplets generated by boiling.

本発明のもう1つの目的は、留塩分濃度のない真水を造水しょうとしたものである。  Another object of the present invention is to produce fresh water having no residual salt concentration.

本発明のもう1つの目的は、造水効率を向上させ、造水量を増やすために大型にせざるを得なかった装置を小型化して、設備費を低減しょうとしたものである。  Another object of the present invention is to reduce the equipment cost by reducing the size of the apparatus that had to be made large in order to improve the water production efficiency and increase the amount of water produced.

本発明のもう1つの目的は、海水または汚水の淡水化処理の操作を簡単にすると共にメンテナンスも容易にしたものである。  Another object of the present invention is to simplify the operation of the desalination treatment of seawater or sewage and facilitate maintenance.

本発明のもう1つの目的は、産業廃棄物の発生を極力少なくし、環境に悪影響を与えないようにしたものである。  Another object of the present invention is to minimize the generation of industrial waste so as not to adversely affect the environment.

本発明の第1の解決手段は、海水を貯留する冷却ユニットタンクと、ナノファイバー厚膜で蒸留室と淡水室とに二分して形成した蒸発器と、蒸発器の底部に設けた貯水タンクと、貯水タンクの下部に設けた加熱部とからナノファイバー膜蒸留装置本体を構成したことである。  The first solving means of the present invention includes a cooling unit tank for storing seawater, an evaporator formed by dividing a nanofiber thick film into a distillation chamber and a fresh water chamber, and a water storage tank provided at the bottom of the evaporator, The main part of the nanofiber membrane distillation apparatus is composed of a heating part provided at the lower part of the water storage tank.

本発明の第2の解決手段は、ナノファイバー膜蒸留装置本体の冷却ユニットタンクには海水を導入する海水導入管が接続されていることである。  The second solving means of the present invention is that a seawater introduction pipe for introducing seawater is connected to the cooling unit tank of the nanofiber membrane distillation apparatus main body.

本発明の第3の解決手段は、冷却ユニットで貯えられた海水を貯水タンクへ送り込む移送管を冷却ユニットと貯水タンクの間に設けたことである。  The third solving means of the present invention is that a transfer pipe for feeding seawater stored in the cooling unit to the water storage tank is provided between the cooling unit and the water storage tank.

本発明の第4の解決手段は、蒸発器内にナノファイバー厚膜を傾斜して配置したことである。  The fourth solution of the present invention is that the nanofiber thick film is disposed in an inclined manner in the evaporator.

本発明の第4の解決手段は、蒸発器内にナノファイバー厚膜を傾斜して配置したことである。  The fourth solution of the present invention is that the nanofiber thick film is disposed in an inclined manner in the evaporator.

本発明の第5の解決手段は、ナノファイバー厚膜が傾斜した下方位置に取水口を設け、この取水口に回収管を接続して淡水容器に淡水を貯留するようにしたことである。  A fifth solution of the present invention is to provide a water intake at a lower position where the nanofiber thick film is inclined, and connect a recovery pipe to the water intake to store fresh water in a fresh water container.

ここで、ナノファイバー厚膜は、本発明者が発明したエアーブロー方式の電界紡糸法あるいは溶融電界紡糸法で繊維径が10nm〜1μmのナノファイバーからなる薄い層を積層してマット形状に形成するか、NFが多数重なり合った状態で構成されているこナノフィルタ製疎水性多孔質膜の下部に繊維径が10nm〜1μmのナノファイバーからなる薄い層を積層して製作する。この場合、エアーブロー方式の電界紡糸法あるいは溶融電界紡糸法で製造すると、均一の層厚のナノファイバー層を大量生産でき好ましい。  Here, the nanofiber thick film is formed into a mat shape by laminating thin layers made of nanofibers having a fiber diameter of 10 nm to 1 μm by the air blow type electrospinning method or the melt electrospinning method invented by the present inventors. Alternatively, a thin layer made of nanofibers having a fiber diameter of 10 nm to 1 μm is laminated on the bottom of the hydrophobic porous membrane made of this nanofilter, which is configured in a state where a large number of NFs are overlapped. In this case, it is preferable to manufacture by an air blow type electrospinning method or a melt electrospinning method because a nanofiber layer having a uniform layer thickness can be mass-produced.

(1)安価で大量の淡水を生成することができる.
(2)装置構造が簡単であるため、家庭用から大規模プラントまで対応ができる。
(3)高濃度塩水を排出しないようにすることも可能である。
(4)塩の生産が可能である。
(5)硬水からミネラルを抽出することも可能である。
(6)太陽光やバイオマスなどこれまで使用されていなかった熱を利用する。
(7)常に海水を沸騰させて生産する。
(8)蒸留方式であるため海水、汚水などを淡水化できる。(塩分だけでなく重金属、ヒ素を除去することができる。)
(9)高塩分濃度の海水や塩を生産できる。
(10)構造が簡単であるため装置が安価。
(11)ランニングコストが安い。
(12)海水と膜が非接触であるためメンテナンスフリー。
(1) A large amount of fresh water can be produced at low cost.
(2) Since the structure of the apparatus is simple, it can be used from household use to large-scale plants.
(3) It is possible not to discharge high-concentration salt water.
(4) Salt production is possible.
(5) It is also possible to extract minerals from hard water.
(6) Use heat that has never been used, such as sunlight and biomass.
(7) Always boil and produce seawater.
(8) Since it is a distillation system, seawater, sewage, etc. can be desalinated. (He can remove not only salt but also heavy metals and arsenic.)
(9) High salinity seawater and salt can be produced.
(10) Since the structure is simple, the apparatus is inexpensive.
(11) The running cost is low.
(12) Maintenance-free because seawater and membrane are non-contact.

ナノファイバー膜蒸留装置の一実施例を示す図。The figure which shows one Example of a nanofiber film | membrane distillation apparatus. ナノファイバー膜蒸留装置の他の実施例を示す図。The figure which shows the other Example of a nanofiber film | membrane distillation apparatus.

図1を参照して説明する。1はナノファイバー膜蒸留装置本体で、この本体1は、海水を貯留する冷却ユニット2のタンク3と、ナノファイバー厚膜4で蒸発室5と淡水室6とに二分して形成した蒸留器7と、蒸留器7の底部に設けた貯水タンク8と、貯水タンク8の下部に設けた加熱部9とから構成されている。  A description will be given with reference to FIG. Reference numeral 1 denotes a nanofiber membrane distillation apparatus main body. The main body 1 is divided into a tank 3 of a cooling unit 2 for storing seawater and a vaporization chamber 5 and a fresh water chamber 6 divided into two by a nanofiber thick film 4. And a water storage tank 8 provided at the bottom of the distiller 7, and a heating unit 9 provided at the lower part of the water storage tank 8.

また、ナノファイバー膜蒸留装置本体1の冷却ユニット2のタンク3には海水を導入する海水導入管10が接続されている。そして、冷却ユニット2のタンク3で貯えられた海水を貯水タンク8へ送り込む移送管11が冷却ユニット2のタンク3と貯水タンク8の間に配置されている。  A seawater introduction pipe 10 for introducing seawater is connected to the tank 3 of the cooling unit 2 of the nanofiber membrane distillation apparatus main body 1. A transfer pipe 11 for sending seawater stored in the tank 3 of the cooling unit 2 to the water storage tank 8 is disposed between the tank 3 and the water storage tank 8 of the cooling unit 2.

さらに、ナノファイバー厚膜4が蒸発器7内に傾斜して配置されており、ナノファイバー厚膜4が傾斜した下方位置に取水口12が形成され、この取水口12には回収管13が接続され、この回収管13の末端に淡水容器14が取り付けられている。  Further, the nanofiber thick film 4 is inclined in the evaporator 7, and a water intake 12 is formed at a lower position where the nanofiber thick film 4 is inclined. A recovery pipe 13 is connected to the water intake 12. A fresh water container 14 is attached to the end of the recovery pipe 13.

また、蒸留器7の淡水室6上部には真空ポンプ15がとりつけられている。  A vacuum pump 15 is attached to the upper part of the fresh water chamber 6 of the distiller 7.

なお、海水導入管10および移送管11にはそれぞれバルブ10A、11A、が取り付けられている。  Valves 10A and 11A are attached to the seawater introduction pipe 10 and the transfer pipe 11, respectively.

本発明の実施例1は上記のような構造であるので、その動作について説明する。  Since the first embodiment of the present invention has the above-described structure, its operation will be described.

図1に示すように太陽光などで50度〜100度程度海水を加熱した海水を冷却ユニット2のタンク3に送り込む。次に、冷却ユニット2のタンク3に送り込まれた温海水は移送管11を経由し、所定量の温海水が貯水タンク8に貯留される。ここで、貯水タンク8と蒸発器7は一体化して密閉空間が形成されていることから、真空ポンプ15の駆動により貯水タンク7および蒸発器6の空間が低い気圧に維持される。この状態で貯水タンク7内に貯留した海水を加熱部9によって沸騰させる。1気圧の場合、水は100度が沸点である。液体は沸点以下の場合、蒸気圧と大気圧の差によって水蒸気が発生するため、沸点までは海水の表面でのみ水蒸気が発生する。ところが、沸点を超えると水中からも水蒸気が発生するため小さな空間で大量の水蒸気を発生させることが可能となる。  As shown in FIG. 1, seawater obtained by heating seawater by about 50 to 100 degrees with sunlight or the like is sent into the tank 3 of the cooling unit 2. Next, the warm seawater fed into the tank 3 of the cooling unit 2 passes through the transfer pipe 11 and a predetermined amount of warm seawater is stored in the water storage tank 8. Here, since the water storage tank 8 and the evaporator 7 are integrated to form a sealed space, the space of the water storage tank 7 and the evaporator 6 is maintained at a low pressure by driving the vacuum pump 15. In this state, the seawater stored in the water storage tank 7 is boiled by the heating unit 9. In the case of 1 atm, water has a boiling point of 100 degrees. When the liquid has a boiling point or lower, water vapor is generated due to the difference between the vapor pressure and the atmospheric pressure. Therefore, water vapor is generated only on the surface of the seawater up to the boiling point. However, when the boiling point is exceeded, water vapor is also generated from water, so that a large amount of water vapor can be generated in a small space.

そこで、本発明の特徴は、海水を沸騰させることで大量の淡水を生成できることである。海水が沸騰して大量の水蒸気を生成することで蒸発室5の水蒸気空間の圧力が高くなり、ナノファイバー厚膜4を通り抜け、冷却ユニット2に水蒸気が触れることで水蒸気の潜熱が奪われて結露して下に落下する。ナノファイバー厚膜4は、水蒸気を通して水を通さない性質を持っているため、ナノファイバー厚膜4の傾斜に沿って取水口12に溜り回収管13を通して淡水容器14に貯められる。水蒸気は冷却ユニット2で潜熱を奪われて水になることで蒸気圧が下がり内部の気圧差が保たれる。冷却ユニット2は、水蒸気から潜熱を奪って海水を加熱する。ナノファイバー厚膜4は、ナノファイバーで構成されているため通常のフッ素系の膜に比べて格段に通気性が高い。また、ナノファイバー厚膜4は、傾斜を付けることで結露した水を淡水容器14に運ぶ役割があるが、傾斜によって表面積が増え圧損を軽減することができる。  Therefore, a feature of the present invention is that a large amount of fresh water can be generated by boiling seawater. When the seawater boils and generates a large amount of water vapor, the pressure of the water vapor space in the evaporation chamber 5 increases, passes through the nanofiber thick film 4, and touches the water vapor to the cooling unit 2, thereby removing the latent heat of the water vapor and causing condensation. Then fall down. Since the nanofiber thick film 4 has the property of not allowing water to pass through water vapor, it accumulates in the water intake 12 along the inclination of the nanofiber thick film 4 and is stored in the fresh water container 14 through the recovery pipe 13. The steam is deprived of latent heat in the cooling unit 2 to become water, so that the steam pressure is lowered and the internal pressure difference is maintained. The cooling unit 2 takes the latent heat from the water vapor and heats the seawater. Since the nanofiber thick film 4 is composed of nanofibers, the nanofiber thick film 4 has remarkably higher air permeability than a normal fluorine-based film. Moreover, although the nanofiber thick film 4 has a role which carries the water condensed by attaching an inclination to the freshwater container 14, a surface area increases by an inclination and pressure loss can be reduced.

加熱部9に太陽光で加熱した熱媒体を利用する場合は、昼間は100度以上となるため、真空ポンプ15を使用することなく海水を沸騰させて使用することができる。また、加熱部9の温度が100度以下の場合は、真空ポンプ15を使用して沸騰させることができる。この際、真空ポンプ15が下げる気圧は温海水が沸騰する程度に下げるだけで良い。また、一度気圧を下げれば、沸騰によって発生した水蒸気圧は、結露することで消滅するため必要以上に真空ポンプ15を稼働させる必要はない。沸騰させると塩分を含んだ飛沫が飛ぶためナノファイバー厚膜の表面に付着する可能性があるが、ナノファイバー厚膜は、ナノファイバーが多数重なり合った状態で構成されていることで塩の結晶によって目詰まりを起こすことはない。  When a heating medium heated by sunlight is used for the heating unit 9, since it becomes 100 degrees or more in the daytime, seawater can be boiled and used without using the vacuum pump 15. Moreover, when the temperature of the heating part 9 is 100 degrees or less, it can be boiled using the vacuum pump 15. At this time, the air pressure lowered by the vacuum pump 15 only needs to be lowered to such an extent that the warm seawater boils. Further, once the atmospheric pressure is lowered, the water vapor pressure generated by boiling disappears due to condensation, so it is not necessary to operate the vacuum pump 15 more than necessary. When boiling, the salt-containing droplets fly and may adhere to the surface of the nanofiber thick film. However, the nanofiber thick film is composed of a number of nanofibers that overlap each other. There will be no clogging.

冷却ユニット2では、水蒸気から潜熱を奪うことで海水が過熱される。これによって冷却ユニット2のタンク3内の海水の温度が上がることで上昇し、温度が低い海水が入れ替わり冷却ユニット2を低い温度に保つ。上昇したタンク3内の海水は移送管11を経由し貯水タンク8へ送り出される。  In the cooling unit 2, seawater is overheated by taking latent heat from the water vapor. As a result, the temperature of the seawater in the tank 3 of the cooling unit 2 rises, and the seawater having a low temperature is replaced to keep the cooling unit 2 at a low temperature. The seawater in the raised tank 3 is sent out to the water storage tank 8 via the transfer pipe 11.

次に、実施例2は、基本的には実施例1のナノファイバー膜蒸留装置本体1を必要に応じ多数連接して設けたもので、実施例1に相当する部材については同じ番号を付し図2を参照して説明する。
1はナノファイバー膜蒸留装置本体で、この本体1の上部には、海水を貯留する冷却ユニット2のタンク3が一体化して設けられている。蒸留器7内はナノファイバー厚膜4で蒸発室5と淡水室6とに二分されている。8は蒸留器7の底部に設けた貯水タンクで、この貯水タンク8と冷却ユニット2間にはタンク3で貯えられた海水を貯水タンク8へ送り込む移送管11が配置されている。さらに、貯水タンク8の下部には加熱部9が配置されている。13は取水口12に取り付けられた回収管で、この回収管13は淡水容器14まで延びている。
Next, in Example 2, basically, the nanofiber membrane distillation apparatus main body 1 of Example 1 is provided in a connected manner as necessary, and members corresponding to Example 1 are denoted by the same reference numerals. This will be described with reference to FIG.
Reference numeral 1 denotes a nanofiber membrane distillation apparatus main body, and a tank 3 of a cooling unit 2 for storing seawater is provided integrally on the upper part of the main body 1. The inside of the still 7 is divided into an evaporation chamber 5 and a fresh water chamber 6 by a nanofiber thick film 4. Reference numeral 8 denotes a water storage tank provided at the bottom of the distiller 7, and a transfer pipe 11 for sending seawater stored in the tank 3 to the water storage tank 8 is disposed between the water storage tank 8 and the cooling unit 2. Further, a heating unit 9 is disposed below the water storage tank 8. Reference numeral 13 denotes a recovery pipe attached to the water intake 12, and the recovery pipe 13 extends to the fresh water container 14.

次に、実施例2の動作については実施例1と同じであるため、省略する。  Next, since the operation of the second embodiment is the same as that of the first embodiment, a description thereof will be omitted.

なお、上記実施例では海水を淡水化する方法について述べたが、本発明のナノファイバー膜蒸留法は汚水、雨水などを利用して飲料水を生成することができるもので、種々変更しても何ら本発明の要旨を変更するものではない。  In addition, although the said Example described the method of desalinating seawater, the nanofiber membrane distillation method of this invention can produce | generate drinking water using sewage, rainwater, etc., even if it changes variously. The gist of the present invention is not changed at all.

本発明は、蒸留器7内に通常のフッ素系の膜に比べて格段に通気性の高いナノファイバー厚膜を装着し、海水を沸騰して大量の水蒸気を生成するようにしたので、大量の淡水を生成でき、従来、海水から大量の淡水を生成するのに必要であった設備の大型化を解消したもので、海水から淡水を得るのにランニングコストおよび設備費のかからない安価な装置を提供しょうとしたもので、実用的上なはだ大なるものである。In the present invention, a thick nanofiber membrane that is much more breathable than a normal fluorine-based membrane is installed in the distiller 7, and a large amount of water vapor is generated by boiling seawater. It can produce fresh water, eliminating the upsizing of equipment that was previously required to produce large amounts of fresh water from seawater, and providing inexpensive equipment that does not require running costs and equipment costs to obtain fresh water from seawater It's something that is practical, and it's practically great.

1・・・ナノファイバー膜蒸留装置本体 2・・・冷却ユニット
3・・・タンク 4・・・ナノファイバー厚膜 5・・・蒸発室
6・・・淡水室 7・・・蒸発器 8・・・貯水タンク
9・・・加熱部 10・・・海水導入管 11・・・移送管
12・・・取水口 13・・・回収管 14・・・淡水容器
15・・・真空ポンプ
10A・・・バルブ 11A・・・バルブ
DESCRIPTION OF SYMBOLS 1 ... Nanofiber membrane distillation apparatus main body 2 ... Cooling unit 3 ... Tank 4 ... Nanofiber thick film 5 ... Evaporation chamber 6 ... Fresh water chamber 7 ... Evaporator 8 ...・ Water storage tank 9 ... heating unit 10 ... seawater introduction pipe 11 ... transfer pipe 12 ... water intake 13 ... recovery pipe 14 ... freshwater container 15 ... vacuum pump 10A ... Valve 11A ... Valve

Claims (1)

海水を貯留する冷却ユニットのタンクと、ナノファイバー厚膜で蒸発室と淡水室とに二分して形成した蒸留器と、蒸留器の底部に設けた貯水タンクと、貯水タンクの下部に設けた加熱部および取水口とから構成したナノファイバー膜蒸留装置本体において、冷却ユニットのタンクに海水を導入する海水導入管を接続し、冷却ユニットのタンクと貯水タンク間に移送管を取り付け、さらに、繊維径が10nm〜1μmのナノファイバーからなる薄い層を積層してマット形状に形成したナノファイバー厚膜を蒸発器内に傾斜して配置し、ナノファイバー厚膜が傾斜した下方位置に取水口を設け、この取水口に接続した回収管を介して淡水容器に大量の淡水を貯留できるようにしたことを特徴とするナノファイバー膜蒸留装置。A tank of a cooling unit that stores seawater, a distiller that is divided into a vaporization chamber and a freshwater chamber with nanofiber thick film, a water storage tank provided at the bottom of the distiller, and heating provided at the bottom of the water storage tank In the nanofiber membrane distillation apparatus main body composed of a head and a water intake, a seawater introduction pipe for introducing seawater is connected to the tank of the cooling unit, a transfer pipe is attached between the tank of the cooling unit and the water storage tank, and the fiber diameter The nanofiber thick film formed by laminating a thin layer consisting of nanofibers of 10 nm to 1 μm and formed into a mat shape is inclined in the evaporator, and a water intake is provided at a lower position where the nanofiber thick film is inclined, A nanofiber membrane distillation apparatus characterized in that a large amount of fresh water can be stored in a fresh water container through a recovery pipe connected to the water intake .
JP2013162738A 2013-07-19 2013-07-19 Nanofiber membrane distillation equipment Expired - Fee Related JP6160864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162738A JP6160864B2 (en) 2013-07-19 2013-07-19 Nanofiber membrane distillation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162738A JP6160864B2 (en) 2013-07-19 2013-07-19 Nanofiber membrane distillation equipment

Publications (2)

Publication Number Publication Date
JP2015020163A JP2015020163A (en) 2015-02-02
JP6160864B2 true JP6160864B2 (en) 2017-07-12

Family

ID=52485116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162738A Expired - Fee Related JP6160864B2 (en) 2013-07-19 2013-07-19 Nanofiber membrane distillation equipment

Country Status (1)

Country Link
JP (1) JP6160864B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731711B (en) * 2016-04-01 2019-11-05 河海大学 Based on carbon nanotube/zinc oxide PTFE photocatalysis membrana wastewater treatment equipment and its application
CN107522246A (en) * 2017-10-09 2017-12-29 北京化工大学 A kind of solar focusing wick efficient sea water desalting equipment and method
CN108479406B (en) * 2018-06-19 2023-05-26 北京电子科技职业学院 Forward osmosis-membrane distillation coupled fruit juice concentrating device and concentrating method
CN111645244B (en) * 2020-05-14 2022-05-10 深圳大学 Full-fiber three-dimensional aggregate and preparation method and application thereof
CN114516669B (en) * 2020-11-19 2024-05-31 山东大学 Solar sea water desalting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757301B2 (en) * 1992-08-07 1995-06-21 株式会社日立製作所 Semiconductor integrated circuit cleaning method and cleaning apparatus therefor
US20120145632A1 (en) * 2009-07-15 2012-06-14 Konraad Albert Louise Hector Dullaert Electrospinning of polyamide nanofibers
JP2011131148A (en) * 2009-12-24 2011-07-07 Kyocera Corp Separation membrane device
JP2012135750A (en) * 2010-12-27 2012-07-19 Shinwa Corp Method for producing fresh water from seawater

Also Published As

Publication number Publication date
JP2015020163A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
Hussain et al. Membrane distillation: recent technological developments and advancements in membrane materials
JP6224235B2 (en) Multistage bubble humidifier
US9428403B2 (en) Large scale insulated desalination system
JP6160864B2 (en) Nanofiber membrane distillation equipment
JP5801663B2 (en) Seawater desalination equipment
Vane Water recovery from brines and salt‐saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies
US10144655B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
Shokri et al. Water-energy nexus: Cutting edge water desalination technologies and hybridized renewable-assisted systems; challenges and future roadmaps
KR101811394B1 (en) Seawater desalination equipment
Micale et al. Seawater desalination for freshwater production
KR102595186B1 (en) Liquid purification by film heating
JP2012091108A (en) Vacuum distillation apparatus using solar heat
JP2012135750A (en) Method for producing fresh water from seawater
Bahar et al. Desalination: conversion of seawater to freshwater
WO2004074187A1 (en) A process, system and design for desalination of sea water
KR101394517B1 (en) Apparatus for desalinating the seawater
Ngo et al. Mitigation of thermal energy in membrane distillation for environmental sustainability
US20090255797A1 (en) Apparatus for desalinization utilizingtemperature gradient/condensation and method thereof
Karhe et al. A solar desalination system using humidification-dehumidification process-A review of recent research
US10414670B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
KR101672852B1 (en) Desalination system by using dual source energy
CN104150548B (en) A kind of seawater desalination system
KR101675639B1 (en) Efficient open cycle ocean thermal energy conversion (OTEC) using vacuum membrane distillation (VMD) for selective power generation and seawater desalination
CN103112912B (en) Condensation enhancement and heating type seawater desalter
CN104961180B (en) Multiple-effect solar energy sea water concentrates and desalting plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6160864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees