Nothing Special   »   [go: up one dir, main page]

JP6010421B2 - Backwash method for long fiber filtration equipment - Google Patents

Backwash method for long fiber filtration equipment Download PDF

Info

Publication number
JP6010421B2
JP6010421B2 JP2012228885A JP2012228885A JP6010421B2 JP 6010421 B2 JP6010421 B2 JP 6010421B2 JP 2012228885 A JP2012228885 A JP 2012228885A JP 2012228885 A JP2012228885 A JP 2012228885A JP 6010421 B2 JP6010421 B2 JP 6010421B2
Authority
JP
Japan
Prior art keywords
water
long fiber
outflow
cleaning
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012228885A
Other languages
Japanese (ja)
Other versions
JP2014079692A (en
Inventor
大輔 田坂
大輔 田坂
清水 和彦
和彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2012228885A priority Critical patent/JP6010421B2/en
Publication of JP2014079692A publication Critical patent/JP2014079692A/en
Application granted granted Critical
Publication of JP6010421B2 publication Critical patent/JP6010421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Description

本発明は、長繊維ろ過装置の技術、特に長繊維ろ過装置の逆洗方法の技術に関する。   The present invention relates to a technique for a long fiber filtration device, and more particularly to a technique for a backwashing method for a long fiber filtration device.

従来より、上水処理施設、下水処理施設、産業排水処理施設、産業用水処理施設等の各種処理工程において、原水中の懸濁物質を除去するためのろ過処理として、長繊維束をろ過材として用いたろ過装置が知られている(例えば、特許文献1、特許文献2参照)。特許文献1及び2のようなろ過装置は、砂ろ過等に比べ、損失水頭が少なく、高流速でろ過をすることが可能である。また、特許文献1及び2のようなろ過装置は、長繊維束の下端が支持体に固定されているため、高流速の逆洗水を流入させることができるため、短時間の逆洗で長繊維束に捕捉された懸濁物質を取り除くことが可能である。   Conventionally, in various treatment processes such as water treatment facilities, sewage treatment facilities, industrial wastewater treatment facilities, industrial water treatment facilities, etc., long fiber bundles have been used as filter media as filtration treatments for removing suspended substances in raw water. The used filtration apparatus is known (for example, refer patent documents 1 and patent documents 2). The filtration devices such as Patent Documents 1 and 2 have less head loss than sand filtration and can perform filtration at a high flow rate. Moreover, since the lower end of a long fiber bundle is being fixed to the support body, the filtration apparatus like patent document 1 and 2 can be made to flow in backwash water with a high flow rate, and it is long by backwashing for a short time. It is possible to remove suspended material trapped in the fiber bundle.

また、例えば、特許文献3には、上部流出入口及び下部流出入口を備える支持ノズルに長繊維束を取り付けたろ過装置が開示されている。特許文献3のろ過装置によれば、洗浄工程において、効率よく長繊維束に捕捉された懸濁物質を排出させることが可能となる。   For example, Patent Document 3 discloses a filtration device in which a long fiber bundle is attached to a support nozzle having an upper outlet and a lower outlet. According to the filtration device of Patent Document 3, it becomes possible to efficiently discharge suspended substances trapped in the long fiber bundle in the washing step.

また、例えば、特許文献4には、長繊維束を捲縮加工したろ過装置が開示されている。特許文献4のろ過装置によれば、速いろ過速度で運転することができ、ろ過継続時間を長くすることが可能となる。なお、捲縮加工された長繊維束は直立し易くなるため、ろ過通水の際には過剰に圧密されて損失水頭が急上昇することが起こり難くなり、逆洗の際には繊維束が伸び易く、捕捉した懸濁物質を排出し易くなる。   Further, for example, Patent Literature 4 discloses a filtration device that crimps a long fiber bundle. According to the filtration apparatus of patent document 4, it can drive | operate with a quick filtration rate, and it becomes possible to lengthen filtration continuation time. In addition, since the crimped long fiber bundle is easy to stand upright, it is difficult for the loss head to rise rapidly due to excessive compaction during filtration water flow, and the fiber bundle stretches during backwashing. It is easy to discharge the trapped suspended matter.

また、例えば、特許文献5には、逆洗排水をろ過槽の下部から排出する逆洗方法が開示されている。特許文献5の逆洗方法によれば、逆洗水を高速流で流さなくても、効率的に長繊維束に捕捉された懸濁物質を排出させることが可能となる。   Moreover, for example, Patent Document 5 discloses a backwashing method for discharging backwash wastewater from the lower part of the filtration tank. According to the backwashing method of Patent Document 5, it is possible to efficiently discharge suspended substances trapped in the long fiber bundle without flowing backwashing water at high speed.

特開昭63−315110号公報JP-A-63-315110 特開平1−304011号公報Japanese Laid-Open Patent Publication No. 1-304011 特開平11−137914号公報JP-A-11-137914 特開2006−198590号公報JP 2006-198590 A 特開2011−115702号公報JP 2011-115702 A

本発明の目的は、効率的に長繊維束の逆洗を行い、且つ長繊維束の捲縮率の低下を抑制することができる長繊維ろ過装置の逆洗方法を提供することである。   An object of the present invention is to provide a backwashing method for a long fiber filtration device that can efficiently backwash a long fiber bundle and suppress a reduction in the crimp rate of the long fiber bundle.

本発明は、ろ過槽内に配設された支持体に支持され、支持体を境として、上方位置にろ過水流入部及び逆洗流体流出部として機能する上部流出入口と、下方位置にろ過水流出部及び逆洗流体流入部として機能する下部流出入口と、を有する中空支持ノズルと、捲縮加工された長繊維の束であって、上端を自由端とし、下端を前記支持ノズルの上方位置で固定した長繊維束と、を備え、前記ろ過槽内に原水を下降流で通水してろ過処理を行う長繊維ろ過装置の逆洗方法であって、前記下部流出入口及び前記上部流出入口を介して、前記逆洗流体としての洗浄水及び洗浄ガスを上向流で流して、前記長繊維束を洗浄する逆洗工程を備え、前記逆洗工程では、前記ろ過槽内へ流入する前記洗浄ガスの流入速度は180m/h以上から300m/h以下の範囲であり、前記洗浄水の流入速度は45m/h以上から75m/h以下の範囲であり、前記上部流出入口から流出する前記洗浄ガスの流出速度は、7.0m/s以上から27.0m/s以下の範囲であり、前記洗浄水の流出速度は、1.7m/s以上から6.0m/s以下の範囲であり、前記長繊維はポリエステル繊維であるThe present invention is supported by a support body disposed in a filtration tank, with the support body as a boundary, an upper outlet port that functions as a filtrate water inlet portion and a backwash fluid outlet portion at an upper position, and a filtrate water at a lower position. A hollow support nozzle having an outflow portion and a lower outflow inlet functioning as a backwash fluid inflow portion, and a bundle of crimped long fibers, the upper end being a free end and the lower end being a position above the support nozzle A backwashing method for a long-fiber filtration device, wherein the raw water is passed through the filtration tank in a downward flow to perform filtration treatment, the lower outflow inlet and the upper outflow inlet Through the washing water and the washing gas as the backwashing fluid in an upward flow, the backwashing step of washing the long fiber bundle, and in the backwashing step, flowing into the filtration tank The inflow speed of the cleaning gas is 180 m / h or more to 300 m / h or less. The inflow speed of the cleaning water is in the range from 45 m / h to 75 m / h, and the outflow speed of the cleaning gas flowing out from the upper outlet is from 7.0 m / s to 27. a range of 0 m / s, the exit velocity of the washing water, Ri 6.0 m / s or less in the range of der from above 1.7 m / s, the long fibers are polyester fibers.

前記長繊維ろ過装置の逆洗方法において、前記上部流出入口から流出する前記洗浄ガスの流出速度は、7.0m/s以上から12.0m/s以下の範囲であり、前記洗浄水の流出速度は、1.7m/s以上から3.0m/s以下の範囲であることが好ましい。   In the backwashing method of the long fiber filtration device, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is in the range of 7.0 m / s to 12.0 m / s, and the outflow speed of the cleaning water Is preferably in the range of 1.7 m / s to 3.0 m / s.

本発明によれば、効率的に長繊維束の逆洗を行い、且つ長繊維束の捲縮率の低下を抑制することができる。   According to the present invention, it is possible to efficiently backwash a long fiber bundle and suppress a reduction in the crimp rate of the long fiber bundle.

本発明の実施形態に係る長繊維ろ過装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the long fiber filtration apparatus which concerns on embodiment of this invention. 本実施形態の長繊維ろ過装置に用いられる支持ノズルの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the support nozzle used for the long fiber filtration apparatus of this embodiment.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係る長繊維ろ過装置の構成の一例を示す模式図である。図1に示す長繊維ろ過装置1は、ろ過槽10、原水流入管12、処理水流出管14、逆洗水流入管16、逆洗排水流出管18、空気流入管22、原水貯留槽24、処理水槽26、原水ポンプ28、逆洗ポンプ30、逆洗ブロワ32を備える。   Drawing 1 is a mimetic diagram showing an example of composition of a long fiber filtration device concerning an embodiment of the present invention. 1 includes a filtration tank 10, a raw water inflow pipe 12, a treated water outflow pipe 14, a backwash water inflow pipe 16, a backwash drainage outflow pipe 18, an air inflow pipe 22, a raw water storage tank 24, and a treatment. A water tank 26, raw water pump 28, backwash pump 30, and backwash blower 32 are provided.

ろ過槽10には、支持体36が設置されている。支持体36は、複数の開口(不図示)が形成された板状体等であり、該開口のそれぞれに支持ノズル38(ストレイナー)が挿入され、固定されている。支持ノズル38には、長繊維束40の下端が固定されおり、長繊維束40の上端は自由端となっている。支持ノズル38の詳細については後述する。   A support 36 is installed in the filtration tank 10. The support 36 is a plate-like body in which a plurality of openings (not shown) are formed, and a support nozzle 38 (strainer) is inserted into each of the openings and fixed. The lower end of the long fiber bundle 40 is fixed to the support nozzle 38, and the upper end of the long fiber bundle 40 is a free end. Details of the support nozzle 38 will be described later.

原水貯留槽24には、原水が貯留される。この原水貯留槽24には、原水流入管12の一端が接続され、他端は原水ポンプ28、バルブ54を介して、ろ過槽10の上部(支持体36より上方)に接続される。なお、原水がろ過槽10に自然流下で流入可能な場合には、原水ポンプ28は不要である。ろ過槽10の下部(支持体36より下方)には、処理水流出管14の一端が接続され、他端はバルブ46を介して処理水槽26に接続されている。また、処理水槽26には、逆洗水流入管16の一端が接続され、他端は逆洗ポンプ30、バルブ48を介して、ろ過槽10の下部(支持体36より下方)に接続されている。さらに、ろ過槽10の下部(支持体36より下方)には、空気流入管22の一端も接続され、その他端はバルブ50を介して逆洗ブロワ32に接続されている。また、ろ過槽10の上部には、バルブ56が設けられた逆洗排水流出管18が接続されている。   Raw water is stored in the raw water storage tank 24. One end of the raw water inflow pipe 12 is connected to the raw water storage tank 24, and the other end is connected to the upper part of the filtration tank 10 (above the support 36) via the raw water pump 28 and the valve 54. In addition, when raw | natural water can flow into the filtration tank 10 by natural flow, the raw | natural water pump 28 is unnecessary. One end of the treated water outflow pipe 14 is connected to the lower part of the filtration tank 10 (below the support 36), and the other end is connected to the treated water tank 26 via a valve 46. One end of the backwash water inflow pipe 16 is connected to the treated water tank 26, and the other end is connected to the lower part of the filtration tank 10 (below the support 36) via the backwash pump 30 and the valve 48. . Furthermore, one end of the air inflow pipe 22 is connected to the lower part of the filtration tank 10 (below the support 36), and the other end is connected to the backwash blower 32 via the valve 50. A backwash drainage pipe 18 provided with a valve 56 is connected to the upper part of the filtration tank 10.

図2は、本実施形態の長繊維ろ過装置に用いられる支持ノズルの構成の一例を示す模式図である。図2に示すように、支持ノズル38は、中空の下部筒状体41と上部筒状体42の2つの部材から構成される。下部筒状体41は、上端41a及び下端41bが開口されていると共に、上端41a寄りの外周面にフランジ部41cが突設されている。下部筒状体41は、フランジ部41cの下面が支持体36の表面に当接するまで、支持体36の開口(不図示)に対して上方から挿入されて配設される。下部筒状体41には、支持体36よりも下方に位置することになる周壁の適宜部位に、ろ過水流出部及び逆洗流体流入部として機能する下部流出入口41dが形成されている。なお、符号43は、下部筒状体41を支持体36に固定するため、下部筒状体41の周面に螺合されるナットである。   FIG. 2 is a schematic diagram illustrating an example of a configuration of a support nozzle used in the long fiber filtration device of the present embodiment. As shown in FIG. 2, the support nozzle 38 includes two members, a hollow lower cylindrical body 41 and an upper cylindrical body 42. The lower cylindrical body 41 has an upper end 41a and a lower end 41b that are open, and a flange portion 41c that protrudes from the outer peripheral surface near the upper end 41a. The lower cylindrical body 41 is inserted and disposed from above into an opening (not shown) of the support body 36 until the lower surface of the flange portion 41c contacts the surface of the support body 36. The lower cylindrical body 41 is formed with a lower outflow inlet 41d that functions as a filtered water outflow portion and a backwash fluid inflow portion at an appropriate portion of the peripheral wall that is positioned below the support 36. Reference numeral 43 denotes a nut that is screwed onto the peripheral surface of the lower cylindrical body 41 in order to fix the lower cylindrical body 41 to the support 36.

上部筒状体42は、上端42aに端壁42bを有すると共に、下端42cが開口されており、下部筒状体41のフランジ部41cよりも上方位置の周面に螺合又は嵌合によって連結されて配設される。また、端壁42bの略中央部には、集水専用口としての所定径の孔42dが形成されていると共に、上部筒状体42内には、孔42dを開閉する弁機構が設けられている。この弁機構により、孔42dはろ過水流入部としてのみ機能し、逆洗流体流出部としては機能しないようになっている。弁機構は、孔42dをろ過時に開放し、逆洗時に閉塞できるものであれば、どのような構造であってもよいが、本実施形態では、孔42dの径よりも大きな径を有するボール弁42fとこのボール弁42fの落下防止のため、上部筒状体42の長さ方向略中央部において、内方に突設した突起42gとから構成されるものを用いている。   The upper cylindrical body 42 has an end wall 42b at the upper end 42a and an opening at the lower end 42c. The upper cylindrical body 42 is connected to the peripheral surface at a position higher than the flange portion 41c of the lower cylindrical body 41 by screwing or fitting. Arranged. In addition, a hole 42d having a predetermined diameter as a dedicated water collecting port is formed in a substantially central portion of the end wall 42b, and a valve mechanism for opening and closing the hole 42d is provided in the upper cylindrical body 42. Yes. By this valve mechanism, the hole 42d functions only as a filtered water inflow portion and does not function as a backwash fluid outflow portion. The valve mechanism may have any structure as long as it can open the hole 42d at the time of filtration and close it at the time of backwashing. In this embodiment, the ball valve has a diameter larger than the diameter of the hole 42d. In order to prevent the ball valve 42f from dropping, a member constituted by an inwardly protruding protrusion 42g is used at a substantially central portion in the longitudinal direction of the upper cylindrical body 42.

また、突起42gと端壁42bとの間の周壁、すなわち、支持体36を境として、その上方位置にろ過水流入部及び逆洗流体流出部として機能する上部流出入口42hが形成されている。なお、この上部流出入口42hと上記した下部筒状体41の下部流出入口41dは、いずれも形状が限定されるものではなく、円形や長孔状等、種々の形状で形成することができる。   Further, an upper outflow inlet 42h that functions as a filtrate inflow portion and a backwash fluid outflow portion is formed at a position above the peripheral wall between the protrusion 42g and the end wall 42b, that is, the support 36. The upper outlet 42h and the lower outlet 41d of the lower cylindrical body 41 are not limited in shape, and can be formed in various shapes such as a circular shape or a long hole shape.

図2に示すように、支持体36を境とした支持ノズル38の上方位置、すなわち支持ノズル38の上部筒状体42の周囲には、長繊維束40の下端が固定配設され、図1に示すように、長繊維束40の上端は自由端となっている。固定方法は任意であるが、本実施の形態では、長繊維束40の下端の外周囲にバンド部材44をはめて締め付け固定している。   As shown in FIG. 2, the lower end of the long fiber bundle 40 is fixedly disposed above the support nozzle 38 with respect to the support 36, that is, around the upper cylindrical body 42 of the support nozzle 38. As shown in FIG. 3, the upper end of the long fiber bundle 40 is a free end. Although the fixing method is arbitrary, in the present embodiment, the band member 44 is fitted and fixed to the outer periphery of the lower end of the long fiber bundle 40.

長繊維束40は、捲縮加工が施されている。ここで、捲縮とは、JIS L0208に記載されているように、繊維の縮れのことを言う。長繊維束40に捲縮加工を施すことにより、直立し易くなり、ろ過通水の際には過剰に圧密されて損失水頭が急上昇することが起こり難くなり、逆洗の際には長繊維束が伸び易く、捕捉した懸濁物質を排出し易くなる。   The long fiber bundle 40 is crimped. Here, crimp refers to the crimping of fibers as described in JIS L0208. By subjecting the long fiber bundle 40 to crimping, it becomes easy to stand upright, and when the water is filtered, it becomes difficult to cause excessive consolidation and a loss head to rise rapidly. It is easy to stretch and it becomes easy to discharge the trapped suspended matter.

次に、本実施形態に係る長繊維ろ過装置1の動作について説明する。   Next, operation | movement of the long fiber filtration apparatus 1 which concerns on this embodiment is demonstrated.

上工水道水、下水2次処理水、下水3次処理水、河川水、湖沼水、凝集沈殿上澄み水、各種工程中間水、各種回収水、各種排水等の懸濁物質を含む原水は、原水貯留槽24に貯留された後、原水ポンプ28により原水流入管12を通り、ろ過槽10内部に導入される。ろ過槽10の上方から導入された原水は、ろ過槽10の上部から下降流で流れる際に、長繊維束40によって、原水中の懸濁物質が捕捉される。懸濁物質が除去された原水(処理水)は、支持ノズル38の孔42d及び上部流出入口42hから支持ノズル38内に流入し、ボール弁42fを下方に位置する突起42gに対して押しつけると共に、突起42g間の隙間を通り、下部流出入口41d及び開口している下端41bから流出し、ろ過槽10の下部から処理水流出管14に排出される。そして、処理水は処理水流出管14を通り、処理水槽26に貯留される。なお、ろ過処理の時には、バルブ54,46を開口状態とし、バルブ48,50,56を閉口状態としている。   Raw water containing suspended substances such as industrial water, secondary sewage water, tertiary sewage water, river water, lake water, coagulated sediment supernatant water, various process intermediate waters, various recovered waters, various waste waters, etc. After being stored in the storage tank 24, the raw water pump 28 passes through the raw water inflow pipe 12 and is introduced into the filtration tank 10. When the raw water introduced from above the filtration tank 10 flows downward from the upper part of the filtration tank 10, suspended substances in the raw water are captured by the long fiber bundle 40. The raw water (treated water) from which suspended substances have been removed flows into the support nozzle 38 from the hole 42d and the upper outlet 42h of the support nozzle 38, and presses the ball valve 42f against the protrusion 42g located below, It passes through the gap between the protrusions 42g, flows out from the lower outlet 41d and the open lower end 41b, and is discharged from the lower part of the filtration tank 10 to the treated water outlet pipe 14. The treated water passes through the treated water outflow pipe 14 and is stored in the treated water tank 26. In the filtration process, the valves 54 and 46 are opened, and the valves 48, 50 and 56 are closed.

本実施形態では、所定期間のろ過処理を実施した場合や、ろ過槽10内の損失水頭が所定の高さまで上昇した場合等に、逆洗処理を実施し、長繊維束40を洗浄する。以下、逆洗処理について説明する。   In this embodiment, when the filtration process for a predetermined period is performed, or when the loss head in the filtration tank 10 rises to a predetermined height, the backwash process is performed, and the long fiber bundle 40 is washed. Hereinafter, the backwash process will be described.

バルブ54,46を閉口状態として、バルブ48,50,56を開口状態とし、逆洗ポンプ30及び逆洗ブロワ32を稼働させる。逆洗流体としての空気は、空気流入管22を通してろ過槽10の下部から導入され、また、逆洗流体としての洗浄水(処理水)は、逆洗水流入管16を通してろ過槽10の下部から導入される。ろ過槽10の下部から導入された逆洗流体(空気及び洗浄水)は上向流となって、支持ノズル38の下部流出入口41d及び開口している下端41bから流入する。   The valves 54 and 46 are closed, the valves 48, 50 and 56 are opened, and the backwash pump 30 and the backwash blower 32 are operated. Air as the backwash fluid is introduced from the lower part of the filtration tank 10 through the air inflow pipe 22, and wash water (treated water) as the backwash fluid is introduced from the lower part of the filter tank 10 through the backwash water inflow pipe 16. Is done. The backwash fluid (air and wash water) introduced from the lower part of the filtration tank 10 flows upward and flows in from the lower outlet 41d of the support nozzle 38 and the open lower end 41b.

支持ノズル38内を通過する逆洗流体は、ボール弁42fを押し上げ、端壁42bの孔42dを閉塞し、上部流出入口42hのみから噴出する。上部流出入口42hから噴出した洗浄流体によって、長繊維束40が振動して伸長し、長繊維束40に捕捉されていた懸濁物質が除去される。そして、除去された懸濁物を含んだ逆洗流体が逆洗排水流出管18から、長繊維ろ過装置1の系外へ排出される。逆洗排水流出管18から排出される排水は排水処理設備等に移送される。なお、本実施形態では、逆洗水として処理水槽26に貯留した処理水を使用したが、長繊維束40を洗浄するために用いることができる洗浄水であれば、特に制限されるものではない。また、逆洗ガスとして空気を使用したが、長繊維束40を洗浄するために用いることができる洗浄ガスであれば、特に制限されるものではない。   The backwash fluid passing through the support nozzle 38 pushes up the ball valve 42f, closes the hole 42d of the end wall 42b, and is ejected only from the upper outlet 42h. The long fiber bundle 40 is vibrated and elongated by the cleaning fluid ejected from the upper outlet 42h, and the suspended matter trapped in the long fiber bundle 40 is removed. Then, the backwash fluid containing the removed suspension is discharged from the backwash drainage outflow pipe 18 to the outside of the long fiber filtration device 1. Wastewater discharged from the backwash drainage pipe 18 is transferred to a wastewater treatment facility or the like. In the present embodiment, the treated water stored in the treated water tank 26 is used as the backwash water, but there is no particular limitation as long as the wash water can be used for washing the long fiber bundle 40. . Moreover, although air was used as the backwashing gas, it is not particularly limited as long as it is a cleaning gas that can be used for cleaning the long fiber bundle 40.

本実施形態では、逆洗工程の際の洗浄水の流量及び洗浄ガスの流量を以下の範囲で制御する。   In the present embodiment, the flow rate of cleaning water and the flow rate of cleaning gas in the backwashing process are controlled in the following ranges.

ろ過槽10内へ流入する洗浄ガスの流入速度を180m/h以上から300m/h以下の範囲とし、洗浄水の流入速度を45m/h以上から75m/h以下の範囲にする。また、支持ノズル38の上部流出入口42hから流出する洗浄ガスの流出速度を7.0m/s以上から27.0m/s以下の範囲、好ましくは7.0m/s以上から12.0m/s以下の範囲とし、洗浄水の流出速度を1.7m/s以上から6.0m/s以下の範囲、好ましくは、1.7m/s以上から3.0m/s以下の範囲とする。ここで、ろ過槽10内へ流入する洗浄ガスの流入速度とは、単位時間当たりにろ過槽10の断面積を通過する洗浄ガスの速度で、洗浄ガスの流量をろ過槽10の断面積で割ることにより求められる。また、ろ過槽10内へ流入する洗浄水の流入速度とは、単位時間当たりにろ過槽10の断面積を通過する洗浄水の速度で、洗浄水の流量をろ過槽10の断面積で割ることにより求められる。また、支持ノズル38の上部流出入口42hから流出する洗浄ガスの流出速度とは、単位時間当たりに支持ノズル38の上部流出入口42hを通過する洗浄ガスの速度であり、洗浄ガスの流量を上部流出入口42hの断面積(通常、上部流出入口42hは複数存在するため、各断面積の和となる)で割ることにより求められる。また、支持ノズル38の上部流出入口42hを通過する洗浄水とは、単位時間当たりに支持ノズル38の上部流出入口42hを通過する洗浄水の速度であり、洗浄水の流量を上部流出入口42hの断面積(通常、上部流出入口42hは複数存在するため、各断面積の和となる)で割ることにより求められる。   The inflow speed of the cleaning gas flowing into the filtration tank 10 is set in a range from 180 m / h to 300 m / h, and the inflow speed of the cleaning water is set in a range from 45 m / h to 75 m / h. In addition, the flow rate of the cleaning gas flowing out from the upper outlet 42h of the support nozzle 38 is in the range of 7.0 m / s to 27.0 m / s, preferably 7.0 m / s to 12.0 m / s. And the outflow rate of the washing water is in the range of 1.7 m / s to 6.0 m / s, preferably in the range of 1.7 m / s to 3.0 m / s. Here, the inflow rate of the cleaning gas flowing into the filtration tank 10 is the speed of the cleaning gas passing through the cross-sectional area of the filtration tank 10 per unit time, and the flow rate of the cleaning gas is divided by the cross-sectional area of the filtration tank 10. Is required. The inflow rate of the wash water flowing into the filter tank 10 is the speed of the wash water passing through the cross-sectional area of the filter tank 10 per unit time, and the flow rate of the wash water is divided by the cross-sectional area of the filter tank 10. Is required. The outflow speed of the cleaning gas flowing out from the upper outflow inlet 42h of the support nozzle 38 is the speed of the cleaning gas passing through the upper outflow inlet 42h of the support nozzle 38 per unit time, and the flow rate of the cleaning gas is changed to the upper outflow. It is obtained by dividing by the cross-sectional area of the inlet 42h (usually, since there are a plurality of upper outflow inlets 42h, the sum of the cross-sectional areas). The washing water passing through the upper outflow inlet 42h of the support nozzle 38 is the speed of the washing water passing through the upper outflow inlet 42h of the support nozzle 38 per unit time. It is obtained by dividing by a cross-sectional area (usually, since there are a plurality of upper outlets 42h, the sum of the cross-sectional areas).

本実施形態のように、ろ過槽10内へ流入する洗浄ガスの流入速度を300m/h以下、洗浄水の流入速度を75m/h以下にすることで、縦に引っ張る力が長繊維束40に過剰に加えられることが抑えられ、長繊維束40の捲縮率の低下が抑えられたり、長繊維の強度の低下が低減されたりする。その一方で、洗浄ガスの流入速度を180m/h未満、洗浄水の流入速度を45m/h未満とすると、長繊維束40が捕捉した懸濁物質を取り除いてろ過槽10外へ排出し難くなり、洗浄効果が著しく減少することとなる。   As in this embodiment, the longitudinal pulling force is applied to the long fiber bundle 40 by setting the inflow speed of the cleaning gas flowing into the filtration tank 10 to 300 m / h or less and the inflow speed of cleaning water to 75 m / h or less. An excessive addition is suppressed, a decrease in the crimp rate of the long fiber bundle 40 is suppressed, or a decrease in the strength of the long fibers is reduced. On the other hand, when the inflow rate of the cleaning gas is less than 180 m / h and the inflow rate of the cleaning water is less than 45 m / h, it becomes difficult to remove the suspended solids captured by the long fiber bundle 40 and to discharge it outside the filtration tank 10. The cleaning effect will be significantly reduced.

さらに、本実施形態のように、支持ノズル38の上部流出入口42hからの洗浄水の流出速度1.7m/s以上、洗浄ガスの流出速度7.0m/s以上にすることで、長繊維束40を効率よく振動させることができ、長繊維束40が捕捉した懸濁物質を効率よく取り除くことができる。その結果、洗浄不良によるろ過槽10内への懸濁物質の蓄積が低減できる。支持ノズル38の上部流出入口42hからの洗浄流体の流出速度は、上部流出入口42hの総断面積を調整すること、例えば、上部流出入口42hの口径を小さく(又は大きく)することや、上部流出入口42hの個数を減少(又は増加)させることで達成できる。その一方で、洗浄水の流出速度を6.0m/s超、洗浄ガスの流出速度を27.0m/s超にすると、上部流出入口42hの断面積が非常に小さくなるため、上部流出入口42hが、洗浄水に含まれる浮遊物質やろ過槽10内で発生した微生物、スケール等により閉塞する可能性がある。また、洗浄水の流出速度を6.0m/s超、洗浄ガスの流出速度を27.0m/s超にすると、上部流出入口42hの個数を減らす場合もあるため、その場合には、洗浄水及び洗浄ガスが一部からしか噴射されず、長繊維束40の洗浄にムラか生じる。   Furthermore, as in this embodiment, the long fiber bundle is obtained by setting the outflow speed of the cleaning water from the upper outflow inlet 42h of the support nozzle 38 to 1.7 m / s or more and the outflow speed of cleaning gas to 7.0 m / s or more. 40 can be vibrated efficiently, and the suspended matter captured by the long fiber bundle 40 can be efficiently removed. As a result, accumulation of suspended substances in the filtration tank 10 due to poor cleaning can be reduced. The flow rate of the cleaning fluid from the upper outlet 42h of the support nozzle 38 is adjusted by adjusting the total cross-sectional area of the upper outlet 42h, for example, by reducing (or increasing) the diameter of the upper outlet 42h, This can be achieved by reducing (or increasing) the number of inlets 42h. On the other hand, when the outflow speed of the cleaning water exceeds 6.0 m / s and the outflow speed of the cleaning gas exceeds 27.0 m / s, the cross-sectional area of the upper outflow inlet 42h becomes very small. However, there is a possibility of clogging due to suspended substances contained in the washing water, microorganisms generated in the filtration tank 10, scales, and the like. In addition, if the outflow speed of the cleaning water exceeds 6.0 m / s and the outflow speed of the cleaning gas exceeds 27.0 m / s, the number of the upper outflow inlets 42h may be reduced. In addition, the cleaning gas is injected only from a part, and unevenness occurs in cleaning the long fiber bundle 40.

以上のように、ろ過槽10内へ流入する洗浄ガスの流入速度及び洗浄水の流入速度、支持ノズル38の上部流出入口42hから流出する洗浄ガスの流出速度及び洗浄水の流出速度を上記範囲内に制御して、逆洗工程を行うことにより、洗浄水を高速流で流さなくても、効率的に長繊維束40の逆洗を行うことができ、且つ長繊維束40の捲縮率の低下を抑制することが可能となる。   As described above, the inflow speed of the cleaning gas and the inflow speed of the cleaning water flowing into the filtration tank 10, the outflow speed of the cleaning gas outflowing from the upper outlet 42h of the support nozzle 38, and the outflow speed of the cleaning water are within the above ranges. By performing the backwashing step, the long fiber bundle 40 can be backwashed efficiently and the crimp rate of the long fiber bundle 40 can be reduced without flowing washing water at a high speed flow. It is possible to suppress the decrease.

以下に、本実施形態に用いられる長繊維束40について説明する。   Below, the long fiber bundle 40 used for this embodiment is demonstrated.

長繊維束40を構成する長繊維の材質としては、アクリル系、ポリエステル系、ポリプロピレン系、ポリアミド系、ポリアクリルアミド系、ケブラー系等の合成繊維、綿及び羊毛等の天然繊維、これらの合成繊維等が挙げられる。強度が高い等の点から合成繊維が好ましく、加工性がよいとされるポリエステル系合成繊維が好ましい。   As the material of the long fiber constituting the long fiber bundle 40, synthetic fibers such as acrylic, polyester, polypropylene, polyamide, polyacrylamide, and Kevlar, natural fibers such as cotton and wool, synthetic fibers thereof, and the like Is mentioned. Synthetic fibers are preferred from the standpoint of high strength, etc., and polyester-based synthetic fibers that have good processability are preferred.

長繊維束40の長さは、使用するろ過槽10の高さ等に応じて決めればよく特に制限されるものではないが、500mm以上3000mm未満であることが好ましく、1000mm以上1500mm未満であることがより好ましい。長繊維束40の長さが、500mm未満であると、ろ過材の有効容積が少ないため処理効率が低下する場合があり、3000mm以上であると長繊維束40の集合密度が高くなり、有効容積が減少して処理効率が低下する場合がある。なお、長繊維束40の長さは、この長繊維束40をろ過槽10に充填したときに通水のない状態の水中でほぼ直立した状態での長繊維束40の上端から下端までの長さである。   The length of the long fiber bundle 40 is not particularly limited as long as it is determined according to the height of the filtration tank 10 to be used, but is preferably 500 mm or more and less than 3000 mm, and is 1000 mm or more and less than 1500 mm. Is more preferable. If the length of the long fiber bundle 40 is less than 500 mm, the effective volume of the filter medium is small, so that the processing efficiency may be lowered. If the length is 3000 mm or more, the aggregate density of the long fiber bundle 40 becomes high, and the effective volume. May decrease and the processing efficiency may decrease. In addition, the length of the long fiber bundle 40 is the length from the upper end to the lower end of the long fiber bundle 40 in a state in which the long fiber bundle 40 is almost upright in water in a state where no water is passed when the filtration tank 10 is filled. That's it.

長繊維束40の充填密度は、原水の通水速度等に応じて決めればよく特に制限されるものではないが、ろ過槽10の断面積1mあたり15kg以上200kg未満であることが好ましく、ろ過槽10の断面積1mあたり30kg以上100kg未満であることがより好ましい。長繊維束40の充填密度が、ろ過槽10の断面積1mあたり15kg未満であると、圧力損失は小さくなるが長繊維束40の有効容積が少ないためろ過効率が低下する場合があり、200kg以上であると長繊維束40の集合密度が高くなり、有効容積が減少してろ過効率が低下する、あるいは圧力損失が大きくなる場合がある。なお、長繊維束40の充填密度は、長繊維束40の乾燥重量及び長繊維束40を充填したろ過槽10の断面積から求めたものである。 The filling density of the long fiber bundle 40 is not particularly limited as long as it is determined according to the flow rate of raw water, but is preferably 15 kg or more and less than 200 kg per 1 m 2 of the cross-sectional area of the filtration tank 10. More preferably, it is 30 kg or more and less than 100 kg per 1 m 2 of the cross-sectional area of the tank 10. When the packing density of the long fiber bundle 40 is less than 15 kg per 1 m 2 of the cross-sectional area of the filtration tank 10, the pressure loss becomes small, but the effective volume of the long fiber bundle 40 is small, and thus the filtration efficiency may decrease. If it is as described above, the aggregate density of the long fiber bundle 40 is increased, the effective volume is decreased, and the filtration efficiency may be decreased, or the pressure loss may be increased. The filling density of the long fiber bundle 40 is obtained from the dry weight of the long fiber bundle 40 and the cross-sectional area of the filtration tank 10 filled with the long fiber bundle 40.

本実施形態に係る長繊維ろ過装置1は、上水処理施設、下水処理施設、産業排水処理施設、産業用水処理施設等の各種処理工程において、上工水道水、下水2次処理水、下水3次処理水、河川水、湖沼水、凝集沈殿上澄み水、各種工程中間水、各種回収水、各種廃水等の処理に使用することができる。   The long fiber filtration device 1 according to the present embodiment is used in various treatment processes such as a water treatment facility, a sewage treatment facility, an industrial wastewater treatment facility, and an industrial water treatment facility. It can be used for the treatment of secondary treated water, river water, lake water, coagulated sediment supernatant water, various process intermediate water, various recovered water, various waste water, and the like.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

実施例1〜7では、図1に示す長繊維ろ過装置を用いて、以下の条件で試験を行った。ろ過槽(φ280mm×2000mm)内に設置した長繊維束を構成する長繊維をポリエステル繊維とし、長繊維束の高さを支持体から1mとした。このようなろ過槽に、井水に関東ローム(JIS試験粉体1−7種)を100mg/L程度になるように添加した模擬原水をポリ塩化アルミニウム(凝集剤)14mg/Lと混合しながら、ろ過速度(LV)1000m/dayで通水した。その後、損失水頭が1000mmに達したら、様々な条件で逆洗工程を実施し、ろ過槽内に蓄積した懸濁物質(以下SS)の蓄積率及び長繊維束の捲縮率を求めた。   In Examples 1-7, the test was performed on the following conditions using the long fiber filtration apparatus shown in FIG. The long fibers constituting the long fiber bundle installed in the filtration tank (φ280 mm × 2000 mm) were polyester fibers, and the height of the long fiber bundle was 1 m from the support. While mixing simulated raw water, in which Kansui Loam (JIS test powder 1-7 type) is added to such a filtration tank to a concentration of about 100 mg / L with polyaluminum chloride (flocculating agent) 14 mg / L. Water was passed at a filtration rate (LV) of 1000 m / day. Thereafter, when the head loss reached 1000 mm, the backwashing step was performed under various conditions, and the accumulation rate of suspended solids (hereinafter referred to as SS) accumulated in the filtration tank and the crimp rate of the long fiber bundle were obtained.

<逆洗工程の条件>
実施例1では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を1.7m/sとし、ろ過槽内へ流入する洗浄水の流入速度を45m/h、洗浄ガスの流入速度を180m/hとした。実施例2では、上部流出入口から流出する洗浄ガスの流出速度を11.0m/sとし、洗浄水の流出速度を1.7m/sとし、ろ過槽内へ流入する洗浄水の流入速度を45m/h、洗浄ガスの流入速度を300m/hとした。実施例3では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を2.8m/sとし、ろ過槽内へ流入する洗浄水の流入速度を75m/h、洗浄ガスの流入速度を180m/hとした。実施例4では、上部流出入口から流出する洗浄ガスの流出速度を11.0m/sとし、洗浄水の流出速度を2.8m/sとし、ろ過槽内へ流入する洗浄水の流入速度を75m/h、洗浄ガスの流入速度を300m/hとした。また、実施例5〜7では、ろ過槽内へ流入する洗浄水の流入速度を45m/h、洗浄ガスの流入速度を180m/hとし、さらに、実施例5では、上部流出入口から流出する洗浄水の流出速度を1.7m/s、洗浄ガスの流出速度を7.0m/sとし、実施例6では、上部流出入口から流出する洗浄水の流出速度を3m/s、洗浄ガスの流出速度を12m/sとし、実施例7では、上部流出入口から流出する洗浄水の流出速度を6m/s、洗浄ガスの流出速度を27m/sとした。実施例1〜4では、上部流出入口の口径及び個数を4mm、6個とした。実施例5では、上部流出入口の口径及び個数を4mm、6個とした。実施例6では、上部流出入口の口径及び個数を3mm、6個とした。実施例7では、上部流出入口の口径及び個数を3mm、3個とした。
<Conditions for backwashing process>
In Example 1, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 1.7 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 45 m. / H, the inflow speed of the cleaning gas was 180 m / h. In Example 2, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 11.0 m / s, the outflow speed of the cleaning water is 1.7 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 45 m. / H, the inflow speed of the cleaning gas was 300 m / h. In Example 3, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 2.8 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 75 m. / H, the inflow speed of the cleaning gas was 180 m / h. In Example 4, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 11.0 m / s, the outflow speed of the cleaning water is 2.8 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 75 m. / H, the inflow speed of the cleaning gas was 300 m / h. Moreover, in Examples 5-7, the inflow speed of the washing water flowing into the filtration tank is 45 m / h, the inflow speed of the cleaning gas is 180 m / h, and in Example 5, the washing flowing out from the upper outlet is performed. The outflow speed of water was 1.7 m / s, the outflow speed of cleaning gas was 7.0 m / s, and in Example 6, the outflow speed of cleaning water flowing out from the upper outflow inlet was 3 m / s, and the outflow speed of cleaning gas In Example 7, the outflow speed of the cleaning water flowing out from the upper outflow inlet was 6 m / s, and the outflow speed of the cleaning gas was 27 m / s. In Examples 1 to 4, the diameter and number of the upper outlet / outlet were 4 mm and 6 pieces. In Example 5, the diameter and number of the upper outlet / outlet were 4 mm and 6 pieces. In Example 6, the diameter and number of the upper outlet / outlet were 3 mm and 6 pieces. In Example 7, the diameter and number of the upper outlet / outlet were 3 mm and 3 pieces.

<SS蓄積率の求め方>
SS蓄積率は、以下の式(1)で求められる。
SS蓄積率(%)=(SS蓄積量(kg)/SS捕捉量(kg))×100 (1)
ここで、SS捕捉量とは、逆洗工程前までに原水から除去したSSの量であり、SS蓄積量とは、逆洗工程後にろ過槽内に残留するSSの量であり、それぞれ、式(2),(3)により求められる。
SS捕捉量(kg)=原水SS濃度(kg/m)×通水流量(m/h)×通水時間
(h)×平均SS除去率 (2)
SS蓄積量(kg)=SS捕捉量(kg)−逆洗によるSS排出量(kg) (3)
また、式(2)の平均SS除去率は、式(4)により求められる。
平均SS除去率=(原水SS濃度(kg/m)−処理水SS濃度(kg/m))/
原水SS濃度(kg/m) (4)
また、式(2)の通水流量(m/h)は、式(5)により求められる。
通水流量(m/h)=(通水LV(m/d)×断面積(m))/24(h/d)
・・・(5)
実施例の通水流量は、(1000×0.0615)/24=2.56(m/h)である。
<How to find the SS accumulation rate>
The SS accumulation rate is obtained by the following equation (1).
SS accumulation rate (%) = (SS accumulation amount (kg) / SS trapping amount (kg)) × 100 (1)
Here, the SS trapping amount is the amount of SS removed from the raw water before the backwashing step, and the SS accumulation amount is the amount of SS remaining in the filtration tank after the backwashing step, respectively. It is obtained by (2) and (3).
SS trapping amount (kg) = raw water SS concentration (kg / m 3 ) × water flow rate (m 3 / h) × water flow time
(H) x average SS removal rate (2)
SS accumulation amount (kg) = SS trap amount (kg) −SS discharge amount by backwash (kg) (3)
Moreover, the average SS removal rate of Formula (2) is calculated | required by Formula (4).
Average SS removal rate = (raw water SS concentration (kg / m 3 ) −treated water SS concentration (kg / m 3 )) /
Raw water SS concentration (kg / m 3 ) (4)
Further, the water flow rate (m 3 / h) of the equation (2) is obtained by the equation (5).
Water flow rate (m 3 / h) = (water flow LV (m / d) × cross-sectional area (m 2 )) / 24 (h / d)
... (5)
The water flow rate in the example is (1000 × 0.0615) /24=2.56 (m 3 / h).

<残留捲縮率の評価>
実施例1〜6の各条件において、逆洗工程を200回行った後の長繊維束の残留捲縮率を測定した。残留捲縮率は、逆洗後の長繊維束の捲縮率が初期(新品)の長繊維束の捲縮率に対して、どれだけ減少しているかを表し、式(6)により求められる。
残留捲縮率(%)=(逆洗後の捲縮率/初期の捲縮率)×100 (6)
ここで、捲縮率は、式(7)により求められる。なお、捲縮率は、JIS L1015を参考にしたものである。
捲縮率=(a−b)/a×100
a:初荷重(0.001kgf)を掛けたときの長繊維束の長さ(mm)
b:4.41mN×dtex値の荷重(0.008kgf)を掛けたときの長繊維束の
長さ(mm)
<Evaluation of residual crimp rate>
In each condition of Examples 1 to 6, the residual crimp rate of the long fiber bundle after performing the backwashing process 200 times was measured. The residual crimp rate represents how much the crimp rate of the long fiber bundle after backwashing is reduced with respect to the crimp rate of the initial (new) long fiber bundle, and is obtained by Equation (6). .
Residual crimp rate (%) = (crimp rate after backwashing / initial crimp rate) × 100 (6)
Here, the crimp rate is obtained by Expression (7). The crimp rate is based on JIS L1015.
Crimp rate = (a−b) / a × 100
a: Length of long fiber bundle (mm) when initial load (0.001 kgf) is applied
b: Length of long fiber bundle (mm) when a load (0.008 kgf) of 4.41 mN × dtex value is applied

実装置においては、少なくとも3年間長繊維束を交換せず、ろ過処理を実施可能とすることが望まれる。そして、実装置における逆洗工程は、1日で1〜2回行われるため、1日平均1.5回の逆洗を行うとすると、3年間では約1600回行われることになる。これは、実施例の逆洗回数200回を8サイクル行ったことになる。すなわち、本実施例の残留捲縮率の結果が90%の場合だと、3年間では0.9^8=0.43(43%)となり、初期の捲縮率の半分以下となることが推定される。また、本実施例の残留捲縮率の結果が95%の場合だと、3年間では0.95^8=0.66(66%)となり、初期の捲縮率の7割以下となることが推定される。また、本実施例の残留捲縮率の結果が97%の場合だと、3年間では0.97^8=0.78(78%)となり、初期の捲縮率の8割程度となることが推定される。長繊維束の捲縮率が8割程度維持されていれば、初期のろ過処理と同等の精度でろ過処理を行うことが可能であると見込まれるため、残留捲縮率は、97%以上が望まれる。   In an actual apparatus, it is desired that the filtration process can be performed without exchanging the long fiber bundle for at least three years. And since the backwashing process in an actual apparatus is performed 1-2 times a day, if 1.5 times a day of backwashing is performed on average, it will be performed about 1600 times in 3 years. This means that 200 cycles of backwashing in the example were performed 8 cycles. That is, if the result of the residual crimp rate of this example is 90%, it becomes 0.9 ^ 8 = 0.43 (43%) in 3 years, which is less than half of the initial crimp rate. Presumed. In addition, if the result of the residual crimp rate of this example is 95%, it will be 0.95 ^ 8 = 0.66 (66%) in 3 years, which will be 70% or less of the initial crimp rate. Is estimated. In addition, if the result of the residual crimp rate of this example is 97%, it becomes 0.97 ^ 8 = 0.78 (78%) in 3 years, which is about 80% of the initial crimp rate. Is estimated. If the crimp rate of the long fiber bundle is maintained at about 80%, it is expected that the filtration process can be performed with the same accuracy as the initial filtration process. Therefore, the residual crimp rate is 97% or more. desired.

(比較例1〜7)
比較例1では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を2.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を30m/h、洗浄ガスの流入速度を100m/hとした。比較例2では、上部流出入口から流出する洗浄ガスの流出速度を27.0m/sとし、洗浄水の流出速度を2.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を30m/h、洗浄ガスの流入速度を400m/hとした。比較例3では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を3.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を45m/h、洗浄ガスの流入速度を100m/hとした。比較例4では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を5.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を75m/h、洗浄ガスの流入速度を100m/hとした。比較例5では、上部流出入口から流出する洗浄ガスの流出速度を27.0m/sとし、洗浄水の流出速度を5.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を75m/h、洗浄ガスの流入速度を400m/hとした。比較例6では、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sとし、洗浄水の流出速度を7.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を100m/h、洗浄ガスの流入速度を100m/hとした。比較例7では、上部流出入口から流出する洗浄ガスの流出速度を27.0m/sとし、洗浄水の流出速度を7.0m/sとし、ろ過槽内へ流入する洗浄水の流入速度を100m/h、洗浄ガスの流入速度を400m/hとした。比較例1〜7において、上記の条件以外は、実施例1と同じとし、SS蓄積率及び残留捲縮率を求めた。
(Comparative Examples 1-7)
In Comparative Example 1, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 2.0 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 30 m. / H, the inflow rate of the cleaning gas was 100 m / h. In Comparative Example 2, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 27.0 m / s, the outflow speed of the cleaning water is 2.0 m / s, and the inflow speed of the cleaning water flowing into the filter tank is 30 m. / H, the inflow speed of the cleaning gas was 400 m / h. In Comparative Example 3, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 3.0 m / s, and the inflow speed of the cleaning water flowing into the filter tank is 45 m. / H, the inflow rate of the cleaning gas was 100 m / h. In Comparative Example 4, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 5.0 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 75 m. / H, the inflow rate of the cleaning gas was 100 m / h. In Comparative Example 5, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 27.0 m / s, the outflow speed of the cleaning water is 5.0 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 75 m. / H, the inflow speed of the cleaning gas was 400 m / h. In Comparative Example 6, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s, the outflow speed of the cleaning water is 7.0 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 100 m. / H, the inflow rate of the cleaning gas was 100 m / h. In Comparative Example 7, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 27.0 m / s, the outflow speed of the cleaning water is 7.0 m / s, and the inflow speed of the cleaning water flowing into the filtration tank is 100 m. / H, the inflow speed of the cleaning gas was 400 m / h. In Comparative Examples 1 to 7, the SS accumulation rate and the residual crimp rate were obtained under the same conditions as in Example 1 except for the above conditions.

(比較例8〜9)
比較例8では、上部流出入口から流出する洗浄水の流出速度を1m/s、洗浄ガスの流出速度を4m/s、上部流出入口の口径及び個数を5mm、6個とし、比較例9では、上部流出入口から流出する洗浄水の流出速度を18m/s、洗浄ガスの流出速度を73m/s、上部流出入口の口径及び個数を3mm、2個とした。上記の条件以外は、実施例5と同じとし、SS蓄積率及び残留捲縮率を求めた。
(Comparative Examples 8-9)
In Comparative Example 8, the outflow speed of the cleaning water flowing out from the upper outflow inlet is 1 m / s, the outflow speed of the cleaning gas is 4 m / s, the diameter and number of the upper outflow inlets are 5 mm, and 6 in Comparative Example 9, The outflow speed of the cleaning water flowing out from the upper outflow inlet was 18 m / s, the outflow speed of the cleaning gas was 73 m / s, and the diameter and number of the upper outflow inlet were 3 mm and 2 pieces. The SS accumulation rate and the residual crimp rate were obtained under the same conditions as in Example 5 except for the above conditions.

表1に実施例1〜4及び比較例1〜7のSS蓄積率及び残留捲縮率の結果をまとめた。また、表2に実施例5〜7及び比較例8〜9のSS蓄積率及び残留捲縮率の結果をまとめた。   Table 1 summarizes the results of SS accumulation rates and residual crimp rates of Examples 1 to 4 and Comparative Examples 1 to 7. Table 2 summarizes the results of SS accumulation rates and residual crimp rates of Examples 5 to 7 and Comparative Examples 8 to 9.

Figure 0006010421
Figure 0006010421

Figure 0006010421
Figure 0006010421

表1からわかるように、上部流出入口から流出する洗浄ガスの流出速度を7.0m/s以上、洗浄水の流出速度を1.7m/s以上とし、ろ過槽内へ流入する洗浄水の流入速度を45m/hから75m/h、洗浄ガスの流入速度を180m/hから300m/hとした実施例1〜4では、SS蓄積率が低く、また、残留捲縮率も97%以上を維持した。すなわち、効率的に長繊維束の逆洗を行い、且つ長繊維束の捲縮率の低下を抑制することができたと言える。これに対し、比較例1,3,4,6は、上部流出入口から流出する洗浄ガスの流出速度が7.0m/s以上、洗浄水の流出速度が1.7m/s以上であるが、ろ過槽内へ流入する洗浄ガスの流入速度が100m/hと実施例と比べて低く、洗浄ガスの流入量が少ないため、長繊維束が捕捉した懸濁物質を十分に剥離することができず、SS蓄積率が高くなった。また、比較例2は、上部流出入口から流出する洗浄ガスの流出速度が7.0m/s以上、洗浄水の流出速度が1.7m/s以上であるが、ろ過槽内へ流入する洗浄水の流入速度が30m/hと実施例と比べて低く、洗浄水の流入量が少ないため、長繊維束から剥離した懸濁物質をろ過槽外へ十分に排出することができず、SS蓄積率が高くなった。比較例5,7は、上部流出入口から流出する洗浄ガスの流出速度が7.0m/s以上、洗浄水の流出速度が1.7m/s以上であるが、ろ過槽内へ流入する洗浄水及び洗浄ガスの流入速度が実施例と比べて高いため、長繊維束が逆洗流体により縦に過剰に引っ張られ、残留捲縮率を97%以上に維持することができなかった。   As can be seen from Table 1, the flow rate of cleaning gas flowing out from the upper inlet / outlet is 7.0 m / s or higher, and the flow rate of cleaning water is 1.7 m / s or higher. In Examples 1 to 4, in which the speed is 45 m / h to 75 m / h and the cleaning gas inflow speed is 180 m / h to 300 m / h, the SS accumulation rate is low, and the residual crimp rate is maintained at 97% or more. did. That is, it can be said that the long fiber bundle was backwashed efficiently and the reduction in the crimp rate of the long fiber bundle could be suppressed. On the other hand, in Comparative Examples 1, 3, 4, and 6, the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s or more, and the outflow speed of the cleaning water is 1.7 m / s or more. Since the inflow rate of the cleaning gas flowing into the filtration tank is 100 m / h, which is lower than that of the example, and the inflow amount of the cleaning gas is small, the suspended solids captured by the long fiber bundle cannot be sufficiently separated. , SS accumulation rate became high. Further, in Comparative Example 2, although the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s or more and the outflow speed of the washing water is 1.7 m / s or more, the washing water flowing into the filtration tank is used. The inflow rate of 30 m / h is low compared to the examples and the amount of inflow of washing water is small, so that the suspended matter separated from the long fiber bundle cannot be sufficiently discharged out of the filtration tank, and the SS accumulation rate Became high. In Comparative Examples 5 and 7, although the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s or more and the outflow speed of the washing water is 1.7 m / s or more, the washing water flowing into the filtration tank In addition, since the inflow rate of the cleaning gas was higher than that in the example, the long fiber bundle was excessively pulled vertically by the backwash fluid, and the residual crimp rate could not be maintained at 97% or more.

また、表2からわかるように、ろ過槽内へ流入する洗浄水の流入速度を45m/h、洗浄ガスの流入速度を180m/hとし、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sから27m/s、洗浄水の流出速度を1.7m/sから6m/sとした実施例5〜7では、SS蓄積率が低く、また、残留捲縮率も97%以上を維持した。すなわち、効率的に長繊維束の逆洗を行い、且つ長繊維束の捲縮率の低下を抑制することができたと言える。特に、上部流出入口から流出する洗浄ガスの流出速度を7.0m/sから12m/s、洗浄水の流出速度を1.7m/sから3m/sとした実施例5〜6では、SS蓄積率が低くなった。これに対し、比較例8は、ろ過槽内へ流入する洗浄水の流入速度が45m/h、洗浄ガスの流入速度が180m/hであるが、上部流出入口から流出する洗浄ガス及び洗浄水の流出速度が実施例と比べて遅いため、長繊維束を十分に振動させることができず、捕捉した懸濁物質を効率よく剥離させることが困難となり、SS蓄積量が高くなった。比較例9は、ろ過槽内へ流入する洗浄水の流入速度が45m/h、洗浄ガスの流入速度が180m/hであるが、支持ノズル部における上部流出入口の個数が2個しかないため、繊維の洗浄にムラができ、SS蓄積率が高くなった。   Further, as can be seen from Table 2, the flow rate of the cleaning water flowing into the filtration tank is 45 m / h, the flow rate of the cleaning gas is 180 m / h, and the flow rate of the cleaning gas flowing out from the upper outlet is 7. In Examples 5 to 7 in which the flow rate of washing water was changed from 0 m / s to 27 m / s and from 1.7 m / s to 6 m / s, the SS accumulation rate was low, and the residual crimp rate was maintained at 97% or more. did. That is, it can be said that the long fiber bundle was backwashed efficiently and the reduction in the crimp rate of the long fiber bundle could be suppressed. In particular, in Examples 5 to 6, in which the outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s to 12 m / s and the outflow speed of the cleaning water is 1.7 m / s to 3 m / s, SS accumulation The rate was low. In contrast, in Comparative Example 8, the inflow speed of the cleaning water flowing into the filtration tank is 45 m / h and the inflow speed of the cleaning gas is 180 m / h. Since the outflow rate was slower than in the examples, the long fiber bundle could not be vibrated sufficiently, making it difficult to efficiently separate the trapped suspended matter, and the amount of accumulated SS increased. In Comparative Example 9, the inflow speed of the cleaning water flowing into the filtration tank is 45 m / h and the inflow speed of the cleaning gas is 180 m / h. However, since the number of upper outlets in the support nozzle portion is only two, Unevenness was found in the cleaning of the fibers, and the SS accumulation rate increased.

以上の結果より、逆洗工程においては、ろ過槽内へ流入する洗浄水の流入速度を45m/h以上から75m/h以下とし、洗浄ガスの流入速度を180m/h以上から300m/hとし、上部流出入口から流出する洗浄ガスの流出速度を7.0m/s以上から27m/s以下、好ましくは7.0m/s以上から12m/s以下とし、洗浄水の流出速度を1.7m/s以上から6m/s以下、好ましくは1.7m/s以上から3m/sにすることで、洗浄不良によるろ過槽内へのSS蓄積率を低減しつつ、長繊維束の捲縮率の低下、ひいては長繊維束の強度低下を抑制することができた。   From the above results, in the backwashing step, the inflow speed of the washing water flowing into the filtration tank is set to 45 m / h or more to 75 m / h or less, and the inflow speed of the cleaning gas is set to 180 m / h or more to 300 m / h, The outflow speed of the cleaning gas flowing out from the upper outflow inlet is 7.0 m / s to 27 m / s, preferably 7.0 m / s to 12 m / s, and the cleaning water outflow speed is 1.7 m / s. From the above, it is 6 m / s or less, preferably 1.7 m / s or more to 3 m / s, while reducing the SS accumulation rate in the filtration tank due to poor cleaning, while reducing the crimp rate of the long fiber bundle, As a result, the strength reduction of the long fiber bundle could be suppressed.

1 長繊維過装置、10 ろ過槽、12 原水流入管、14 処理水流出管、16 逆洗水流入管、18 逆洗排水流出管、22 空気流入管、24 原水貯留槽、26 処理水槽、28 原水ポンプ、30 逆洗ポンプ、32 逆洗ブロワ、36 支持体、38 支持ノズル、40 長繊維束、41 下部筒状体、41a 上端、41b 下端、41c フランジ部、41d 下部流出入口、42 上部筒状体、42a 上端、42b 端壁、42c 下端、42d 孔、42f ボール弁、42g 突起、42h 上部流出入口、44 バンド部材、46,48,50,54,56 バルブ。   DESCRIPTION OF SYMBOLS 1 Long fiber excess apparatus, 10 Filtration tank, 12 Raw water inflow pipe, 14 Treated water outflow pipe, 16 Backwash water inflow pipe, 18 Backwash drainage outflow pipe, 22 Air inflow pipe, 24 Raw water storage tank, 26 Treated water tank, 28 Raw water Pump, 30 Backwash pump, 32 Backwash blower, 36 Support body, 38 Support nozzle, 40 Long fiber bundle, 41 Lower cylindrical body, 41a Upper end, 41b Lower end, 41c Flange part, 41d Lower outflow inlet, 42 Upper cylindrical form Body, 42a upper end, 42b end wall, 42c lower end, 42d hole, 42f ball valve, 42g protrusion, 42h upper outlet, 44 band member, 46, 48, 50, 54, 56 valve.

Claims (2)

ろ過槽内に配設された支持体に支持され、支持体を境として、上方位置にろ過水流入部及び逆洗流体流出部として機能する上部流出入口と、下方位置にろ過水流出部及び逆洗流体流入部として機能する下部流出入口と、を有する中空支持ノズルと、捲縮加工された長繊維の束であって、上端を自由端とし、下端を前記支持ノズルの上方位置で固定した長繊維束と、を備え、前記ろ過槽内に原水を下降流で通水してろ過処理を行う長繊維ろ過装置の逆洗方法であって、
前記下部流出入口及び前記上部流出入口を介して、前記逆洗流体としての洗浄水及び洗浄ガスを上向流で流して、前記長繊維束を洗浄する逆洗工程を備え、
前記逆洗工程では、前記ろ過槽内へ流入する前記洗浄ガスの流入速度は180m/h以上から300m/h以下の範囲であり、前記洗浄水の流入速度は45m/h以上から75m/h以下の範囲であり、前記上部流出入口から流出する前記洗浄ガスの流出速度は、7.0m/s以上から27.0m/s以下の範囲であり、前記洗浄水の流出速度は、1.7m/s以上から6.0m/s以下の範囲であり、
前記長繊維はポリエステル繊維であることを特徴とする長繊維ろ過装置の逆洗方法。
Supported by a support disposed in the filtration tank, with the support as a boundary, an upper outlet that functions as a filtered water inlet and a backwash fluid outlet at an upper position, and a filtered water outlet and a reverse at a lower position. A hollow support nozzle having a lower inlet / outlet functioning as a washing fluid inlet, and a bundle of crimped long fibers, the upper end being a free end and the lower end being fixed above the support nozzle A backwashing method for a long fiber filtration device comprising a fiber bundle, and performing filtration by passing raw water through the filtration tank in a downward flow,
Through the lower outflow inlet and the upper outflow inlet, the washing water and the washing gas as the backwashing fluid are flowed in an upward flow to provide a backwashing process for washing the long fiber bundle,
In the backwashing step, the flow rate of the cleaning gas flowing into the filtration tank ranges from 180 m / h to 300 m / h, and the flow rate of the cleaning water ranges from 45 m / h to 75 m / h. The flow rate of the cleaning gas flowing out from the upper outlet is in the range of 7.0 m / s to 27.0 m / s, and the flow rate of the cleaning water is 1.7 m / s. range der following of 6.0m / s from the above s is,
The long fiber is a polyester fiber, The back washing method of the long fiber filtration apparatus characterized by the above-mentioned .
前記上部流出入口から流出する前記洗浄ガスの流出速度は、7.0m/s以上から12.0m/s以下の範囲であり、前記洗浄水の流出速度は、1.7m/s以上から3.0m/s以下の範囲であることを特徴とする請求項1記載の長繊維ろ過装置の逆洗方法。   The outflow speed of the cleaning gas flowing out from the upper outflow inlet is in the range of 7.0 m / s to 12.0 m / s, and the outflow speed of the cleaning water is from 1.7 m / s to 3. The backwashing method for a long fiber filtration device according to claim 1, wherein the backwashing method is in a range of 0 m / s or less.
JP2012228885A 2012-10-16 2012-10-16 Backwash method for long fiber filtration equipment Active JP6010421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228885A JP6010421B2 (en) 2012-10-16 2012-10-16 Backwash method for long fiber filtration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228885A JP6010421B2 (en) 2012-10-16 2012-10-16 Backwash method for long fiber filtration equipment

Publications (2)

Publication Number Publication Date
JP2014079692A JP2014079692A (en) 2014-05-08
JP6010421B2 true JP6010421B2 (en) 2016-10-19

Family

ID=50784420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228885A Active JP6010421B2 (en) 2012-10-16 2012-10-16 Backwash method for long fiber filtration equipment

Country Status (1)

Country Link
JP (1) JP6010421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140123944A (en) * 2011-12-21 2014-10-23 비너스 시스템즈 리미티드 Centrifugal refrigerant vapour compressors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122904A1 (en) * 2016-12-26 2018-07-05 日立造船株式会社 Filtration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633196A5 (en) * 1978-03-02 1982-11-30 Chemap Ag METHOD AND BRUSH FILTER FOR FILTRATING LIQUIDS AND GASES.
JP2965571B2 (en) * 1988-12-08 1999-10-18 オルガノ株式会社 Cleaning method for long fiber filtration tower
JPH05131103A (en) * 1991-11-11 1993-05-28 Kurita Water Ind Ltd Filter device
JPH11207107A (en) * 1998-01-20 1999-08-03 Japan Organo Co Ltd Long filament bundle supporting utensil and tower filter using long filament bundle
JP2002119804A (en) * 2000-10-12 2002-04-23 Nippon Rensui Co Ltd Turbid substance removing device
JP4532297B2 (en) * 2005-01-24 2010-08-25 オルガノ株式会社 Filtration apparatus and filtration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140123944A (en) * 2011-12-21 2014-10-23 비너스 시스템즈 리미티드 Centrifugal refrigerant vapour compressors
KR102009062B1 (en) 2011-12-21 2019-08-08 비너스 시스템즈 리미티드 Centrifugal refrigerant vapour compressors

Also Published As

Publication number Publication date
JP2014079692A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP3734227B2 (en) Upflow type high-speed filter
CN102223933B (en) Water treatment methods
US7704382B2 (en) Gravity type fiber filter
KR100679231B1 (en) Flexible-fiber filter module
JP4724688B2 (en) Filtration device
CN104096396A (en) Filter device
JP4532297B2 (en) Filtration apparatus and filtration method
JP6010421B2 (en) Backwash method for long fiber filtration equipment
JP2008284464A (en) Filtering method and apparatus therefor with excellent intermittent backwashing
JP6832603B1 (en) Filtration device
JP5345512B2 (en) Long fiber filtration device backwash method and long fiber filtration device
KR100720598B1 (en) Sand filter for Advanced Wastewater Treatment Apparatus
CN112090124B (en) Anti-blocking device of material washer
CN207384926U (en) A kind of horizontal fabric filter
NL2008295C2 (en) Fibre based filter.
JP4529117B2 (en) Filtration method
JP3496280B2 (en) Filtration device
JP3633858B2 (en) Filtration device
JPH08126804A (en) Filtrating tower using long fiber filter medium
KR101345261B1 (en) Filtering apparatus without back wash
JP3483745B2 (en) Filtration tower using long fiber bundle
JP7203518B2 (en) pool filter
CN202516360U (en) Convection scrubbing structure for filter material in pressure filter tank
KR20110073223A (en) Apparatus for continuous inflow filtering using the fiber and filtration filter with back washing function
CN219517914U (en) Multi-medium filter convenient for backwashing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250