JP6009438B2 - Method for producing austenitic steel - Google Patents
Method for producing austenitic steel Download PDFInfo
- Publication number
- JP6009438B2 JP6009438B2 JP2013513585A JP2013513585A JP6009438B2 JP 6009438 B2 JP6009438 B2 JP 6009438B2 JP 2013513585 A JP2013513585 A JP 2013513585A JP 2013513585 A JP2013513585 A JP 2013513585A JP 6009438 B2 JP6009438 B2 JP 6009438B2
- Authority
- JP
- Japan
- Prior art keywords
- strip
- hot
- annealing
- metal coating
- continuous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 21
- 239000010959 steel Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000463 material Substances 0.000 claims description 35
- 238000000137 annealing Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000005097 cold rolling Methods 0.000 claims description 9
- 230000003111 delayed effect Effects 0.000 claims description 7
- 238000007598 dipping method Methods 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000005246 galvanizing Methods 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000011437 continuous method Methods 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 238000005554 pickling Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000937 TWIP steel Inorganic materials 0.000 description 2
- 229910000756 V alloy Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- ZLANVVMKMCTKMT-UHFFFAOYSA-N methanidylidynevanadium(1+) Chemical class [V+]#[C-] ZLANVVMKMCTKMT-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
- C21D1/70—Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0442—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/34—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、遅延亀裂への優れた耐性を有するオーステナイト鋼シートの製造方法に関するものである。 The present invention relates to a method for producing an austenitic steel sheet having excellent resistance to delayed cracks.
燃料経済および衝突した場合の安全性を考慮すると、高強度鋼は自動車産業で益々使用される。これには、高い引張り強度と高い柔軟性とを組み合わせた構造材料の使用が求められる。オーステナイト合金は主元素として鉄、炭素、および高いレベルのマンガンを含有し、熱間圧延または冷間圧延されて、1000MPaを超える強度を有することができる。これらの鋼の変形モードは、積層欠陥エネルギーに依存し、十分に高い積層欠陥エネルギーの場合、観測された機械的変形のモードは双晶であり、高い加工硬化性をもたらす。転位の伝搬に対する障害として作用することによって、双晶が流動応力を増す。しかしながら、積層欠陥エネルギーがある限界を超えた場合、完全転位の滑りが主要な変形メカニズムとなり、加工硬化性は減少する。高い残留引張り応力は変形後にも残存する傾向があるため、遅延亀裂に対する感度が、特に一定の冷間成形操作の後に、機械的強度と共に増加することが知られている。場合により金属中に存在する原子水素と結合しすることで、これらの応力は遅延亀裂、すなわち変形の一定時間後に生じる亀裂、をもたらす傾向がある。水素は、マトリクス/含有物界面、双晶境界および粒界のような、結晶格子欠陥への分散によって漸進的に増大することがある。一定時間後に決定的な濃度に達した場合に、水素が有害となり得るのは後者の領域である。一定の粒径に関して、決定的なレベルに到達するのに必要な時間は、流動的な水素の初期濃度、残留応力濃度場の強度、および水素拡散速度に依存する。 Considering the fuel economy and safety in case of a collision, high strength steel is increasingly used in the automotive industry. This requires the use of structural materials that combine high tensile strength and high flexibility. Austenitic alloys contain iron, carbon, and high levels of manganese as main elements, and can be hot or cold rolled and have a strength of over 1000 MPa. The deformation mode of these steels depends on the stacking fault energy, and for sufficiently high stacking fault energy, the observed mode of mechanical deformation is twinned, resulting in high work hardening. Twins increase flow stress by acting as an obstacle to dislocation propagation. However, when the stacking fault energy exceeds a certain limit, slip of complete dislocation becomes the main deformation mechanism, and work hardenability decreases. Since high residual tensile stress tends to remain after deformation, it is known that the sensitivity to delayed cracking increases with mechanical strength, especially after certain cold forming operations. In combination with atomic hydrogen present in the metal, these stresses tend to lead to delayed cracks, ie cracks that occur after a certain time of deformation. Hydrogen may increase progressively due to dispersion into crystal lattice defects, such as matrix / inclusion interfaces, twin boundaries and grain boundaries. It is in the latter area that hydrogen can be detrimental when a critical concentration is reached after a certain time. For a given particle size, the time required to reach a critical level depends on the initial concentration of fluid hydrogen, the strength of the residual stress concentration field, and the hydrogen diffusion rate.
特定の状況で、少量の水素が、化学的もしくは電気化学的酸洗、特別な環境下でのアニーリング、電気めっき、または溶融亜鉛めっきのような、鋼製造のある段階で導入される場合がある。潤滑油およびグリースを用いる後続の機械加工操作により、高温でこれらの物質が分解した後に水素の発生が引き起こされることもある。 In certain situations, a small amount of hydrogen may be introduced at some stage of steel production, such as chemical or electrochemical pickling, annealing in special environments, electroplating, or hot dip galvanizing . Subsequent machining operations using lubricants and greases can cause hydrogen evolution after these materials decompose at high temperatures.
遅延亀裂への優れた耐性を有するオーステナイト鋼のシートを製造することが、本発明の目的である。 It is an object of the present invention to produce a sheet of austenitic steel having excellent resistance to delayed cracks.
また、増加した降伏応力および優れた溶接性を有するオーステナイト鋼シートの製造方法を提供することも、本発明の目的である。 It is also an object of the present invention to provide a method for producing an austenitic steel sheet having increased yield stress and excellent weldability.
このタイプの鋼についての従来の手段と比較して、エネルギー効率がよく、かつ、単純な、オーステナイト鋼のシートを製造する方法を提供することが、本発明の更なる目的である。 It is a further object of the present invention to provide a method for producing a sheet of austenitic steel that is energy efficient and simple compared to conventional means for this type of steel.
本発明によれば、遅延亀裂への優れた耐性を有するオーステナイト鋼のシートを製造する方法であって、
− インゴット、連続鋳造スラブ、連続鋳造薄スラブ、またはストリップ鋳造ストリップであって、それらの組成が、重量%で、
− C 0.50%〜0.80%
− Mn 10〜17%
− Al 少なくとも1.0%
− Si 多くとも0.5%
− S 多くとも0.020%
− P 多くとも0.050%
− N 50〜200ppm
− V 0.050〜0.25%
残部鉄および製造に伴う不可避不純物を含んでなるインゴット、連続鋳造スラブ、連続鋳造薄スラブ、またはストリップ鋳造ストリップを鋳造する工程と、
− 前記インゴット、前記連続鋳造スラブ、前記連続鋳造薄スラブ、または前記ストリップ鋳造ストリップを望ましい熱間圧延厚さに熱間圧延することによって、熱間圧延したストリップをもたらす工程と、
− 前記熱間圧延したストリップを望ましい最終厚さに冷間圧延する工程と、
− 前記ストリップを、加熱速度Vh、焼きなまし時間taで焼きなまし温度Taに加熱し、次いで、冷却速度Vcで冷却することを含んでなる方法であって、Taが750〜850℃である方法で、前記冷間圧延されたストリップを連続的に焼きなましする工程と
を含んでなる方法を提供することで、これらの1つ以上の目的が達成される。
According to the present invention, a method of manufacturing a sheet of austenitic steel having excellent resistance to delayed cracks,
-An ingot, continuous cast slab, continuous cast thin slab, or strip cast strip, the composition of which is by weight,
-C 0.50% to 0.80%
-Mn 10-17%
-Al at least 1.0%
-Si at most 0.5%
-S at most 0.020%
-P at most 0.050%
-N 50-200 ppm
-V 0.050-0.25%
Casting an ingot, continuous cast slab, continuous cast thin slab, or strip cast strip comprising the balance iron and inevitable impurities associated with production;
-Hot rolling the ingot, the continuous cast slab, the continuous cast thin slab, or the strip cast strip to a desired hot rolled thickness to provide a hot rolled strip;
-Cold rolling the hot rolled strip to a desired final thickness;
- the strip, heating rate V h, then heated to the annealing temperature T a at annealing time t a, then a method comprising cooling at a cooling rate V c, T a is at 750 to 850 ° C. One or more of these objectives are achieved by providing a method comprising continuously annealing the cold-rolled strip in some manner.
高いアルミニウム含有量を使用することで、鋼のSFEが増加する。ケイ素のような、SFEを低減させる元素のいかなる悪影響も、アルミニウムの添加によって中和される。加えて、アルミニウムは、オーステナイトにおける炭素の活性および拡散性を低下させ、炭化物を形成する駆動力を低減させる。必須の合金添加剤として添加されるバナジウムは、炭化物を形成する。バナジウム炭化物の大きさおよび分散が正しい場合、これらのバナジウム炭化物は水素シンク(sink)として振る舞う。そして、増加したアルミニウム含有量は、アルミニウムが存在することによって炭素の活性および拡散性が低減することによる、バナジウム炭化物の粗大化を防ぐことから、バナジウム炭化物析出を制御するのに必須である。本発明者らは、少なくとも1.0%のAlおよび0.050〜0.25%のVがこれを達成するのに必要であると知得した。低いアルミニウム含有量は非常に粗いバナジウム炭化物をもたらし、それによりバナジウム炭化物の水素シンクとしての効果を無くすことから、十分な数の小さな析出物を得るためには、バナジウムの含有量は上述の値の間に制御することが必要である。高いV値は析出物の早期の核生成を引き起こし、それにより必然的に析出物を粗く、且つ、少なくし、一方で、Vが0.050%以下の値では、十分微細であったとしても少ない析出をもたらす。焼なまし処理は、バナジウム炭化物の析出を制御し、冷間圧延によって冷間変形した微細構造の再結晶化を引き起こして微細粒構造をもたらす点で極めて重要である。好ましい態様において、ケイ素含有量は非常に低く、すなわち不純物レベルである。原則として、アルミニウム含有量は、本発明による鋼がオーステナイト鋼であるという事実によってのみ限定されている。一態様において、最大のアルミニウム含有量は5%である。好ましくは、アルミニウム含有量は、少なくとも1.25%、および/または多くとも3.5%であり、より好ましくは少なくとも1.5%、および/または多くとも2.5%である。 By using a high aluminum content, the SFE of the steel is increased. Any adverse effects of elements that reduce SFE, such as silicon, are neutralized by the addition of aluminum. In addition, aluminum reduces the carbon activity and diffusivity in austenite and reduces the driving force to form carbides. Vanadium added as an essential alloy additive forms carbides. If the size and dispersion of the vanadium carbides are correct, these vanadium carbides behave as hydrogen sinks. And the increased aluminum content is essential to control vanadium carbide precipitation because it prevents the coarsening of vanadium carbide due to the reduction of carbon activity and diffusivity due to the presence of aluminum. The inventors have found that at least 1.0% Al and 0.050-0.25% V are necessary to achieve this. The low aluminum content results in very coarse vanadium carbide, thereby eliminating the effect of vanadium carbide as a hydrogen sink, so to obtain a sufficiently small number of precipitates, the vanadium content is It is necessary to control in between. High V values cause premature nucleation of the precipitates, thereby inevitably coarsening and reducing the precipitates, while values of V below 0.050%, even if fine enough Results in less precipitation. The annealing treatment is extremely important in that it controls the precipitation of vanadium carbide and causes recrystallization of the microstructure deformed by cold rolling, resulting in a fine grain structure. In a preferred embodiment, the silicon content is very low, i.e. at the impurity level. In principle, the aluminum content is limited only by the fact that the steel according to the invention is an austenitic steel. In one embodiment, the maximum aluminum content is 5%. Preferably, the aluminum content is at least 1.25% and / or at most 3.5%, more preferably at least 1.5% and / or at most 2.5%.
一態様において、最大焼なまし温度Taは825℃または800℃である。一態様において、冷却速度Vcは10〜100℃/sである。好ましい冷却速度は20〜80℃/sである。加熱速度は好ましくは3〜60℃/sである。焼なまし時間taは好ましくは15〜300秒である。 In one embodiment, the maximum annealing temperature T a is 825 ° C. or 800 ° C.. In one embodiment, the cooling rate V c is 10-100 ° C./s. A preferable cooling rate is 20 to 80 ° C./s. The heating rate is preferably 3 to 60 ° C./s. Annealing time t a is preferably 15 to 300 seconds.
好ましい態様において、最大焼なまし温度Taは775〜795℃(すなわち785±10℃)である。 In a preferred embodiment, the maximum annealing temperature T a is 775 to 795 ° C. (i.e. 785 ± 10 ℃).
好ましくは、鋼ストリップ材料を冷間圧延前に酸洗する。酸洗は、冷間圧延前に、酸化物を除去して酸化物の混入を防ぐために、(しばしば)必要である。好ましくは、冷間圧延ストリップ材料を、熱間圧延ストリップ材料またはベルト鋳造ストリップ材料から製造する。 Preferably, the steel strip material is pickled before cold rolling. Pickling is (often) necessary to remove oxides and prevent oxide contamination prior to cold rolling. Preferably, the cold rolled strip material is manufactured from a hot rolled strip material or a belt cast strip material.
本発明の好ましい態様において、連続的に焼なましした後に冷却速度Vcで冷却する間、金属コーティングを作成する金属の溶融浴の中へ、ストリップを溶融めっきして金属コーティングを施すためにストリップを溶融めっき浴に通す。この工程によって、金属でコーティングされた鋼ストリップを製造するための、非常に経済的且つ迅速な工程がもたらされる。金属コーティングは、亜鉛または亜鉛合金のような任意の一般的に知られたコーティングであってよく、ここで亜鉛はアルミニウムおよび/またはマグネシウムのような元素と合金されていてもよい。 In a preferred embodiment of the present invention, the strip during cooling at a cooling rate V c after continuous annealing, into a molten bath of metal to create a metal coating, for applying a metal coating to strip hot dip plating to Is passed through a hot dipping bath. This process provides a very economical and quick process for producing steel strips coated with metal. The metal coating may be any commonly known coating such as zinc or a zinc alloy, where zinc may be alloyed with elements such as aluminum and / or magnesium.
本発明の他の態様において、ストリップを連続焼きなましの後に酸洗し、その際、金属コーティングを作成する金属の溶融浴の中へ、ストリップを溶融めっきして金属コーティングを施すためにストリップを溶融めっき浴に通す前に、焼なまし後に酸洗し、次いで、連続的な焼なまし温度以下の温度へ加熱することによってストリップに金属コーティングを施す。この代替工程は、上述の経済的な工程が望ましくない場合に利用できる。酸洗処理が必要であろう、ある特定の金属コーティングとの接着の問題が生じ得る。酸洗後、ストリップをTaを超える温度に加熱することは、必要でなく、望ましくもない。加熱温度はTa以下であるのが好ましい。 In another embodiment of the present invention, the strip is pickled after continuous annealing, in which case the strip is hot dip plated to provide the metal coating by hot dip plating into the molten bath of metal to form the metal coating. Prior to passing through the bath, the strip is pickled after annealing, and then the metal coating is applied to the strip by heating to a temperature below the continuous annealing temperature. This alternative process can be used when the economic process described above is not desired. Adhesion problems with certain metal coatings can occur that may require pickling. After pickling, it is not necessary or desirable to heat the strip to a temperature above Ta. The heating temperature is preferably Ta or lower.
この方法において、ストリップ材料を閉塞した抑止層を形成するのに十分高い温度にのみ加熱する。この温度は、冶金学的理由(例えば、機械的特性に影響する再結晶化)から必要な、通常の連続的な焼なまし温度よりも低い。鋼ストリップ材料表面上の酸化物の形成は、それにより減少する。 In this method, the strip material is heated only to a temperature sufficiently high to form a clogged deterrent layer. This temperature is lower than the normal continuous annealing temperature required for metallurgical reasons (for example, recrystallization affecting mechanical properties). Oxide formation on the surface of the steel strip material is thereby reduced.
好ましくは、連続的な焼なまし温度以下の温度は400〜600℃である。この温度範囲内では、酸化物の形成が大幅に減少し、ストリップ材料は後続の溶融亜鉛めっきに対して十分に加熱される。 Preferably, the temperature below the continuous annealing temperature is 400-600 ° C. Within this temperature range, oxide formation is greatly reduced and the strip material is fully heated for subsequent hot dip galvanizing.
好ましい態様によれば、ストリップ材料中のFeを連続焼なまし温度以下の温度に加熱する間または加熱した後であって、溶融亜鉛めっきの前に還元する。鋼ストリップを還元することで、形成されるFe酸化物は還元され、そしてこの方法で、溶融亜鉛めっき前の鋼ストリップの表面上に存在する酸化物の量が大幅に減少する。 According to a preferred embodiment, the Fe in the strip material is reduced during or after heating to a temperature below the continuous annealing temperature and prior to hot dip galvanizing. By reducing the steel strip, the Fe oxide formed is reduced and in this way the amount of oxide present on the surface of the steel strip before hot dip galvanization is greatly reduced.
好ましくは、還元がH2N2を用いて行われ、より好ましくは還元雰囲気中で5〜30%のH2N2を用いて行われる。この雰囲気を使用することによって、ほとんどの酸化物が除去可能であることが分かった。 Preferably, the reduction is carried out using H 2 N 2, and more preferably carried out using a 5-30% of H 2 N 2 in a reducing atmosphere. It has been found that most oxides can be removed by using this atmosphere.
好ましい態様によれば、ストリップ材料の加熱中または加熱後であって前記ストリップ材料の還元前に、過剰量のO2を雰囲気中に供給する。過剰量の酸素の供給により、溶融亜鉛めっき前に鋼ストリップの表面品質が向上し、AHSSストリップ材料上に被覆した亜鉛層の品質が向上する。AHSSストリップ材料中で、ストリップ材料の表面および内部の両方において、酸素は合金元素と結合することになっており、さらに、この方法で、形成された酸化物はストリップ材料の表面に移動することができないことになっている。 According to a preferred embodiment, an excess amount of O 2 is fed into the atmosphere during or after heating of the strip material and before the reduction of the strip material. The supply of excess oxygen improves the surface quality of the steel strip before hot dip galvanization and improves the quality of the zinc layer coated on the AHSS strip material. In the AHSS strip material, oxygen is to be combined with the alloying elements both on the surface and inside the strip material, and in this way, the oxide formed can migrate to the surface of the strip material. It is supposed to be impossible.
酸化後の還元雰囲気は、ストリップ材料の表面の酸化物を還元し、そしてこの方法で、ストリップ材料の表面の酸化物の量は、実験で示されたように、大幅に減少するか、あるいは、ほとんど無くなる。好ましくは、過剰量のO2を0.05〜5%のO2量で供給する。この酸素の量は十分であることが分かった。 The reducing atmosphere after oxidation reduces the oxide on the surface of the strip material, and in this way, the amount of oxide on the surface of the strip material is significantly reduced, as shown in the experiment, or Almost disappear. Preferably, an excess amount of O 2 is supplied in an amount of 0.05-5% O 2 . This amount of oxygen was found to be sufficient.
本発明の好ましい態様において、本発明によるV合金したTWIP鋼ストリップ材料を熱間圧延し、酸洗し、冷間圧延し、そして本発明による温度に連続的に焼なましして、再度酸洗した。そして、ストリップ材料を焼なましラインで527℃に加熱し、その後、約450℃で亜鉛めっき浴中で溶融亜鉛めっきを行った。 In a preferred embodiment of the invention, the V-alloyed TWIP steel strip material according to the invention is hot-rolled, pickled, cold-rolled and continuously annealed to the temperature according to the invention, and again pickled. did. Then, the strip material was heated to 527 ° C. in an annealing line, and then hot dip galvanized in a galvanizing bath at about 450 ° C.
ストリップ材料を527℃に加熱する間、1%の過剰量のO2を供給する。ストリップ材料の表面で酸化物を形成するためだけでなく、表面からいくらかの深さでも合金元素と結合するように、酸素をそのような高い温度で供給する。酸素の供給後、ストリップ材料を約5%のH2N2を使用して還元する。ストリップ材料の還元によって表面から酸化物は除去されるが、表面下に形成された酸化物はその場に留まり、表面に移動することはできない。 While heating the strip material to 527 ° C., a 1% excess of O 2 is fed. Oxygen is supplied at such high temperatures not only to form oxides at the surface of the strip material, but also to bond with the alloy elements at some depth from the surface. After the supply of oxygen, the strip material is reduced using about 5% H 2 N 2 . Although the reduction of the strip material removes the oxide from the surface, the oxide formed below the surface remains in place and cannot move to the surface.
したがって、表面を還元することによって、酸化物は効果的に除去され、表面に新たな酸化物は形成されない。これらの酸化物は、除去されない場合、亜鉛層の基材への悪い接着を引き起こし、むき出しの場所となり、剥がれ落ち、材料を曲げた場合に亜鉛層にクラックが形成される。通常の還元によると、合金元素が合金温度で表面に非常に速く移動し、そして溶融亜鉛めっきが行われる前に表面で酸化物を再度形成することが推定される。正確なメカニズムがどのようなものであるかにかかわらず、本方法を使用することで、V合金したTWIP鋼上の溶融亜鉛めっき層中で見つかる酸化物の量が、減少するかまたはほとんど取り除かれることが分かった。 Therefore, by reducing the surface, the oxide is effectively removed and no new oxide is formed on the surface. If these oxides are not removed, they will cause poor adhesion of the zinc layer to the substrate, which will be exposed, peeled off and cracked in the zinc layer when the material is bent. According to normal reduction, it is presumed that the alloy elements move to the surface very quickly at the alloy temperature and re-form oxides on the surface before hot dip galvanization takes place. Regardless of what the exact mechanism is, using this method reduces or almost eliminates the amount of oxide found in hot dip galvanized layers on V-alloyed TWIP steel. I understood that.
本発明の一態様において、冷間圧延圧下率は10〜90%、より好ましくは30〜85%、さらにより好ましくは45〜80%である。 In one embodiment of the present invention, the cold rolling reduction is 10 to 90%, more preferably 30 to 85%, and even more preferably 45 to 80%.
本発明の一態様において、ストリップに金属コーティングを施す前または施した後に、焼なまししたストリップを、0.5〜10%の圧下率で調質圧延する。 In one embodiment of the invention, the annealed strip is temper rolled at a rolling reduction of 0.5 to 10% before or after applying the metal coating to the strip.
本発明の一態様において、バナジウム含有量は0.06〜0.22%である。 In one embodiment of the present invention, the vanadium content is 0.06 to 0.22%.
本発明の第二の側面において、請求項1〜6のいずれか一項に記載の方法で製造したストリップまたはシートであって、鋼に好ましくは金属コーティングが施されている、ストリップまたはシートが提供される。本発明の好ましい態様において、ストリップまたはシートは、自動車の内部もしくは外部部品、またはホイールの製造のため、またはハイドロフォーミング用途のために使用される。 In a second aspect of the present invention there is provided a strip or sheet produced by the method of any one of claims 1-6, wherein the steel is preferably provided with a metal coating. Is done. In a preferred embodiment of the invention, the strip or sheet is used for the production of internal or external parts of a motor vehicle or wheel or for hydroforming applications.
本発明を以下の非制限例を用いて更に説明する。 The invention is further illustrated by the following non-limiting examples.
本調査において使用した材料の化学組成を表1に示す。
仕上げ圧延温度(FRT)は、変形した微細構造の再結晶化を保証するように選択し、炭化物の析出を回避するために巻き取り温度を500℃以下に保持した。再結晶化はFRTだけでなく、時間、熱間圧延中の最後の再結晶事象から蓄積した圧延歪み、および歪み速度にも依存する。 The finish rolling temperature (FRT) was selected to ensure recrystallization of the deformed microstructure and the coiling temperature was kept below 500 ° C. to avoid carbide precipitation. Recrystallization depends not only on FRT, but also on time, rolling strain accumulated from the last recrystallization event during hot rolling, and strain rate.
全ての圧延材料を50%冷間圧延して、続いて再結晶化焼なましを行った。最適な焼なましパラメータを決定するために、種々の焼なましサイクルを適用した。再結晶化されていない試料(36〜45%)および920℃で焼なましされた材料(65%)を除けば、全ての試料についての伸張は45%〜50%であることに留意すべきである。強度がより重要であると考えられているため、以下の議論はそれに関して焦点を合わせている。 All the rolled materials were cold rolled 50%, followed by recrystallization annealing. Various annealing cycles were applied to determine the optimal annealing parameters. Note that the elongation for all samples is 45% to 50%, except for the non-recrystallized sample (36-45%) and the material annealed at 920 ° C. (65%) It is. Since strength is considered more important, the following discussion focuses on it.
750℃以下の焼なまし温度に関して、再結晶化した材料の増加した割合および恐らくはいくらかの粒子成長によって材料は軟らかくなる。これらの温度で、析出の効果は限定的である。析出はこの温度域では粒子成長を最小化するのに最適であると考えられているため、775℃と800℃で焼なましされた(完全に再結晶化した)材料間の違いは小さい。これらの観察に基づき、推奨される焼なまし温度は785℃±10℃である。
V合金したグレードで生じる遅延亀裂および応力腐食割れにより、材料が高い温度で焼なましされるにつれて、亀裂形成への低い感受性が示される。応力腐食割れの感受性に関して、V添加は750℃の焼なまし温度だけでなく、より高い焼なまし温度でも明らかに有益である。 Delayed cracks and stress corrosion cracks that occur in V-alloyed grades indicate a low susceptibility to crack formation as the material is annealed at higher temperatures. In terms of stress corrosion cracking susceptibility, V addition is clearly beneficial not only at an annealing temperature of 750 ° C., but also at higher annealing temperatures.
V合金を抵抗スポット溶接試験に付した。接合部における高温割れは、Si非含有の非V合金材料と比較して、大きく減少した。 The V alloy was subjected to a resistance spot welding test. Hot cracks at the joints were greatly reduced compared to non-Si alloyed non-V alloy materials.
Claims (17)
− インゴット、連続鋳造スラブ、連続鋳造薄スラブ、またはストリップ鋳造ストリップであって、それらの組成が、重量%で、
− C 0.50%〜0.80%
− Mn 10〜17%
− Al 1.0%〜5%
− Si 多くとも0.5%
− S 多くとも0.020%
− P 多くとも0.050%
− N 50〜200ppm
− V 0.050〜0.25%
残部鉄および製造に伴う不可避不純物からなるインゴット、連続鋳造スラブ、連続鋳造薄スラブ、またはストリップ鋳造ストリップを鋳造する工程と、
− 前記インゴット、前記連続鋳造スラブ、前記連続鋳造薄スラブ、または前記ストリップ鋳造ストリップを望ましい熱間圧延厚さに熱間圧延することによって、熱間圧延したストリップをもたらす工程と、
− 前記熱間圧延したストリップを望ましい最終厚さに冷間圧延する工程と、
− 前記ストリップを、3〜60℃/sの加熱速度Vh、15〜300秒の焼きなまし時間taで焼きなまし温度Taに加熱し、次いで、10〜100℃/sの冷却速度Vcで冷却することを含んでなる方法であって、Taが750〜850℃である方法で、前記冷間圧延されたストリップを連続的に焼きなましする工程と
を含んでなる、方法。 A method for producing a sheet of austenitic steel having excellent resistance to delayed cracks, comprising:
-An ingot, continuous cast slab, continuous cast thin slab, or strip cast strip, the composition of which is by weight,
-C 0.50% to 0.80%
-Mn 10-17%
-Al 1.0% to 5%
-Si at most 0.5%
-S at most 0.020%
-P at most 0.050%
-N 50-200 ppm
-V 0.050-0.25%
Casting an ingot, continuous cast slab, continuous cast thin slab, or strip cast strip consisting of the balance iron and inevitable impurities associated with production;
-Hot rolling the ingot, the continuous cast slab, the continuous cast thin slab, or the strip cast strip to a desired hot rolled thickness to provide a hot rolled strip;
-Cold rolling the hot rolled strip to a desired final thickness;
- said strip, 3 to 60 ° C. / s heating rate V h of, heated to the annealing temperature T a at annealing time t a of 15 to 300 seconds, then cooling at a cooling rate V c of 10 to 100 ° C. / s a method comprising that, in the method T a is 750 to 850 ° C., comprising the step of annealing the said cold rolled strip continuous method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10165596 | 2010-06-10 | ||
EP10165596.7 | 2010-06-10 | ||
PCT/EP2011/002868 WO2011154153A1 (en) | 2010-06-10 | 2011-06-10 | Method of producing an austenitic steel |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013534566A JP2013534566A (en) | 2013-09-05 |
JP2013534566A5 JP2013534566A5 (en) | 2015-08-06 |
JP6009438B2 true JP6009438B2 (en) | 2016-10-19 |
Family
ID=42732626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013513585A Active JP6009438B2 (en) | 2010-06-10 | 2011-06-10 | Method for producing austenitic steel |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130118647A1 (en) |
EP (1) | EP2580359B1 (en) |
JP (1) | JP6009438B2 (en) |
KR (1) | KR101900963B1 (en) |
CN (1) | CN102939394A (en) |
BR (1) | BR112012031466B1 (en) |
WO (1) | WO2011154153A1 (en) |
ZA (1) | ZA201300240B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013003516A1 (en) * | 2013-03-04 | 2014-09-04 | Outokumpu Nirosta Gmbh | Process for the production of an ultra-high-strength material with high elongation |
DE102015111866A1 (en) | 2015-07-22 | 2017-01-26 | Salzgitter Flachstahl Gmbh | Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel |
KR20180098645A (en) * | 2015-12-28 | 2018-09-04 | 더 나노스틸 컴퍼니, 인코포레이티드 | Prevents delayed cracking during drawing of high strength steel |
KR101747034B1 (en) * | 2016-04-28 | 2017-06-14 | 주식회사 포스코 | Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same |
WO2017203315A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
WO2017203311A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
WO2017203312A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
WO2017203314A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Twip steel sheet having an austenitic matrix |
EP3464661B1 (en) | 2016-05-24 | 2024-11-06 | Arcelormittal | Method for the manufacture of twip steel sheet having an austenitic matrix |
WO2017203309A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Twip steel sheet having an austenitic matrix |
WO2017203310A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Method for producing a twip steel sheet having an austenitic microstructure |
DE102016117508B4 (en) * | 2016-09-16 | 2019-10-10 | Salzgitter Flachstahl Gmbh | Process for producing a flat steel product from a medium manganese steel and such a flat steel product |
KR101889185B1 (en) | 2016-12-21 | 2018-08-16 | 주식회사 포스코 | Hot-rolled steel sheet having superior formability and fatigue property, and method for manufacturing the same |
CN108929991B (en) * | 2017-05-26 | 2020-08-25 | 宝山钢铁股份有限公司 | Hot-dip plated high manganese steel and manufacturing method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2121985T3 (en) * | 1991-12-30 | 1998-12-16 | Po Hang Iron & Steel | MANGANESE RICH AUSTENITIC STEEL SHEET WITH SUPERIOR CONFORMABILITY, STRENGTH AND WELDABILITY, AND PROCEDURE FOR ITS MANUFACTURE. |
FR2731713B1 (en) * | 1995-03-14 | 1997-04-11 | Ugine Sa | PROCESS FOR THE MANUFACTURE OF A SHEET OF ELECTRIC STEEL WITH ORIENTED GRAINS FOR THE PRODUCTION OF MAGNETIC TRANSFORMER CIRCUITS IN PARTICULAR |
KR970043162A (en) * | 1995-12-30 | 1997-07-26 | 김종진 | Annealing heat treatment method and pickling method of high manganese cold rolled steel |
FR2881144B1 (en) * | 2005-01-21 | 2007-04-06 | Usinor Sa | PROCESS FOR MANUFACTURING FERRO-CARBON-MANGANIZED AUSTENITIC STEEL TILES HAVING HIGH RESISTANCE TO DELAYED CRACKING, AND SHEETS THUS PRODUCED |
WO2006082104A1 (en) * | 2005-02-02 | 2006-08-10 | Corus Staal Bv | Austenitic steel having high strength and formability, method of producing said steel and use thereof |
KR100742833B1 (en) * | 2005-12-24 | 2007-07-25 | 주식회사 포스코 | High Mn Steel Sheet for High Corrosion Resistance and Method of Manufacturing Galvanizing the Steel Sheet |
KR100851158B1 (en) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It |
BRPI0811085A2 (en) * | 2007-05-02 | 2014-12-09 | Corus Staal Bv | HOT DIP GALVANIZATION PROCESS OF TIRA AHSS OR UHSS MATERIAL AND SUCH MATERIAL |
KR20090070509A (en) * | 2007-12-27 | 2009-07-01 | 주식회사 포스코 | High manganese coated steel sheet having high strength and ductility and manufacturing method thereof |
KR100985286B1 (en) * | 2007-12-28 | 2010-10-04 | 주식회사 포스코 | High Manganese Steel Having High Strength and Excellent Delayed Fracture Resistance and Manufacturing Method Thereof |
ES2705203T3 (en) * | 2008-01-30 | 2019-03-22 | Tata Steel Ijmuiden Bv | Method to produce a hot-rolled TWIP steel and a TWIP steel product produced in this way |
EP2090668A1 (en) * | 2008-01-30 | 2009-08-19 | Corus Staal BV | Method of producing a high strength steel and high strength steel produced thereby |
KR101079472B1 (en) * | 2008-12-23 | 2011-11-03 | 주식회사 포스코 | Method for Manufacturing High Manganese Hot Dip Galvanizing Steel Sheet with Superior Surface Property |
EP2208803A1 (en) * | 2009-01-06 | 2010-07-21 | ThyssenKrupp Steel Europe AG | High-tensile, cold formable steel, steel flat product, method for producing a steel flat product and use of a steel flat product |
-
2011
- 2011-06-10 KR KR1020127032074A patent/KR101900963B1/en active IP Right Grant
- 2011-06-10 JP JP2013513585A patent/JP6009438B2/en active Active
- 2011-06-10 CN CN2011800284065A patent/CN102939394A/en active Pending
- 2011-06-10 WO PCT/EP2011/002868 patent/WO2011154153A1/en active Application Filing
- 2011-06-10 US US13/699,516 patent/US20130118647A1/en not_active Abandoned
- 2011-06-10 BR BR112012031466-1A patent/BR112012031466B1/en not_active IP Right Cessation
- 2011-06-10 EP EP11725880.6A patent/EP2580359B1/en active Active
-
2013
- 2013-01-10 ZA ZA2013/00240A patent/ZA201300240B/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP2580359B1 (en) | 2017-08-09 |
KR20130111214A (en) | 2013-10-10 |
ZA201300240B (en) | 2014-03-26 |
EP2580359A1 (en) | 2013-04-17 |
US20130118647A1 (en) | 2013-05-16 |
BR112012031466A2 (en) | 2016-11-08 |
CN102939394A (en) | 2013-02-20 |
WO2011154153A1 (en) | 2011-12-15 |
JP2013534566A (en) | 2013-09-05 |
KR101900963B1 (en) | 2018-09-20 |
BR112012031466B1 (en) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6009438B2 (en) | Method for producing austenitic steel | |
CN111433380B (en) | High-strength galvanized steel sheet and method for producing same | |
JP7051974B2 (en) | Method for manufacturing TWIP steel sheet having austenite microstructure | |
JP5949253B2 (en) | Hot dip galvanized steel sheet and its manufacturing method | |
WO2015092982A1 (en) | High-strength steel sheet and method for producing same | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5783269B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5531757B2 (en) | High strength steel plate | |
JP2020509205A (en) | Hot-dip aluminum-plated steel excellent in corrosion resistance and workability and method for producing the same | |
JP6398967B2 (en) | High-strength hot-dip hot-rolled steel sheet excellent in surface appearance and plating adhesion and method for producing the same | |
EP2753725A1 (en) | Low density high strength steel and method for producing said steel | |
JP3812279B2 (en) | High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same | |
WO2014103279A1 (en) | Hot-dip galvanized steel sheet | |
WO2014091724A1 (en) | Hot-dip-galvanized steel sheet | |
JP4528184B2 (en) | Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability | |
JP4889212B2 (en) | High-strength galvannealed steel sheet and method for producing the same | |
JP6168144B2 (en) | Galvanized steel sheet and manufacturing method thereof | |
JP4720618B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5206349B2 (en) | Steel sheet, surface-treated steel sheet, and production method thereof | |
JP4940813B2 (en) | Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more | |
JP3646538B2 (en) | Manufacturing method of hot-dip galvanized high-tensile steel sheet with excellent workability | |
JP2014240510A (en) | Galvanized steel sheet and production method thereof | |
JP6136672B2 (en) | High strength galvannealed steel sheet and method for producing the same | |
JP5644059B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP4148257B2 (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent strain age hardening characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150320 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20150619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6009438 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |