JP6018711B2 - 光断層観察装置 - Google Patents
光断層観察装置 Download PDFInfo
- Publication number
- JP6018711B2 JP6018711B2 JP2015535194A JP2015535194A JP6018711B2 JP 6018711 B2 JP6018711 B2 JP 6018711B2 JP 2015535194 A JP2015535194 A JP 2015535194A JP 2015535194 A JP2015535194 A JP 2015535194A JP 6018711 B2 JP6018711 B2 JP 6018711B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical
- light source
- signal
- observation apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 190
- 238000001514 detection method Methods 0.000 claims description 95
- 239000004065 semiconductor Substances 0.000 claims description 23
- 238000003325 tomography Methods 0.000 claims description 19
- 238000005286 illumination Methods 0.000 claims description 13
- 230000004907 flux Effects 0.000 claims description 8
- 230000014509 gene expression Effects 0.000 claims description 8
- 238000012014 optical coherence tomography Methods 0.000 description 70
- FIRHQRGFVOSDDY-UHFFFAOYSA-N ethyl 1-hydroxytriazole-4-carboxylate Chemical compound CCOC(=O)C1=CN(O)N=N1 FIRHQRGFVOSDDY-UHFFFAOYSA-N 0.000 description 66
- 239000000523 sample Substances 0.000 description 38
- 238000010586 diagram Methods 0.000 description 36
- 230000010287 polarization Effects 0.000 description 31
- 238000005259 measurement Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 210000003128 head Anatomy 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000004038 photonic crystal Substances 0.000 description 6
- 239000013074 reference sample Substances 0.000 description 6
- 230000004075 alteration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000006059 cover glass Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 210000004220 fundus oculi Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/13—Ophthalmic microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02075—Reduction or prevention of errors; Testing; Calibration of particular errors
- G01B9/02078—Caused by ambiguity
- G01B9/02079—Quadrature detection, i.e. detecting relatively phase-shifted signals
- G01B9/02081—Quadrature detection, i.e. detecting relatively phase-shifted signals simultaneous quadrature detection, e.g. by spatial phase shifting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Description
本発明は、光断層観察方法及び光断層観察装置に係り、検査物質対象の光断層方向での分布を可視化できる光学観察技術に関する。
近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成する光コヒーレンストモグラフィー(OCT:Optical Coherence Tomography)が注目を集めている。OCTは、X線CTのような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。たとえば眼科分野においては、眼底や角膜等の画像を形成する装置が実用化段階に入っている。OCTでは光源からの光を測定対象に照射する信号光と、測定対象に照射せずに参照光ミラーで反射させる参照光とに2分岐し、測定対象からの反射光である信号光を参照光と合波させ、干渉させることにより信号を得る。
OCTは測定位置の光軸方向への走査方法(以下、zスキャンと称する)により、大きくタイムドメインOCTとフーリエドメインOCTとに分けられる。図1は、タイムドメインOCTの光学系の模式図である。本方式においては、光源101として低コヒーレンス光源を使用し、測定時に参照光ミラー102を矢印103のように走査することにより測定対象104のzスキャンを行う。これにより信号光105に含まれる参照光106と光路長が一致する成分のみが干渉し、検出器107から図2に示すような検出信号が得られる。図2に示した信号に対して包絡線検波を行うことにより、図3に示すような所望の信号が復調される。
一方、フーリエドメインOCTはさらに波長走査型OCTとスペクトルドメインOCTとに分けられる。波長走査型OCTにおいては、光源として出射される光の波長を走査することが可能な波長走査型光源を使用し、測定時に光源の波長を走査することによりzスキャンがなされ、検出された干渉光強度の波長依存性(干渉スペクトル)をフーリエ変換することにより所望の信号が得られる。スペクトルドメインOCTにおいては、光源に広帯域光源を用い、生成された干渉光を分光器により分光し、各波長成分の干渉光強度(干渉スペクトル)を検出することがzスキャンを行うことに対応している。得られた干渉スペクトルをフーリエ変換することにより所望の信号が復調される。
上記の様な従来のOCT装置においては、深さ方向の空間分解能は光源のスペクトル幅によって決まっており、スペクトル幅を広げることにより高分解能化を図ってきた。
また、生体計測を目的とした高速化のニーズがあり、上記フーリエドメインOCTにて、ミラー駆動レスを実現することで測定のz軸方向の高速化が行われている(特許文献1)。また、xy軸方向の高速化では、「フルフィールド化」技術と呼ばれる面光源を用いた平面一括取得技術があり、フルフィールド化技術を利用した偏光感受型OCT装置も提案されている(特許文献2)。
また、バイオイメージングの分野にて既に用いられている光断層観察装置として、共焦点レーザ顕微鏡が知られている。共焦点レーザ顕微鏡は、高解像度のイメージと三次元情報の再構築が可能な顕微鏡の一種であり、厚く、反射面が複数存在するような複雑な構造の試料であっても歪みのない像を得られる特徴がある。観察像は微小なポイント毎に撮られた複数データをコンピュータで再構成することにより、3次元の全体画像を取得する。
共焦点顕微鏡の原理的かつ最大の特徴として、共焦点光学系が挙げられる。共焦点光学系では点光源を試料に投影し、さらに検出面と呼ばれる試料の再結像位置にピンホールと検出器(多くは光電子増倍管)を配置する。ここで、点光源・試料・ピンホール(結像面位置)がすべて共役位置にあることから共焦点(コンフォーカル)光学系と呼ばれている。このような構成を取ることで、あるレンズ位置、すなわちある焦点距離状態での試料観察像を取得する際に、異なる焦点深さからの反射光は、共焦点光学系に配置されたピンホールでカット(遮光)されるため、歪みのない像が取得できる。一方で、一般的な光学顕微鏡では検出器上に異なる焦点深さからの反射光も一緒に入射するため、歪みのある観察像となる。このように、共焦点光学系を用いて各焦点距離での画像を取得し、複数焦点距離での観察結果をコンピュータ上で再構築することで光断層観察が可能となる(非特許文献1)。
技術月刊誌 O plus E, Vol. 31 (2009), pp.636-639
上に述べた従来のOCT装置には以下のような課題がある。いずれのOCT装置も光断層観察における垂直分解能は光源の干渉性が支配的であり、高い垂直分解能を実現するために広帯域光源が必要となり、光源の大型化、光源価格の上昇を招いている。更に広帯域光源を使用することで高い平面分解能を得るために対物レンズ等を用いた際に色収差等の問題を引き起こすため、微小スポットを形成するのが難しい。更に高速化を目的としたフーリエドメインOCTでは、光源だけでなく、zスキャンを行うために高速信号源、あるいは広帯域光源を受光する分光器が必要であり、これらはいずれも高価でかつ大型であるため、OCT装置自体が高価でかつ大型になるという課題がある。
また、高速化を目的とした特許文献2のフルフィールドOCT顕微鏡では、深さ方向の情報を取得するために参照ミラーを光の波長オーダで4回走査した上で、各CCD検出器上の画素毎に信号解析(構造推定のためのフィッティング)が必要なため、データ処理の時間を含めると飛躍的な高速化の実現は困難であった。更に、装置の垂直分解能は、従来のOCT装置同様、光源の光干渉性が支配的であり、抱える課題も同じである。
一方で、共焦点顕微鏡では、ピンホールを含めた共焦点光学系を構築するために、各部品の高い位置合わせ精度が要求されるだけでなく、装置全体が大型化になるという課題がある。特に、共焦点顕微鏡での垂直分解能はピンホールによって遮光されない領域である実効検出面積が支配的である。垂直分解能向上のためには、実効検出面積を小さくする、すなわちピンホールの大きさを小さくすることが重要なため、このとき前述した課題がより困難になるだけでなく、検出光量自体も小さくなってしまう。そこで、十分な検出光量を得るために計測時間、すなわち検出光の積算時間を大きくする必要がある。
上記では高速化に主眼を置いて課題を説明したが、これら装置ではその対策として測定点を低減することで高速測定を可能とする低解像度観察手法も存在する。しかし、いずれにせよ、従来の技術では高速化、高解像度化を同時に満たすことが困難であることは自明である。
本発明はこのような事情に鑑み、以下の第1の目的及び第2の目的を有する。本発明の第1の目的は、xyz方向すなわち3次元に対し高い分解能を有し、かつ簡素な構成の光断層観察装置を提供することである。本発明の第2の目的は、高い垂直分解能を有するフルフィールド型の光断層観察装置を提供することである。
本発明者は、光干渉現象を利用したホモダイン位相ダイバーシティ検出技術(特許第4564948号公報)が、光断層観察においても有用な技術であることを見出した。
更に、本発明者は、このホモダイン・位相ダイバーシティ検出を用いた光断層観察(本明細書では、以下HOCTと云う)は、従来のOCTのみならず、同じように観察物の3次元観察可能な共焦点顕微鏡と比較しても、所定の条件を満たすことにより、3次元の高倍率観察において光軸方向、すなわち垂直分解能に対して優位性があることを発見した。
更に3次元観察の高速化を目的とした面検出によるHOCT(フルフィールドHOCT)についても、光検出器上での工夫にて高垂直分解能が実現できる構成を見出したので、続けて説明を行う。
以下、図4から図6に示す簡単なモデルにて、本発明のHOCT、従来のOCT、共焦点顕微鏡について検討する。
図4は、従来のOCT装置の構成を示した模式図である。低コヒーレンス光源4101から出射した光束はコリメートレンズ4102にて平行光となり、ビームスプリッタ(BS)にて信号光と参照光に分けられる。信号光は試料に照射され、もう一方の参照光は別の光路中に置かれたミラー4103で反射され、最終的に光検出器4104上にて光干渉する構成となっている。
図5は、本発明のHOCT装置の構成例を示した模式図である。光源4201から出射した光束をコリメートレンズ4202にて平行光とし、ビームスプリッタで信号光と参照光に分け、信号光は対物レンズ4205で収束して試料に照射し、参照光は別の光路中に置かれたミラー4203に入射させる。信号光・参照光を最終的に検出部4204で光干渉させる構成は従来のOCTと同様である。しかし、用いる光源4201が高コヒーレンス光源でも問題ない点、また検出部4204がホモダイン・位相ダイバーシティ検出と呼ばれる偏光干渉光学系と光検出器によって構成されている点が大きく異なっている。なお、光路分岐に偏光ビームスプリッタ(PBS)や、一部に1/4波長板(QWP)が置かれているのは、検出部の偏光干渉光学系に合わせたためであり、従来のOCT装置でも同様の部品を用いた光学系が存在する。
図6は、一般的な共焦点顕微鏡装置の構成を示した模式図である。光源4301から出射した光束をコリメートレンズ4302によって平行光とし、対物レンズ4305によって試料に収束させる。試料からの戻り光は対物レンズ4305及び検出レンズ4306を介して光検出器4304で検出される。ここでは比較しやすいように平行光を用いた光学系(無限系)を示したが、収束・発散光を用いた光学系(有限系)でも同様の共焦点光学系を構成することは可能である。図5の構成と大きく異なる点は、光検出器4304の検出面にピンホール4307と呼ばれる遮光体が配置されており、ピンホール4307によって観察試料の焦点面以外からの反射、散乱光が光検出器4304に入らないようになっている点である。
これら3つのモデル光学系を用いて、各方式での垂直分解能を見積もった結果を以下に示す。信号光は対物光学素子(集光レンズ)で測定対象に集光され、測定対象は焦点近傍で平らな反射面を持つ場合を考える。なお、実際の観察物は焦点深さ方向に複数の反射面を持つ集合体と考えれば良い。ここでは、ひとつの反射面からの影響を考え、対物光学素子の光軸方向の位置(焦点位置からずれ)をzとする。
(A)HOCTにおける垂直分解能
HOCTで得られる信号IHOCTは、次式(A−1)の通りである。
HOCTで得られる信号IHOCTは、次式(A−1)の通りである。
[A−1]
ここでr=(x,y)は光束断面の座標ベクトル、Dは検出領域を表し、∫Ddrは光束内全域での積分演算を意味する。また、添え字のs,rは信号光(signal)、参照光(reference)を表わす。φsは信号光波面、φrは参照光波面を表す。参照光はミラーで反射するだけであるので波面は理想状態(無収差)とみなすことができ、φr=0とする。また、簡略化のために、光束内での信号光と参照光の強度(電場振幅)分布は平らであると仮定する。このとき、式(A−1)は次式(A−2)に簡略化される。
ここでr=(x,y)は光束断面の座標ベクトル、Dは検出領域を表し、∫Ddrは光束内全域での積分演算を意味する。また、添え字のs,rは信号光(signal)、参照光(reference)を表わす。φsは信号光波面、φrは参照光波面を表す。参照光はミラーで反射するだけであるので波面は理想状態(無収差)とみなすことができ、φr=0とする。また、簡略化のために、光束内での信号光と参照光の強度(電場振幅)分布は平らであると仮定する。このとき、式(A−1)は次式(A−2)に簡略化される。
[A−2]
測定対象の反射面が対物レンズの焦点位置からずれると、信号光波面φsはデフォーカス収差を持つ。絶対値の小さい3次以上の高次成分を無視して、信号光波面φsは往復でデフォーカスの影響を受けるため、次式(A−3)で記述できる。
測定対象の反射面が対物レンズの焦点位置からずれると、信号光波面φsはデフォーカス収差を持つ。絶対値の小さい3次以上の高次成分を無視して、信号光波面φsは往復でデフォーカスの影響を受けるため、次式(A−3)で記述できる。
[A−4]
[A−5]
上式(A−2),(A−4),(A−5)と、位相ダイバーシティ検出を示す式(IHOCT=√(I2+Q2))を用いて、HOCTで得られる信号IHOCTは式(A−6)で表わすことができる。
[A−5]
上式(A−2),(A−4),(A−5)と、位相ダイバーシティ検出を示す式(IHOCT=√(I2+Q2))を用いて、HOCTで得られる信号IHOCTは式(A−6)で表わすことができる。
[A−7]
すなわち、HOCTにおける垂直分解能は、信号光の参照光による増幅度具合(波面の一致度)、言い換えると焦点深度と似た関係があることが分かる。従って、HOCTは対物光学素子のNA、すなわちレンズ倍率を大きくすればするほど、物体面の平面分解能のみならず、垂直分解能も同時に向上することができるため、観察物の高分解能3次元観察に好適な技術である。
すなわち、HOCTにおける垂直分解能は、信号光の参照光による増幅度具合(波面の一致度)、言い換えると焦点深度と似た関係があることが分かる。従って、HOCTは対物光学素子のNA、すなわちレンズ倍率を大きくすればするほど、物体面の平面分解能のみならず、垂直分解能も同時に向上することができるため、観察物の高分解能3次元観察に好適な技術である。
(B)従来のOCTにおける垂直分解能
SLD(スーパールミネッセントダイオード)を含む低干渉光のスペクトルは、次式(B−1)に示すガウス型パワースペクトル密度を取ると仮定する。
SLD(スーパールミネッセントダイオード)を含む低干渉光のスペクトルは、次式(B−1)に示すガウス型パワースペクトル密度を取ると仮定する。
[B−1]
ここで、νは光の周波数(ν=c/λ)、ν0、Δνは入射光の中心周波数及びスペクトル幅である。cは光速、λは光の波長を示す。式(B−1)で表わされる光の干渉を考えると、OCT検出部において受光される強度Idは、次式(B−2)で表わされる。
ここで、νは光の周波数(ν=c/λ)、ν0、Δνは入射光の中心周波数及びスペクトル幅である。cは光速、λは光の波長を示す。式(B−1)で表わされる光の干渉を考えると、OCT検出部において受光される強度Idは、次式(B−2)で表わされる。
[B−2]
ここで、Ir,Isはそれぞれ参照光路及び計測光路からの反射光強度であり、Er,Esはそれぞれ反射光複素振幅である。ダッシュ(’)は計測サンプルによって変化を受けたことを表す。≦≧は時間平均を示す。干渉光成分≦Er *(t+τ)Es’(t)≧は相互コヒーレンス関数として定義され、複素数同士の内積を時間平均で表わした形となる。
ここで、Ir,Isはそれぞれ参照光路及び計測光路からの反射光強度であり、Er,Esはそれぞれ反射光複素振幅である。ダッシュ(’)は計測サンプルによって変化を受けたことを表す。≦≧は時間平均を示す。干渉光成分≦Er *(t+τ)Es’(t)≧は相互コヒーレンス関数として定義され、複素数同士の内積を時間平均で表わした形となる。
計測サンプルとして理想的なミラー(反射率=1)を想定し、式(B−1)で表されるガウススペクトル光源からの光を干渉させた際の干渉光成分|G(ν)|を求める。干渉光成分|G(ν)|は、先の単一波長光源による干渉の計算を拡張することで求めることができる。すなわち、スペクトル及び強度が異なる光が無数に重ね合わされたものとして次式(B−3)で表わされる。
[B−5]
τは光が干渉する際の時間差であり、τ=(Ls−Lr)/cである。LsをLrを基準として、Ls=Lr−VT(Vは参照ミラー移動速度、Tは時間)として表せば、次式(B−6)で示すような速度に依存したものとなる。
τは光が干渉する際の時間差であり、τ=(Ls−Lr)/cである。LsをLrを基準として、Ls=Lr−VT(Vは参照ミラー移動速度、Tは時間)として表せば、次式(B−6)で示すような速度に依存したものとなる。
[B−6]
式(B−5)は、ガウス型のスペクトル分布をもつ光源は紡錘型の干渉波形(インターフェログラム)をもち、その強度は速度に依存して指数関数的な減衰をすることを示している。ガウス型のパワースペクトル分布は低コヒーレンス光源に関わらず、LED、レーザ等にもあてはまる。つまり、理想的な単一波長光源でない限り速度に依存して干渉光強度が減衰することになる。
式(B−5)は、ガウス型のスペクトル分布をもつ光源は紡錘型の干渉波形(インターフェログラム)をもち、その強度は速度に依存して指数関数的な減衰をすることを示している。ガウス型のパワースペクトル分布は低コヒーレンス光源に関わらず、LED、レーザ等にもあてはまる。つまり、理想的な単一波長光源でない限り速度に依存して干渉光強度が減衰することになる。
インターフェログラムは光源の可干渉性を示すものであり、その干渉する距離(可干渉距離)は光源のスペクトル幅に依存する。光源のスペクトル幅は理想的な単一波長光源から出射した光がその一定の周波数を維持する時間Δtに直接依存した量として解釈でき、次式(B−7)の関係を満足する。
[B−8]
ここでは、コヒーレンス長lcは、干渉光の可視度(Visibility)が√1/2となる時の光路差ΔL(=Lr−Ls)で定義した。つまり、干渉光の項を表した式(B−5)において、|G(τ)|=1/2となる時の光路差となる。このとき、(ν=c/λ)の関係を用いて、光源波長(中心波長λ0及び波長半値半幅Δλ)に対するコヒーレンス長は、次式(B−9)で表わすことができる。
ここでは、コヒーレンス長lcは、干渉光の可視度(Visibility)が√1/2となる時の光路差ΔL(=Lr−Ls)で定義した。つまり、干渉光の項を表した式(B−5)において、|G(τ)|=1/2となる時の光路差となる。このとき、(ν=c/λ)の関係を用いて、光源波長(中心波長λ0及び波長半値半幅Δλ)に対するコヒーレンス長は、次式(B−9)で表わすことができる。
[B−10]
すなわち、従来のOCTでは、波長半値半幅Δλの大きな光源を用いることで、高い垂直分解能が実現できることが分かる。なお、検出信号の信号処理によって検出可能な干渉光の可視度(Visibility)は異なる。上式(B−10)では、可視度を√1/2と仮定したが、現行製品を想定すると、可視度は√1/e2〜√1/2の範囲が望ましい。このとき式(B−10)の右辺の定数0.441に相当する定数をk1とすると、定数k1は0.441≦k1≦0.750となる。図7に、上記k1の範囲における光源波長半値半幅と垂直分解能の関係を示す。図7からも、従来OCT装置の波長半値半幅と分解能の関係が上式(B−10)と良く一致することが分かる。
すなわち、従来のOCTでは、波長半値半幅Δλの大きな光源を用いることで、高い垂直分解能が実現できることが分かる。なお、検出信号の信号処理によって検出可能な干渉光の可視度(Visibility)は異なる。上式(B−10)では、可視度を√1/2と仮定したが、現行製品を想定すると、可視度は√1/e2〜√1/2の範囲が望ましい。このとき式(B−10)の右辺の定数0.441に相当する定数をk1とすると、定数k1は0.441≦k1≦0.750となる。図7に、上記k1の範囲における光源波長半値半幅と垂直分解能の関係を示す。図7からも、従来OCT装置の波長半値半幅と分解能の関係が上式(B−10)と良く一致することが分かる。
(C)共焦点顕微鏡における垂直分解能
共焦点顕微鏡で得られる信号ICONは、直接強度検出となるため、検出器に入射する光強度の積分として次式(C−1)にて表わすことができる。
共焦点顕微鏡で得られる信号ICONは、直接強度検出となるため、検出器に入射する光強度の積分として次式(C−1)にて表わすことができる。
[C−2]
さらに、復路光学系の倍率(対物光学素子[対物レンズ]と検出系対物光学素子[検出系集光レンズ]の焦点距離の比)をMとすると、物体面と結像面の関係から、次式(C−3)のようにスポット径rs,detは結像面上、すなわち光検出器上ではM倍の大きさとなる。
さらに、復路光学系の倍率(対物光学素子[対物レンズ]と検出系対物光学素子[検出系集光レンズ]の焦点距離の比)をMとすると、物体面と結像面の関係から、次式(C−3)のようにスポット径rs,detは結像面上、すなわち光検出器上ではM倍の大きさとなる。
[C−3]
ここで簡略化のために検出器上での光の強度分布は一定であると仮定すると、結像面すなわち光検出器上での“実効的な面積S”の光検出器に入射して検出される信号ICONは、次式(C−4)となる。ここでの“実効的な面積S”とは、一般的な共焦点顕微鏡で用いられるような光検出器面上に配置されたピンホール等の遮光素子等の影響を含めた上での面積である。つまり、光検出器のサイズを小さくすればSは小さくなるし、一方で光検出器サイズを変えず光検出器上に小さなピンホールを配置してもSは小さくなる。
ここで簡略化のために検出器上での光の強度分布は一定であると仮定すると、結像面すなわち光検出器上での“実効的な面積S”の光検出器に入射して検出される信号ICONは、次式(C−4)となる。ここでの“実効的な面積S”とは、一般的な共焦点顕微鏡で用いられるような光検出器面上に配置されたピンホール等の遮光素子等の影響を含めた上での面積である。つまり、光検出器のサイズを小さくすればSは小さくなるし、一方で光検出器サイズを変えず光検出器上に小さなピンホールを配置してもSは小さくなる。
[C−5]
共焦点顕微鏡では、分解能は横倍率で規格化した光検出器の実効的な面積S/M2とNAに依存する(光検出器の実効的な面積Sが小さいほど、またNAが大きいほど分解能が上がる)ことになり、また波長λには依存しないことが分かる。
共焦点顕微鏡では、分解能は横倍率で規格化した光検出器の実効的な面積S/M2とNAに依存する(光検出器の実効的な面積Sが小さいほど、またNAが大きいほど分解能が上がる)ことになり、また波長λには依存しないことが分かる。
(D)HOCTによる高分解能化が実現される条件
以上の検討により、HOCTは下式(D−1),(D−2)を満たす場合に高い垂直分解能が得られることが分かる。
以上の検討により、HOCTは下式(D−1),(D−2)を満たす場合に高い垂直分解能が得られることが分かる。
[D−1]
[D−2]
式(D−1)で用いた0.441という定数は、式(B−9)で用いたように干渉光の可視度(Visibility)が√1/2となる時の光路差で与えられるものであり、可視度の閾値を何%まで許容するかで定数が変化するため、ここで定数k1(0.441≦k1≦0.750)を用いて再記述すると、下式(D−3),(D−4)を導くことができる。
[D−2]
式(D−1)で用いた0.441という定数は、式(B−9)で用いたように干渉光の可視度(Visibility)が√1/2となる時の光路差で与えられるものであり、可視度の閾値を何%まで許容するかで定数が変化するため、ここで定数k1(0.441≦k1≦0.750)を用いて再記述すると、下式(D−3),(D−4)を導くことができる。
[D−3]
[D−4]
すなわち、上式(D−3)は、HOCTの対物光学素子の開口数NA(対物レンズの倍率)を高くすることにより、従来OCTで得られている光源の干渉性を示す“λ/Δλ”の効果よりも優れた垂直分解能が得られることを示している。
[D−4]
すなわち、上式(D−3)は、HOCTの対物光学素子の開口数NA(対物レンズの倍率)を高くすることにより、従来OCTで得られている光源の干渉性を示す“λ/Δλ”の効果よりも優れた垂直分解能が得られることを示している。
また、上式(D−4)は、波面の立ち具合(λ/(NA√1−NA2))を選ぶことで、共焦点顕微鏡で得られている横倍率にて規格化した実効的な検出器サイズ“√S/M2”の効果よりも優れた垂直分解能が得られることを示している。これらの条件については、以下発明の具体的構成にて詳しく述べる。
なお、一例として次式(D−5)で示される範囲を選択すると、上式(D−3),(D−4)を満たすことができる。
[D−5]
400≦λ≦850(nm)
0≦Δλ≦25(nm)
0.25≦NA≦0.9
4≦S≦100(μm2)
2≦M≦10
(ただし、2≦√(S/M2)≦10(μm))
(E)フルフィールド化HOCTの構成
高速測定を実現できるOCTとしてフルフィールドOCTが知られている。従来のOCTでは平面画像取得を行う際にレーザ光を試料面上で走査していたのに対し、フルフィールドOCTではOCT同様参照光を用いた上で、信号光としては一般的な光学顕微鏡同様に照明光を用いて試料が置かれた観察面視野の全面を面検出器に再投影し、面検出器上で信号光と参照光を干渉させることで面内の信号を一括取得する。一般的なOCTにて平面画像の取得に必要な時間は、測定で用いるレーザを走査する時間、すなわち取得画像の解像度に比例した時間であった。一方、フルフィールドOCTでは適切な光学系を準備することで、取得画像の解像度は使用する面検出器のみで決めることができ、特に高解像度検出器を使用した際でも測定時間の短縮化、すなわちOCT装置の高速化が可能となる。
400≦λ≦850(nm)
0≦Δλ≦25(nm)
0.25≦NA≦0.9
4≦S≦100(μm2)
2≦M≦10
(ただし、2≦√(S/M2)≦10(μm))
(E)フルフィールド化HOCTの構成
高速測定を実現できるOCTとしてフルフィールドOCTが知られている。従来のOCTでは平面画像取得を行う際にレーザ光を試料面上で走査していたのに対し、フルフィールドOCTではOCT同様参照光を用いた上で、信号光としては一般的な光学顕微鏡同様に照明光を用いて試料が置かれた観察面視野の全面を面検出器に再投影し、面検出器上で信号光と参照光を干渉させることで面内の信号を一括取得する。一般的なOCTにて平面画像の取得に必要な時間は、測定で用いるレーザを走査する時間、すなわち取得画像の解像度に比例した時間であった。一方、フルフィールドOCTでは適切な光学系を準備することで、取得画像の解像度は使用する面検出器のみで決めることができ、特に高解像度検出器を使用した際でも測定時間の短縮化、すなわちOCT装置の高速化が可能となる。
これらフルフィールドOCTとしては、検出器にCCDカメラを使用し面光源を観察試料にあてながらOCT信号を取得することで500μm視野のxy平面画像の一括取得を行った研究報告がある(Optics Letters, Vol.23, Issue 4 (1998), pp.244-246)。また、2台のカメラを用いることで、断層画像取得に要する時間を高速化したxy平面OCT画像の一括取得を行った研究報告がある(Optics Letters, Vol.28, No.10 (2003), pp.816-818)。このとき、構成部品として従来のOCT装置と大きく異なる点は、検出器サイズである。
フルフィールド化HOCTを実現する場合でも、HOCTによる高い垂直分解能を得るために必要な条件は上式(D−3),(D−4)と同様である。ただし、検出器として、ひとつの光検出器(PD)でなく平面一括取得のために複数の検出回路が2次元配置された光検出器が必要である。代表的な光検出器としては、CCD(電荷結合素子)イメージセンサやCMOS(相補型金属酸化膜半導体電界効果トランジスタ)イメージセンサ等の撮像素子が良く知られている。これら光検出器を構成するひとつの検出回路の大きさは、数μm〜数十μmであり、一般的なPD(フォトダイオード)の数百μmと比較すると非常に小さくなる。
HOCTでは複数のPDを用いて位相の異なる干渉信号を検出することが可能であるが、フルフィールドHOCTを複数のCCDあるいはCMOS等を用いて実現する方法は、複数光検出器の位置調整が困難なだけでなく、信号取得時の複数光検出器からの信号同期等を含めて、数多くの課題が存在する。そこで、本発明者は、光検出器の検出回路の大きさが小さくなることに注目し、ひとつの光検出器にて位相ダイバーシティ検出を高分解能が維持された状態で実現する構成を見出した。
光検出器を構成する検出回路直近に、それぞれの検出回路に対し、位相の異なる光だけを通過させる素子、すなわち偏光子を配置する。配置された偏光子は、隣接検出回路(画素)毎に異なる方位を向いており、位相ダイバーシティ検出に必要な信号を2×2画素から取得できるような領域分割偏光子を光検出器上に設ける。この方式では、解像度が見かけ上半分(縦横半分)となるが、2×2画素サイズが横倍率を加味した上での光スポットに比べ小さければ、得られる像は高倍率画像に比べ大きく劣化することはない。
上記条件を次式(E−1)で表わす。
上式(E−1)と式(D−4)に注目し、規格化横倍率(√(S/M2))を消去して関係式を整理すると、フルフィールドHOCTを実現する際に好適なNAの条件を求めることができる。
[E−2]
NAの下限は式(D−1)でも規定されており、可視域から近赤外域の波長帯で考えるとNAは0.3以上が望ましいので、次式(E−3)が得られる。このNAの下限についての詳細は実施例にて詳しく述べる。
NAの下限は式(D−1)でも規定されており、可視域から近赤外域の波長帯で考えるとNAは0.3以上が望ましいので、次式(E−3)が得られる。このNAの下限についての詳細は実施例にて詳しく述べる。
(F)発明の具体的な構成
本発明では、上記第1の目的を達成するために以下の手段を用いた。
本発明では、上記第1の目的を達成するために以下の手段を用いた。
光源から出射した光束を第1と第2の光束とに分割し、第1の光束を対物光学素子によって試料に集光して照射し、試料から反射された信号光を複数の検出器に導き、第2の光束を試料に照射せずに参照光として複数の検出器に導き、複数の検出器上で信号光と参照光を両者の光学的な位相関係が互いに異なる状態で光学的に干渉させる。その後、複数の検出器からの出力を入力とする演算を行い、演算の結果を第1の光束の集光点での試料内構造を反映した検出信号として取得する。更に、試料に第1の光束を集光する位置を変えながら検出信号を取得することにより、試料の断層観察が可能となる。こうした光断層観察装置において、光源ユニットの波長をλ、波長半値半幅をΔλ、対物光学素子の開口数をNA,検出器の実効面積をS、集光面に対する検出面の検出倍率をMとするとき、式(D−3),(D−4)の関係式を満たすことで、高い垂直分解能を有する光断層観察装置を提供できる。
更に、具体的な構成として、各構成パラメータは式(D−5)を満たすようにした。この条件を満たすHOCTは、従来のOCTや共焦点顕微鏡に比べても高い垂直分解能を有している。
更に、演算の調整を行うことで、光学系が不完全又は不安定な状況においても、干渉状態によらない検出信号を得ることができる。具体的には、干渉信号を取得する検出器が4個の場合、参照光と信号光の間の位相関係は、第1の検出器上と第2の検出器上では互いに180度異なり、第3の検出器上と第4の検出器上では互いに180度異なり、第1の検出器上と第3の検出器上では90度異なるようにする。これにより、360度の位相関係のうち、90度ずつずれた4つの位相状態を同時に検出することができる。検出信号は光の位相状態の360度の変化に応じて正弦波状に変化するため、90度ずつ位相状態のずれた4つの信号を観測することで、任意の位相状態での信号状態を演算によって再現することが可能になる。すなわち任意の位相状態での安定した検出が実現される。前記の演算として、第1の検出器と第2の検出器の差動信号と、第3の検出器と第4の検出器の差動信号との2乗和とした。このとき、4つの干渉信号を取得する光学系などが理想的な状態からずれている場合にも、位相ダイバーシティ検出と呼ばれる上記演算により干渉位相に依存しない一定の出力信号を得ることができる。
更に、光源には、波長半値半幅が0≦Δλ≦25(nm)である気体レーザ、固体レーザ、半導体レーザ、SLDの点光源を用いることができる。従来のOCTとは異なり、高コヒーレント光源、すなわち単一波長光源である半導体レーザを使用することができるだけでなく、フーリエドメインOCTで必要となる波長掃引装置、あるいは分光器も不要となるため、安価で小型な光断層観察装置の提供が可能となった。
第2の目的を達成するために、一例として光断層観察装置を、光源ユニット、光ヘッドユニット、光検出ユニット、制御部、信号処理部を有する構成とし、以下の手段を用いることができる。光源ユニットはレーザ光束を出射する。光ヘッドユニットは、光源ユニットからの光束を第1の光束と第2の光束に分岐する第1の光学素子と、第1の光束を試料に集光し、反射光を受光する対物光学素子と、第2の光束の光路中に設けられた参照光束反射手段とを有する。光検出ユニットは、複数の検出素子の集合体からなる光検出器と、信号光と参照光とを光検出器面上において、複数の検出素子に互いに異なる位相関係で干渉させる干渉光検出光学系を有している。こうした光断層観察装置において、光源ユニットの波長をλ、波長半値半幅をΔλ、対物光学素子の開口数をNA,検出器の実効面積をS、集光面に対する検出面の検出倍率をMとするとき、式(D−3),(D−4),(E−3)の関係式を満たすことで、平面画像を一括取得可能な高い垂直分解能を有する光断層観察装置を提供できる。
更に、光検出器は、少なくとも4つの光電変換により光量検出可能な回路が2次元配置された光検出部と、光検出部上、もしくは手前に位相変調板が設けられており、少なくとも4つの光電変換により光量検出可能な2次元の回路は、隣接する2×2の回路毎に組み合わされている。この位相変調板は、2×2の回路の各回路に対し、信号光と参照光の干渉位相が互いに略90度の整数倍だけ異なり、信号光と参照光の干渉位相が互いに略180度異なる干渉光の対が隣接する2×2の検出回路毎に入射するよう、入射光の位相を変調する機能を有しており、光検出部を構成する回路を(M×N)個とし、各回路にて取得される信号をD(x,y)とすると、光検出器は後述する式(9)を満たすことで位相ダイバーシティ検出に必要な検出系をひとつの検出部で実現できる。これは複数検出器の煩雑な調整を不要とし、装置の小型化も同時に実現可能とする。更に、同検出器では同時に4つの位相情報を取得できるため、2×2の回路ペア毎に後述する式(10)のように位相がほぼ180度ずつ異なる干渉光の対を電流差動型の検出器で差動検出することで、位相ダイバーシティ演算の高速化が可能となる。
制御部は、光ヘッド及び対物レンズの位置と、半導体レーザの発光状態を制御する。信号処理部は位相ダイバーシティ信号処理を行い、検査対象の断層分布結果を表示部に表示する。これにより、2次元光検出器で、参照光と試料に当たって反射してきた信号光を合成し、干渉効果により増幅して検出することができるため、微小な反射信号を高S/Nで一括検出することができる。すなわち、HOCTの高速光断層観察が可能になる。
本発明の光断層観察装置に好適な光源ユニットは、波長半値半幅が0≦Δλ≦25(nm)である気体レーザ、固体レーザ、半導体レーザ、SLDの点光源を用いることができるだけでなく、波長半値半幅が0≦Δλ≦25(nm)となる発光ダイオード、面発光半導体レーザ、エレクトロルミネセンス素子等の面光源を用いることもできる。
フルフィールドHOCTでは、集光点にて面照明が必要となるため、点光源・面光源それぞれにおいて光源拡大ユニットを用いて対応する。点光源向けには、光導波路とコリメートレンズにて構成された光源拡大ユニットを使用することができる。この構成によりコリメートレンズと対物レンズの横倍率に応じて光導波路出射端面での光スポットを観察試料の集光面上に拡大投影することができる。一方で、面光源向けには、複数レンズにて構成されるビームエクスパンダにて、集光点付近にて光源出射端面での光スポットを観察試料の集光面上に拡大投影することができる。いずれの方法でも、均一な強度分布の信号光を観察試料に照射可能となる。
本発明によると、OCT、共焦点顕微鏡とは異なる手法により、高い垂直分解能が実現できる干渉型の光断層観察装置を提供できる。また、高い垂直分解能を実現可能な平面一括取得方式による干渉型の光断層観察装置を提供できる。
上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。
以下、図面を参照して本発明の実施の形態を説明する。
図8は、本実施例の光断層観察(HOCT)装置のブロック図である。この光断層観察装置は、光源ユニット601、光観察ヘッドユニット602、光検出ユニット603、制御部604、信号処理部605、及び情報入出力部606を備える。
まず、本装置にて光断層構造を観察する為の動作について説明する。制御部604に含まれるマイクロプロセッサ611は、制御信号ケーブル612にて接続された情報入出力部606に含まれる入力装置613より送られてくる、光断層観察条件に対応した測定用変調信号を作成し、変調信号をレーザドライバ614へ送信する。
光源ユニット601は、光源615を有する。光源615はレーザドライバ614から出力される変調信号にて駆動される。本実施例では、光源に波長780nmの半導体レーザを使用した。
光源615から出射した光束は、光観察ヘッドユニット602に導かれる。続いて、光観察ヘッドユニット602に導かれた光束は、λ/2板616を透過する。ここで、λ/2板616の光学軸方向は水平方向に対して22.5度に設定されており、光束の偏光方向が45度回転させられる。偏光ビームスプリッタ617は垂直偏光を反射し、水平偏光を透過する性質を有しており(以下で説明する偏光ビームスプリッタはいずれも同一の性質を有する)、偏光の回転した光は偏光ビームスプリッタ617によって反射する垂直偏光の光束と透過する水平偏光の光束とに分割される。このうち反射された光束は、第一のコリメートレンズ618によって平行光とされたのち、λ/4板(軸方向:水平偏光方向に対して45度)619を通過し、アクチュエータ620に搭載された対物レンズ621によって試料622の内部に集光される。ここで、アクチュエータ620に搭載された対物レンズ621をポジションコントローラ623からの制御信号を用いて光スポット624を光軸方向(光断層方向)に走査することで、試料622からの光断層深さに対応した反射光が得られる。本実施例では、対物レンズ621にNA=0.55の非球面プラスチックレンズを使用した。
試料622からの反射光(以後、信号光と呼ぶ)は、照射時と逆の光路を辿り、偏光ビームスプリッタ617に水平偏光の状態で入射する。一方、偏光ビームスプリッタ617を透過した光束(以後、参照光と呼ぶ)は、コリメートレンズ625で平行光束とされた後、ミラー626で正反対の方向に反射され、λ/4板627(軸方向:水平偏光方向に対して45度)を往復で通過することにより垂直偏光とされ、偏光ビームスプリッタ617に再び入射する。ここで信号光と参照光が、偏光が直交した状態で合波され、光検出ユニット603に導かれる。
光検出ユニット603に導かれた合波光束は、無偏光ハーフビームスプリッタ628によって透過光と反射光に2分割される。透過光は光学軸が水平方向に対して22.5度に設定されたλ/2板629を通過して偏光が45度回転し、ウォラストンプリズム630によってp偏光成分とs偏光成分に分離される。分離された光束は差動検出器631のフォトダイオード632,633にそれぞれ入射し、強度の差に比例した電気信号が差動検出器631から出力される。同様に、無偏光ハーフビームスプリッタ628で反射した光束は、光学軸が水平方向に対して45度に設定されたλ/4板634を通過した後にウォラストンプリズム635によって分離され、差動検出器636で検出される。後述するように、ウォラストンプリズム630,635で分離された後の光束はいずれも信号光と参照光とが干渉した干渉光であり、差動検出器631,636の出力は干渉成分を抽出したものになっている。
差動検出器631,636の出力は、信号処理部605に送られる。出力信号は、信号処理部605に備えられたデジタル信号処理回路637に送られ、ここで光断層構造を反映した反射光の光強度としての検出信号を取得できる。得られた検出信号は復調回路638で復調された後、復号回路639に送られてメモリ部640に格納される。メモリ部640に格納された検出信号は、制御部604に備えられたグラフィックプロセッサ641によって、情報入出力部606に備えられた表示デバイス642に送られ、操作者は指定した位置の光断層観察像を確認することができる。
ここで、上に述べた動作により干渉光が生成され、これによってOCTとは異なる原理で光断層構造に起因した検出信号が得られる原理について述べる。無偏光ハーフビームスプリッタ628に入射する光束は、s偏光成分として信号光を、p偏光成分として参照光を含んでいるため、この偏光状態をジョーンズベクトルで表すと次のようになる。
[式1]
ここでEsは信号光の電場、Erは参照光の電場である。また、このベクトルの第一成分はp偏光を、第二成分はs偏光を表す。この光束が無偏光ハーフビームスプリッタ628透過し、λ/2板629を通過した後のジョーンズベクトルは次式のようになる。
ここでEsは信号光の電場、Erは参照光の電場である。また、このベクトルの第一成分はp偏光を、第二成分はs偏光を表す。この光束が無偏光ハーフビームスプリッタ628透過し、λ/2板629を通過した後のジョーンズベクトルは次式のようになる。
[式4]
次に、ウォラストンプリズム635によってp偏光成分とs偏光成分に分離されるため、分離された光束の電場はそれぞれ次式のようになり、やはり信号光と参照光の重ね合わせ、すなわち干渉光となっている。
次に、ウォラストンプリズム635によってp偏光成分とs偏光成分に分離されるため、分離された光束の電場はそれぞれ次式のようになり、やはり信号光と参照光の重ね合わせ、すなわち干渉光となっている。
[式6]
上式においてΔφは参照光の位相を基準とした信号光の位相であり、これが検出されるべき変調信号である。差動検出器631,636の出力はこれらの分岐光の強度の差分に比例するため、それぞれ次式で表され、上記の干渉を表す項に比例した出力となっている。
[式7]
上記の差動検出器631,636の出力はデジタル信号処理回路637においてまずA/D変換された後、演算回路に入力され、下記の演算結果が出力される。
上式においてΔφは参照光の位相を基準とした信号光の位相であり、これが検出されるべき変調信号である。差動検出器631,636の出力はこれらの分岐光の強度の差分に比例するため、それぞれ次式で表され、上記の干渉を表す項に比例した出力となっている。
[式7]
上記の差動検出器631,636の出力はデジタル信号処理回路637においてまずA/D変換された後、演算回路に入力され、下記の演算結果が出力される。
[式8]
以上のように、信号光と参照光の干渉光を生成し、これを検出することによって信号光の強度値の平方根に比例した信号を得ることが可能である。式(8)の平方根を省略すれば、信号光の強度値に比例した信号となる。式(8)は電場の位相項を含まず、既存の光増幅技術で必要となったナノメートル精度の高度な光路長補正が不要になることを示している。つまり、本検出方法を用いることにより、簡易な光干渉増幅技術が実現されている。
以上のように、信号光と参照光の干渉光を生成し、これを検出することによって信号光の強度値の平方根に比例した信号を得ることが可能である。式(8)の平方根を省略すれば、信号光の強度値に比例した信号となる。式(8)は電場の位相項を含まず、既存の光増幅技術で必要となったナノメートル精度の高度な光路長補正が不要になることを示している。つまり、本検出方法を用いることにより、簡易な光干渉増幅技術が実現されている。
続いて、本検出技術を用いて光断層観察が可能である理由を示す。本検出手法では、対物レンズ621にて集光された光スポット624の物体面と、4つのフォトダイオード632,633の観察面は結像の関係にある。このとき、物体面から光断層方向に離れた位置では光スポット624はデフォーカスし、光の位相分布が乱れた状態となる。これは観察面となるフォトダイオード632,633上において、信号光と参照光の位相関係が乱れた状態を示しており、このとき十分な信号増幅が実現できない。一方、フォーカス状態での信号光と参照光は光検出器上で位相が揃った状態となるため、式(8)に示す信号増幅が実現される。これらの結果はすなわち、物体面に異種材料境界があるとき、すなわち反射率変化が起こるときのみ信号増幅が行われ、一方で一般的な光学観察手法においてデフォーカス状態で発生する迷光成分をカットできることを示している。
本実施例では、垂直分解能を評価するために2枚の厚み100μmのカバーガラスをシリコンオイルで挟み込んだリファレンス試料を作製した。試料が空気中に置かれた1枚のカバーガラスの場合、空気(屈折率:n=1)・ガラス(屈折率:n=1.51)界面から約4%の反射光量が得られる。しかし、本発明では生体試料のように低反射光量の検出を目的とするため、シリコンオイル(屈折率:n=1.41)・ガラス(屈折率:n=1.51)界面からの約0.1%の反射光量を評価した。2枚のカバーガラス間には何も挟んでいないためガラス間隔は数μm程度である。
図9は、本実施例のHOCTと従来のOCTとの垂直分解能を比較して示した図である。また、図中の★印は、本実施例で実現された状況を示している。図9の左には、上式(B−10)のように、光源の波長半値半幅と垂直分解能の関係をグラフ化し、従来のOCTで実現困難な領域をハッチングで示した。この領域は式(D−3)を満たす領域である。一方、図9の右には、HOCTにおけるNAと垂直分解能の関係をグラフ化した。図9右図には、式(A−7)のように、NAを高くするのに伴いHOCTの垂直分解能が向上することが示されている。ここで、HOCT垂直分解能≦15μmとなるNAは、図9の右に矢印で示した0.25≦NA≦0.9の領域となる。
図10に、図9にて★印で示した条件にて、リファレンス試料を計測した結果を示す。図10からも分かるようにHOCTでは低反射率のリファレンス試料にも関わらず、カバーガラス間隔5μmを計測することが可能であった。また、図10中の反射信号に注目して本HOCTの垂直分解能を計測したところ、2.3μmが実現できていることを確認した。
以上の結果を整理すると、図9中の★印に示したように、本実施例において、波長λ=780nm、波長半値半幅≦1nmとなる半導体レーザ、及びNA=0.55の対物レンズを用いて、従来のOCTでは実現困難である垂直分解能2.3μm(光軸(z)方向での光スポットの半値全幅FWHM)が達成された。
また、図11は本実施例のHOCTと共焦点顕微鏡の垂直分解能を比較して示した図である。図11は、上式(A−7),(C−5)に示したHOCTと共焦点顕微鏡におけるNAと垂直分解能の関係を図示したものである。図11に★印に示したように、波長λ=780nmとなる半導体レーザ、及びNA=0.55の対物レンズ、検出器サイズS=2500μm2(50μm□)のPD、検出倍率M=10となる本実施例のHOCT光学系にて達成された垂直分解能2.3μm(光軸(z)方向での光スポットの半値全幅FWHM)は、従来の共焦点顕微鏡では実現困難であることが分かる。
すなわち、図9、図10、図11からも、HOCTでは、波長半値半幅の小さな高コヒーレンス光源を用いたときでも、対物レンズのNA、検出器サイズ、検出倍率を適切に選ぶことで従来のOCT及び共焦点顕微鏡のいずれをも上回る垂直分解能が得られることが確認できた。
また、本実施例では、装置小型化、計測時間短縮化を目的として、アクチュエータ620によって対物レンズ621を光軸方向及びそれと直交する方向に駆動する。このアクチュエータは、ヨークと永久磁石からなる磁気回路と、対物レンズと駆動コイルを取付けた可動部と、この可動部を保持する固定部と、固定部に接続され可動部を弾性支持する支持部材から構成される。ヨークと永久磁石からなる磁気回路で作られる磁界の中で、コイルに電流を流すと、ローレンツ力が発生して可動部が光軸方向あるいは光軸と直交する方向に駆動される。すなわち、コイルに印加する電流を変化させることで対物レンズを走査することができるため、上記アクチュエータは光スポットを走査して光断層画像を取得するために好適である。
本実施例の光断層観察装置のブロック図は、実施例1と同じく図8である。本実施例では、光源ユニット601の光源615に波長λ=405nmの半導体レーザを、対物レンズ621にNA0.85(x100倍相当)の非球面ガラスレンズを使用し、光断層観察装置の小型化、簡素化だけでなく、高分解能化を行った。その他の基本的な構成、動作は実施例1と同じである。
図12は、本実施例のHOCTと従来のOCTの垂直分解能を比較して示した図である。図中の★印は、本実施例で実現された状況を示している。また、図13は、図12にて★印で示した条件にて、先に説明したリファレンス試料を計測した結果を示す図である。図13中の検出信号に注目してHOCTの垂直分解能を計測したところ、0.47μmが実現できていることを確認した。以上を整理すると、本実施例において、波長λ=405nm、波長半値半幅≦1nmとなる半導体レーザ、及びNA=0.85の対物レンズを用いて、従来のOCTでは実現困難である垂直分解能0.47μm(光軸(z)方向での光スポットの半値全幅FWHM)が達成された。このように、汎用性の高い半導体レーザを用いて垂直分解能≦1μmを実現できるのは、位相ダイバーシティ検出の特徴である。
図14は、本実施例のHOCTと共焦点顕微鏡の垂直分解能を比較して示した図である。図14に★印で示したように、波長λ=405nmの半導体レーザ、NA=0.85の対物レンズ、検出器サイズS=1600μm2(40μm□)のPD、検出倍率M=10である本実施例のHOCT光学系で達成された垂直分解能0.47μm(光軸(z)方向での光スポットの半値全幅FWHM)は、共焦点顕微鏡でも実現困難であることが分かる。
すなわち、図12、図13、図14からも、HOCTでは、波長半値半幅の小さな高コヒーレンス光源を用いたときでも、対物レンズのNA、検出器サイズ、検出倍率を適切に選ぶことで従来のOCT及び共焦点顕微鏡のいずれをも上回るだけでなく、従来の光学計測技術では難しいとされる≦0.5μmの垂直分解能が得られることが確認できた。
実施例2では、従来のOCTと比べ優位性が明確であるHOCT垂直分解能≦7.5μmとなるNAは、図12から0.25≦NA≦0.9の領域となる。HOCTにおける垂直分解能は光源の波長λに比例するため、実施例1に比べ波長が約半分になったのと同じように、半分の大きさの垂直分解能を満たすNAが、実施例1と実施例2で同じ範囲(0.25≦NA≦0.9)となるのは上式(A−3)からも自明である。すなわち、実施例1および実施例2からも、光源の波長によらずHOCTが従来のOCTよりも高分解能を示すために必要なNAの下限値はNA≧0.25であることが分かる。
実施例1及び実施例2の結果を踏まえ、同様のNAの範囲(0.25≦NA≦0.9)、及び測定波長400nm≦λ≦850nm、波長半値半幅0≦Δλ≦25nmを個別に設定したとき、次式に示すような検出系、検出器サイズS、検出倍率Mを満たせば、常に式(D−3),(D−4)が成立することになる。
400≦λ≦850(nm)
0≦Δλ≦25(nm)
0.25≦NA≦0.9
4≦S≦100(μm2)
2≦M≦10
(ただし、2≦√(S/M2)≦10(μm))
このように上式でHOCT系の個別光学系の構成パラメータを独立で定義できることにより、煩雑な式(D−3),(D−4)をチェックすることなく、簡易な部品選定で高い垂直分解能を可能な光断層観察装置が提供できる。
0≦Δλ≦25(nm)
0.25≦NA≦0.9
4≦S≦100(μm2)
2≦M≦10
(ただし、2≦√(S/M2)≦10(μm))
このように上式でHOCT系の個別光学系の構成パラメータを独立で定義できることにより、煩雑な式(D−3),(D−4)をチェックすることなく、簡易な部品選定で高い垂直分解能を可能な光断層観察装置が提供できる。
図15は、本実施例の光断層観察装置のブロック図である。本実施例では、光源ユニット1101、光観察ヘッドユニット1102、光検出ユニット1103をモジュール化し、その他の構成は実施例1、2と同じとした。更に本実施例では、HOCTの高速化を目的に観察試料上の焦点面(xy平面)でのHOCT信号取得可能なフルフィールド型を実現する構成とした。フルフィールド型HOCTと、今までのOCTの光学系の構成として異なる点は、光源ユニットと光検出ユニットの構成である。以下で、その構成について詳しく述べる。光観察ヘッド1102内の構成は、実施例1、2とほぼ同じであるため数式等での説明は省略する。
本実施例で用いた光源ユニット1101は、光源1104として、スポット径20μmの面光源である波長λ=520nm、波長半値半幅10nmの発光ダイオード(LED)を使用した。フルフィールド型では、観察領域全体に照明照射する必要があるため、照明サイズを観察視野(本実施例では200μm)と同じ大きさにしなくてならない。LEDのスポット径20μmを観察試料上の焦点面で200μmに拡大するために、本実施例ではビームエクスパンダと呼ばれる1対のレンズペアを使用した。
一般的に用いられるビームエクスパンダとして、図17にケプラー型ビームエクスパンダのブロック図を、図18にガリレー型ビームエクスパンダのブロック図を示す。また、
図19に各種ビームエクスパンダの比較表を示す。図17から図19に示した様に、使用するレンズの種類の違いによってビームエクスパンダの方式が異なり、ビームエクスパンダユニットの全長が異なることが分かる。本実施例では光学系の小型化を目的とし、×10倍のビーム径拡大が可能なビームエクスパンダにおいて、ビームエクスパンダ全長Lが90mmと短くすることができるガリレー型を採用した。用いたレンズ1の焦点距離f1は−10mmであり、レンズ2の焦点距離f2は100mmである。
図19に各種ビームエクスパンダの比較表を示す。図17から図19に示した様に、使用するレンズの種類の違いによってビームエクスパンダの方式が異なり、ビームエクスパンダユニットの全長が異なることが分かる。本実施例では光学系の小型化を目的とし、×10倍のビーム径拡大が可能なビームエクスパンダにおいて、ビームエクスパンダ全長Lが90mmと短くすることができるガリレー型を採用した。用いたレンズ1の焦点距離f1は−10mmであり、レンズ2の焦点距離f2は100mmである。
もちろん、サイズ等の制約がなければケプラー型を用いても良いし、2枚以上のレンズ組合せによるビームエクスパンダを使用してもよい。ケプラー型であれば入手しやすい凸レンズを用いることができる利点があり、2枚以上のレンズ組合せによるビームエクスパンダであれば、ビーム径拡大の大きさを後から調整可能な光学系を構築することも可能である。
光源1104から出射した光は、コリメートレンズ1105にて平行光に変換され、前述したビームエクスパンダユニット1106にてビーム径が拡大され、λ/2板1107にて偏光方向が調整される。このλ/2板1107通過後の表面に焦点を結ぶように対物レンズ1108を配置する。対物レンズ1108を通過した光束は、偏光ビームスプリッタ1109にて信号光と参照光に分離され、信号光はλ/4板1110にて円偏光に変換され、対物レンズ1111によって試料1112に照射される。試料1112からの反射信号は、再びλ/4板1110を通過し、偏光ビームスプリッタ1109を介し、偏光が90度回転した状態で光検出ユニット1103側と導かれる。一方で、参照光は、λ/4板1110にて円偏光に変換された後に集光レンズ1113にてミラー1114上で集光する構成とした。
ここで、対物レンズ1111と集光レンズ1113は同じ仕様のレンズを選択することが好ましい。本実施例では、面照明を用いているため、それぞれの光学部品が持つ光軸外の収差が問題となる。そこで、同様の光学部品を通過するように信号光、参照光の光学系を設計すれば、これら収差を含めた上で干渉光学系を簡素に構築することが可能となる。
ミラー1114にて反射された光は、再びλ/4板1110を通過し、信号光と同様に偏光ビームスプリッタ1109を介し、偏光が90度回転した状態で光検出ユニット1103側と導かれている。これら信号光・参照光が偏光ビームスプリッタ1109にて合波された後、再度λ/4板1110を通過させ、円偏光に変換した後、検出レンズ1115にて光検出ユニット内で集光させるようにした。これは後述する光検出ユニット1103内にて簡素な構成で4種類の光干渉信号取得する為の前準備である。光検出ユニット1103は、位相変調板1116と光検出器1117を備える。
また、本実施例では、対物レンズ1108と対物レンズ1111も同じ仕様のレンズを選択した。このふたつのレンズのNA比、すなわち倍率によって、観察試料上の焦点面における照明サイズが決定される。本実施例では、同じ仕様のレンズを選択したため、ここでの倍率は×1である。このため、観察試料上の焦点面における照明サイズは、λ/2板1107通過後の光束径と同じく200μmであった。
4種類の光干渉信号取得する為に用いた位相変調板1116は、通過した光束に対し偏光子として作用する。この位相変調板1116を通過した光束を、光検出器1117で一括して面受光することで、ホモダイン位相ダイバーシティ信号生成に必要な複数の光干渉信号を取得できる。この光検出ユニットの詳しい機能について、図16を用いて説明する。図16は、本実施例の光断層観察装置における位相変調板の概略図である。位相変調板は、領域毎に異なる構造のフォトニック結晶偏光子で構成される。フォトニック結晶とは、周期構造中で起きる光の多重反射(ブラッグ反射)によってその光学特性を制御できる素子である。基板平面での配置は、パターン形成(リソグラフィ描画等)を半導体プロセス技術で実現しているため、波長オーダ、サブミクロンオーダの多次元周期構造を領域を自由に設定して作製することができる。
本実施例では、位相変調板として、自己クローニング法にて作製された領域分割偏光子、マイクロレンズアレイ一体化素子を採用した。それぞれの領域毎に異なる方位の偏光子がフォトニック結晶にて作り込まれており、各偏光子を通過した光束は、マイクロレンズアレイによってCCD面上に設けた各検出回路(各画素)へ導かれる構成となっている。この位相変調板とCCDを組み合わせると、CCD(2×2)画素毎に0度、45度、90度、135度の4領域(方向)分の偏光子を1ユニットとして、次式に示すような異なる光干渉信号を取り出すことができる。本実施例では、位相板と偏光ビームスプリッタの組合せでなく、異なる配向軸方位を持つ集積偏光板を使用したが、前者は位相板によって偏光方位を回転させPBSで各々の偏光成分を分離するのに対し、後者は配向軸方位以外の偏光成分を偏光板でカットすることにより検出器上では所望の偏光成分のみを検出できるため、位相変調する機能は変わらず[式3][式5]と同じように[式9]が得られることとなる。
[式10]
なお、本実施例では位相変調板にフォトニック結晶偏光子を利用したが、領域分割された偏光フィルタや、回折格子を用いても良い。集積化の観点ではフォトニック結晶偏光子とマイクロレンズアレイ、CCDを一体化することが好ましいが、光観察ユニット側に位相波長板を移動することも可能である。光観察ユニット側に対物レンズペア追加にて、もうひとつ結像面を作り、その結像面に上記領域分割された偏光フィルタや回折格子を挿入しても同様の効果が得られる。フォトニック結晶偏光子と比べ、作製が容易である点、もうひとつの結像面での倍率を大きくすることで、これら領域分割された偏光フィルタや回折格子の位置調整のトレランス(許容度)を大きくできる利点がある。
なお、本実施例では位相変調板にフォトニック結晶偏光子を利用したが、領域分割された偏光フィルタや、回折格子を用いても良い。集積化の観点ではフォトニック結晶偏光子とマイクロレンズアレイ、CCDを一体化することが好ましいが、光観察ユニット側に位相波長板を移動することも可能である。光観察ユニット側に対物レンズペア追加にて、もうひとつ結像面を作り、その結像面に上記領域分割された偏光フィルタや回折格子を挿入しても同様の効果が得られる。フォトニック結晶偏光子と比べ、作製が容易である点、もうひとつの結像面での倍率を大きくすることで、これら領域分割された偏光フィルタや回折格子の位置調整のトレランス(許容度)を大きくできる利点がある。
本実施例では、光検出器1117に1/2型CCDイメージセンサを用いた。CCD画素数は縦×横:640×480である。もちろん、これよりも大きな画素数を選んでも良いが、HOCT光学系の空間分解能よりも小さな画素サイズで信号検出しても、劇的な画質改善が見込まれないだけでなく、信号処理時間や消費エネルギーの観点でデメリットが生じる。ここでは、対物レンズのNAを0.5、CCD1画素あたりの検出器サイズS=100μm2(10μm□)、検出倍率を4とすることで、式(D−3),(D−4),(E−3)の条件を満たす様にした。本実施例では、観察面上で200μmであった照明は、CCD検出面上では800μmとなり、これはちょうどCCDイメージセンサの対角線の長さに相当する。
照明サイズをLFWHMとすると、次式を満たすようにするとよい。
LFWHM≧{√S×√(O2+P2) }/M
M:検出倍率
S:光検出器を構成する一画素分の検出器面積
(O×P):光検出器を構成する光検出素子の個数
今回は、信号品質を考慮して光検出器にCCDを採用したが、光検出器にはCMOSイメージセンサ等他の固体撮像素子を用いても良い。CMOSは、安価に製造できるだけでなく、高速応答性や低電圧駆動等のメリットがある。
M:検出倍率
S:光検出器を構成する一画素分の検出器面積
(O×P):光検出器を構成する光検出素子の個数
今回は、信号品質を考慮して光検出器にCCDを採用したが、光検出器にはCMOSイメージセンサ等他の固体撮像素子を用いても良い。CMOSは、安価に製造できるだけでなく、高速応答性や低電圧駆動等のメリットがある。
図20は、本実施例のHOCTと従来のOCTの垂直分解能を比較して示した図である。また、図中の★印は、本実施例で実現された状況を示している。ここで、図20中の★印に注目すると、本実施例において、波長λ=520nm、波長半値半幅=10nmとなる半導体レーザ、及びNA=0.5の対物レンズを用いて、従来のOCTでは実現困難である垂直分解能1.84μm(光軸(z)方向での光スポットの半値全幅FWHM)が達成できた。
図21は、本実施例のHOCTと共焦点顕微鏡の垂直分解能を比較して示した図である。ここで、図21中の★印に注目すると、本実施例において、波長λ=520nmとなる半導体レーザ、及びNA=0.5の対物レンズ、1画素あたりの検出器サイズS=100μm2(10μm□)のCCD、検出倍率M=4となるHOCT光学系にて、共焦点顕微鏡でも実現困難である垂直分解能1.84μm(光軸(z)方向での光スポットの半値全幅FWHM)が達成できた。
本実施例では、実施例3同様フルフィールド型を実現する構成としたが、光源に半導体レーザ(LD)を使用した点が異なる。図22は、本実施例の光断層観察装置における光源ユニットのブロック図である。本実施例では、光源ユニット1501に、光源1502として、出射スポット径2μmの点光源である波長λ=520nm、波長半値半幅≦1nmのLDを使用した。なお、点光源であれば、気体レーザ、固体レーザ等も使用することができる。これらの光源は、サイズ・消費電力は増大するが、出力を大きくできる、波長半値半幅が小さくできる等の利点がある。
この点光源をフルフィールド化するためには、面光源への変換が必要となる。しかし、実施例3で用いたビームエクスパンダをそのまま適用すると、必要となる拡大倍率が×100となり現実的な光学系のサイズでなくなってしまう。そこで本実施例では、光源1502から出射したレーザ光を、カップリングレンズ1503を用いて光導波路1504へ結合する構成とした。このとき、光導波路1504の出射端面では光導波路のコア径に近い光スポット、すなわち面光源を得ることができる。この光スポットは空気中に対しては光導波路のコア/クラッド屈折率比に応じた広がり角を持つ発散光となるため、コリメートレンズ1505を用いて平行光として、光観察ユニットへ導く構成とした。このような構成とすることで、(1)光導波路の設計(コア径、コア/クラッド屈折率比)にて面光源の簡易設計が可能になる、(2)コリメートレンズと対物レンズの選択で面光源の拡大/縮小比が調整できる、という利点が生まれた。特に半導体レーザ等の点光源の大きさは一般的には数μm程度であるため、例えば視野500〜600μmを照らすためには、スポットサイズを100倍以上大きくする必要があり、単純な複数レンズ組合せによるスポット拡大では光学系の大型化を招いてしまう。一方、本実施例であれば、一度光導波路にて数十倍に大きくした上で、コリメートレンズ・対物レンズにて数倍のスポットサイズ調整を行えばよい。本実施例では、光導波路1504としてNA0.22のコア径200μmであるマルチモードファイバを使用した。光導波路1504の端面からは、広がり角(NA0.22)を持った光が出射するが、それよりもNAの大きなNA0.5のコリメートレンズ1505にて平行光とすることで、実施例3同様に200μmのビーム径を持つ照明光が形成できた。
その他本実施例の基本的な構成、動作は実施例3と同じである。本実施例において、点光源である半導体レーザを用いても、光源拡大ユニットにて簡易な面照明が実現できるため、高速化可能なフルフィールドOCTが実現できた。また、半導体レーザを使用できることで、長い可干渉長(コヒーレンス長)を活かして、干渉光学系の部品調整精度をmmオーダまで緩和することが可能である。これはHOCTを用いた光断層装置の低コスト化に寄与する。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本発明によると、実際の光学系に生じる様々な特性のばらつきに影響を受けることなく、安定した増幅信号を出力でき、高い垂直分解能を有する干渉型の光断層観察装置を提供することが可能となる。また、高い垂直分解能を有しつつ高速化可能な干渉型のフルフィールド光断層観察装置を提供できる。
601:光源ユニット、602:光観察ヘッドユニット、603:光検出ユニット、604:制御部、605:信号処理部、606:情報入出力部、615:光源、620:アクチュエータ、621:対物レンズ、622:試料、624:光スポット、626:ミラー、630,635:ウォラストンプリズム、631,636:差動検出器、1116:位相変調板、1117:光検出器、1504:光導波路
Claims (12)
- レーザ光を出射する光源と、
前記光源から出射した光束を第1の光束と第2の光束とに分割する光学素子、前記第1の光束を試料に集光して照射し試料から反射された反射光を信号光として受光する対物光学素子、前記第2の光束の光路中に設けられ前記第2の光束を参照光として反射させる反射素子、及び前記信号光と前記参照光とを合波する光学素子を備える光学系と、
複数の光検出器と、
前記合波された光束を前記複数の光検出器に導き、各検出器上において前記信号光と前記参照光を互いに異なる位相関係で干渉させる干渉光学系と、
試料に照射する前記第1の光束の集光位置を制御する制御部と、
前記複数の光検出器の出力を入力とする演算を行い前記信号光に対応する検出信号を取得する演算回路とを有し、
前記レーザ光の波長をλ、波長半値半幅をΔλ、前記対物光学素子の開口数をNA、前記光検出器の実効面積をS、集光面に対する検出面の検出倍率をMとするとき、次式を満たすことを特徴とする光断層観察装置。
- 請求項1記載の光断層観察装置において、
400≦λ≦850(nm)
0≦Δλ≦25(nm)
0.25≦NA≦0.9
4≦S≦100(μm2)
2≦M≦10
(ただし、2≦√(S/M2)≦10(μm))
を満たすことを特徴とする光断層観察装置。 - 請求項1記載の光断層観察装置において、
前記対物光学素子は対物レンズであり、前記制御部は前記対物レンズによる集光位置を走査するために前記対物レンズを光軸方向に移動させることを特徴とする光断層観察装置。 - 請求項1記載の光断層観察装置において、
前記光検出器の個数は4個であり、
前記4個の光検出器上での前記信号光と前記参照光の干渉位相が互いに略90度の整数倍だけ異なり、
前記信号光と前記参照光の干渉位相が互いに略180度異なる干渉光の対を差動検出器によって検出することを特徴とする光断層観察装置。 - 請求項1記載の光断層観察装置において、
前記光源は、波長半値半幅が0≦Δλ≦25(nm)である気体レーザ、固体レーザ、半導体レーザ、スーパールミネッセントダイオードのいずれかであることを特徴とする光断層観察装置。 - レーザ光を出射する光源と、
前記光源から出射した光束を第1の光束と第2の光束とに分割する光学素子、前記第1の光束を試料に集光して面照明として照射し試料から反射された反射光を信号光として受光する対物光学素子、前記第2の光束の光路中に設けられ前記第2の光束を参照光として反射させる反射素子、及び前記信号光と前記参照光とを合波する光学素子を備える光学系と、
2次元的に配置された複数の光検出素子を備える光検出器と、
前記合波された光束を前記光検出器に導き、前記光検出器の複数の検出素子上において前記信号光と前記参照光を互いに異なる位相関係で干渉させる干渉光学系と、
試料に照射する前記第1の光束の集光位置を制御する制御部と、
前記複数の光検出器の出力を入力とする演算を行い前記信号光に対応する検出信号を取得する演算回路とを有し、
前記レーザ光の波長をλ、波長半値半幅をΔλ、前記対物光学素子の開口数をNA、前記光検出器上の検出素子面積をS、集光面に対する検出面の検出倍率をMとするとき、
次式を満たすことを特徴とする光断層観察装置。
- 請求項6記載の光断層観察装置において、
前記NAは、
0.250≦NA≦0.574
を満たすことを特徴とする光断層観察装置。 - 請求項6記載の光断層観察装置において、
前記光検出器の個数は1個であり、前記光検出素子は隣接する2×2個毎に組み合わされ、
前記光検出器は、検出面の手前に配置された位相変調板を有し、
前記位相変調板は、前記2×2個の光検出素子に対し、前記信号光と前記参照光の干渉位相が互いに略90度の整数倍だけ異なり、前記信号光と前記参照光の干渉位相が互いに略180度異なる干渉光の対が前記隣接する2×2の光検出素子毎に入射するよう、入射光の位相を変調する機能を有しており、
前記光検出器を構成する前記光検出素子の個数を(O×P)個とし、前記光検出器上の位置(x,y)に配置された光検出素子によって取得される信号をD(x,y)とするとき、次式を満たすことを特徴とする光断層観察装置。
- 請求項6記載の光断層観察装置において、
前記光源は波長半値半幅が0≦Δλ≦25(nm)である気体レーザ、固体レーザ、半導体レーザ、スーパールミネッセントダイオード、発光ダイオード、面発光半導体レーザ、エレクトロルミネセンス素子のいずれかと、光源拡大ユニットとを備え、
前記光源拡大ユニットは、前記光源が形成する観察試料における焦点面上での照明スポットサイズを前記光検出器全面にて検出可能な大きさよりも拡大して試料に対し面照射することを特徴とする光断層観察装置。 - 請求項10記載の光断層観察装置において、
前記光源拡大ユニットは光導波路とコリメートレンズを有し、
前記光導波路にカップリングした前記光源からの出射光スポットを前記コリメータレンズにて平行光とし、前記対物光学素子にて集光することにより、前記コリメータレンズと前記対物光学素子の横倍率に応じて前記光導路出射端面での光スポットを試料の集光面上に拡大投影することを特徴とする光断層観察装置。 - 請求項10記載の光断層観察装置において、
前記光源拡大ユニットは複数レンズにて構成されるビームエクスパンダであり、
前記ビームエクスパンダの横倍率に応じて前記光源の出射端面での光スポットを試料の集光面上に拡大投影することを特徴とする光断層観察装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/073741 WO2015033394A1 (ja) | 2013-09-04 | 2013-09-04 | 光断層観察装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6018711B2 true JP6018711B2 (ja) | 2016-11-02 |
JPWO2015033394A1 JPWO2015033394A1 (ja) | 2017-03-02 |
Family
ID=52627904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015535194A Expired - Fee Related JP6018711B2 (ja) | 2013-09-04 | 2013-09-04 | 光断層観察装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9625380B2 (ja) |
JP (1) | JP6018711B2 (ja) |
WO (1) | WO2015033394A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6578631B2 (ja) * | 2014-07-09 | 2019-09-25 | セイコーエプソン株式会社 | 照明装置およびプロジェクター |
WO2017158697A1 (ja) | 2016-03-14 | 2017-09-21 | オリンパス株式会社 | 画像取得方法および画像取得装置 |
US11561084B2 (en) | 2017-04-19 | 2023-01-24 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Polarization sensitive devices, methods and applications |
US10732424B2 (en) * | 2018-02-15 | 2020-08-04 | Kla Corporation | Inspection-beam shaping on a sample surface at an oblique angle of incidence |
CN108388016A (zh) * | 2018-05-16 | 2018-08-10 | 北京图湃影像科技有限公司 | 一种基于渐变折射率透镜的OCT光学4f扩束系统 |
JP2020067538A (ja) * | 2018-10-23 | 2020-04-30 | 国立大学法人 東京大学 | 顕微鏡及び顕微法 |
USD950618S1 (en) * | 2019-12-23 | 2022-05-03 | Acucela Inc. | Optical coherence tomography system |
CN113124751B (zh) * | 2019-12-31 | 2022-07-29 | 上海微电子装备(集团)股份有限公司 | 一种散射测量装置及散射测量方法 |
EP4458251A1 (en) * | 2023-05-02 | 2024-11-06 | Sharpeye | System and method for in vivo cellular resolution transmission interference imaging of an eye |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001527659A (ja) * | 1997-05-16 | 2001-12-25 | マサチューセッツ インスティチュート オブ テクノロジー | 格子ベース位相制御光学遅延線 |
JP2008298767A (ja) * | 2007-05-02 | 2008-12-11 | Canon Inc | 光干渉断層計を用いた画像形成方法、及び光干渉断層装置 |
JP2009505073A (ja) * | 2005-08-09 | 2009-02-05 | ザ ジェネラル ホスピタル コーポレイション | 光コヒーレンストモグラフィにおいて偏光に基づく直行復調を実行する装置、方法及び記憶媒体 |
JP2012202761A (ja) * | 2011-03-24 | 2012-10-22 | Nikon Corp | 光干渉断層撮影装置 |
JP2013128272A (ja) * | 2011-11-18 | 2013-06-27 | Asahi Glass Co Ltd | 光受信装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19814057B4 (de) | 1998-03-30 | 2009-01-02 | Carl Zeiss Meditec Ag | Anordnung zur optischen Kohärenztomographie und Kohärenztopographie |
JP4045140B2 (ja) | 2002-06-21 | 2008-02-13 | 国立大学法人 筑波大学 | 偏光感受型光スペクトル干渉コヒーレンストモグラフィー装置及び該装置による試料内部の偏光情報の測定方法 |
JP4564948B2 (ja) | 2006-09-11 | 2010-10-20 | 株式会社日立製作所 | 光情報検出方法、光ヘッド及び光ディスク装置 |
EP2828614B1 (en) * | 2012-03-21 | 2018-09-05 | Ramot at Tel-Aviv University Ltd. | Portable interferometric device |
-
2013
- 2013-09-04 US US14/904,208 patent/US9625380B2/en not_active Expired - Fee Related
- 2013-09-04 WO PCT/JP2013/073741 patent/WO2015033394A1/ja active Application Filing
- 2013-09-04 JP JP2015535194A patent/JP6018711B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001527659A (ja) * | 1997-05-16 | 2001-12-25 | マサチューセッツ インスティチュート オブ テクノロジー | 格子ベース位相制御光学遅延線 |
JP2009505073A (ja) * | 2005-08-09 | 2009-02-05 | ザ ジェネラル ホスピタル コーポレイション | 光コヒーレンストモグラフィにおいて偏光に基づく直行復調を実行する装置、方法及び記憶媒体 |
JP2008298767A (ja) * | 2007-05-02 | 2008-12-11 | Canon Inc | 光干渉断層計を用いた画像形成方法、及び光干渉断層装置 |
JP2012202761A (ja) * | 2011-03-24 | 2012-10-22 | Nikon Corp | 光干渉断層撮影装置 |
JP2013128272A (ja) * | 2011-11-18 | 2013-06-27 | Asahi Glass Co Ltd | 光受信装置 |
Also Published As
Publication number | Publication date |
---|---|
US9625380B2 (en) | 2017-04-18 |
US20160153904A1 (en) | 2016-06-02 |
WO2015033394A1 (ja) | 2015-03-12 |
JPWO2015033394A1 (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6018711B2 (ja) | 光断層観察装置 | |
US10098538B2 (en) | Imaging system | |
JP6909207B2 (ja) | 高分解能3dスペクトル領域光学撮像装置及び方法 | |
JP5931133B2 (ja) | 光コヒーレンストモグラフィ方法およびシステム | |
US9332902B2 (en) | Line-field holoscopy | |
EP2463616A1 (en) | Interference microscope and measuring apparatus | |
US20090059360A1 (en) | System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith | |
CN103222852A (zh) | 光学相干断层摄像设备 | |
JP2013545113A (ja) | イメージマップ光干渉断層法 | |
US10182721B2 (en) | Fundus imaging apparatus | |
JP6595618B2 (ja) | 広視野顕微鏡を用いて試料の空間分解された高さ情報を確定するための方法および広視野顕微鏡 | |
KR101478881B1 (ko) | 이중 검출 형광 공초점 현미경 장치 및 그 영상을 획득하는 방법 | |
CN112930470A (zh) | 图像引导显微拉曼光谱分析 | |
JP7175982B2 (ja) | 光計測装置および試料観察方法 | |
IL299821B1 (en) | Systems and methods for performing microscopic analysis of a sample | |
JP5002604B2 (ja) | 偏光位相顕微鏡 | |
JP7339447B2 (ja) | ライン走査マイクロスコピー用の装置および方法 | |
JP6887350B2 (ja) | 光画像計測装置 | |
JP3934131B2 (ja) | 同軸型空間光干渉断層画像計測装置 | |
US20240344819A1 (en) | Spectral domain optical imaging with wavelength comb illumination | |
JP2005062020A (ja) | 断層映像装置 | |
JP6723835B2 (ja) | 光干渉断層撮像装置 | |
JP2020000932A (ja) | 眼底撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160930 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6018711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |