Nothing Special   »   [go: up one dir, main page]

JP6027318B2 - Multistage supercharging system - Google Patents

Multistage supercharging system Download PDF

Info

Publication number
JP6027318B2
JP6027318B2 JP2012041120A JP2012041120A JP6027318B2 JP 6027318 B2 JP6027318 B2 JP 6027318B2 JP 2012041120 A JP2012041120 A JP 2012041120A JP 2012041120 A JP2012041120 A JP 2012041120A JP 6027318 B2 JP6027318 B2 JP 6027318B2
Authority
JP
Japan
Prior art keywords
pressure
pressure stage
low
compressor
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041120A
Other languages
Japanese (ja)
Other versions
JP2013177825A (en
Inventor
雅詞 貞富
雅詞 貞富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012041120A priority Critical patent/JP6027318B2/en
Publication of JP2013177825A publication Critical patent/JP2013177825A/en
Application granted granted Critical
Publication of JP6027318B2 publication Critical patent/JP6027318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

本発明は、複数段のターボチャージャから成る多段過給システムに関するものである。   The present invention relates to a multistage turbocharging system including a plurality of stages of turbochargers.

近年、低速軽負荷域での燃費向上、トルクアップや高EGR率の実現のために、ターボチャージャを二段で備えた過給システムが提案されており、この種の二段過給システムにおいては、図3に示す如く、エンジンの排気マニホールド1から送出される排気Gにより高圧段タービン2を作動させ且つ高圧段コンプレッサ3で圧縮した吸気Aをインタークーラ4を介し図示しないエンジンの吸気マニホールドへ送給する高圧段ターボチャージャ5と、該高圧段ターボチャージャ5の高圧段タービン2から送出される排気Gにより低圧段タービン6を作動させ且つ低圧段コンプレッサ7で圧縮した吸気Aを前記高圧段コンプレッサ3へ送給する低圧段ターボチャージャ8とが備えられている。尚、図3中9は外気から塵や埃を除去して清浄な吸気Aとして低圧段コンプレッサ7に導くエアクリーナを示す。   In recent years, a turbocharging system with two stages of turbochargers has been proposed in order to improve fuel efficiency, increase torque and achieve a high EGR rate in the low speed and light load range. As shown in FIG. 3, the high-pressure turbine 2 is operated by the exhaust G sent from the engine exhaust manifold 1 and the intake air A compressed by the high-pressure compressor 3 is sent to the engine intake manifold (not shown) via the intercooler 4. The high-pressure stage turbocharger 5 to be fed, and the low-pressure stage turbine 6 that is operated by the exhaust G sent from the high-pressure stage turbine 2 of the high-pressure stage turbocharger 5 and the intake air A compressed by the low-pressure stage compressor 7 And a low-pressure stage turbocharger 8 for feeding to the vehicle. 3 denotes an air cleaner that removes dust and dirt from the outside air and guides them to the low-pressure compressor 7 as clean intake air A.

而して、斯かる二段過給システムにおいては、エンジンが稼動状態である時に、排気マニホールド1から送出される排気Gが、高圧段タービン2へ流入して高圧段コンプレッサ3を駆動した後、低圧段タービン6へ流入して低圧段コンプレッサ7を駆動し、該低圧段コンプレッサ7に流入して圧縮された吸気Aは、高圧段コンプレッサ3に送給されて該高圧段コンプレッサ3で再び圧縮され、インタークーラ4を介してエンジンの吸気マニホールドへ送給されるので、エンジンの各シリンダへの吸気Aの送給量を増加して1サイクル当たりの燃料噴射量を多くすることが可能となり、これによりエンジンの出力を高めることが可能となる。   Thus, in such a two-stage turbocharging system, when the engine is in an operating state, after the exhaust G sent from the exhaust manifold 1 flows into the high-pressure turbine 2 and drives the high-pressure compressor 3, The intake air A that flows into the low-pressure turbine 6 and drives the low-pressure compressor 7 and flows into the low-pressure compressor 7 and is compressed is supplied to the high-pressure compressor 3 and is compressed again by the high-pressure compressor 3. Since it is fed to the intake manifold of the engine via the intercooler 4, it is possible to increase the amount of intake A delivered to each cylinder of the engine and increase the fuel injection amount per cycle. As a result, the engine output can be increased.

尚、前述の如き二段過給システムと関連する一般的技術水準を示すものとしては下記の特許文献1等がある。   The following Patent Document 1 is an example of a general technical level related to the two-stage supercharging system as described above.

特開2007−71179号公報JP 2007-71179 A

しかしながら、斯かる従来の二段過給システムにおいては、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速を行う際に、エンジンの排気マニホールド1からの排気Gが最初に導入される高圧段タービン2が低圧段タービン6より先に回転することになり、これにより低圧段コンプレッサ7が高圧段コンプレッサ3より遅れて回転する結果、高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10内が瞬間的に負圧となって、低圧段ターボチャージャ8の軸受から潤滑油が吸い出されてしまう問題があり、このような潤滑油の吸い出しが長期間に亘り繰り返されることで低圧段コンプレッサ7及び高圧段コンプレッサ3(吸気系路の上流側での潤滑油の漏出が下流側のコンプレッサにも影響するため)の翼車にコーキングを招いたり、その性能や信頼性を損なう虞れがあった。   However, in such a conventional two-stage turbocharging system, the exhaust G from the engine exhaust manifold 1 is first introduced when accelerating at a large rate of change, such as when suddenly starting from a stop waiting for a signal. The high-pressure turbine 2 to be rotated rotates before the low-pressure turbine 6, and as a result, the low-pressure compressor 7 rotates behind the high-pressure compressor 3. There is a problem that the inside of the intake system passage 10 connecting to the outlet instantaneously becomes negative pressure, and the lubricating oil is sucked out from the bearing of the low-pressure stage turbocharger 8. Repeated over a period of time, the low pressure compressor 7 and the high pressure compressor 3 (leakage of lubricating oil upstream of the intake system is Or led to a caulking to impeller for sound), there is a possibility that impair its performance and reliability.

更に補足して説明すれば、図4にグラフで示す通り、アクセルを踏み込んでアクセル開度を急激に上げると、これに追従してエンジンの回転数が上昇する結果、エンジン駆動によるオイルポンプの回転数も上がり、潤滑油の給油圧も直ぐに追従して上昇してくるが、低圧段コンプレッサ7によるブースト圧の上昇はターボラグにより少し遅れて上昇してくるため、高圧段コンプレッサ3の先行回転により低圧段コンプレッサ7側のブースト圧が負圧となった時点で既に給油圧は十分に高くなっており、低圧段ターボチャージャ8の軸受から低圧段コンプレッサ7側へ吸い出され易い条件が整ってしまうことになる。   As a supplementary explanation, as shown in the graph of FIG. 4, when the accelerator pedal is depressed and the accelerator opening is suddenly increased, the engine speed increases following this, resulting in the rotation of the oil pump driven by the engine. The number of oil pressure increases, and the oil supply pressure of the lubricating oil immediately rises. However, the boost pressure rise by the low pressure compressor 7 rises with a slight delay due to the turbo lag. When the boost pressure on the stage compressor 7 side becomes a negative pressure, the supply hydraulic pressure is already sufficiently high, and the conditions for facilitating the suction from the bearing of the low-pressure stage turbocharger 8 to the low-pressure stage compressor 7 side are established. become.

尚、低圧段コンプレッサ7の軸受には、該軸受から低圧段コンプレッサ7側への潤滑油の漏出を防止するシールリング(図示せず)が備えられているが、この種のシールリングは、通常の過給運転時における低圧段コンプレッサ7側からの正圧の作用によりシール機能を発揮するようになっているため、低圧段コンプレッサ7側のハウジング内が負圧になると、シールリングの機能が低下してしまう虞れがあった。   Note that the bearing of the low-pressure compressor 7 is provided with a seal ring (not shown) that prevents leakage of lubricating oil from the bearing to the low-pressure compressor 7 side. Since the sealing function is exerted by the action of positive pressure from the low-pressure stage compressor 7 during the supercharging operation, the function of the seal ring is reduced when the pressure inside the housing on the low-pressure stage compressor 7 side becomes negative. There was a fear of doing.

本発明は上述の実情に鑑みてなしたもので、加速時に各段のコンプレッサ相互間の吸気系路内が負圧となることによるターボチャージャの軸受からの潤滑油の吸い出しを防ぎ得るようにした多段過給システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and can prevent the suction of lubricating oil from the turbocharger bearing due to negative pressure in the intake system path between the compressors of each stage during acceleration. It aims at providing a multistage supercharging system.

本発明は、複数段のターボチャージャから成る多段過給システムにおいて、各段のターボチャージャのコンプレッサ相互間を繋ぐ吸気系路に、該吸気系路内が負圧になった時にのみ開いて前記吸気系路を大気開放するチェックバルブを設けたことを特徴とする多段過給システム、に係るものである。 The present invention provides a multi-stage turbocharging system comprising a plurality of stages of turbochargers, wherein the intake system connecting the compressors of each stage of the turbocharger is opened only when the pressure in the intake system becomes negative, and the intake air The present invention relates to a multi-stage supercharging system characterized in that a check valve that opens a system path to the atmosphere is provided.

而して、このようにすれば、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速が行われた際に、排気系路の上流側のタービンから順に回転が高まることで各段のコンプレッサ相互間を繋ぐ吸気系路の圧力が低下しても、該吸気系路内に負圧が生じるや否やチェックバルブが開いて大気開放されることになる。   Thus, in this way, when acceleration with a large change rate is performed, such as when suddenly starting from a stop waiting for a signal, the rotation increases in order from the turbine on the upstream side of the exhaust system path. Even if the pressure in the intake system path connecting the compressors at each stage decreases, as soon as negative pressure is generated in the intake system path, the check valve is opened and released to the atmosphere.

この結果、排気系路の上流側から二段目以降のターボチャージャの軸受から潤滑油が吸い出されることが防止され、このような潤滑油の吸い出しが長期間に亘り繰り返されることで各段のターボチャージャのコンプレッサの翼車にコーキングを招いたり、その性能や信頼性を損なったりする虞れを解消することが可能となる。   As a result, it is possible to prevent the lubricating oil from being sucked out from the second stage and subsequent turbocharger bearings from the upstream side of the exhaust system passage, and by repeating such sucking out of the lubricating oil over a long period, It is possible to eliminate the risk of coking or impairing the performance and reliability of the turbocharger compressor impeller.

尚、通常の過給運転時にあっては、各段のコンプレッサ相互間を繋ぐ吸気系路内は全て正圧となるため、チェックバルブが閉じてブースト圧が確実に保持されることになり、圧力抜け等による過給効率の低下が起こる心配はない。   During normal supercharging operation, the pressure in the intake system connecting the compressors at each stage is positive, so the check valve is closed and the boost pressure is reliably maintained. There is no concern that the efficiency of supercharging will be reduced due to omission.

また、本発明においては、エンジンから直に送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとにより二段で構成され、高圧段コンプレッサの入口から低圧段コンプレッサの出口までの間を繋ぐ吸気系路にチェックバルブが設けられていても良い。   Further, in the present invention, a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust sent directly from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a high-pressure stage of the high-pressure stage turbocharger The low-pressure stage turbocharger operates the low-pressure stage turbine by exhaust gas sent from the turbine and supplies the compressed air compressed by the low-pressure stage compressor to the high-pressure stage compressor. A check valve may be provided in an intake system path connecting between the outlets of the compressors.

上記した本発明の多段過給システムによれば、下記の如き種々の優れた効果を奏し得る。   According to the multistage supercharging system of the present invention described above, various excellent effects as described below can be obtained.

(I)加速時に各段のコンプレッサ相互間を繋ぐ吸気系路の圧力が低下しても、該吸気系路のチェックバルブが開いて前記吸気系路が大気開放され、各段のコンプレッサ相互間の吸気系路内が負圧となることを確実に回避できるので、排気系路の上流側から二段目以降のターボチャージャの軸受から潤滑油が吸い出されることを防止でき、このような潤滑油の吸い出しが長期間に亘り繰り返されることを要因として、各段のターボチャージャのコンプレッサの翼車にコーキングを招いたり、その性能や信頼性を損なったりする虞れを解消することができる。   (I) Even if the pressure of the intake system path connecting the compressors of each stage during acceleration decreases, the check valve of the intake system path is opened and the intake system path is opened to the atmosphere, and between the compressors of each stage Since it is possible to reliably avoid negative pressure in the intake system path, it is possible to prevent the lubricating oil from being sucked out from the second stage and subsequent turbocharger bearings from the upstream side of the exhaust system path. As a result of the fact that the suction is repeated over a long period of time, it is possible to eliminate the possibility of causing caulking to the impellers of the compressors of the turbochargers at each stage and impairing the performance and reliability.

(II)各段のターボチャージャのコンプレッサ相互間を繋ぐ吸気系路にチェックバルブを新たに追加装備するだけで実施することができるので、その実施コストを安価に抑制することができ、既存設備の改造も大幅なコストアップを伴うことなく実現することができる。   (II) Since it can be implemented simply by adding a new check valve to the intake system path connecting the compressors of each stage of the turbocharger, the implementation cost can be reduced at a low cost. Remodeling can also be realized without significant cost increase.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本形態例におけるブースト圧と潤滑油の給油圧との関係を示すグラフである。It is a graph which shows the relationship between the boost pressure in this example, and the oil supply pressure of lubricating oil. 従来例を示す概略図である。It is the schematic which shows a prior art example. 従来例におけるブースト圧と潤滑油の給油圧との関係を示すグラフである。It is a graph which shows the relationship between the boost pressure and the supply oil pressure of lubricating oil in a prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図3と同一の符号を付した部分は同一物を表わしている。   1 and 2 show an example of an embodiment for carrying out the present invention, and portions denoted by the same reference numerals as those in FIG. 3 represent the same items.

本形態例においては、前述した図3の従来例の場合と同様に、エンジンの排気マニホールド1から送出される排気Gにより高圧段タービン2を作動させ且つ高圧段コンプレッサ3で圧縮した吸気Aをインタークーラ4を介し図示しないエンジンの吸気マニホールドへ送給する高圧段ターボチャージャ5と、該高圧段ターボチャージャ5の高圧段タービン2から送出される排気Gにより低圧段タービン6を作動させ且つ低圧段コンプレッサ7で圧縮した吸気Aを前記高圧段コンプレッサ3へ送給する低圧段ターボチャージャ8とにより二段式の過給システムが構成されているが、高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10の途中に、該吸気系路10内が負圧になった時にのみ開いて前記吸気系路10を大気開放するチェックバルブ11を設けた点を特徴としている。 In the present embodiment, as in the case of the conventional example of FIG. 3 described above, the high-pressure turbine 2 is operated by the exhaust G sent from the exhaust manifold 1 of the engine and the intake air A compressed by the high-pressure compressor 3 is A high-pressure stage turbocharger 5 that is fed to an intake manifold of an engine (not shown) via a cooler 4, and a low-pressure stage compressor 6 that operates a low-pressure stage turbine 6 by exhaust G that is sent from the high-pressure stage turbine 2 of the high-pressure stage turbocharger 5. A two-stage supercharging system is constituted by the low-pressure stage turbocharger 8 that feeds the intake air A compressed in 7 to the high-pressure stage compressor 3. in the middle of the intake system passage 10 connecting the up, the intake system passage open only when the intake system passage 10 becomes negative pressure 0 is characterized in that provided a check valve 11 which is opened to the atmosphere.

而して、このようにすれば、信号待ちの停車状態から急発進する場合等の如き変化率の大きな加速が行われた際に、エンジンの排気マニホールド1からの排気Gが最初に導入される高圧段タービン2が低圧段タービン6より先に回転し、これにより低圧段コンプレッサ7が高圧段コンプレッサ3より遅れて回転することで、高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10の圧力が低下しても、該吸気系路10内に負圧が生じるや否やチェックバルブ11が開いて大気開放されることになる。   Thus, in this way, the exhaust G from the exhaust manifold 1 of the engine is first introduced when acceleration with a large change rate is performed, such as when suddenly starting from a stop waiting for a signal. The high-pressure stage turbine 2 rotates before the low-pressure stage turbine 6, whereby the low-pressure stage compressor 7 rotates behind the high-pressure stage compressor 3, so that the interval between the high-pressure stage compressor 3 and the low-pressure stage compressor 7 exits. Even if the pressure of the intake system path 10 connecting the two decreases, as soon as a negative pressure is generated in the intake system path 10, the check valve 11 is opened and released to the atmosphere.

即ち、図2にグラフで示す如く、アクセルが踏み込まれてアクセル開度が急激に上げられても、これに追従するエンジンの回転数や給油圧の上昇に遅れて上昇するブースト圧が加速直後に負圧に落ち込むことがなくなる。   That is, as shown in the graph of FIG. 2, even if the accelerator is depressed and the accelerator opening is suddenly increased, the boost pressure that rises behind the increase of the engine speed and the supply hydraulic pressure following the accelerator immediately increases. No negative pressure.

この結果、低圧段ターボチャージャ8(排気系路の上流側から二段目のターボチャージャ)の軸受から潤滑油が吸い出されることが防止され、このような潤滑油の吸い出しが長期間に亘り繰り返されることで低圧段コンプレッサ7及び高圧段コンプレッサ3(吸気系路の上流側での潤滑油の漏出が下流側のコンプレッサにも影響するため)の翼車にコーキングを招いたり、その性能や信頼性を損なったりする虞れを解消することが可能となる。   As a result, the lubricating oil is prevented from being sucked out from the bearing of the low-pressure stage turbocharger 8 (the second stage turbocharger from the upstream side of the exhaust system passage), and such a sucking out of the lubricating oil is repeated for a long period of time. As a result, coking of the impeller of the low-pressure compressor 7 and the high-pressure compressor 3 (because the leakage of lubricating oil on the upstream side of the intake system also affects the downstream compressor) causes its performance and reliability. It is possible to eliminate the possibility of damaging.

尚、通常の過給運転時にあっては、高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10内は全て正圧となるため、チェックバルブ11が閉じてブースト圧が確実に保持されることになり、圧力抜け等による過給効率の低下が起こる心配はない。   During normal supercharging operation, the intake valve 10 that connects between the inlet of the high-pressure compressor 3 and the outlet of the low-pressure compressor 7 is all positive, so the check valve 11 is closed and boosted. The pressure is reliably maintained, and there is no concern that the supercharging efficiency will be reduced due to a pressure drop or the like.

従って、上記形態例によれば、加速時に高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10(各段のコンプレッサ相互間を繋ぐ吸気系路)の圧力が低下しても、該吸気系路10のチェックバルブ11が開いて前記吸気系路10が大気開放され、前記吸気系路10内が負圧となることを確実に回避できるので、低圧段ターボチャージャ8の軸受から潤滑油が吸い出されることを防止でき、このような潤滑油の吸い出しが長期間に亘り繰り返されることを要因として、低圧段コンプレッサ7及び高圧段コンプレッサ3の翼車にコーキングを招いたり、その性能や信頼性を損なったりする虞れを解消することができる。   Therefore, according to the above embodiment, the pressure of the intake system path 10 (the intake system path connecting the compressors in each stage) connecting between the inlet of the high-pressure stage compressor 3 and the outlet of the low-pressure stage compressor 7 during acceleration decreases. Even so, it is possible to reliably prevent the intake system passage 10 from being opened to the atmosphere by opening the check valve 11 of the intake system passage 10 and the negative pressure in the intake system passage 10 being avoided. It is possible to prevent the lubricating oil from being sucked out from the bearings of this type, and the caulking of the impellers of the low-pressure stage compressor 7 and the high-pressure stage compressor 3 is caused by the fact that such sucking out of the lubricating oil is repeated over a long period of time. The possibility of impairing the performance and reliability can be eliminated.

また、高圧段コンプレッサ3の入口から低圧段コンプレッサ7の出口までの間を繋ぐ吸気系路10にチェックバルブ11を新たに追加装備するだけで実施することができるので、その実施コストを安価に抑制することができ、既存設備の改造も大幅なコストアップを伴うことなく実現することができる。   In addition, since it can be implemented simply by additionally installing a check valve 11 in the intake system passage 10 connecting the inlet of the high-pressure compressor 3 to the outlet of the low-pressure compressor 7, the implementation cost can be reduced at a low cost. The existing equipment can be remodeled without significant cost increase.

尚、本発明の多段過給システムは、上述の形態例にのみ限定されるものではなく、高圧段ターボチャージャと低圧段ターボチャージャとから成る二段の構成とする以外に、三段以上のターボチャージャから成るものであっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the multistage turbocharging system of the present invention is not limited to the above-described embodiment, and in addition to a two-stage configuration including a high-pressure stage turbocharger and a low-pressure stage turbocharger, a three-stage or more turbocharger system. Of course, it may be composed of a charger, and various changes can be made without departing from the scope of the present invention.

2 高圧段タービン
3 高圧段コンプレッサ
5 高圧段ターボチャージャ
6 低圧段タービン
7 低圧段コンプレッサ
8 低圧段ターボチャージャ
10 吸気系路
11 チェックバルブ
A 吸気
G 排気
2 High-pressure stage turbine 3 High-pressure stage compressor 5 High-pressure stage turbocharger 6 Low-pressure stage turbine 7 Low-pressure stage compressor 8 Low-pressure stage turbocharger 10 Intake system 11 Check valve A Intake G Exhaust

Claims (2)

複数段のターボチャージャから成る多段過給システムにおいて、各段のターボチャージャのコンプレッサ相互間を繋ぐ吸気系路に、該吸気系路内が負圧になった時にのみ開いて前記吸気系路を大気開放するチェックバルブを設けたことを特徴とする多段過給システム。 In a multi-stage turbocharging system consisting of a multi-stage turbocharger, the intake system path is opened to the intake system path connecting the compressors of each stage turbocharger only when the pressure in the intake system becomes negative, and the intake system path is opened to the atmosphere. A multistage supercharging system characterized by a check valve that opens. エンジンから直に送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとにより二段で構成され、高圧段コンプレッサの入口から低圧段コンプレッサの出口までの間を繋ぐ吸気系路にチェックバルブが設けられていることを特徴とする請求項1に記載の多段過給システム。   A high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent directly from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and exhaust gas sent from the high-pressure stage turbine of the high-pressure stage turbocharger A low-pressure stage turbocharger that operates the low-pressure stage turbine and feeds the intake air compressed by the low-pressure stage compressor to the high-pressure stage compressor, and has a structure between the inlet of the high-pressure stage compressor and the outlet of the low-pressure stage compressor. The multistage turbocharging system according to claim 1, wherein a check valve is provided in the intake system path to be connected.
JP2012041120A 2012-02-28 2012-02-28 Multistage supercharging system Active JP6027318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041120A JP6027318B2 (en) 2012-02-28 2012-02-28 Multistage supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041120A JP6027318B2 (en) 2012-02-28 2012-02-28 Multistage supercharging system

Publications (2)

Publication Number Publication Date
JP2013177825A JP2013177825A (en) 2013-09-09
JP6027318B2 true JP6027318B2 (en) 2016-11-16

Family

ID=49269687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041120A Active JP6027318B2 (en) 2012-02-28 2012-02-28 Multistage supercharging system

Country Status (1)

Country Link
JP (1) JP6027318B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307616B2 (en) * 2013-12-19 2018-04-04 ボルボ トラック コーポレイション Internal combustion engine system
JP7415068B2 (en) * 2022-03-02 2024-01-16 ヤンマーパワーテクノロジー株式会社 engine equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116753U (en) * 1990-03-13 1991-12-03
JP2819880B2 (en) * 1991-08-09 1998-11-05 トヨタ自動車株式会社 Supercharging pressure control device for turbocharged engine
JPH08232669A (en) * 1995-02-23 1996-09-10 H K S:Kk Air release valve for internal combustion engine with turbocharger
JP2010138759A (en) * 2008-12-10 2010-06-24 Isuzu Motors Ltd Supercharging system for internal combustion engine and control method therefor
JP2010190052A (en) * 2009-02-16 2010-09-02 Toyota Motor Corp Supercharging system for internal combustion engine
DE102010043027B4 (en) * 2010-10-27 2019-08-14 Mtu Friedrichshafen Gmbh Internal combustion engine
JP2012197716A (en) * 2011-03-22 2012-10-18 Hino Motors Ltd Exhaust loss recovery device

Also Published As

Publication number Publication date
JP2013177825A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US20170198631A1 (en) Charging Device for an Internal Combustion Engine and Operating Method for the Charging Device
CN104213973A (en) Turbocharged engine employing cylinder deactivation
US20120152214A1 (en) Turbocharger system
CN107135659B (en) Multi-stage jet type suction pump
WO2013032427A1 (en) Pulse turbine turbocharger and egr system
JP6027318B2 (en) Multistage supercharging system
CN107002551A (en) Two-stage exhaust gas turbocharge device for internal combustion engine
CN105937439A (en) Supercharging device for an internal combustion engine
JP2011106358A (en) Multi-stage supercharger
JP6169405B2 (en) Oil leakage prevention method and apparatus for two-stage supercharging system
WO2012114863A1 (en) Multistage supercharger structure
JP2008513672A (en) Turbocharger device for internal combustion engine
JP5655364B2 (en) Turbocharger
US9581079B2 (en) Two-stage turbocharger apparatus
CN104847480B (en) The exhaust-driven turbo-charger exhaust-gas turbo charger of two-stage supercharging
US10690044B2 (en) Engine system
EP3022431B1 (en) Aspirator and ejector system for an ic engine
JP5967062B2 (en) Turbocharger
JP6752708B2 (en) Two-stage supercharging system
JP2010138759A (en) Supercharging system for internal combustion engine and control method therefor
CN106837527A (en) Diesel engine consecutive pressurization system lubrication system
JP6780778B2 (en) Multi-stage turbocharger
CN111946445A (en) Multistage turbocharger unit, internal combustion engine and method for operating a multistage turbocharger unit
KR102109422B1 (en) Three-stage turbo-charger system and control method of the same
WO2014014569A1 (en) Turbocharger system with reduced thrust load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250