JP6155803B2 - Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device - Google Patents
Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device Download PDFInfo
- Publication number
- JP6155803B2 JP6155803B2 JP2013092092A JP2013092092A JP6155803B2 JP 6155803 B2 JP6155803 B2 JP 6155803B2 JP 2013092092 A JP2013092092 A JP 2013092092A JP 2013092092 A JP2013092092 A JP 2013092092A JP 6155803 B2 JP6155803 B2 JP 6155803B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical
- band
- optical signal
- conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Communication System (AREA)
Description
本発明は、光波長多重通信システム、光波長多重通信方法、及び光合分波装置に関する。 The present invention relates to an optical wavelength division multiplexing communication system, an optical wavelength division multiplexing communication method, and an optical multiplexing / demultiplexing device.
近年、光波長多重通信システムでは、主に、C帯(1530nm〜1565nm)、又は、L帯(1565nm〜1625nm)が用いられている。これらの波長帯は、ITU−T(International Telecommunication Union Telecommunication Standardization Sector)によって定められている。 In recent years, C-band (1530 nm to 1565 nm) or L band (1565 nm to 1625 nm) is mainly used in optical wavelength division multiplexing communication systems. These wavelength bands are defined by ITU-T (International Telecommunication Union Telecommunication Standardization Sector).
光波長多重通信システムでは、その伝送路(例えば光ファイバ)及び光デバイス(例えば光アンプ、レーザーダイオード、及びフォトダイオード等)の特性によって使用できる波長帯域が制限される。よって、現在は、主に、C帯の光信号を伝送可能な設備(光ファイバ及び光デバイス等)によって構築された光波長多重通信システムと、L帯の光信号を伝送可能な設備によって構築された光波長多重通信システムとが運用されていることになる。例えば、C帯の光波長多重通信システムでは、石英系光ファイバが利用されており、L帯の光波長多重通信システムでは、分散補償ファイバが利用されている。このような設備の性能に基づき、C帯の光波長多重通信システムでは、主に1530nmから1560nmが使用されており、L帯の光波長多重通信システムでは、主に1570nmから1610nmが使用されている。 In the optical wavelength division multiplexing communication system, the wavelength band that can be used is limited by the characteristics of the transmission path (for example, an optical fiber) and the optical device (for example, an optical amplifier, a laser diode, and a photodiode). Therefore, at present, it is mainly constructed by an optical wavelength division multiplexing communication system constructed by equipment (such as optical fibers and optical devices) capable of transmitting C-band optical signals and equipment capable of transmitting L-band optical signals. The optical wavelength division multiplexing communication system is in operation. For example, a silica-based optical fiber is used in a C-band optical wavelength multiplexing communication system, and a dispersion compensating fiber is used in an L-band optical wavelength multiplexing communication system. Based on the performance of such facilities, 1530 nm to 1560 nm are mainly used in the C-band optical wavelength division multiplexing communication system, and 1570 nm to 1610 nm are mainly used in the L band optical wavelength multiplexing communication system. .
特に、C帯は、石英系光ファイバの最低損失波長を含むため、グローバルスタンダードとなっている。すなわち、日本国外では、C帯における波長多重通信が実現されている。一方、日本国内では分散補償ファイバを広範囲に敷設したため、分散補償ファイバのゼロ分散波長付近(C帯内の1550nm)で顕著となる四光波混合などによる非線形劣化を考慮して、ゼロ分散波長(1550nm)を含まない、L帯における波長多重通信が実現されている。 In particular, the C band is a global standard because it includes the lowest loss wavelength of silica-based optical fibers. That is, outside Japan, wavelength division multiplexing communication in the C band is realized. On the other hand, in Japan, a dispersion compensating fiber has been laid in a wide range, and therefore the zero dispersion wavelength (1550 nm) is considered in consideration of non-linear degradation due to four-wave mixing or the like that becomes prominent near the zero dispersion wavelength of the dispersion compensating fiber (1550 nm in the C band). ), And wavelength division multiplexing communication in the L band is realized.
ここで、光波長多重通信では、多チャンネル化を実現するために、限られた帯域の中で波長間隔の高密度化が実現されている。しかし、高密度化は変調方式などによって制限されるため、広帯域化による多チャンネル化が要求されている。 Here, in the optical wavelength division multiplexing communication, in order to realize a multi-channel, a high density of wavelength intervals is realized in a limited band. However, since the increase in density is limited by the modulation method or the like, it is required to increase the number of channels by increasing the bandwidth.
特許文献1には、S、C及びL帯を含む広帯域でWDM(Wavelength Division Multiplexing:波長分割多重)光伝送を行う光伝送システムが開示されている。この光伝送システムは、先ず分布ラマン増幅器により多重化信号光をラマン増幅し、その後に集中定数型光増幅器により多重化信号光を増幅する。これにより、多重化信号光は、短波長の信号チャネルほど高パワーになるようにラマン増幅された後、集中定数型光増幅器に入力することで、集中定数型光増幅器では短波長側の利得を大きくする必要を無くし、雑音指数のバラツキを改善するようにしている。
上述したように、特許文献1に開示の光伝送システムは、S、C及びL帯を含む広帯域でWDM光伝送を行うことで、広帯域化を図っている。しかしながら、特許文献1に開示の技術では、ネットワークにおける既存の設備(光ファイバ及び光デバイス等)を、全体的に、S、C及びL帯を含む広帯域に対応したものに置き換える必要があり、莫大なコストがかかってしまうという問題がある。
As described above, the optical transmission system disclosed in
本発明の目的は、上述したような課題を解決するために、コストを低減しつつ、広帯域化を実現することができる光波長多重通信システム、光波長多重通信方法、及び光合分波装置を提供することである。 In order to solve the above-described problems, an object of the present invention is to provide an optical wavelength division multiplexing communication system, an optical wavelength division multiplexing communication method, and an optical multiplexing / demultiplexing apparatus capable of realizing a wide band while reducing costs. It is to be.
本発明の第1の態様に係る光波長多重通信システムは、複数の波長帯のそれぞれに割り当てられており、入力された電気信号を、割り当てられている波長帯の光信号に変換して出力する複数の送信側変換部と、前記複数の送信側変換部から出力された複数の光信号を合波し、波長多重光信号としてネットワークを介して送信する送信側合波部と、前記送信側合波部から送信された波長多重光信号を前記ネットワークを介して受信し、受信した波長多重光信号を前記複数の光信号に分波して出力する受信側分波部と、前記複数の波長帯のそれぞれに割り当てられており、前記受信側分波部から出力された複数の光信号のうち、割り当てられている波長帯の光信号を電気信号に変換する複数の受信側変換部と、を備え、前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、ものである。 The optical wavelength division multiplexing communication system according to the first aspect of the present invention is assigned to each of a plurality of wavelength bands, and converts an input electric signal into an optical signal of the assigned wavelength band and outputs the optical signal. A plurality of transmission side conversion units; a transmission side multiplexing unit that combines a plurality of optical signals output from the plurality of transmission side conversion units; and transmits the multiplexed signal as a wavelength multiplexed optical signal via the network; and A wavelength-division multiplexed optical signal transmitted from a wave unit via the network, a received-side demultiplexing unit that demultiplexes the received wavelength-multiplexed optical signal into the plurality of optical signals, and outputs the plurality of wavelength bands; And a plurality of receiving side conversion units that convert optical signals in the assigned wavelength band among the plurality of optical signals output from the receiving side demultiplexing unit to electrical signals. The plurality of wavelength bands are small Both and a wavelength band including a part of the wavelength band and L-band including a portion of the C-band, it does not include the wavelength band including a non-C-band and L-band, is intended.
本発明の第2の態様に係る光波長多重通信方法は、複数の電気信号のそれぞれを、複数の波長帯のそれぞれとなる複数の光信号のそれぞれに変換するステップと、前記複数の光信号を合波し、波長多重光信号としてネットワークを介して送信するステップと、前記送信された波長多重光信号を前記ネットワークを介して受信し、受信した波長多重光信号を前記複数の光信号に分波するステップと、前記分波された複数の波長帯のそれぞれを、前記複数の電気信号のそれぞれに変換するステップと、を備え、前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、ものである。 An optical wavelength division multiplexing communication method according to a second aspect of the present invention includes a step of converting each of a plurality of electrical signals into a plurality of optical signals that are respectively in a plurality of wavelength bands, and the plurality of optical signals. Multiplexing and transmitting as a wavelength multiplexed optical signal via a network; receiving the transmitted wavelength multiplexed optical signal via the network; and demultiplexing the received wavelength multiplexed optical signal into the plurality of optical signals And converting each of the plurality of demultiplexed wavelength bands into each of the plurality of electric signals, wherein the plurality of wavelength bands include at least a part of the C band. And a wavelength band including a part of the L band, and does not include a wavelength band including other than the C band and the L band.
本発明の第3の態様に係る光合分波装置は、電気信号を光信号に変換する複数の電気光変換器のそれぞれから、複数の波長帯のそれぞれの複数の光信号のそれぞれを受信する第1の受信部と、前記第1の受信部が受信した複数の光信号を合波し、波長多重光信号を生成する合波部と、前記合波部が生成した波長多重光信号をネットワークを介して送信する第1の送信部と、前記複数の波長帯のそれぞれの複数の光信号が合波された波長多重光信号を前記ネットワークを介して受信する第2の受信部と、前記第2の受信部が受信した波長多重光信号を分波し、前記複数の光信号を生成する分波部と、前記分波部によって生成された複数の光信号のそれぞれを、光信号を電気信号に変換する複数の光電気変換器に送信する第2の送信部と、を備え、前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、ものである。 The optical multiplexing / demultiplexing device according to the third aspect of the present invention receives each of a plurality of optical signals in a plurality of wavelength bands from each of a plurality of electro-optical converters that convert an electric signal into an optical signal. 1 receiving unit, a plurality of optical signals received by the first receiving unit are combined to generate a wavelength multiplexed optical signal, and the wavelength multiplexed optical signal generated by the combining unit is connected to the network. A first transmitter for transmitting via the network, a second receiver for receiving, via the network, a wavelength-multiplexed optical signal obtained by combining a plurality of optical signals of the plurality of wavelength bands, and the second The demultiplexing unit that demultiplexes the wavelength-multiplexed optical signal received by the receiving unit, generates the plurality of optical signals, and converts each of the plurality of optical signals generated by the demultiplexing unit into an optical signal. A second transmitter for transmitting to a plurality of photoelectric converters to be converted Wherein the plurality of wavelength bands includes a wavelength band including a part of the wavelength band and L band including at least a portion of the C-band, it does not include the wavelength band including a non-C-band and L-band, is intended.
上述した本発明の各態様によれば、コストを低減しつつ、広帯域化を実現することができる光波長多重通信システム、光波長多重通信方法、及び光合分波装置を提供することができる。 According to each aspect of the present invention described above, it is possible to provide an optical wavelength division multiplexing communication system, an optical wavelength division multiplexing communication method, and an optical multiplexing / demultiplexing device that can realize a wide band while reducing costs.
<発明の実施の形態1>
まず、本発明の実施の形態1について説明する。図1を参照して、本発明の実施の形態1に係る光波長多重通信システム1の構成について説明する。図1は、本発明の実施の形態1に係る光波長多重通信システム1の構成図である。
<
First, the first embodiment of the present invention will be described. With reference to FIG. 1, the configuration of an optical wavelength division
光波長多重通信システム1は、送信側処理系10−1〜10−N、受信側処理系11−1〜11−N、E/O変換器(電気/光変換器)20−1〜20−N、O/E変換器21−1〜21−N、光合波装置30、光分波装置31、光アンプ40、及び光ファイバ50、51を有する。
The optical wavelength division
以下、送信側処理系10−1〜10−Nのそれぞれを、総じて「送信側処理系10」とも呼び、受信側処理系11−1〜11−Nのそれぞれを、総じて「受信側処理系11」とも呼び、E/O変換器20−1〜20−Nのそれぞれを、総じて「E/O変換器20」とも呼び、O/E変換器21−1〜21−Nのそれぞれを、総じて「O/E変換器21」とも呼ぶ。
Hereinafter, each of the transmission side processing systems 10-1 to 10-N is also collectively referred to as “transmission
ここで、「N」は、予め定めた任意の正整数である。すなわち、本実施の形態1では、光波長多重通信システム1が、送信側処理系10、受信側処理系11、E/O変換器20、O/E変換器21のそれぞれをN個有する例について示している。以下、「k」は、1〜Nのいずれにも該当する。
Here, “N” is an arbitrary positive integer determined in advance. That is, in the first embodiment, the optical wavelength division
送信側処理系10−kは、受信側処理系11−kにデータを送信する装置である。送信側処理系10−kは、受信側処理系11−kにデータを送信する場合、そのデータを示す電気信号を、E/O変換器20−kに送信する。本実施の形態では、送信側処理系10が、情報処理装置である例について説明する。情報処理装置は、光波長多重通信が構築するネットワークの一部(例えばインターネット)に接続されて、任意のデータを送受信する情報処理装置であれば、どのような装置であってもよい。例えば、送信側処理系10は、パーソナルコンピュータである。
The transmission side processing system 10-k is a device that transmits data to the reception side processing system 11-k. When transmitting data to the receiving side processing system 11-k, the transmitting side processing system 10-k transmits an electrical signal indicating the data to the E / O converter 20-k. In the present embodiment, an example in which the
受信側処理系11−kは、送信側処理系10−kからデータを受信する装置である。受信側処理系11−kは、送信側処理系10−kからのデータとして、そのデータを示す電気信号をO/E変換器21−kから受信する。本実施の形態では、受信側処理系11が、後述するOLT(Optical Line Terminal)の上位装置である例について説明する。例えば、受信側処理系11は、レイヤ2スイッチである。よって、図1では、受信側処理系11−1〜11−Nは、別々に図示しているが、全て同一の装置(レイヤ2スイッチ)であってもよい。
The reception side processing system 11-k is a device that receives data from the transmission side processing system 10-k. The reception side processing system 11-k receives an electrical signal indicating the data from the O / E converter 21-k as data from the transmission side processing system 10-k. In the present embodiment, an example in which the reception-
E/O変換器20−kは、送信側処理系10−kから送信された電気信号を受信し、受信した電気信号を光信号に変換する。E/O変換器20−kは、レーザーダイオード(LD)200−kを有する。E/O変換器20−kは、変換後の光信号として、予め定められた波長帯λ(k)の光をLD200−kによって発振することで、波長帯λ(k)の光信号を生成する。E/O変換器20−kは、変換後の光信号を光合波装置30に送信する。E/O変換器20−1〜20−Nのそれぞれが生成する光信号は、1チャンネル当たりの光信号となる。E/O変換器20は、例えば、ONU(Optical Network Unit:加入者側光終端装置)である。
The E / O converter 20-k receives the electrical signal transmitted from the transmission side processing system 10-k, and converts the received electrical signal into an optical signal. The E / O converter 20-k includes a laser diode (LD) 200-k. The E / O converter 20-k generates an optical signal in the wavelength band λ (k) by causing the LD 200-k to oscillate light in a predetermined wavelength band λ (k) as an optical signal after conversion. To do. The E / O converter 20-k transmits the converted optical signal to the
O/E変換器21−kは、光分波装置31から送信された波長帯λ(k)の光信号を受信し、受信した光信号を電気信号に変換する。O/E変換器21−kは、フォトダイオード(PD)210−kを有する。O/E変換器21−kは、変換後の電気信号として、波長帯λ(k)の光信号をPD210−kによって受光することで、電気信号を生成する。O/E変換器21−kは、変換後の電気信号を受信側処理系11−kに送信する。O/E変換器21は、例えば、OSU(Optical Subscriber Unit)である。すなわち、O/E変換器21−1〜21−Nを含んでOLT(事業者側終端装置)が構成されている。
The O / E converter 21-k receives the optical signal in the wavelength band λ (k) transmitted from the
光合波装置30は、E/O変換器20−1〜20−Nのそれぞれから送信された光信号を受信し、受信した光信号を合波し、波長多重光信号を生成する。これによって、Nチャンネルの光信号が多重化された波長多重光信号が生成される。光合波装置30は、生成した波長多重光信号を、光ファイバ50を介して光分波装置31に送信する。
The
光分波装置31は、光合波装置30から送信された波長多重光信号を受信し、受信した波長多重光信号を、波長帯λ(1)〜λ(N)のそれぞれの光信号に分波する。すなわち、波長多重光信号が、1チャンネル毎の光信号に分波される。光分波装置31は、分波によって生成した波長帯λ(k)の光信号を、O/E変換器21−kに送信する。これによって、E/O変換器20−kが生成した光信号は、O/E/O変換器21−kによって受信される。
The
図1に示すように、2スパン以上の光ファイバ50、51を介して波長多重光信号を伝送する場合には、光アンプ40によって波長多重光信号を増幅する。光アンプ40は、光合波装置30から光ファイバ50を介して送信された波長多重光信号を受信し、受信した波長多重光信号を増幅する。光アンプ40は、増幅した波長多重光信号を光ファイバ51を介して光分波装置31に送信する。光アンプ40は、例えば、EDFA(Erbium Doped optical Fiber Amplifier)又はEDTFA(Erbium Doped Tellurite Fiber Amplifier:ER3+添加テルライトファイバ増幅器)等である。
As shown in FIG. 1, when a wavelength multiplexed optical signal is transmitted through
図1では、説明の簡略化のため、光合波装置30と光分波装置31との間のネットワーク(伝送路)として、2スパン分の光ファイバ50、51のみを図示しているが、スパン数は、これに限られない。光ファイバ50、51は、例えば、分散補償光ファイバ又は石英系光ファイバ等である。また、光ファイバ50、51は、例えば、シングルモード光ファイバである。
In FIG. 1, for simplification of explanation, only the
上述したように、本実施の形態に係る光波長多重通信システム1は、既存のC帯の光波長多重通信システムの設備(光ファイバ及び光デバイス等)と、既存のL帯の光波長多重通信システムの設置された設備を含んで、波長多重光信号を伝送するためのネットワークが構成されている(例えば光ファイバ50、51、及び光アンプ40等)。
As described above, the optical wavelength division
これらの既存の設備は、実際には、C帯及びL帯の波長帯であれば、一定の波長帯までであれば、運用する波長帯を超えて光信号を処理可能な性能を有している。そこで、本実施の形態に係る光波長多重通信システム1は、既存のC帯向け及びL帯向けの設備を流用しつつ、広帯域化を実現するものである。次に、図2を参照して、その実現手法について具体的に説明する。
These existing facilities actually have the ability to process optical signals beyond the operating wavelength band as long as they are in the C band and L band wavelength bands and up to a certain wavelength band. Yes. Therefore, the optical wavelength division
続いて、図2を参照して、本発明の実施の形態1に係る波長多重光信号の波長帯について説明する。図2は、本発明の実施の形態1に係る波長多重光信号の波長帯を示す図である。
Next, with reference to FIG. 2, the wavelength band of the wavelength multiplexed optical signal according to
図2に示すように、例えば光アンプの光増幅帯域等の制限によって、主に、C帯の光波長多重通信システムでは1530nmから1560nmが使用されており、L帯の光波長多重通信システムでは1570nmから1610nmが使用されている。 As shown in FIG. 2, for example, 1530 nm to 1560 nm are mainly used in the C-band optical wavelength division multiplexing communication system due to limitations on the optical amplification band of the optical amplifier, and 1570 nm in the L-band optical wavelength multiplexing communication system. To 1610 nm are used.
それに対して、光波長多重通信システム1で使用する波長帯(波長多重光信号の波長帯)は、C帯とL帯の境界となる波長1565nmを含み、その境界となる波長から連続的にC帯及びL帯の両方の少なくとも一部を含んだ波長帯を使用する。よって、上記のE/O変換器20−1〜20−Nが生成する光信号の波長帯λ(1)〜λ(N)のそれぞれは、このように光波長多重通信システム1で使用する波長帯として定めた波長帯を連続的にN分割した波長帯のそれぞれとなる。
On the other hand, the wavelength band (wavelength band of the wavelength multiplexed optical signal) used in the optical wavelength division
波長多重光信号の波長帯の上限及び下限は、ネットワークに含まれる装置(光ファイバ50、51及び光アンプ40等)の性能、及びネットワークの伝送距離等に応じて、波長多重光信号が正常に伝送可能な範囲となるように、任意に決定すればよい。よって、ネットワークで許容されるのであれば、波長多重光信号の波長帯は、C帯及びL帯の全ての波長帯として決定されてもよい。
The upper and lower limits of the wavelength band of the wavelength multiplexed optical signal indicate that the wavelength multiplexed optical signal is normal depending on the performance of the devices (such as the
また、送信側処理系10−1〜10−N、受信側処理系11−1〜11−N、光合波装置30、及び光分波装置31は、決定した波長多重光信号の波長帯(波長帯λ(1)〜λ(N))に応じたものを新たに設置する可能性がある。また、場合によっては、光アンプ40も、流用したもののみに限らず、一部を光波長多重通信システム1で使用する波長帯に適した光増幅帯域を増幅可能なものに置き換えてもよい。そのため、それらの設備の設置にかかるコストを考慮して、許容されるコストとなるように、波長多重光信号の波長帯の上限及び下限を決定するようにしてもよい。
In addition, the transmission side processing systems 10-1 to 10-N, the reception side processing systems 11-1 to 11-N, the
ただし、ネットワークの光ファイバ50、51に分散補償光ファイバが含まれる場合、零分散波長(1550nm)を含むため、光信号に非線形劣化が生じる。そのため、この波長を含むように使用する波長帯を決定する場合には、この好ましくは、短距離伝送(数m〜数百m)用途の光波長多重通信システムとして使用するとよい。ただし、分散補償光ファイバとして、零分散波長をC帯よりも短波長側にシフトしたノンゼロ分散シフト光ファイバも多く敷設されている。したがって、分散補償光ファイバとしてノンゼロ分散シフト光ファイバのみを含むネットワークにおいて、光波長多重通信システム1を構築する場合には、短距離伝送用途に限らず、それ以上の長距離伝送用途の光波長多重通信システムとして使用するようにしてもよい。
However, when a dispersion compensating optical fiber is included in the
以上に説明したように、本実施の形態1によれば、C帯とL帯の区分に拠らず、使用する伝送路や光デバイスの特性に最適化された波長帯域を使用することができ、より効率的な光多重通信を実現できる。すなわち、本実施の形態で使用する波長帯は、C帯のみを使用する光波長多重通信システムで使用する波長範囲(1530nm〜1565nm)及びL帯のみを使用する光波長多重通信システムで使用する波長範囲(1565nm〜1610nm)と比較して、C帯及びL帯の両方の波長範囲を使用するため、広帯域化を実現できる。 As described above, according to the first embodiment, it is possible to use the wavelength band optimized for the characteristics of the transmission path and the optical device to be used without depending on the division of the C band and the L band. More efficient optical multiplex communication can be realized. That is, the wavelength band used in this embodiment is a wavelength range (1530 nm to 1565 nm) used in an optical wavelength division multiplexing communication system using only the C band and a wavelength used in an optical wavelength multiplexing communication system using only the L band. Compared with the range (1565 nm to 1610 nm), since both the C-band and L-band wavelength ranges are used, a wider band can be realized.
また、本実施の形態1は、既存のL帯のみを使用する光波長多重通信システム及びC帯のみを使用する光波長多重通信システムに簡単な変更を加えることで実現できる。すなわち、上述したように、既存の設備(光ファイバ及び光アンプ等)を流用して、簡易に実現することが可能である。そのため、光波長多重通信システムの実現においてコストを大幅に低減することができる。これは、広範囲にわたる光波長多重通信システムのネットワークにおける大量の各種装置(光ファイバ及び光アンプ等)を置き換える必要がなくなるため、顕著なコスト削減効果を奏する。 Further, the first embodiment can be realized by adding simple modifications to the existing optical wavelength division multiplexing communication system using only the L band and the optical wavelength multiplexing communication system using only the C band. That is, as described above, existing equipment (such as an optical fiber and an optical amplifier) can be used and can be easily realized. Therefore, the cost can be greatly reduced in the realization of the optical wavelength division multiplexing communication system. This eliminates the need to replace a large amount of various devices (such as optical fibers and optical amplifiers) in a wide range of optical wavelength division multiplexing communication networks, and thus has a significant cost reduction effect.
ここで、上述したように、分散補償光ファイバが敷設された環境では、ゼロ分散波長付近(1550nm)で顕著となる四光波混合による非線形劣化を懸念し、ゼロ分散波長(1550nm)を含まない、L帯の光多重通信システムが実現されている。また、L帯では、インジウムガリウムヒ素を用いた受光素子(フォトダイオード)を用いる場合は、長波長側で高い量子効率を実現するのが困難である。また、他の化合物半導体による受光素子を用いると高コストとなる可能性が高い。さらに、特に、1610nm以上の長波長側では、レイリー散乱による伝送損失の増加や、微小ではあるが分散補償可能量の低下も挙げられる。 Here, as described above, in the environment where the dispersion compensating optical fiber is laid, there is a concern about nonlinear deterioration due to four-wave mixing that becomes noticeable near the zero dispersion wavelength (1550 nm), and the zero dispersion wavelength (1550 nm) is not included. An L-band optical multiplex communication system is realized. In the L band, when a light receiving element (photodiode) using indium gallium arsenide is used, it is difficult to realize high quantum efficiency on the long wavelength side. Further, when a light receiving element made of another compound semiconductor is used, there is a high possibility that the cost will be high. Furthermore, especially on the long wavelength side of 1610 nm or more, an increase in transmission loss due to Rayleigh scattering and a small decrease in the amount of dispersion compensation can be mentioned.
これらから、伝送路や光デバイスに依存せず、良好な光学特性を得られるのは、分散補償光ファイバの零分散波長である1550nm以上、かつL帯の長波側を含まない1610nm以下の範囲(1560nm〜1610nm)である。しかし、そのうちの1560nmから1570nmまでの波長帯は、C帯とL帯の中間領域にあたるため、一般的に使用されていない。それに対して、本実施の形態では、C帯とL帯の境界となる波長1565nmを中心として1560nmから1570nmまでの波長帯も含む連続的な波長帯を利用するようにしているため、良好な光学特性を得つつ、広帯域化を実現している。 From these, good optical characteristics can be obtained without depending on the transmission path and optical device, in the range of 1550 nm or more which is the zero dispersion wavelength of the dispersion compensating optical fiber and 1610 nm or less not including the long wave side of the L band ( 1560 nm to 1610 nm). However, the wavelength band from 1560 nm to 1570 nm is not generally used because it is an intermediate region between the C band and the L band. On the other hand, in the present embodiment, since a continuous wavelength band including a wavelength band from 1560 nm to 1570 nm is used around a wavelength of 1565 nm, which is a boundary between the C band and the L band, good optical performance is obtained. Wide band is realized while obtaining the characteristics.
なお、以上の説明では、説明の簡略化のため、送信側処理系10−1〜10−Nから受信側処理系11−1〜11−Nに向けて光信号を送信する例について説明したが、当然に、受信側処理系11−1〜11−Nから送信側処理系10−1〜10−Nに向けても光信号を送信するようにしてもよい。すなわち、図3に示すように、送信側処理系10−1〜10−Nは、受信側処理系として動作してもよく、受信側処理系11−1〜11−Nは、送信処理系として動作してもよい。 In the above description, for simplification of description, an example in which an optical signal is transmitted from the transmission side processing systems 10-1 to 10-N to the reception side processing systems 11-1 to 11-N has been described. Of course, the optical signal may be transmitted from the reception side processing systems 11-1 to 11-N to the transmission side processing systems 10-1 to 10-N. That is, as shown in FIG. 3, the transmission processing systems 10-1 to 10-N may operate as reception processing systems, and the reception processing systems 11-1 to 11-N serve as transmission processing systems. It may work.
よって、図3に示すように、E/O変換器20−1〜20−Nも、O/E変換器として動作してもよく、O/E変換器21−1〜21−Nも、E/O変換器として動作してもよい。また、同様に、光合波装置30も、光分波装置として動作してもよく、光分波装置31も、光合波装置として動作するようにしてもよい。すなわち、図3に示すように、光合波装置30及び光分波装置31は、光合分波装置として動作するようにしてもよい。光合分波装置は、例えば、光スプリッタ(光カプラ)である。
Therefore, as shown in FIG. 3, the E / O converters 20-1 to 20-N may also operate as O / E converters, and the O / E converters 21-1 to 21-N are also It may operate as a / O converter. Similarly, the
これによれば、次のように動作する。受信側処理系11−k(送信処理系を兼ねる)は、データを示す電気信号をO/E変換器21−k(E/O変換器を兼ねる)に送信する。O/E変換器21−kは、受信側処理系11−kから送信された電気信号を、LD211−kによって波長帯λ(k)の光信号に変換し、光分波装置31に送信する。光分波装置31(光合波装置を兼ねる)は、O/E変換器21−1〜21−Nのそれぞれから送信された光信号を合波し、波長多重光信号を光ファイバ52、53及び光アンプ41を介して光合波装置30に送信する。光ファイバ52、53及び光アンプ41については、光ファイバ50、51及び光アンプ40と同様である。ただし、光ファイバ52、53及び光アンプ41は、光分波装置31から光合波装置30に向けて伝送される波長多重光信号を対象とする。
According to this, it operates as follows. The reception-side processing system 11-k (also serving as a transmission processing system) transmits an electrical signal indicating data to the O / E converter 21-k (also serving as an E / O converter). The O / E converter 21-k converts the electrical signal transmitted from the reception side processing system 11-k into an optical signal in the wavelength band λ (k) by the LD 211-k and transmits the optical signal to the
光合波装置30(光分波装置を兼ねる)は、光分波装置31から光ファイバ52、53及び光アンプ41を介して送信された波長多重光信号を、波長帯λ(1)〜λ(N)のそれぞれの光信号に分波し、E/O変換器20−1〜20−Nのそれぞれに送信する。E/O変換器20−k(O/E変換器を兼ねる)は、光合波装置30から送信された波長帯λ(k)の光信号を、PD201−kによって電気信号に変換し、送信側処理系10−k(受信側処理系を兼ねる)に送信する。
The optical multiplexing device 30 (also serving as an optical demultiplexing device) converts the wavelength multiplexed optical signal transmitted from the
<発明の実施の形態2>
続いて、本発明の実施の形態2について説明する。本実施の形態2に係る光波長多重通信システムの構成は、実施の形態1と同様であるため、説明を省略する。本実施の形態2に係る光波長多重通信システム1で使用する波長帯(波長多重光信号の波長帯)が実施の形態1と異なる。
<
Next, a second embodiment of the present invention will be described. Since the configuration of the optical wavelength division multiplexing communication system according to the second embodiment is the same as that of the first embodiment, description thereof is omitted. The wavelength band (wavelength band of the wavelength multiplexed optical signal) used in the optical wavelength division
続いて、図4を参照して、本発明の実施の形態2に係る波長多重光信号の波長帯について説明する。図4は、本発明の実施の形態2に係る波長多重光信号の波長帯を示す図である。
Next, with reference to FIG. 4, the wavelength band of the wavelength multiplexed optical signal according to the second embodiment of the present invention will be described. FIG. 4 is a diagram showing wavelength bands of wavelength-multiplexed optical signals according to
本実施の形態2に係る光波長多重通信システム1では、1560nmから1610nmまでの波長帯を使用する。すなわち、光波長多重通信システム1で伝送される波長多重光信号の波長帯は、1560nmから1610nmまでの波長帯となる。この波長帯は、一般的に、光伝送に十分な光学特性を有しており、既存の光ファイバ及び光デバイスに依存しない波長帯となる。よって、上記のE/O変換器20−1〜20−Nが生成する光信号の波長帯λ(1)〜λ(N)のそれぞれは、1560nmから1610nmまでの波長帯を連続的にN分割した波長帯のそれぞれとなる。
In the optical wavelength division
以上に説明したように、本実施の形態2では、光伝送に十分な光学特性を有しており、1560nmから1610nmまでの波長帯を使用しているため、光ファイバ及び光デバイスに依存せず、長距離伝送が可能なネットワークが構成可能となる。すなわち、既存のC帯のみを使用する光波長多重通信システム及びL帯のみを使用する光波長多重通信システムで当然に光信号を伝送可能、かつ光学特性の良い波長帯のみを利用するようにしているため、既存のシステムの設備(光ファイバ及び光デバイス等)の性能に応じた波長帯の調整を行う手間がなくなり、より簡易かつ低コストで広帯域化を実現することができる。 As described above, the second embodiment has sufficient optical characteristics for optical transmission and uses a wavelength band from 1560 nm to 1610 nm, and thus does not depend on optical fibers and optical devices. A network capable of long-distance transmission can be configured. In other words, in an optical wavelength division multiplexing communication system using only the existing C band and an optical wavelength multiplexing communication system using only the L band, it is naturally possible to transmit only an optical signal having a good optical characteristic. Therefore, there is no need to adjust the wavelength band in accordance with the performance of the existing system equipment (optical fiber, optical device, etc.), and a wider band can be realized more easily and at low cost.
また、本実施の形態2で使用する波長帯によっても、C帯のみを使用する光波長多重通信システムで使用する波長範囲(1530nm〜1560nm)と比較して20nm、L帯のみを使用する光波長多重通信システムで使用する波長範囲(1570nm〜1610nm)と比較して10nmの広帯域化を実現できる。また、将来的に光ファイバや光デバイスの性能の変更に合わせて、長波長側にも短波長側にも波長帯域を拡大するようにしてもよい。 Also, depending on the wavelength band used in the second embodiment, compared with the wavelength range (1530 nm to 1560 nm) used in the optical wavelength division multiplexing communication system using only the C band, the optical wavelength using only the L band is 20 nm. Compared to the wavelength range (1570 nm to 1610 nm) used in the multiplex communication system, a wide band of 10 nm can be realized. In addition, the wavelength band may be expanded both on the long wavelength side and on the short wavelength side in accordance with changes in the performance of optical fibers and optical devices in the future.
なお、光アンプ40は必要に応じて1560nmから1610nmを励起可能なものに変更する可能性があるが、光アンプ40を変更する場合があっても、C帯とL帯の全波長帯を使用する場合と比較して狭幅帯域を使用するため、光アンプ40のコスト削減にもつながる。 Note that the optical amplifier 40 may be changed from 1560 nm to 1610 nm as required, but even if the optical amplifier 40 is changed, the entire wavelength band of the C band and the L band is used. Compared with the case of using the narrow bandwidth, the cost of the optical amplifier 40 is reduced.
<発明の実施の形態3>
続いて、本発明の実施の形態3について説明する。本実施の形態3に係る光波長多重通信システムは、図1に示す各種装置10、11、20、21、30、31、40、50、51に加えて、さらに、図5に示す波長多重光信号変換システム2を有する。なお、図1と同様の構成要素となる装置10、11、20、21、30、31、40、50、51については、説明を省略し、波長多重光信号変換システム2について説明する。また、本実施の形態3に係る光波長多重通信システム1で使用する波長帯(波長多重光信号の波長帯)は、実施の形態2に係る光波長多重通信システム1で使用する波長帯と同様となる。
<Third Embodiment of the Invention>
Subsequently,
続いて、図5を参照して、本発明の実施の形態3に係る波長多重光信号変換システム2の構成について説明する。図5は、本発明の実施の形態3に係る波長多重光信号変換システム2の構成図である。
Subsequently, the configuration of the wavelength division multiplexing optical
波長多重光信号変換システム2は、光分波装置32、光合波装置33、及び波長変換装置60−1〜60−Nを有する。波長多重光信号変換システム2は、L帯の光波長多重通信システムで使用される波長多重光信号の波長を、本発明の実施の形態3に係る光波長多重通信システム1で使用される波長多重光信号の波長に変換する。
The wavelength division multiplexing optical
以下、波長変換装置60−1〜60−Mのそれぞれを、総じて「波長変換装置60」とも呼ぶ。ここで、「M」は、予め定めた任意の正整数である。すなわち、本実施の形態3では、光波長多重通信システム1が、波長変換装置60をM個有する例について示している。以下、「k」は、1〜Mのいずれにも該当する。
Hereinafter, each of the wavelength conversion devices 60-1 to 60-M is also collectively referred to as “
光分波装置32は、L帯の光波長多重通信システムから本実施の形態3に係る光波長多重通信システムに対して送信された波長多重光信号を受信し、受信した波長多重光信号を、波長帯λ(1)〜λ(M)のそれぞれの光信号と、それ以外の波長帯の光信号とに分波する。これによって、波長多重光信号は、波長変換対象外の波長帯の光信号と、波長変換対象の波長帯の光信号(波長帯λ(1)〜λ(M)のそれぞれの光信号)とが生成される。光分波装置32は、分波によって生成した光信号のうち、波長変換対象外の波長帯の光信号を光合波装置33に送信し、波長変換対象の波長帯の光信号(波長帯λ(1)〜λ(M)のそれぞれの光信号)を波長変換装置60−1〜60−Mに送信する。波長帯λ(k)の光信号は、波長変換装置60−kに送信される。
The
光合波装置33は、光分波装置32から送信された波長変換対象外の波長帯の光信号と、波長変換装置60−1〜60−Mのそれぞれから送信された波長変換後の光信号(波長帯λ'(1)〜λ'(M)のそれぞれの光信号)を合波し、波長多重光信号を生成する。光合波装置33は、生成した波長多重光信号を、本実施の形態3に係る光波長多重通信システム1内のネットワークに向けて送信する。これによって、光波長多重通信システム1内のネットワークに向けて送信された波長多重光信号は、例えば、送信側処理系10−1〜10−N、又は、受信側処理系11−1〜11−N等に送信される。
The
波長変換装置60−kは、光分波装置32から送信された波長帯λ(k)の光信号の波長を変換し、波長帯λ'(k)の光信号を生成する。波長変換装置60−kは、生成した波長帯λ'(k)の光信号を光合波装置33に送信する。
The wavelength conversion device 60-k converts the wavelength of the optical signal in the wavelength band λ (k) transmitted from the
続いて、図6を参照して、本発明の実施の形態3に係る波長多重光信号の変換波長帯について説明する。図6は、本発明の実施の形態3に係る波長多重光信号の変換波長帯を示す図である。
Next, with reference to FIG. 6, the conversion wavelength band of the wavelength multiplexed optical signal according to
本実施の形態3では、L帯の光波長多重通信システムにおいて1610nmよりも長波を使用しており、本実施の形態3に係る光多重通信システム1の光デバイスの制限によって1610nm付近での伝送が困難な場合に、図6に示すように波長多重光信号の波長帯を変換することで解決する。図6に示すように、本発明の実施の形態3に係る波長多重光信号変換システム2では、1610nm付近の光信号のみを分波し、その波長を変換する。これによって、L帯の1610nmより長波長側の各チャンネルの光信号を、本実施の形態3に係る光多重通信システム1における1560nmから1570nmの光信号に変換する。
In the third embodiment, a longer wave than 1610 nm is used in the L-band optical wavelength multiplex communication system, and transmission near 1610 nm is performed due to the limitation of the optical device of the optical
例えば、図6に示すように、L帯の光波長多重通信システムが1570nm〜1620nmを使用しているものとする。この場合、L帯の波長多重光信号を、本実施の形態3に係る光多重通信システム1の波長帯(1560nm〜1610nm)に変換するためには、1570nmから1610nmまでの波長帯は変換する必要はなく、1610nmから1620nmまでの波長帯を、1560nmから1570nmまでの波長帯に変換することで実現できる。よって、上述した波長変換対象の光信号のそれぞれの波長帯λ(1)〜λ(M)は、1610nmから1620nmまでの波長帯を連続的にM分割した波長帯のそれぞれとなる。また、上述した波長変換後の光信号のそれぞれの波長帯λ'(1)〜λ'(M)は、1560nmから1570nmまでの波長帯を連続的にM分割した波長帯のそれぞれとなる。このように、波長変換対象の波長帯の光信号は、チャンネル毎に、M個の光信号に分波される。
For example, as shown in FIG. 6, it is assumed that an L-band optical wavelength division multiplexing communication system uses 1570 nm to 1620 nm. In this case, in order to convert the L-band wavelength multiplexed optical signal to the wavelength band (1560 nm to 1610 nm) of the optical
なお、この場合は、変換前後の波長帯幅はともに10nmであるが、チャンネル間隔を調整することで変換前後で波長帯幅が異なる場合でも実現できる。例えば、L帯の波長多重光信号の波長帯が1570nm〜1630nm(1625nmを超えているが説明の便宜上のものである)であり、波長変換対象の20nm幅の波長帯(1610nm〜1630nm)に10チャンネルが存在している場合は、変換後の1チャンネル当たりの波長帯幅を半分にすることで、変換後の10nm幅の波長帯(1560nm〜1570nm)に同数の10チャンネルをおさめることができる。なお、波長変換器で生じる遅延は、波長分散補償器を利用した一般的な手法で補償すればよいため、詳細な説明は省略する。 In this case, the wavelength band width before and after the conversion is both 10 nm, but it can be realized even when the wavelength band width is different before and after the conversion by adjusting the channel interval. For example, the wavelength band of the L-band wavelength multiplexed optical signal is 1570 nm to 1630 nm (exceeding 1625 nm, but for convenience of explanation), and 10 in a wavelength band of 20 nm width (1610 nm to 1630 nm) to be converted. When channels exist, the same number of 10 channels can be accommodated in the converted wavelength band (1560 nm to 1570 nm) by halving the wavelength band width per channel after conversion. Note that the delay caused by the wavelength converter may be compensated by a general method using a chromatic dispersion compensator, and thus detailed description thereof is omitted.
以上に説明したように、本実施の形態3によれば、波長多重光信号変換システム2のように簡単な系を組み込むことで、既存のL帯の光波長多重通信システムと、本実施の形態3の光波長多重通信システム1との間でも通信を実現することができる。また、本実施の形態3では、L帯の光波長多重通信システムからC帯の光波長多重通信システムに変換する場合と比較して、1570nmから1610nmまでの波長帯を変換せずに利用できることから大幅な省電力化を期待できる。また、光信号が光学特性の良い波長帯で伝送されることになるため、より効率的な波長帯での通信が可能になる。
As described above, according to the third embodiment, by incorporating a simple system such as the wavelength division multiplexing optical
なお、以上の説明では、説明の簡略化のため、L帯の光波長多重通信システムから本実施の形態3に係る光波長多重通信システム1に向けて光信号を送信する例について説明したが、本実施の形態3に係る光波長多重通信システム1からL帯の光波長多重通信システムに向けても光信号を送信するようにしてもよい。すなわち、波長多重光信号変換システム2は、図7に示すように、さらに、光合波装置34、光分波装置35、及び波長変換装置61−1〜61−Mを有していてもよい。これらの装置による波長多重光信号の波長変換は、上述した変換とは逆の変換となること以外は同様であるため、以下、簡単な説明だけ述べる。
In the above description, for simplification of description, an example in which an optical signal is transmitted from the L-band optical wavelength division multiplexing communication system to the optical wavelength division
例えば、L帯の光波長多重通信システムが利用する波長帯と、本実施の形態3に係る光波長多重通信システム1が利用する波長帯が、上述と同様の波長帯(1570nm〜1620nm、及び1560nm〜1610nm)であるものとして説明する。この場合、光分波装置35は、本実施の形態に係る光波長多重通信システム1からL帯の光波長多重通信システムに対して送信された波長多重光信号を受信し、受信した波長多重光信号を、波長帯λ'(1)〜λ'(M)のそれぞれの光信号(波長変換対象)と、それ以外の波長帯の光信号(波長変換対象外)とに分波する。光分波装置35は、分波によって生成した光信号のうち、波長変換対象外の波長帯の光信号を光合波装置34に送信し、波長変換対象の波長帯の光信号(波長帯λ'(1)〜λ'(M)のそれぞれの光信号)を波長変換装置61−1〜61−Mに送信する。波長変換装置60−kは、光分波装置35から送信された波長帯λ(k)'の光信号を、波長帯λ(k)の光信号に変換し、光合波装置34に送信する。光合波装置34は、光分波装置35から送信された波長変換対象外の波長帯の光信号と、波長変換装置61−1〜61−Mのそれぞれから送信された波長変換後の光信号(波長帯λ(1)〜λ(M)のそれぞれの光信号)を合波して波長多重光信号を生成し、L帯の光波長多重通信システムに送信する。
For example, the wavelength band used by the optical wavelength division multiplexing communication system in the L band and the wavelength band used by the optical wavelength division
なお、光合波装置34、光分波装置35、及び波長変換装置61−1〜61−Mのそれぞれは、光分波装置32、光合波装置33、及び波長変換装置60−1〜60−Mのそれぞれと同一装置として構成されていてもよい。
The
<発明の実施の形態4>
続いて、本発明の実施の形態4について説明する。本実施の形態3に係る光波長多重通信システムは、図1に示す各種装置10、11、20、21、30、31、40、50、51に加えて、さらに、図8に示す波長多重光信号変換システム3を有する。なお、図1と同様の構成要素となる装置10、11、20、21、30、31、40、50、51については、説明を省略し、波長多重光信号変換システム3について説明する。また、本実施の形態4に係る光波長多重通信システム1で使用する波長帯(波長多重光信号の波長帯)は、実施の形態2に係る光波長多重通信システム1で使用する波長帯と同様となる。
<Embodiment 4 of the Invention>
Next, a fourth embodiment of the present invention will be described. In addition to the
続いて、図8を参照して、本発明の実施の形態4に係る波長多重光信号変換システム3の構成について説明する。図8は、本発明の実施の形態4に係る波長多重光信号変換システム3の構成図である。
Next, the configuration of the wavelength division multiplexing optical
波長多重光信号変換システム3は、光分波装置36、光合波装置37、及び波長変換装置62−1〜62−Nを有する。波長多重光信号変換システム3は、C帯の光波長多重通信システムで伝送される波長多重光信号の波長(1530nm〜1560nm)を、本実施の形態4に係る光波長多重通信システム1で伝送される波長多重光信号の波長(1560nm〜1610nm)に変換する。
The wavelength division multiplexing optical
光分波装置36、光合波装置37、及び波長変換装置62−1〜62−Nの動作は、実施の形態3とは異なる波長帯を対象とすること以外は、光分波装置32、光合波装置33、及び波長変換装置60−1〜60−Nと同様であるため、詳細な説明は省略する。
The operations of the
続いて、図9を参照して、本発明の実施の形態4に係る波長多重光信号の変換波長帯について説明する。図9は、本発明の実施の形態4に係る波長多重光信号の変換波長帯を示す図である。 Next, with reference to FIG. 9, a conversion wavelength band of the wavelength multiplexed optical signal according to Embodiment 4 of the present invention will be described. FIG. 9 is a diagram showing a converted wavelength band of a wavelength multiplexed optical signal according to Embodiment 4 of the present invention.
図9に示すように、本発明の実施の形態4に係る波長多重光信号変換システム3では、C帯の1560nmより短波長側のチャンネルの光信号を、本実施の形態に係る光多重通信システムにおける1570nmから1610nmの光信号に変換する。
As shown in FIG. 9, in the wavelength division multiplexing optical
例えば、図9に示すように、C帯の光波長多重通信システムが1530nm〜1565nmを使用しているものとする。この場合、C帯の波長多重光信号を、本実施の形態に係る光多重通信システム1の波長帯(1560nm〜1610nm)に変換するためには、1560nmから1565nmまでの波長帯は変換する必要はなく、1530nmから1560nmまでの波長帯を、1570nmから1610nmまでの波長帯に変換することで実現できる。よって、上述した波長変換対象の光信号のそれぞれの波長帯λ(1)〜λ(M)は、1530nmから1560nmまでの波長帯を連続的にM分割した波長帯のそれぞれとなる。また、上述した波長変換後の光信号のそれぞれの波長帯λ'(1)〜λ'(M)は、1570nmから1610nmまでの波長帯のうち、予め任意に定めた30nm幅の波長帯を連続的にM分割した波長帯のそれぞれとなる。このように、波長変換対象の波長帯の光信号は、チャンネル毎に、M個の光信号に分波される。
For example, as shown in FIG. 9, it is assumed that a C-band optical wavelength division multiplexing communication system uses 1530 nm to 1565 nm. In this case, in order to convert the C-band wavelength multiplexed optical signal to the wavelength band (1560 nm to 1610 nm) of the optical
なお、この場合は、変換前後の波長帯幅はともに30nmであるが、実施の形態3と同様に、チャンネル間隔を調整することで変換前後で波長帯幅が異なる場合でも実現できる。例えば、変換対象の30nm幅の波長帯(1530nm〜1560nm)に10チャンネルが存在している場合は、変換後の1チャンネル当たりの波長帯幅を4/3倍にすることで、変換後の40nm幅の波長帯(1570nm〜1610nm)に同数の10チャンネルをおさめることができる。なお、波長変換器で生じる遅延は、波長分散補償器を利用した一般的な手法で補償すればよいため、詳細な説明は省略する。 In this case, the wavelength band width before and after the conversion is both 30 nm, but it can be realized even when the wavelength band width is different before and after the conversion by adjusting the channel interval, as in the third embodiment. For example, if there are 10 channels in the wavelength band of 30 nm width (1530 nm to 1560 nm) to be converted, the wavelength band width per channel after conversion is increased to 4/3 times to obtain 40 nm after conversion. The same number of 10 channels can be accommodated in the wavelength band of the width (1570 nm to 1610 nm). Note that the delay caused by the wavelength converter may be compensated by a general method using a chromatic dispersion compensator, and thus detailed description thereof is omitted.
以上に説明したように、本実施の形態4によれば、波長多重光信号変換システム3のように簡単な系を組み込むことで、既存のC帯の光波長多重通信システムと、本実施の形態の光波長多重通信システム1との間でも通信を実現することができる。また、本実施の形態4では、C帯の光波長多重通信システムからL帯の光波長多重通信システムに変換する場合と比較して、1560nmから1565nmまでの波長帯を変換せずに利用できることから省電力化を期待できる。また、光信号が光学特性の良い波長帯で伝送されることになるため、より効率的な波長帯での通信が可能になる。
As described above, according to the fourth embodiment, by incorporating a simple system such as the wavelength division multiplexing optical
なお、以上の説明では、説明の簡略化のため、C帯の光波長多重通信システムから本実施の形態に係る光波長多重通信システム1に向けて光信号を送信する例について説明したが、本実施の形態に係る光波長多重通信システム1からC帯の光波長多重通信システムに向けても光信号を送信するようにしてもよい。すなわち、波長多重光信号変換システム3は、図10に示すように、さらに、光合波装置38、光分波装置39、及び波長変換装置63−1〜63−Mを有していてもよい。光合波装置38、光分波装置39、及び波長変換装置63−1〜63−Mの動作は、実施の形態3とは異なる波長帯を対象とすること以外は、光合波装置34、光分波装置35、及び波長変換装置62−1〜62−Mと同様であるため、詳細な説明は省略する。
In the above description, for the sake of simplification, an example in which an optical signal is transmitted from the C-band optical wavelength division multiplexing communication system to the optical wavelength division
ここで、以上の実施の形態3、4の説明では、図6及び図9に例示するように、波長を変更する場合について例示したが、これに限られない。すなわち、実施の形態3、4で説明したように、本実施の形態に係る光波長多重通信システム1とは使用する波長帯(波長多重光信号の波長帯)の異なる光波長多重通信システムからの波長多重光信号のうち、光波長多重通信システム1で使用する波長帯以外の光信号を、光波長多重通信システム1で使用する波長帯に含まれる波長帯の光信号に変換するのであれば、それぞれの光波長多重通信システムで使用する波長帯は、上記の例に限られない。
Here, in the above description of the third and fourth embodiments, the case where the wavelength is changed as illustrated in FIGS. 6 and 9 is illustrated, but the present invention is not limited thereto. That is, as described in the third and fourth embodiments, the optical wavelength division
また、実施の形態3、4で説明したように、波長変換の際には、異なる光波長多重通信システムからの波長多重光信号のうち、光波長多重通信システム1で使用する波長帯(波長多重光信号の波長帯)以外の光信号を、光波長多重通信システム1で使用する波長帯において、異なる光波長多重通信システムの波長多重光信号の波長帯と重複しない波長帯に含まれる波長帯の光信号に変換することで、変換前後での光信号の波長の重複を避けることができる。
Further, as described in the third and fourth embodiments, during wavelength conversion, among wavelength multiplexed optical signals from different optical wavelength multiplexing communication systems, the wavelength band (wavelength multiplexing) used in the optical wavelength
また、変換先の波長帯も、図6に示すように、光波長多重通信システム1で使用する波長帯において、異なる光波長多重通信システムの波長多重光信号の波長帯と重複しない波長帯の全てとせずに、図9に示すように、重複しない波長帯の一部として任意に決定してもよいことは言うまでもない。例えば、実施の形態4では、変換先の波長帯を1570nm〜1610nmとせずに、1565nm〜1605nmとしてもよい。
Further, as shown in FIG. 6, the wavelength bands to be converted are all the wavelength bands that are not overlapped with the wavelength bands of the wavelength multiplexed optical signals of different optical wavelength multiplexing communication systems in the wavelength band used in the optical wavelength
<実施の形態の概略構成>
続いて、図11を参照して、本発明の実施の形態に係る光波長多重通信システム1の概略構成について説明する。図11は、本発明の実施の形態に係る光波長多重通信システム1の概略構成図である。すなわち、上述した本実施の形態1〜4に係る光波長多重通信システム1は、その概要構成として、図11に示す光波長多重通信システム9のように捉えることもできる。
<Schematic configuration of the embodiment>
Next, a schematic configuration of the optical wavelength division
光波長多重通信システム9は、送信側変換部100−1〜100−N、受信側変換部101−1〜101−N、送信側合波部110、及び受信側分波部111を有している。
The optical wavelength
送信側変換部100−1〜100−Nは、複数の波長帯λ(1)〜λ(N)のそれぞれに割り当てられており、入力された電気信号を、割り当てられている波長帯の光信号に変換して送信側合波部110に出力する。送信側変換部100−1〜100−Nは、E/O変換器20−1〜20−Nに対応する。
The transmission side conversion units 100-1 to 100-N are assigned to each of the plurality of wavelength bands λ (1) to λ (N), and the input electric signal is converted into an optical signal in the assigned wavelength band. And output to the transmission
受信側変換部101−1〜101−Nは、複数の波長帯λ(1)〜λ(N)のそれぞれに割り当てられており、受信側分波部111から出力された複数の光信号のうち、割り当てられている波長帯の光信号を電気信号に変換する。受信側変換部101−1〜101−Nは、O/E変換器21−1〜21−Nに対応する。
Receiving side converters 101-1 to 101-N are assigned to each of a plurality of wavelength bands λ (1) to λ (N), and among the plurality of optical signals output from receiving
送信側合波部110は、複数の送信側変換部100−1〜100−Nから出力された複数の光信号を合波し、波長多重光信号としてネットワークを介して受信側分波部111に送信する。送信側合波部110は、光合波装置30に対応する。
The transmission
受信側分波部111は、送信側合波部110から送信された波長多重光信号をネットワークを介して受信し、受信した波長多重光信号を複数の光信号に分波して、受信側変換部101−1〜101−Nのそれぞれに出力する。受信側分波部111は、光分波装置31に対応する。
The receiving
ここで、上記の複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない。これによれば、既存のC帯及びL帯の光波長多重通信システムの設備を流用することができるとともに、波長多重光信号の波長帯を広帯域化することができるため、コストを低減しつつ、広帯域化を実現することができる。 Here, the plurality of wavelength bands include at least a wavelength band including a part of the C band and a wavelength band including a part of the L band, and does not include a wavelength band including other than the C band and the L band. According to this, since it is possible to divert the facilities of the existing C-band and L-band optical wavelength division multiplexing communication systems and to broaden the wavelength band of the wavelength division multiplexing optical signal, while reducing the cost, Broadband can be realized.
なお、以上の実施の形態の説明において、波長帯の範囲を指定する記載は、その波長帯の上限及び下限となる波長を含むものとして解釈してもよく、含まないものとして解釈してもよい。例えば、1530nmから1560nmまでの波長帯(又は1530nm〜1560nm)と言った場合には、1530nm以上又はよりも大きく、1560nm以下又は未満の波長帯と解釈してよい。 In the above description of the embodiment, the description specifying the range of the wavelength band may be interpreted as including or not including the wavelengths that are the upper limit and the lower limit of the wavelength band. . For example, a wavelength band from 1530 nm to 1560 nm (or 1530 nm to 1560 nm) may be interpreted as a wavelength band of 1530 nm or more or larger and 1560 nm or less.
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
上述した実施の形態では、C帯とL帯の境界となる波長1565nmを中心として1560nmから1570nmまでの波長帯も含む連続的な波長帯を、光波長多重通信システム1で使用する波長帯とした例について説明したが、C帯及びL帯のそれぞれの少なくとも一部を含み、C帯及びL帯以外を含まない波長帯であれば、上述の波長帯に限られない。また、その波長帯は、非連続的であってもよい。
In the above-described embodiment, the continuous wavelength band including the wavelength band from 1560 nm to 1570 nm with the wavelength of 1565 nm serving as the boundary between the C band and the L band as the center is set as the wavelength band used in the optical wavelength division
1 光波長多重通信システム
2、3 波長多重光信号変換システム
10 送信側処理系
11 受信側処理系
20 E/O変換器
21 O/E変換器
30、33、34、37、38 光合波装置
31、32、35、36、39 光分波装置
40、41 光アンプ
50、51、52、53 光ファイバ
60、61、62、63 波長変換装置
100 送信側変換部
101 受信側変換部
110 送信側合波部
111 受信側分波部
200、201 LD
210、211 PD
DESCRIPTION OF
210, 211 PD
Claims (9)
前記複数の送信側変換部から出力された複数の光信号を合波し、波長多重光信号としてネットワークを介して送信する送信側合波部と、
前記送信側合波部から送信された波長多重光信号を前記ネットワークを介して受信し、受信した波長多重光信号を前記複数の光信号に分波して出力する受信側分波部と、
前記複数の波長帯のそれぞれに割り当てられており、前記受信側分波部から出力された複数の光信号のうち、割り当てられている波長帯の光信号を電気信号に変換する複数の受信側変換部と、
他の光波長多重通信システムから複数の波長帯の光信号が合波された外部光信号を受信し、受信した外部光信号を、前記波長多重光信号の波長帯以外の変換対象光信号と、前記波長多重光信号の波長帯の非変換対象光信号とに分波して出力する変換用分波部と、
前記変換用分波部から出力された変換対象光信号を、前記波長多重光信号の波長帯に含まれる波長帯の光信号に変換する波長変換部と、
前記変換用分波部から出力された非変換対象光信号と、前記波長変換部によって変換された変換対象光信号とを合波し、前記波長多重光信号として前記ネットワークに送信する変換用合波部と、を備え、
前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、
光波長多重通信システム。 A plurality of transmission-side converters that are assigned to each of a plurality of wavelength bands, convert the input electrical signal into an optical signal of the assigned wavelength band, and output the optical signal;
A plurality of optical signals output from the plurality of transmission side conversion units, and a transmission side multiplexing unit that transmits the signals as wavelength multiplexed optical signals via a network;
A wavelength-division multiplexed optical signal transmitted from the transmission-side multiplexing unit is received via the network, and the wavelength-division multiplexed optical signal received is demultiplexed into the plurality of optical signals and output;
A plurality of receiving side conversions that are assigned to each of the plurality of wavelength bands and that convert an optical signal in the assigned wavelength band among the plurality of optical signals output from the receiving side demultiplexing unit into an electric signal. And
An external optical signal in which optical signals of a plurality of wavelength bands are combined from another optical wavelength division multiplexing communication system, and the received external optical signal is converted into an optical signal to be converted other than the wavelength band of the wavelength multiplexed optical signal, A demultiplexing unit for demultiplexing and demultiplexing the non-conversion target optical signal in the wavelength band of the wavelength multiplexed optical signal;
A wavelength conversion unit that converts the optical signal to be converted output from the demultiplexing unit for conversion into an optical signal in a wavelength band included in a wavelength band of the wavelength division multiplexed optical signal;
A multiplexing for conversion that combines the non-conversion target optical signal output from the conversion demultiplexing unit and the conversion target optical signal converted by the wavelength conversion unit, and transmits the multiplexed signal to the network as the wavelength multiplexed optical signal And comprising
The plurality of wavelength bands include a wavelength band including at least a part of the C band and a wavelength band including a part of the L band, and does not include a wavelength band including other than the C band and the L band.
Optical wavelength division multiplexing communication system.
請求項1に記載の光波長多重通信システム。 The plurality of wavelength bands are included from 1560 nm in the C band to 1610 nm in the L band.
The optical wavelength division multiplexing communication system according to claim 1.
請求項1に記載の光波長多重通信システム。 The wavelength conversion unit converts the optical signal to be converted into an optical signal in a wavelength band included in a wavelength band that does not overlap with a wavelength band of the external optical signal in the wavelength band of the wavelength multiplexed optical signal.
The optical wavelength division multiplexing communication system according to claim 1 .
前記外部光信号は、L帯のみに含まれる複数の波長帯の光信号が合波された光信号であり、
前記変換用分波部は、前記外部光信号のうち、1610nm以上又はより大きい波長帯を前記変換対象光信号とする、
請求項1乃至3のいずれか1項に記載の光波長多重通信システム。 The plurality of wavelength bands are included from 1560 nm in the C band to 1610 nm in the L band,
The external optical signal is an optical signal obtained by combining optical signals of a plurality of wavelength bands included only in the L band,
The conversion demultiplexing unit uses, as the conversion target optical signal, a wavelength band of 1610 nm or larger or larger in the external optical signal.
The optical wavelength division multiplexing communication system according to any one of claims 1 to 3 .
前記外部光信号は、C帯のみに含まれる複数の波長帯の光信号が合波された光信号であり、
前記変換用分波部は、前記外部光信号のうち、1560nm以下又は未満の波長帯を前記変換対象光信号とする、
請求項1乃至3のいずれか1項に記載の光波長多重通信システム。 The plurality of wavelength bands are included from 1560 nm in the C band to 1610 nm in the L band,
The external optical signal is an optical signal obtained by combining optical signals of a plurality of wavelength bands included only in the C band,
The conversion demultiplexing unit uses a wavelength band of 1560 nm or less or less than the external optical signal as the conversion target optical signal.
The optical wavelength division multiplexing communication system according to any one of claims 1 to 3 .
請求項1乃至5のいずれか1項に記載の光波長多重通信システム。 The plurality of wavelength bands includes a wavelength band including a boundary wavelength between the C band and the L band, and becomes a continuous wavelength band.
The optical wavelength division multiplexing communication system according to any one of claims 1 to 5 .
請求項1乃至6のいずれか1項に記載の光波長多重通信システム。 The network is a silica-based optical fiber laid to transmit an optical signal obtained by combining optical signals of a plurality of wavelength bands included only in the L band as an optical fiber for transmitting the wavelength-multiplexed optical signal; Including a dispersion compensating optical fiber laid to transmit an optical signal in which optical signals of a plurality of wavelength bands included only in the C band are combined,
The optical wavelength division multiplexing communication system according to any one of claims 1 to 6 .
前記複数の光信号を合波し、波長多重光信号としてネットワークを介して送信するステップと、
前記送信された波長多重光信号を前記ネットワークを介して受信し、受信した波長多重光信号を前記複数の光信号に分波するステップと、
前記分波された複数の波長帯のそれぞれを、前記複数の電気信号のそれぞれに変換するステップと、
他の光波長多重通信システムから複数の波長帯の光信号が合波された外部光信号を受信し、受信した外部光信号を、前記波長多重光信号の波長帯以外の変換対象光信号と、前記波長多重光信号の波長帯の非変換対象光信号とに分波して出力するステップと、
前記変換対象光信号を、前記波長多重光信号の波長帯に含まれる波長帯の光信号に変換するステップと、
前記非変換対象光信号と、前記変換対象光信号とを合波し、前記波長多重光信号として前記ネットワークに送信するステップと、を備え、
前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、
光波長多重通信方法。 Converting each of the plurality of electrical signals into each of a plurality of optical signals to be in each of a plurality of wavelength bands;
Combining the plurality of optical signals and transmitting as a wavelength multiplexed optical signal over a network;
Receiving the transmitted wavelength multiplexed optical signal via the network, and demultiplexing the received wavelength multiplexed optical signal into the plurality of optical signals;
Converting each of the plurality of demultiplexed wavelength bands into each of the plurality of electrical signals;
An external optical signal in which optical signals of a plurality of wavelength bands are combined from another optical wavelength division multiplexing communication system, and the received external optical signal is converted into an optical signal to be converted other than the wavelength band of the wavelength multiplexed optical signal, Demultiplexing and outputting to the non-conversion target optical signal in the wavelength band of the wavelength multiplexed optical signal;
Converting the optical signal to be converted into an optical signal in a wavelength band included in a wavelength band of the wavelength-multiplexed optical signal;
Combining the non-conversion target optical signal and the conversion target optical signal, and transmitting to the network as the wavelength-multiplexed optical signal ,
The plurality of wavelength bands include a wavelength band including at least a part of the C band and a wavelength band including a part of the L band, and does not include a wavelength band including other than the C band and the L band.
Optical wavelength division multiplexing method.
前記第1の受信部が受信した複数の光信号を合波し、波長多重光信号を生成する合波部と、
前記合波部が生成した波長多重光信号をネットワークを介して送信する第1の送信部と、
前記複数の波長帯のそれぞれの複数の光信号が合波された波長多重光信号を前記ネットワークを介して受信する第2の受信部と、
前記第2の受信部が受信した波長多重光信号を分波し、前記複数の光信号を生成する分波部と、
前記分波部によって生成された複数の光信号のそれぞれを、光信号を電気信号に変換する複数の光電気変換器に送信する第2の送信部と、
他の光波長多重通信システムから複数の波長帯の光信号が合波された外部光信号を受信し、受信した外部光信号を、前記波長多重光信号の波長帯以外の変換対象光信号と、前記波長多重光信号の波長帯の非変換対象光信号とに分波して出力する変換用分波部と、
前記変換用分波部から出力された変換対象光信号を、前記波長多重光信号の波長帯に含まれる波長帯の光信号に変換する波長変換部と、
前記変換用分波部から出力された非変換対象光信号と、前記波長変換部によって変換された変換対象光信号とを合波し、前記波長多重光信号として前記ネットワークに送信する変換用合波部と、を備え、
前記複数の波長帯は、少なくともC帯の一部を含む波長帯とL帯の一部を含む波長帯とを含み、C帯及びL帯以外を含む波長帯は含まない、
光合分波装置。 A first receiving unit that receives each of a plurality of optical signals in a plurality of wavelength bands from each of a plurality of electro-optical converters that convert an electrical signal into an optical signal;
A multiplexing unit that multiplexes a plurality of optical signals received by the first receiving unit and generates a wavelength multiplexed optical signal;
A first transmitter that transmits the wavelength multiplexed optical signal generated by the multiplexer via a network;
A second receiving unit for receiving, via the network, a wavelength-multiplexed optical signal obtained by combining a plurality of optical signals in the plurality of wavelength bands;
A demultiplexing unit that demultiplexes the wavelength-multiplexed optical signal received by the second receiving unit and generates the plurality of optical signals;
A second transmitter that transmits each of the plurality of optical signals generated by the branching unit to a plurality of photoelectric converters that convert the optical signal into an electrical signal;
An external optical signal in which optical signals of a plurality of wavelength bands are combined from another optical wavelength division multiplexing communication system, and the received external optical signal is converted into an optical signal to be converted other than the wavelength band of the wavelength multiplexed optical signal, A demultiplexing unit for demultiplexing and demultiplexing the non-conversion target optical signal in the wavelength band of the wavelength multiplexed optical signal;
A wavelength conversion unit that converts the optical signal to be converted output from the demultiplexing unit for conversion into an optical signal in a wavelength band included in a wavelength band of the wavelength division multiplexed optical signal;
A multiplexing for conversion that combines the non-conversion target optical signal output from the conversion demultiplexing unit and the conversion target optical signal converted by the wavelength conversion unit, and transmits the multiplexed signal to the network as the wavelength multiplexed optical signal And comprising
The plurality of wavelength bands include a wavelength band including at least a part of the C band and a wavelength band including a part of the L band, and does not include a wavelength band including other than the C band and the L band.
Optical multiplexing / demultiplexing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013092092A JP6155803B2 (en) | 2013-04-25 | 2013-04-25 | Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013092092A JP6155803B2 (en) | 2013-04-25 | 2013-04-25 | Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014216811A JP2014216811A (en) | 2014-11-17 |
JP6155803B2 true JP6155803B2 (en) | 2017-07-05 |
Family
ID=51942169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013092092A Active JP6155803B2 (en) | 2013-04-25 | 2013-04-25 | Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6155803B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3614581A4 (en) * | 2017-04-18 | 2020-05-06 | Nec Corporation | Bidirectional optical transmission system and bidirectional optical transmission method |
CN112235069B (en) * | 2020-11-18 | 2022-10-25 | 中国联合网络通信集团有限公司 | Transmission method, equipment and system integrating optical wavelength division multiplexing |
WO2024131783A1 (en) * | 2022-12-21 | 2024-06-27 | 锐捷网络股份有限公司 | Signal conversion module, signal conversion method, optical fiber transmission system, and storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002315027A (en) * | 2001-04-18 | 2002-10-25 | Nec Corp | Wavelength-group wavelength converter, and wavelength-group exchange using the same |
US7831118B2 (en) * | 2004-03-31 | 2010-11-09 | Fujitsu Limited | Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method |
JP5063558B2 (en) * | 2008-10-21 | 2012-10-31 | 日本電信電話株式会社 | Optical repeater |
-
2013
- 2013-04-25 JP JP2013092092A patent/JP6155803B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014216811A (en) | 2014-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4551007B2 (en) | Raman amplifier and optical transmission system using the same | |
US8625996B2 (en) | Optical transmitter, optical transmission method, and wavelength-selective variable delayer | |
US8774624B2 (en) | Optical transmission apparatus and optical communication system | |
JP5536209B2 (en) | Optical transmission system | |
JP4083444B2 (en) | Optical transmission system and optical transmission method using Raman amplification | |
JP4826451B2 (en) | Optical transmission device with optical amplifier | |
EP2375602B1 (en) | Optical network element and optical transmission system | |
JP2018191074A (en) | Transmission device and transmission method | |
JPWO2005096534A1 (en) | Low density wavelength division multiplexing optical transmission system and low density wavelength division multiplexing optical transmission method | |
JP2001053686A (en) | Composite optical amplification device, n-wavelength band wdm system optical signal transmission device, and optical transmission system and optical amplifying method | |
US6661973B1 (en) | Optical transmission systems, apparatuses, and methods | |
US12034269B2 (en) | Light amplifying relay system | |
JP5305377B2 (en) | Optical transmission system using Raman optical amplification | |
US10567081B2 (en) | Transmission system and transmission method | |
JP2004289707A (en) | Quality monitoring method and apparatus for wavelength multiplexed optical signal, and optical transmission system using the same | |
JP2010004251A (en) | Optical transmission device and optical transmission method | |
JPWO2002035665A1 (en) | Optical transmitter, optical repeater, optical receiver, and optical transmission method | |
JP6561445B2 (en) | Optical amplification device, optical transmission device, and optical transmission system | |
JP6155803B2 (en) | Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device | |
JP5414373B2 (en) | Optical access network, optical communication method, and optical subscriber unit | |
JP2003188830A (en) | Wavelength multiplex light transmission apparatus, relaying apparatus, distribution apparatus, and wavelength multiplex light transmission system | |
US8355631B2 (en) | Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems | |
KR100454960B1 (en) | Interleaving bidirectional optcial add/drop multiplexer | |
AU2017225642B2 (en) | Agrregator-based cost-optimized communications topology for a point-to-multipoint network | |
Lázaro et al. | Hybrid dual-fiber-ring with single-fiber-trees dense access network architecture using RSOA-ONU |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6155803 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |