Nothing Special   »   [go: up one dir, main page]

JP6140007B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP6140007B2
JP6140007B2 JP2013138138A JP2013138138A JP6140007B2 JP 6140007 B2 JP6140007 B2 JP 6140007B2 JP 2013138138 A JP2013138138 A JP 2013138138A JP 2013138138 A JP2013138138 A JP 2013138138A JP 6140007 B2 JP6140007 B2 JP 6140007B2
Authority
JP
Japan
Prior art keywords
voltage
phase bridge
phase
switch
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013138138A
Other languages
Japanese (ja)
Other versions
JP2015012750A (en
Inventor
宏樹 石内
宏樹 石内
大森 洋一
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2013138138A priority Critical patent/JP6140007B2/en
Publication of JP2015012750A publication Critical patent/JP2015012750A/en
Application granted granted Critical
Publication of JP6140007B2 publication Critical patent/JP6140007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、3相交流電圧源と直流電圧源との間で電力転送を行う電力変換装置に関するものである。   The present invention relates to a power conversion device that performs power transfer between a three-phase AC voltage source and a DC voltage source.

従来、3相交流電圧源と直流電圧源との間で電力転送を行う電力変換装置が知られている(例えば、特許文献1参照)。図5は、3相交流電圧源と直流電圧源との間で電力転送を行う従来の電力変換装置の一例を表した回路図である。3相フルブリッジコンバータ83は、交流リアクトル(ACL)82を介して3相交流電圧源80に接続されている。また、3相フルブリッジコンバータ83の出力はコンデンサ85に接続されているので、コンデンサ85との間で電力転送することができる。しかし、コンデンサ85の電圧は3相交流電圧源80の線間電圧最大値よりも低くすることができないため、昇降圧チョッパ84を用いて、コンデンサ85と直流電圧源6との間の電力転送を行っている。つまり、交流リアクトル82、3相フルブリッジコンバータ83、コンデンサ85、及び昇降圧チョッパ84により、3相交流電圧源と任意の電圧の直流電圧源との間の電力転送を実現している。   Conventionally, a power conversion device that performs power transfer between a three-phase AC voltage source and a DC voltage source is known (see, for example, Patent Document 1). FIG. 5 is a circuit diagram illustrating an example of a conventional power converter that performs power transfer between a three-phase AC voltage source and a DC voltage source. The three-phase full bridge converter 83 is connected to a three-phase AC voltage source 80 via an AC reactor (ACL) 82. In addition, since the output of the three-phase full bridge converter 83 is connected to the capacitor 85, power can be transferred to and from the capacitor 85. However, since the voltage of the capacitor 85 cannot be lower than the maximum line voltage of the three-phase AC voltage source 80, the power transfer between the capacitor 85 and the DC voltage source 6 is performed using the step-up / down chopper 84. Is going. That is, the AC reactor 82, the three-phase full bridge converter 83, the capacitor 85, and the step-up / step-down chopper 84 realize power transfer between the three-phase AC voltage source and a DC voltage source having an arbitrary voltage.

特開2003−348834号公報JP 2003-348834 A

しかし、図5に示す従来の電力変換装置は、3相フルブリッジコンバータ83や昇降圧チョッパ84のスイッチング素子のスイッチング時点において、必ずしもスイッチング素子の両端電圧が零であったり流れている電流が零であったりしないのでハードスイッチングとなりスイッチング損失が発生する。スイッチング損失はスイッチング周波数に比例するので、システムの効率を上げるためにスイッチング周波数を高くすることができない。すると、交流リアクトル82や昇降圧チョッパ84内のインダクタに流れるリップル電流を抑制するために、交流リアクトル82や昇降圧チョッパ84内のインダクタのインダクタンスを大きくする必要があり、その結果、交流リアクトル82や昇降圧チョッパ84内のインダクタの大きさが大きくなるという問題がある。またハードスイッチングであるが故に、スイッチング時点において回路内の電流や電圧の時間的変化率が非常に大きくなり、スイッチングに伴う大きな電磁波ノイズが発生してしまうという問題がある。   However, in the conventional power converter shown in FIG. 5, the voltage across the switching element is not always zero or the flowing current is zero at the time of switching of the switching element of the three-phase full-bridge converter 83 or the buck-boost chopper 84. Since there is nothing, hard switching occurs and switching loss occurs. Since the switching loss is proportional to the switching frequency, the switching frequency cannot be increased in order to increase the efficiency of the system. Then, in order to suppress the ripple current flowing in the inductor in the AC reactor 82 and the step-up / down chopper 84, it is necessary to increase the inductance of the inductor in the AC reactor 82 and the step-up / down chopper 84. As a result, the AC reactor 82 and the There is a problem that the size of the inductor in the step-up / down chopper 84 becomes large. In addition, because of hard switching, there is a problem that the temporal change rate of the current and voltage in the circuit becomes very large at the time of switching, and large electromagnetic noise is generated due to switching.

かかる事情に鑑みてなされた本発明の目的は、ソフトスイッチングが維持されたまま、3相交流電圧源と直流電圧源との間で電力転送することが可能な電力変換装置を提供することにある。   An object of the present invention made in view of such circumstances is to provide a power conversion device capable of transferring power between a three-phase AC voltage source and a DC voltage source while maintaining soft switching. .

上記課題を解決するため、本発明に係る電力変換装置は、3相交流電圧源と、3つの電力変換部と、直流電圧源とを備え、スイッチング素子にコンデンサが並列接続されダイオードが逆並列接続されたスナバ付きスイッチを用いて3相交流電圧源と直流電圧源の間で電力転送を行う電力変換装置であって、前記電力変換部は、正極端子にダイオードのカソードが接続されたスナバ付きスイッチと、負極端子にダイオードのアノードが接続されたスナバ付きスイッチとを、接続端子を介して同方向に直列接続した第1の相ブリッジ、第2の相ブリッジ、第3の相ブリッジ、及び第4の相ブリッジを有し、前記第1の相ブリッジ及び前記第2の相ブリッジは並列接続され、前記第3の相ブリッジ及び前記第4の相ブリッジは並列接続され、前記第1の相ブリッジ及び前記第2の相ブリッジと、前記第3の相ブリッジ及び前記第4の相ブリッジとは負荷を介して接続され、前記第1の相ブリッジは、それぞれの正極端子が前記3相交流電圧源の各相に接続され、それぞれの負極端子同士が短絡接続され、前記第4の相ブリッジは、それぞれの正極端子同士が短絡接続され、それぞれの負極端子同士が短絡接続され、前記第4の相ブリッジのいずれか1つに前記直流電圧源が並列接続されており、前記第2の相ブリッジの接続端子に対する前記第1の相ブリッジの接続端子の電圧である1次電圧が、半周期毎に零電圧を介して、位相期間γで前記3相交流電圧源の電圧と該電圧の反転電圧とを交互に繰り返すように、前記第1の相ブリッジのスナバ付きスイッチ及び前記第2の相ブリッジのスナバ付きスイッチはスイッチングされ、前記第4の相ブリッジの接続端子に対する前記第3の相ブリッジの接続端子の電圧である2次電圧が、前記1次電圧と同じ周波数で前記1次電圧より位相が(180度−制御角δ)だけ遅れて、半周期毎に零電圧を介して、前記位相期間γで前記直流電圧源の電圧と該電圧の反転電圧とを交互に繰り返すように、前記第3の相ブリッジのスナバ付きスイッチ及び前記第4の相ブリッジのスナバ付きスイッチはスイッチングされることを特徴とする。   In order to solve the above problems, a power conversion device according to the present invention includes a three-phase AC voltage source, three power conversion units, and a DC voltage source, a capacitor is connected in parallel to a switching element, and a diode is connected in antiparallel. A power conversion device that transfers power between a three-phase AC voltage source and a DC voltage source using the switched snubber switch, wherein the power conversion unit is a switch with a snubber in which a cathode of a diode is connected to a positive terminal A first phase bridge, a second phase bridge, a third phase bridge, and a fourth phase bridge connected in series in the same direction via a connection terminal to a switch with a snubber whose anode is connected to the anode of a diode The first phase bridge and the second phase bridge are connected in parallel, the third phase bridge and the fourth phase bridge are connected in parallel, and The phase bridge and the second phase bridge, and the third phase bridge and the fourth phase bridge are connected via a load, and each positive terminal of the first phase bridge is the three-phase bridge. Connected to each phase of the AC voltage source, the respective negative terminals are short-circuited to each other, the fourth phase bridge is short-circuited to each positive terminal, the respective negative terminals are short-circuited, and the first The DC voltage source is connected in parallel to any one of the four phase bridges, and a primary voltage which is a voltage of the connection terminal of the first phase bridge with respect to the connection terminal of the second phase bridge is half The snubbered switch of the first phase bridge and the second switch so as to alternately repeat the voltage of the three-phase AC voltage source and the inverted voltage of the voltage in a phase period γ through a zero voltage every cycle. Phase bridge The switch with a nut is switched, and the secondary voltage, which is the voltage of the connection terminal of the third phase bridge with respect to the connection terminal of the fourth phase bridge, has the same frequency as the primary voltage, and the phase is higher than the primary voltage. The third voltage is alternately delayed by (180 degrees−control angle δ), and the voltage of the DC voltage source and the inverted voltage of the voltage are alternately repeated in the phase period γ via a zero voltage every half cycle. The switch with snubber of the fourth phase bridge and the switch with snubber of the fourth phase bridge are switched.

さらに、本発明に係る電力変換装置において、前記電力変換部の前記負荷は、前記第1の相ブリッジの接続端子に接続された第1のインダクタと、前記第3の相ブリッジの接続端子に接続された第2のインダクタと、前記第1のインダクタと前記第2の相ブリッジの接続端子との間に1次巻線が接続され、前記第2のインダクタと前記第4の相ブリッジの接続端子との間に2次巻線が接続されたトランスと、を有することを特徴とする。   Furthermore, in the power converter according to the present invention, the load of the power converter is connected to a first inductor connected to a connection terminal of the first phase bridge and a connection terminal of the third phase bridge. A primary winding is connected between the second inductor formed, and the connection terminal of the first inductor and the second phase bridge, and the connection terminal of the second inductor and the fourth phase bridge And a transformer to which a secondary winding is connected.

さらに、本発明に係る電力変換装置において、前記位相期間γは、ゼロ以上の値を切片とした前記制御角δの一次関数であることを特徴とする。   Furthermore, in the power converter according to the present invention, the phase period γ is a linear function of the control angle δ with a value of zero or more as an intercept.

本発明によれば、3相交流電圧源と直流電圧源の間でソフトスイッチングを維持したまま電力転送することが可能となる。そのため、電磁波ノイズ及びスイッチング損失を小さくすることができる、スイッチング周波数を上げることができる、インダクタを小さくすることができるといった効果がある。さらに、交流リアクトルを削減することができる。   According to the present invention, it is possible to transfer power while maintaining soft switching between a three-phase AC voltage source and a DC voltage source. Therefore, there are effects that electromagnetic wave noise and switching loss can be reduced, the switching frequency can be increased, and the inductor can be reduced. Furthermore, AC reactors can be reduced.

本発明の一実施形態に係る電力変換装置の第1の例を表した回路図である。It is a circuit diagram showing the 1st example of the power converter concerning one embodiment of the present invention. 直流電圧源間で電力転送を行う電力変換装置の一例を表した回路図である。It is a circuit diagram showing an example of a power converter which performs electric power transfer between direct-current voltage sources. 図2の回路図の動作電圧波形例を示す図である。It is a figure which shows the example of an operating voltage waveform of the circuit diagram of FIG. 本発明の一実施形態に係る電力変換装置において、各相ブリッジの負極端子からみた正極端子の電圧波形を示す図である。In the power converter device which concerns on one Embodiment of this invention, it is a figure which shows the voltage waveform of the positive electrode terminal seen from the negative electrode terminal of each phase bridge | bridging. 従来の3相交流電圧源と直流電圧源の間の電力変換回路の一例を表した回路図である。It is a circuit diagram showing an example of the power converter circuit between the conventional three-phase alternating current voltage source and direct current voltage source. 本発明の一実施形態に係る電力変換装置の第2の例を表した回路図である。It is a circuit diagram showing the 2nd example of the power converter device concerning one embodiment of the present invention.

以下、本発明による電力変換装置の一実施形態について、図面を参照して詳細に説明する。   Hereinafter, an embodiment of a power conversion device according to the present invention will be described in detail with reference to the drawings.

図2は直流電圧源間で電力転送を行う電力変換装置の一例を表した回路図である。電力変換装置100は、直流電圧源5と、電力変換部30と、直流電圧源6とを備える。相ブリッジ1は、正極端子にダイオードのカソードが接続されたスナバ付きスイッチ21と、負極端子にダイオードのアノードが接続されたスナバ付きスイッチ22とを、接続端子を介して同方向に直列接続することで構成される。同様に、相ブリッジ2はスナバ付きスイッチ23とスナバ付きスイッチ24から構成され、相ブリッジ3はスナバ付きスイッチ25とスナバ付きスイッチ26から構成され、相ブリッジ4はスナバ付きスイッチ27とスナバ付きスイッチ28から構成される。ここで、スナバ付きスイッチとは、単方向の電流をスイッチングできるスイッチング素子にダイオードを逆並列接続し、さらにコンデンサを並列接続したスイッチのことをいう。   FIG. 2 is a circuit diagram illustrating an example of a power converter that performs power transfer between DC voltage sources. The power conversion device 100 includes a DC voltage source 5, a power conversion unit 30, and a DC voltage source 6. The phase bridge 1 includes a switch 21 with a snubber whose cathode terminal is connected to the positive electrode terminal and a switch 22 with a snubber whose anode terminal is connected to the anode of the diode in series in the same direction via the connection terminal. Consists of. Similarly, the phase bridge 2 includes a switch 23 with a snubber and a switch 24 with a snubber, the phase bridge 3 includes a switch 25 with a snubber and a switch 26 with a snubber, and the phase bridge 4 includes a switch 27 with a snubber and a switch 28 with a snubber. Consists of Here, the switch with snubber means a switch in which a diode is connected in antiparallel to a switching element capable of switching a unidirectional current, and a capacitor is connected in parallel.

相ブリッジ1及び相ブリッジ2は並列接続され、相ブリッジ3及び相ブリッジ4も同様に並列接続される。相ブリッジ1及び相ブリッジ2と、相ブリッジ3及び相ブリッジ4とは、負荷を介して接続される。図2では、負荷として、外付けインダクタ11,12、及びトランス8を使用するが、その他の例として、相ブリッジ1の接続端子と相ブリッジ3の接続端子の間にインダクタを接続し、相ブリッジ2の接続端子と相ブリッジ4の接続端子とを短絡接続してもよい。   Phase bridge 1 and phase bridge 2 are connected in parallel, and phase bridge 3 and phase bridge 4 are similarly connected in parallel. The phase bridge 1 and the phase bridge 2, and the phase bridge 3 and the phase bridge 4 are connected via a load. In FIG. 2, external inductors 11 and 12 and a transformer 8 are used as loads. As another example, an inductor is connected between the connection terminal of the phase bridge 1 and the connection terminal of the phase bridge 3. The connection terminal 2 and the connection terminal of the phase bridge 4 may be short-circuited.

相ブリッジ1と相ブリッジ2の正極端子には直流電圧源5の高電位側が接続され、相ブリッジ1と相ブリッジ2の負極端子には直流電圧源5の低電位側が接続され、直流電圧源5と相ブリッジ1と相ブリッジ2からブリッジ回路が構成される。同様に、相ブリッジ3と相ブリッジ4の正極端子には直流電圧源6の高電位側が接続され、相ブリッジ3と相ブリッジ4の負極端子には直流電圧源6の低電位側が接続され、直流電圧源6と相ブリッジ3と相ブリッジ4からブリッジ回路が構成される。   The high potential side of the DC voltage source 5 is connected to the positive terminals of the phase bridge 1 and the phase bridge 2, and the low potential side of the DC voltage source 5 is connected to the negative terminals of the phase bridge 1 and the phase bridge 2. The phase bridge 1 and the phase bridge 2 constitute a bridge circuit. Similarly, the high potential side of the DC voltage source 6 is connected to the positive terminals of the phase bridge 3 and the phase bridge 4, and the low potential side of the DC voltage source 6 is connected to the negative terminals of the phase bridge 3 and the phase bridge 4. The voltage source 6, the phase bridge 3 and the phase bridge 4 constitute a bridge circuit.

トランス8の1次巻線には外付けインダクタ11と相ブリッジ2の接続端子とが接続され、外付けインダクタ11の他方には相ブリッジ1の接続端子が接続される。同様に、トランス8の2次巻線には外付けインダクタ12と相ブリッジ4の接続端子とが接続され、外付けインダクタ12の他方には相ブリッジ3の接続端子が接続される。   The primary winding of the transformer 8 is connected to the external inductor 11 and the connection terminal of the phase bridge 2, and the other external inductor 11 is connected to the connection terminal of the phase bridge 1. Similarly, the secondary winding of the transformer 8 is connected to the external inductor 12 and the connection terminal of the phase bridge 4, and the other external inductor 12 is connected to the connection terminal of the phase bridge 3.

全てのスナバ付きスイッチは、デューティー比50%の同じ周波数でスイッチングを行う。スナバ付きスイッチ22,24,26,28は、それぞれスナバ付きスイッチ21,23,25,27のデッドタイムを介した反転動作でスイッチングを行う。   All switches with snubbers perform switching at the same frequency with a duty ratio of 50%. The snubbered switches 22, 24, 26, and 28 perform switching in an inverting operation through the dead times of the snubbered switches 21, 23, 25, and 27, respectively.

図3は、図2に示す電力変換装置100の動作波形を示す図である。電圧Vは相ブリッジ2の接続端子に対する相ブリッジ1の接続端子の電圧(1次電圧)であり、半周期毎に零電圧期間が存在する。電圧Vは相ブリッジ4の接続端子に対する相ブリッジ3の接続端子の電圧(2次電圧)であり、半周期毎に零電圧期間が存在する。2次電圧Vは1次電圧Vより位相が(180度−制御角δ)だけ遅れている。制御角δは伝送電力量で決まり、制御にて与えられる。制御角δが零の場合、1次電圧Vと2次電圧Vの極性が反転する事となる。制御角δを図3のように与えると、直流電圧源5から直流電圧源6へ電力を転送することができる。 FIG. 3 is a diagram illustrating operation waveforms of the power conversion device 100 illustrated in FIG. 2. The voltage V 1 is the voltage (primary voltage) of the connection terminal of the phase bridge 1 with respect to the connection terminal of the phase bridge 2, and there is a zero voltage period every half cycle. The voltage V 2 is the voltage at the connection terminals of the phase bridge 3 for connecting terminals of a phase bridge 4 (secondary voltage), the zero voltage period exists for each half cycle. The phase of the secondary voltage V 2 is delayed from the primary voltage V 1 by (180 degrees−control angle δ). The control angle δ is determined by the transmission power amount and is given by the control. When the control angle δ is zero, the polarities of the primary voltage V 1 and the secondary voltage V 2 are reversed. When the control angle δ is given as shown in FIG. 3, power can be transferred from the DC voltage source 5 to the DC voltage source 6.

位相期間γは、1次電圧V又は2次電圧Vが直流電圧源5,6の電圧又は反転電圧を出力している位相期間である。また制御角δは、2次電圧Vが直流電圧源6の反転電圧−Eから零電圧に切替る位相から、1次電圧Vが直流電圧源5の電圧Eから零電圧に切替る位相までの期間としている。図3の1次電圧V及び2次電圧Vが切替る時刻t〜tにおける各電流I〜Iの大きさは、式(1)〜(4)で表される。また伝送電力Pは1次電圧V、2次電圧V2、及び電流Iが図3で示されるときに、1次電圧Vの波形と電流Iの波形から式(5)が導き出せる。 The phase period γ is a phase period in which the primary voltage V 1 or the secondary voltage V 2 outputs the voltage or the inverted voltage of the DC voltage sources 5 and 6. Further, the control angle δ is changed from the phase in which the secondary voltage V 2 is switched from the inverted voltage −E 2 of the DC voltage source 6 to the zero voltage, and the primary voltage V 1 is switched from the voltage E 1 of the DC voltage source 5 to the zero voltage. The period up to the phase. The magnitudes of the currents I 1 to I 4 at the times t 1 to t 8 at which the primary voltage V 1 and the secondary voltage V 2 in FIG. 3 are switched are expressed by the equations (1) to (4). Further, for the transmission power P, when the primary voltage V 1 , the secondary voltage V 2, and the current I are shown in FIG. 3, the equation (5) can be derived from the waveform of the primary voltage V 1 and the waveform of the current I.

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

ここで、角周波数ω=2πfでありfはスイッチング周波数、Lは負荷のインダクタンスであり、図2に示す例では、外付けインダクタ11,12、及びトランス8の合成インダクタンスとなる。式(5)より伝送電力Pは制御角δを使って制御できることがわかるので、制御角δは伝送電力Pの制御角として使用することができる。   Here, the angular frequency ω = 2πf, f is the switching frequency, L is the inductance of the load, and in the example shown in FIG. 2, it is the combined inductance of the external inductors 11 and 12 and the transformer 8. Since Expression (5) shows that the transmission power P can be controlled using the control angle δ, the control angle δ can be used as the control angle of the transmission power P.

1次電圧Vが零電圧から+Eへ切替る時刻tでのスイッチング動作は、スナバ付きスイッチ22がターンオフし、デッドタイム期間経過後にスナバ付きスイッチ21がターンオンする。スナバ付きスイッチ22のターンオフはスナバ付きスイッチ22のコンデンサCによってスナバ付きスイッチ22の両端の電圧の上昇率が抑制されるので、スナバ付きスイッチ22のスイッチング損失が零の零電圧スイッチングでターンオフできる。 In the switching operation at time t 1 when the primary voltage V 1 switches from zero voltage to + E 1 , the snubbered switch 22 is turned off, and the snubbered switch 21 is turned on after the dead time period elapses. Since turn-off snubber with the switch 22 is rising rate of the voltage across the snubber with the switch 22 by the capacitor C 2 of the snubber with the switch 22 is suppressed, the switching loss of the snubber with the switch 22 can be turned off at zero voltage switching of zero.

時刻tのようにスナバ付きスイッチ22がターンオフした際に電流Iの極性が負であると、電流Iはスナバ付きスイッチ21のコンデンサCとスナバ付きスイッチ22のコンデンサCへ分流し、コンデンサC,C、外付けインダクタ11,12、及びトランス8の漏れインダクタとの共振が開始する。電流IはCを充電させてCを放電し、Cの電圧がEまで充電されてCの電圧が零まで放電されるとスナバ付きスイッチ1のダイオードDが導通する。 When the polarity of the current I when the snubber with the switch 22 is turned off as the time t 1 is negative, the current I is diverted to the capacitor C 2 of the capacitor C 1 and the snubber with the switch 22 of the snubber with the switch 21, the capacitor Resonance with C 1 , C 2 , the external inductors 11 and 12, and the leakage inductor of the transformer 8 starts. Current I discharges the C 1 by charging the C 2, the voltage of C 2 conducts the diode D 1 is the the snubber with the switch 1 discharge until the voltage of the charged C 1 is zero to E 1.

この時、電流Iの絶対値が所定値Iminよりも大きければデッドタイム期間中にコンデンサCが零電圧まで放電してダイオードDを導通させることができる。そのため、スナバ付きスイッチ21のターンオン時にはダイオードDに電流が流れた状態でターンオンでき、スイッチング損失が零の零電圧スイッチングでターンオンすることができる。時刻t〜tにおいても同様な現象で零電圧スイッチングによるソフトスイッチングができる。ただし時刻t〜tの各スイッチングポイントにおいて、時刻t,t,t,tでは電流Iの極性が正、時刻t,t,t,tでは極性が負で、電流Iの絶対値が所定値Iminよりも大きい必要がある。 In this case, it is the absolute value of the current I is to conduct the diode D 1 and capacitor C 1 during the dead time period greater than the predetermined value I min is discharged to zero voltage. Therefore, at the time of turn-on of the snubber with the switch 21 be turned on in a state in which current flows through diode D 1, switching loss can be turned on at zero voltage switching of zero. It is a soft switching by zero voltage switching in the same phenomenon at time t 2 ~t 8. However at each switching point of time t 1 ~t 8, the polarity of the time t 2, t 3, t 4 , t 5 the current I is positive, the time t 1, the polarity at t 6, t 7, t 8 is negative The absolute value of the current I needs to be larger than the predetermined value Imin .

例えば、1次電圧Vが零電圧から電圧Eへ切替る時刻tで零電圧スイッチングを行う条件は、電流Iの極性が負であり、Iの絶対値が所定値Imin以上であることである。ここで所定値Iminは、デッドタイム期間中にスナバコンデンサ充放電に必要な最小電流である。IからIが所定値Imin以上になるようにするには、図3から|I|,|I|>|I|,|I|なので、|I|,|I|>Iminとすればよい。ソフトスイッチングするための条件は、式(1),(2)から式(6)のようになる。式(6)から位相期間γを求めると式(7)のようになる。式(7)は式(8)と式(9)に分解され、式(9)のGは1〜2の値をとる。 For example, conditions for the primary voltage V 1 is performing zero voltage switching at toggle its time t 1 to the voltage E 1 of the zero voltage is the polarity of the current I is negative, the absolute value of I is equal to or higher than the predetermined value I min That is. Here, the predetermined value I min is the minimum current required for charging and discharging the snubber capacitor during the dead time period. In order to make I 1 to I 4 equal to or greater than the predetermined value I min , from FIG. 3, | I 3 |, | I 4 |> | I 1 |, | I 2 |, so | I 1 |, | I 2 |> I min . Conditions for soft switching are expressed by equations (1) and (2) to equation (6). When the phase period γ is obtained from Equation (6), Equation (7) is obtained. Expression (7) is decomposed into Expression (8) and Expression (9), and G in Expression (9) takes a value of 1 to 2.

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

Figure 0006140007
Figure 0006140007

式(6),(7),(9)中のmax(E,E)は、EとEで大きいほうを選択するということを意味する。γは前述したように、直流電圧源5の電圧E又はその反転電圧−Eが1次電圧Vに出力されている位相期間であり、直流電圧源6の電圧E又はその反転電圧−EがVに出力されている位相期間でもある。式(8)のβ(本明細書において、「調整角」という)の値は大きく変動しないものなので予め求められる一定値とすると、位相期間γは調整角βを切片にもち、制御角δに比例する一次関数となり容易に求めることができる。 The max (E 1 , E 2 ) in the equations (6), (7), (9) means that the larger one of E 1 and E 2 is selected. As described above, γ is a phase period during which the voltage E 1 of the DC voltage source 5 or its inverted voltage −E 1 is output to the primary voltage V 1 , and the voltage E 2 of the DC voltage source 6 or its inverted voltage. -E 2 is also a phase period is output to the V 2. Since the value of β (referred to as “adjustment angle” in this specification) in Equation (8) does not fluctuate greatly, assuming that it is a constant value obtained in advance, the phase period γ has the adjustment angle β as an intercept and the control angle δ. It becomes a proportional linear function and can be easily obtained.

このように、調整角βと制御角δによって位相期間γを求めることができる。そのため、1次電圧Vが図3に示すような波形になるようスイッチングすれば、時刻t〜tまでの全てのスイッチングポイントにおいて絶対値が所定値Imin以上の電流Iを流すことができ、零電圧スイッチングによるソフトスイッチングが可能となる。 Thus, the phase period γ can be obtained from the adjustment angle β and the control angle δ. Therefore, if the switching is performed so that the primary voltage V 1 has a waveform as shown in FIG. 3, a current I having an absolute value equal to or greater than the predetermined value I min may flow at all switching points from time t 1 to time t 8. And soft switching by zero voltage switching is possible.

図1は、本発明の一実施形態に係る電力変換装置を表した回路図である。図1に示す電力変換装置10は、3相交流電圧源80と、3つの図2に示した電力変換部30と、直流電圧源6とを備える。接続方法は、各電力変換部30の相ブリッジ1の正極端子に3相交流電圧源80の各相を接続し、相ブリッジ1の負極端子同士を3つとも短絡接続する。また、直流電圧源6は電力変換装置10全体で1つとし、3つの相ブリッジ4のいずれか1つに並列接続される。また、相ブリッジ4の正極端子同士を3つとも短絡接続させ、同様に相ブリッジ4の負極端子同士も3つとも短絡接続させる。   FIG. 1 is a circuit diagram showing a power converter according to an embodiment of the present invention. The power converter 10 shown in FIG. 1 includes a three-phase AC voltage source 80, three power converters 30 shown in FIG. In the connection method, each phase of the three-phase AC voltage source 80 is connected to the positive terminal of the phase bridge 1 of each power conversion unit 30, and all three negative terminals of the phase bridge 1 are short-circuited. Further, the DC voltage source 6 is one for the entire power converter 10 and is connected in parallel to any one of the three phase bridges 4. In addition, all three positive terminals of the phase bridge 4 are short-circuited, and similarly, all three negative terminals of the phase bridge 4 are short-circuited.

図3に示した電圧波形と同様に、各相ブリッジ2の接続端子からの各相ブリッジ1の接続端子の電圧波形である1次電圧Vが、半周期毎に零電圧を介して、位相期間γで3相交流電圧源80の各相の電圧と該電圧の反転電圧とを交互に繰り返すように、相ブリッジ1のスナバ付きスイッチ21,22、及び相ブリッジ2のスナバ付きスイッチ23,24はスイッチングされる。また、各相ブリッジ4の接続端子からの各相ブリッジ3の接続端子の電圧である2次電圧Vが、1次電圧Vと同じ周波数で1次電圧Vより位相が(180度−制御角δ)だけ遅れて、半周期毎に零電圧を介して、位相期間γで直流電圧源6の電圧と該電圧の反転電圧とを交互に繰り返すように、相ブリッジ3のスナバ付きスイッチ25,26及び相ブリッジ4のスナバ付きスイッチ27,28はスイッチングされる。 Similar to the voltage waveform shown in FIG. 3, the primary voltage V 1 , which is the voltage waveform of the connection terminal of each phase bridge 1 from the connection terminal of each phase bridge 2, passes through the zero voltage every half cycle. The switches 21 and 22 with snubbers of the phase bridge 1 and the switches 23 and 24 with snubbers of the phase bridge 2 so that the voltage of each phase of the three-phase AC voltage source 80 and the inverted voltage of the voltage are alternately repeated in the period γ. Are switched. The secondary voltage V 2 is a voltage at the connection terminals of each phase bridge 3 from the connection terminals of each phase bridge 4, the phase from the primary voltages V 1 at the same frequency as the primary voltages V 1 (180 ° - The switch 25 with the snubber of the phase bridge 3 is alternately delayed by the control angle δ) so that the voltage of the DC voltage source 6 and the inverted voltage of the voltage are alternately repeated in the phase period γ through the zero voltage every half cycle. , 26 and switches 27, 28 with snubber of phase bridge 4 are switched.

図1に示す電力変換装置10は、図2に示す電力変換装置100と比較して、相ブリッジ1に並列に接続されるものが直流電圧源5ではなく、3相交流電圧源80の各相に接続されるという点が異なる。相ブリッジ1の負極端子は、3相交流電圧源80の中性点となる。   The power converter 10 shown in FIG. 1 is connected to the phase bridge 1 in parallel with each phase of the three-phase AC voltage source 80 instead of the DC voltage source 5 as compared with the power converter 100 shown in FIG. The difference is that it is connected to. The negative terminal of the phase bridge 1 is a neutral point of the three-phase AC voltage source 80.

図4は、各相ブリッジ1の負極端子からみた正極端子の電圧波形を示す図である。0は中性点の電位を示している。中性点の電位を図4のように下げることで、各電力変換部30の相ブリッジ1の負極端子からみた正極端子の電位は常に正となる。図4では、相ブリッジ1の負極端子からみた正極端子の最低電圧を、中性点の電位よりもさらにA[V]高いものとしている。3相交流電圧源80の電圧は、図2の回路の直流電圧源5と比べて変化量は大きくなるが、電圧極性が一定の直流電圧とみなせば、図2で示した方式によりソフトスイッチングによる電力変換が可能となる。   FIG. 4 is a diagram illustrating a voltage waveform of the positive terminal viewed from the negative terminal of each phase bridge 1. 0 indicates the neutral point potential. By reducing the potential at the neutral point as shown in FIG. 4, the potential at the positive terminal viewed from the negative terminal of the phase bridge 1 of each power converter 30 is always positive. In FIG. 4, the minimum voltage of the positive terminal viewed from the negative terminal of the phase bridge 1 is assumed to be higher by A [V] than the potential at the neutral point. The voltage of the three-phase AC voltage source 80 has a larger amount of change than the DC voltage source 5 of the circuit of FIG. 2, but if the voltage polarity is regarded as a constant DC voltage, soft switching is performed according to the method shown in FIG. Power conversion is possible.

図6は、電力変換装置10の変形例を示す回路図である。電力変換装置10は、図1に示す例では、相ブリッジ1,2と相ブリッジ3,4との間を外付けインダクタ11,12、及びトランス8を介して接続しているが、図6に示すように、外付けインダクタ7を介して接続するようにしてもよい。ただし、図1に示すようにトランス8を用いることにより、入出力間を電気的に絶縁し、安全性を高めることができる。   FIG. 6 is a circuit diagram illustrating a modification of the power conversion device 10. In the example shown in FIG. 1, the power converter 10 connects the phase bridges 1 and 2 and the phase bridges 3 and 4 via external inductors 11 and 12 and a transformer 8. As shown, it may be connected via an external inductor 7. However, by using the transformer 8 as shown in FIG. 1, the input and output can be electrically insulated and safety can be improved.

このように、本発明に係る電力変換装置は、3相交流の1次電圧源と直流の2次電圧源との間で電力転送できる電力変換装置において、スイッチング時の電流をほぼ零にして電圧の立ち上がりを鈍らせ、ソフトスイッチングを維持することができる。かくして、電磁波ノイズやスイッチング損失を大幅に低減することができる。   Thus, the power conversion device according to the present invention is a power conversion device capable of transferring power between a three-phase AC primary voltage source and a DC secondary voltage source. It is possible to maintain the soft switching by dulling the rising edge. Thus, electromagnetic noise and switching loss can be greatly reduced.

本発明は、交流電圧と直流電圧との間で電力転送を行う任意の用途に有用である。例えば、風力発電のインバータと系統電圧との間の電力転送に用いることができる。   The present invention is useful for any application that transfers power between an AC voltage and a DC voltage. For example, it can be used for power transfer between an inverter of wind power generation and a system voltage.

1〜4 相ブリッジ
5,6 直流電圧源
7,11,12 外付けインダクタ
8 トランス
10 電力変換装置
21〜28 スナバ付きスイッチ
30 電力変換部
80 3相交流電圧源
1-4 phase bridge 5,6 DC voltage source 7, 11, 12 External inductor 8 Transformer 10 Power converter 21-28 Switch with snubber 30 Power converter 80 Three-phase AC voltage source

Claims (3)

3相交流電圧源と、3つの電力変換部と、直流電圧源とを備え、スイッチング素子にコンデンサが並列接続されダイオードが逆並列接続されたスナバ付きスイッチを用いて3相交流電圧源と直流電圧源の間で電力転送を行う電力変換装置であって、
前記電力変換部は、正極端子にダイオードのカソードが接続されたスナバ付きスイッチと、負極端子にダイオードのアノードが接続されたスナバ付きスイッチとを、接続端子を介して同方向に直列接続した第1の相ブリッジ、第2の相ブリッジ、第3の相ブリッジ、及び第4の相ブリッジを有し、
前記第1の相ブリッジ及び前記第2の相ブリッジは並列接続され、前記第3の相ブリッジ及び前記第4の相ブリッジは並列接続され、前記第1の相ブリッジ及び前記第2の相ブリッジと、前記第3の相ブリッジ及び前記第4の相ブリッジとは負荷を介して接続され、
前記第1の相ブリッジは、それぞれの正極端子が前記3相交流電圧源の各相に接続され、それぞれの負極端子同士が短絡接続され、
前記第4の相ブリッジは、それぞれの正極端子同士が短絡接続され、それぞれの負極端子同士が短絡接続され、
前記第4の相ブリッジのいずれか1つに前記直流電圧源が並列接続されており、
前記第2の相ブリッジの接続端子に対する前記第1の相ブリッジの接続端子の電圧である1次電圧が、半周期毎に零電圧を介して、位相期間γで前記3相交流電圧源の電圧と該電圧の反転電圧とを交互に繰り返すように、前記第1の相ブリッジのスナバ付きスイッチ及び前記第2の相ブリッジのスナバ付きスイッチはスイッチングされ、
前記第4の相ブリッジの接続端子に対する前記第3の相ブリッジの接続端子の電圧である2次電圧が、前記1次電圧と同じ周波数で前記1次電圧より位相が(180度−制御角δ)だけ遅れて、半周期毎に零電圧を介して、前記位相期間γで前記直流電圧源の電圧と該電圧の反転電圧とを交互に繰り返すように、前記第3の相ブリッジのスナバ付きスイッチ及び前記第4の相ブリッジのスナバ付きスイッチはスイッチングされることを特徴とする電力変換装置。
A three-phase AC voltage source and a DC voltage using a switch with a snubber comprising a three-phase AC voltage source, three power converters, and a DC voltage source, with a capacitor connected in parallel and a diode connected in reverse parallel to the switching element. A power converter for transferring power between sources,
The power converter includes a first switch in which a switch with a snubber whose cathode is connected to a positive electrode terminal and a switch with a snubber whose anode is connected to a negative electrode are connected in series in the same direction via a connection terminal. A phase bridge, a second phase bridge, a third phase bridge, and a fourth phase bridge,
The first phase bridge and the second phase bridge are connected in parallel, the third phase bridge and the fourth phase bridge are connected in parallel, and the first phase bridge and the second phase bridge The third phase bridge and the fourth phase bridge are connected via a load,
In the first phase bridge, each positive terminal is connected to each phase of the three-phase AC voltage source, and each negative terminal is short-circuited,
In the fourth phase bridge, the positive terminals are short-circuited to each other, the negative terminals are short-circuited to each other,
The DC voltage source is connected in parallel to any one of the fourth phase bridges;
The primary voltage, which is the voltage of the connection terminal of the first phase bridge with respect to the connection terminal of the second phase bridge, is the voltage of the three-phase AC voltage source in the phase period γ via a zero voltage every half cycle. And the switch with snubber of the first phase bridge and the switch with snubber of the second phase bridge are switched so as to alternately repeat the voltage and the inverted voltage of the voltage,
The secondary voltage, which is the voltage of the connection terminal of the third phase bridge with respect to the connection terminal of the fourth phase bridge, has a phase that is 180 degrees minus the control angle δ at the same frequency as the primary voltage. ), And the third phase bridge snubber switch so as to alternately repeat the voltage of the DC voltage source and the inverted voltage of the voltage in the phase period γ through a zero voltage every half cycle. And the switch with a snubber of said 4th phase bridge is switched, The power converter device characterized by the above-mentioned.
前記電力変換部の前記負荷は、
前記第1の相ブリッジの接続端子に接続された第1のインダクタと、
前記第3の相ブリッジの接続端子に接続された第2のインダクタと、
前記第1のインダクタと前記第2の相ブリッジの接続端子との間に1次巻線が接続され、前記第2のインダクタと前記第4の相ブリッジの接続端子との間に2次巻線が接続されたトランスと、
を有することを特徴とする、請求項1に記載の電力変換装置。
The load of the power converter is
A first inductor connected to a connection terminal of the first phase bridge;
A second inductor connected to a connection terminal of the third phase bridge;
A primary winding is connected between the first inductor and the connection terminal of the second phase bridge, and a secondary winding is connected between the second inductor and the connection terminal of the fourth phase bridge. A transformer connected to the
The power conversion device according to claim 1, comprising:
前記位相期間γは、ゼロ以上の値を切片とした前記制御角δの一次関数であることを特徴とする、請求項1又は2に記載の電力変換装置。
3. The power converter according to claim 1, wherein the phase period γ is a linear function of the control angle δ with an intercept of a value equal to or greater than zero.
JP2013138138A 2013-07-01 2013-07-01 Power converter Active JP6140007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138138A JP6140007B2 (en) 2013-07-01 2013-07-01 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138138A JP6140007B2 (en) 2013-07-01 2013-07-01 Power converter

Publications (2)

Publication Number Publication Date
JP2015012750A JP2015012750A (en) 2015-01-19
JP6140007B2 true JP6140007B2 (en) 2017-05-31

Family

ID=52305438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138138A Active JP6140007B2 (en) 2013-07-01 2013-07-01 Power converter

Country Status (1)

Country Link
JP (1) JP6140007B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152366A1 (en) * 2015-03-24 2016-09-29 三菱電機株式会社 Power conversion device
JP6552739B2 (en) * 2016-06-30 2019-07-31 三菱電機株式会社 Parallel power supply
JP6257873B1 (en) * 2016-08-10 2018-01-10 三菱電機株式会社 Power converter
EP3499700A4 (en) * 2016-08-10 2019-07-31 Mitsubishi Electric Corporation Power conversion device
US11881785B2 (en) 2019-05-07 2024-01-23 Mitsubishi Electric Corporation Power conversion device with expanded soft switching region and simplified control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073362A (en) * 2003-08-22 2005-03-17 Rikogaku Shinkokai Power converter, motor drive arrangement, btb system, and grid-connected inverter system
JP4196867B2 (en) * 2004-03-31 2008-12-17 株式会社デンソー Bidirectional buck-boost chopper circuit, inverter circuit using the same, and DC-DC converter circuit
JP5963125B2 (en) * 2011-07-22 2016-08-03 株式会社Ihi DC power converter

Also Published As

Publication number Publication date
JP2015012750A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
US9455641B2 (en) DC/DC converter
US10211719B2 (en) Power converter
CN102624266B (en) Three-level inverter circuit
JP6706811B2 (en) Snubber circuit and power conversion system using the same
US10044278B2 (en) Power conversion device
JP6186357B2 (en) Power converter
JP6008185B2 (en) Three-level power converter and control method thereof
JP6062058B2 (en) Power converter
US20170005592A1 (en) Control method of inverter circuit
JP6140007B2 (en) Power converter
JP2008199808A (en) System-interconnected inverter arrangement
JP2015070716A (en) Dc/dc converter
KR20190115364A (en) Single and three phase combined charger
JP2016135003A (en) Dc-dc converter
JP2013074767A (en) Dc/dc converter
JP5963197B2 (en) AC / AC bidirectional power converter
JP2012191761A (en) Ac-dc conversion circuit
JP2013172530A (en) Power conversion device
JP5749853B2 (en) Power converter
JP5930978B2 (en) DC / DC converter
WO2018180275A1 (en) Ac/dc conversion circuit and power factor improvement circuit
WO2014118818A1 (en) Power conversion device
JP5423264B2 (en) Power converter
JP5546052B2 (en) Power converter
KR20170131853A (en) Dc/dc converter for reducing voltage spike of transformer secondary side

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6140007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150