Nothing Special   »   [go: up one dir, main page]

JP6007639B2 - Wrinkle detection method and wrinkle detection device - Google Patents

Wrinkle detection method and wrinkle detection device Download PDF

Info

Publication number
JP6007639B2
JP6007639B2 JP2012166323A JP2012166323A JP6007639B2 JP 6007639 B2 JP6007639 B2 JP 6007639B2 JP 2012166323 A JP2012166323 A JP 2012166323A JP 2012166323 A JP2012166323 A JP 2012166323A JP 6007639 B2 JP6007639 B2 JP 6007639B2
Authority
JP
Japan
Prior art keywords
wrinkle
camera
inspected
candidate information
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012166323A
Other languages
Japanese (ja)
Other versions
JP2014025809A (en
Inventor
幸宏 帆足
幸宏 帆足
広章 小松原
広章 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012166323A priority Critical patent/JP6007639B2/en
Publication of JP2014025809A publication Critical patent/JP2014025809A/en
Application granted granted Critical
Publication of JP6007639B2 publication Critical patent/JP6007639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、鉄鋼製品を製造、検査する工程などにおいて、被検査材の被検査面を撮影した撮像画像に基づき被検査面に存在する疵を検出する技術に係り、特に、冷間状態で移動している形鋼の表面に照明を当て、反射光をカメラで撮像することで、形鋼の表面に発生した疵を検出する上で好適な疵検出方法および装置に関する。   The present invention relates to a technique for detecting wrinkles present on a surface to be inspected based on a captured image obtained by photographing the surface to be inspected in a process of manufacturing and inspecting a steel product, and in particular, moving in a cold state. The present invention relates to a wrinkle detection method and apparatus suitable for detecting wrinkles generated on the surface of a shaped steel by illuminating the surface of the shaped steel and imaging reflected light with a camera.

従来、熱間において輻射光を測定し、得られた二次元温度分布データを用いて疵を検出する技術が知られている(例えば特許文献1参照)。しかし、輻射光から得られた二次元温度分布データを用いた疵検出方法は、周囲に発生するヒュームの影響や熱対策を行う必要があるため、実用化には至っていない。   2. Description of the Related Art Conventionally, a technique is known in which radiant light is measured in the hot state and soot is detected using the obtained two-dimensional temperature distribution data (see, for example, Patent Document 1). However, the soot detection method using the two-dimensional temperature distribution data obtained from the radiant light has not been put into practical use because it is necessary to take measures against the influence of fumes generated in the surroundings and heat countermeasures.

これに対し、冷間にて過流探傷および漏洩磁束探傷などにより疵を検出する方法も存在する。しかし、被検査材が形鋼である場合、形鋼は断面形状が複雑且つサイズレンジが多様なため、被検査材に対して一定のセンサ位置を保つためには、位置合わせ機構が必要となり、設備が大型で高価となる。そこで、被検査材に照明を投光して被検査面の写りを良くした状態で、その被検査面を撮像することによって被検査面の疵を検査する技術が提案されている(例えば特許文献2参照)。特許文献2記載の技術では、疵の検出は、形鋼の表面をカメラで撮像し、その撮像された撮像情報に濃淡補正と二値化を行い、黒色部分の面積から疵の検出を行うものである。   On the other hand, there is also a method for detecting wrinkles by cold flaw detection, leakage magnetic flaw detection, and the like. However, when the material to be inspected is a shape steel, the shape of the shape steel is complicated and the size range is diverse, so an alignment mechanism is required to maintain a constant sensor position with respect to the material to be inspected. The equipment is large and expensive. Therefore, a technique for inspecting a wrinkle of the surface to be inspected by imaging the surface to be inspected in a state in which illumination of the material to be inspected to improve the appearance of the surface to be inspected has been proposed (for example, Patent Documents). 2). In the technique described in Patent Document 2, the detection of wrinkles is performed by capturing the surface of the shape steel with a camera, performing density correction and binarization on the captured image information, and detecting wrinkles from the area of the black portion It is.

特開2004−279161号公報JP 2004-279161 A 特開2010−038759号公報JP 2010-038759 A

しかしながら、冷間状態で移動している形鋼の表面を被検査面として撮像する場合、スケールや冷却水などの外乱を考慮する必要がある。つまり、冷却工程や洗浄工程で水を使用した処理によって形鋼表面に付着した水滴あるいは矯正工程で剥離したスケールは、エアパージ、スクレーパーなどを表面疵検査装置の前段に配置して設備的に除去しているものの、これらを完全に除去することは困難である。特に形鋼の下面側は、冷却工程や洗浄工程で水を使用した処理によって形鋼表面に付着した水滴が落下したり、あるいは矯正工程で剥離したスケールが落下して付着したりすることがあり、誤検出の要因になるという問題がある。   However, when imaging the surface of the shape steel moving in the cold state as a surface to be inspected, it is necessary to consider disturbances such as scale and cooling water. In other words, water drops adhering to the shape steel surface due to treatment using water in the cooling process or cleaning process or scales peeled off during the correction process are removed by installing an air purge, scraper, etc. in the front stage of the surface defect inspection device. However, it is difficult to completely remove them. In particular, on the bottom surface of the shape steel, water droplets attached to the surface of the shape steel may drop due to treatment using water in the cooling process or cleaning process, or the scale peeled off during the correction process may fall and adhere. There is a problem that it becomes a factor of false detection.

特に、被検査材とカメラとの間に浮遊するスケールなどの異物は、被検査材の表面よりもカメラとの距離が近くなる。そのため、相対的に面積が大きく検出され、それにより閾値の調整などでフィルタリングを行うことも難しい。そのため、浮遊するスケールなどの異物と疵とを弁別することが困難であるという問題がある。
そこで、本発明は、このような問題点に鑑みてなされたものであり、被検査面とカメラとの間に浮遊するスケールなどの疵以外の異物が存在する場合であっても、このような異物と疵とを弁別して、疵のみを検出し得る疵検出方法および疵検出装置を提供することを目的とする。
In particular, a foreign matter such as a scale floating between the inspection material and the camera is closer to the camera than the surface of the inspection material. Therefore, a relatively large area is detected, and it is difficult to perform filtering by adjusting a threshold value. Therefore, there is a problem that it is difficult to distinguish foreign substances such as floating scales from wrinkles.
Therefore, the present invention has been made in view of such problems, and even when foreign matter other than wrinkles such as a scale floating between the surface to be inspected and the camera exists. An object of the present invention is to provide a wrinkle detection method and a wrinkle detection device capable of discriminating foreign substances from wrinkles and detecting only wrinkles.

上記課題を解決するために、本発明の一態様に係る疵検出方法は、冷間状態で移動している形鋼の表面にある表面欠陥を検出するに際して、前記表面の被検査面を撮影した撮像画像に基づき前記被検査面に存在する疵を検出する疵検出方法であって、前記被検査面の被検査領域に照明装置で光を照射し、前記被検査面の被検査領域を互いに異なる角度に設置され、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生している像を撮像する第一のカメラと、ハレーションが発生していない像を撮像する第二のカメラとで撮像し、その撮像された各々の撮像情報に基づいて各々の撮像情報毎に前記被検査面の疵候補情報をそれぞれ生成し、前記第一のカメラの撮像情報と前記第二のカメラの撮像情報とに基づいて生成され疵候補情報のいずれもが同一の判定範囲内にあるときに限って、当該疵候補情報に対応した疵が有るものと判定するとともに、前記第一のカメラの撮像情報に基づいて生成された疵候補情報の位置に疵が有るものと判定することを特徴とする。 In order to solve the above-described problem, the flaw detection method according to one aspect of the present invention images a surface to be inspected when detecting a surface defect on the surface of a shape steel moving in a cold state. based on said captured image to a flaw detecting method for detecting flaws existing in the inspected surface, the light is irradiated to the illumination device to be inspected area of the inspected surface, the inspection area of the inspection surface, together A first camera that captures an image in which halation is generated out of reflected light of the light that is installed at different angles and is applied to the surface to be inspected by the illumination device, and an image in which halation is not generated The second camera that captures the image, and generates wrinkle candidate information of the surface to be inspected for each imaging information based on the captured imaging information, and the imaging information of the first camera and the based on the imaging information of the second camera Any of made a flaw candidate information only when it is in the same determination range, determines that there is a flaw corresponding to the flaw candidate information, generated based on imaging information of the first camera It is determined that there is a wrinkle at the position of the obtained wrinkle candidate information .

また、本発明の一態様に係る疵検出装置は、冷間状態で移動している形鋼の表面を被検査面として、該被検査面を撮影した撮像画像に基づき前記表面にある表面欠陥を検出して前記被検査面に存在する疵を検出する疵検出装置であって、前記被検査面の被検査領域に光を照射する照明装置と、前記被検査領域を互いに異なる角度から撮像する第一のカメラおよび第二のカメラと、該第一のカメラおよび該第二のカメラによって撮像された各々の撮像情報に基づいて、各々の撮像情報毎に前記被検査面の疵候補情報を生成する疵候補情報生成手段と、該疵候補情報生成手段で生成された複数の疵候補情報に基づいて前記被検査面の疵の有無を検出する疵検出手段とを備え、前記第一のカメラは、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生している像を撮像し、前記第二のカメラは、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生していない像を撮像し、前記疵検出手段は、前記複数の疵候補情報のいずれもが同一の判定範囲内にあるときに限って、当該疵候補情報に対応した疵が有るものと判定するとともに、前記第一のカメラの撮像情報に基づいて生成された疵候補情報の位置に疵が有るものと判定することを特徴とする。
本発明によれば、冷間状態で移動している形鋼の表面にある表面欠陥を検出するに際し、被検査面からの反射光を撮像するカメラを、異なる角度から同じ被検査領域を撮像するように二台配置し、それらの撮像情報からそれぞれ生成した疵候補情報がいずれも同一の判定範囲にあるときに限って、当該疵候補情報に対応した疵が第一のカメラの撮像情報に基づいて生成された疵候補情報の位置に有るものと判定するので、異物と疵とを弁別して、疵のみを検出することができる。
Moreover, the wrinkle detection device according to one aspect of the present invention uses a surface of a shaped steel moving in a cold state as a surface to be inspected, and detects surface defects on the surface based on a captured image obtained by photographing the surface to be inspected. A wrinkle detection device for detecting wrinkles present on the surface to be inspected, wherein the illumination device irradiates light to the region to be inspected on the surface to be inspected, and a first device that images the region to be inspected from different angles . and one camera and a second camera, on the basis of the first camera and said second respective imaging information captured by the camera, and generates a defect candidate information of the surface to be inspected for each respective imaging information A wrinkle candidate information generating means and a wrinkle detecting means for detecting the presence or absence of wrinkles on the surface to be inspected based on a plurality of wrinkle candidate information generated by the wrinkle candidate information generating means, the first camera, Reaction of light irradiated on the surface to be inspected by the illumination device Of the light, an image in which halation has occurred is picked up, and the second camera picks up an image in which no halation has occurred in the reflected light of the light irradiated on the surface to be inspected by the illumination device The wrinkle detection means determines that there is a wrinkle corresponding to the wrinkle candidate information only when all of the plurality of wrinkle candidate information are within the same determination range, and the first It is characterized in that it is determined that there is a wrinkle at the position of the wrinkle candidate information generated based on the imaging information of the camera .
According to the present invention, when detecting a surface defect on the surface of a shape steel moving in a cold state, a camera that images reflected light from the surface to be inspected captures the same area to be inspected from different angles. as arranged in two sets, flaw candidate information generated from each of these imaging information are all only when in the same determination range, flaws corresponding to the flaw candidate information based on imaging information of the first camera since determined that is in the position of the generated flaw candidate information Te, and discriminate between foreign matter and scratches, it is possible to detect only the flaw.

つまり、図1(a)に示すように、それぞれのカメラ1,2で同じ被検査領域Kを同時に撮像した時、カメラ1,2の検出角度の差異により、異物Fが被検査面Wsから離間している浮遊物であれば、撮像画像中の異物Fの撮像位置はカメラ1とカメラ2とでは異なる位置となる。同図の例では、第一のカメラ1による撮像位置は、被検査面Ws上での見かけの位置(第一のカメラ1での疵候補情報)がA点となるのに対し、第二のカメラ2による撮像位置は、被検査面Ws上での見かけの位置(第二のカメラ2での疵候補情報)がB点となる。これに対し、図1(b)に示すように、被検査面Ws上の疵Dであれば、カメラ1,2の検出角度によらず各カメラ1、2での疵候補情報は撮像画像中の同じ位置に検出される。   That is, as shown in FIG. 1A, when the same inspection area K is simultaneously imaged by the cameras 1 and 2, the foreign matter F is separated from the inspection surface Ws due to the difference in detection angles of the cameras 1 and 2. If it is a floating object, the imaging position of the foreign substance F in the captured image is different between the camera 1 and the camera 2. In the example shown in the figure, the imaging position of the first camera 1 is an apparent position on the surface to be inspected Ws (the eyelid candidate information on the first camera 1) is point A, whereas The apparent position on the surface to be inspected Ws (the eyelid candidate information in the second camera 2) is the B point as the imaging position by the camera 2. On the other hand, as shown in FIG. 1B, if the eyelid D is on the surface to be inspected Ws, the eyelid candidate information for each camera 1 and 2 is not included in the captured image regardless of the detection angle of the cameras 1 and 2. Are detected at the same position.

よって、被検査面Wsとカメラ1,2との間にスケール等の異物Fが存在した場合や、いずれか一方のカメラに落下した水滴が付着した場合であっても、カメラ1,2相互の撮像位置が異物と疵の場合には異なることを利用し、それぞれのカメラ1,2の疵候補情報がいずれも判定範囲であるか否かの判定により、被検査面Wsに存在する疵か否かを判定でき、異物Fと疵Dとを弁別して、疵Dのみを検出することが可能である。   Therefore, even when a foreign matter F such as a scale exists between the surface to be inspected Ws and the cameras 1 and 2, or even when a dropped water droplet adheres to one of the cameras 1 and 2, Utilizing the fact that the imaging position is different between the foreign object and the eyelid, it is determined whether or not the eyelid candidate information of each of the cameras 1 and 2 is within the determination range, and whether or not the eyelid exists on the inspection surface Ws. It is possible to determine whether or not the foreign matter F and the heel D are distinguished, and only the heel D can be detected.

そして、本発明によれば、ハレーションを起こさせることで、第一のカメラの撮像画像中における、被検査面の表面性状としての微小凹凸からなる表面粗さなどを飛ばして、目的とする疵をよりはっきりと浮き出させることが可能となる。また、被検査面に水滴等の水が付着していても、ハレーションを起こさせることで水滴等の水のコントラスト差が低減する。このため、水滴等を疵として誤検知することを低減若しくは無くすことが可能となる。よって、異物と疵とを弁別して、疵のみを検出する上好適である。 According to the present invention, by causing halation to occur, the surface roughness made up of minute irregularities as the surface property of the surface to be inspected in the captured image of the first camera is skipped, and the target wrinkle is obtained. It becomes possible to make it stand out more clearly. Further, even if water such as water droplets adheres to the surface to be inspected, the contrast difference of water such as water droplets is reduced by causing halation. For this reason, it is possible to reduce or eliminate erroneous detection of water droplets or the like as wrinkles. Therefore, to discriminate between foreign matter and scratches, it is preferable in order to detect only the flaw.

上述のように、本発明によれば、被検査面とカメラとの間に浮遊するスケールなどの疵以外の異物が存在する場合であっても、このような異物と疵とを弁別して、疵のみを検出することができる。   As described above, according to the present invention, even if there is a foreign matter other than a wrinkle such as a scale floating between the surface to be inspected and the camera, such a foreign matter is discriminated from the wrinkle. Only can be detected.

本発明の作用効果を説明するための概念図であり、同図(a)は、浮遊する異物が疵候補として認識された例を示し、同図(b)は、被検査面の表面の疵が疵候補として認識された例を示している。It is a conceptual diagram for explaining the operational effect of the present invention, FIG. (A) shows an example in which a floating foreign object is recognized as a candidate for wrinkles, and (b) shows wrinkles on the surface of the surface to be inspected. Shows an example in which is recognized as a cocoon candidate. 本発明の一実施形態に係る疵検出装置の構成を示す概念図(側面図)である。It is a conceptual diagram (side view) which shows the structure of the wrinkle detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る疵検出装置の構成を示す概念図(上面側の斜視図)である。It is a conceptual diagram (perspective view on the upper surface side) showing a configuration of a wrinkle detection device according to an embodiment of the present invention. 本発明の一実施形態に係る疵検出装置の画像処理部で実行される疵検出判定処理のフローチャートである。It is a flowchart of the wrinkle detection determination process performed in the image processing part of the wrinkle detection apparatus according to an embodiment of the present invention. 本発明の一実施例に係る疵検出のための撮像画像を示しており、同図の例は、浮遊する異物が疵候補として認識された例であって、同図(a)は第一のカメラの撮像画像を示し、同図(b)は第二のカメラの撮像画像を示している。FIG. 2 shows a picked-up image for wrinkle detection according to an embodiment of the present invention, and the example in the figure is an example in which a floating foreign object is recognized as a wrinkle candidate, and FIG. The captured image of the camera is shown, and FIG. 5B shows the captured image of the second camera.

以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
図2および図3は、本実施形態に係る疵検出装置の構成を示す概念図である。ここで、本実施形態の疵検出装置は、被検査材が形鋼(例えばH形鋼)であり、形鋼の製造工程の一部である検査ラインに配置された場合を例示している。そして、この疵検出装置は、検査ラインにおいて、搬送装置(不図示)で形鋼を搬送している間に、当該形鋼の表面を被検査面として検査する例である。また、本発明の疵検出装置は、鉄鋼を製造する工程における、少なくとも一部の冷却に水を使用する冷却工程の出側、又は洗浄工程の出側での疵検出に好適な疵検出装置である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.
2 and 3 are conceptual diagrams illustrating the configuration of the wrinkle detection device according to the present embodiment. Here, the flaw detection apparatus of the present embodiment exemplifies a case where the material to be inspected is a section steel (for example, H-section steel) and is disposed on an inspection line that is a part of the manufacturing process of the section steel. And this flaw detection apparatus is an example which inspects the surface of the said shaped steel as a to-be-inspected surface, while conveying a shaped steel with a conveying apparatus (not shown) in an inspection line. Moreover, the soot detecting device of the present invention is a soot detecting device suitable for detecting soot on the exit side of the cooling process using water for cooling at least part of the process of manufacturing steel or the exit side of the cleaning process. is there.

本実施形態の疵検出装置は、図2および図3に示すように、第一のカメラ1、第二のカメラ2、照明装置3、及び画像処理部4を備える。検査対象とするH形鋼Wは、テーブルローラその他の搬送装置(不図示)で長手方向(搬送方向H)に沿って搬送されるようになっている。なお、下記の例では、H姿勢で搬送しているH形鋼Wのウェブの上面(以下、単に「上面」という)およびウェブの下面(以下、単に「下面」という)を被検査面Wsとする場合で例示する。H形鋼Wの上面および下面にそれぞれ配置された第一のカメラ1、第二のカメラ2および照明装置3の装置構成は同じであり、上下対称なので、以下、上面および下面を特に区別せずに被検査面Wsと呼んで説明する。   As shown in FIGS. 2 and 3, the eyelid detection device of the present embodiment includes a first camera 1, a second camera 2, an illumination device 3, and an image processing unit 4. The H-shaped steel W to be inspected is transported along the longitudinal direction (transport direction H) by a table roller or other transport device (not shown). In the following example, the upper surface (hereinafter simply referred to as “upper surface”) and the lower surface of the web (hereinafter simply referred to as “lower surface”) of the H-shaped steel W being conveyed in the H posture are referred to as the surface to be inspected Ws. This is illustrated by the case. The first camera 1, the second camera 2, and the illumination device 3 arranged on the upper and lower surfaces of the H-shaped steel W have the same device configuration and are vertically symmetric. Therefore, the upper and lower surfaces are not particularly distinguished below. The surface to be inspected will be described below.

照明装置3は、H形鋼Wの被検査面Wsの被検査領域K(図3参照)に対して、搬送方向Hの上流側に傾いた斜め方向から光を照射可能に配置されている。照明装置3の照射軸L3は、被検査領域Kでの被検査面Wsの法線に対し、搬送方向Hの上流側に予め設定した角度θだけ傾斜して配置する。法線に対する角度θは、例えば±45度以内に設定する。本実施形態では、θ=30度に設定した。照明装置3としては、高周波蛍光灯が例示出来る。   The illuminating device 3 is disposed so as to be able to irradiate light from an oblique direction inclined upstream in the transport direction H with respect to the inspection region K (see FIG. 3) of the inspection surface Ws of the H-shaped steel W. The irradiation axis L3 of the illuminating device 3 is arranged so as to be inclined with respect to the normal line of the surface Ws to be inspected in the inspection region K by an angle θ set in advance upstream in the transport direction H. The angle θ with respect to the normal is set within ± 45 degrees, for example. In this embodiment, θ is set to 30 degrees. An example of the illumination device 3 is a high-frequency fluorescent lamp.

第一のカメラ1および第二のカメラ2は、形鋼Wの被検査面Wsの被検査領域Kを撮影可能な位置に配置されている。
第一のカメラ1は、被検査領域Kに対して搬送方向Hの下流側に傾いた斜め方向から、当該被検査領域Kを撮像するように、被検査領域Kの中央に撮影軸L1が設定されている。被検査面Wsの法線に対する撮影軸L1の角度θは、例えば±45度以内に設定する。本実施形態では、θ=30度に設定した。
The first camera 1 and the second camera 2 are arranged at positions where the inspection area K of the inspection surface Ws of the shape steel W can be imaged.
The first camera 1 sets the imaging axis L1 at the center of the inspection area K so as to image the inspection area K from an oblique direction inclined to the downstream side of the conveyance direction H with respect to the inspection area K. Has been. The angle θ of the imaging axis L1 with respect to the normal line of the surface to be inspected Ws is set within ± 45 degrees, for example. In this embodiment, θ is set to 30 degrees.

ここで、本実施形態では、第一のカメラ1により被検査領域Kを撮影した撮像画像に、照明装置3から照射される光によってハレーションが発生するように、照明装置3から被検査領域Kまでの距離、照射される光量を、実験その他の方法で決定しておく。本実施形態では、20V以上の高周波蛍光灯を使用し、照明装置3から被検査領域Kまでの距離を1160mm以内とすることで、被検査領域Kで1000ルックス以上の照度が確保できるように設定した。このように設定することで、第一のカメラ1で撮影した撮像画像において、少なくとも被検査領域Kを撮影した画像領域ではハレーションが発生することを確認したためである。これに対し、第二のカメラ2は、被検査領域Kを撮像するように当該被検査領域Kの中央に撮影軸L2が設定され、当該撮影軸L2は、被検査面Wsの法線に一致している。第二のカメラ2は、被検査領域Kを撮影した撮像画像でハレーションは発生していない状態で、表面の性状がはっきり撮影された被検査面が撮影されている。   Here, in the present embodiment, from the illumination device 3 to the inspection region K so that halation occurs in the captured image obtained by photographing the inspection region K with the first camera 1 due to the light irradiated from the illumination device 3. The distance and the amount of light to be irradiated are determined by experiments and other methods. In this embodiment, a high-frequency fluorescent lamp of 20 V or higher is used, and the distance from the illumination device 3 to the inspection area K is set within 1160 mm, so that an illuminance of 1000 lux or more can be secured in the inspection area K. did. This is because it has been confirmed that halation occurs at least in the image area obtained by imaging the area to be inspected K in the captured image taken by the first camera 1 by setting in this way. On the other hand, in the second camera 2, the imaging axis L2 is set at the center of the inspection area K so as to image the inspection area K, and the imaging axis L2 is aligned with the normal line of the inspection surface Ws. I'm doing it. The second camera 2 captures a surface to be inspected in which a surface property is clearly imaged in a state in which halation is not generated in a captured image obtained by capturing the region K to be inspected.

画像処理部4は、画像取込部5と疵検出部6を備えている。画像取込部5は、第一のカメラ1および第二のカメラ2が撮像した撮像画像を、予め設定した画像取込み周期で撮像情報として取得して記憶部にそれぞれ記憶する。疵検出部6は、上記第一のカメラ1および第二のカメラ2が撮影した撮像画像の画像処理を行って図4に示す疵検出判定処理を実行する。   The image processing unit 4 includes an image capturing unit 5 and a wrinkle detection unit 6. The image capturing unit 5 acquires captured images captured by the first camera 1 and the second camera 2 as imaging information at a preset image capturing period and stores them in the storage unit. The eyelid detection unit 6 performs image processing of the captured images taken by the first camera 1 and the second camera 2 and executes the eyelid detection determination processing shown in FIG.

疵検出判定処理が実行されると、疵検出部6は、第一のカメラ1および第二のカメラ2が撮像した撮像情報を記憶部から順次に取得し、その取得した撮像情報のそれぞれに対して、被検査領域Kを設定する(図4のステップS1)。次いで、それぞれの被検査領域Kの撮像情報に2値化処理(エッジ処理)を実施して、各撮像画像の濃淡画像を濃度差分布に変換する(ステップS2)。次いで、疵検出部6は、変換した濃度差分布について予め設定された閾値と比較し、その閾値を越えた場合には、表面欠陥の候補とする疵候補情報をそれぞれに生成する。疵候補情報は、濃度差分布から黒色データ部分を抽出し、その面積が所定以上であればこれを表面欠陥の候補としたものである(ステップS3)。このステップS3が上記課題を解決するための手段に記載の「疵候補情報生成手段」に対応する。   When the wrinkle detection determination process is executed, the wrinkle detection unit 6 sequentially acquires the imaging information captured by the first camera 1 and the second camera 2 from the storage unit, and for each of the acquired imaging information Thus, the inspection area K is set (step S1 in FIG. 4). Next, binarization processing (edge processing) is performed on the imaging information of each inspection area K, and the grayscale image of each captured image is converted into a density difference distribution (step S2). Next, the wrinkle detection unit 6 compares the converted density difference distribution with a preset threshold value, and generates wrinkle candidate information as surface defect candidates when the threshold value is exceeded. In the wrinkle candidate information, a black data portion is extracted from the density difference distribution, and if the area is equal to or larger than a predetermined value, this is regarded as a surface defect candidate (step S3). This step S3 corresponds to the “candidate candidate information generating means” described in the means for solving the above problems.

ここで、本実施形態の疵検出判定処理では、図1に示したように、浮遊するスケールなどの異物Fと疵Kとを弁別するために、異物判定処理を実行する(ステップS4)。ステップS4の異物判定処理では、第一のカメラ1および第二のカメラ2が撮像した撮像情報に対してそれぞれ生成された上記疵候補情報のいずれもが同一の判定範囲A内にあるときに限って、当該疵候補情報に対応した疵が有るものと判定する。判定範囲Aは種々設定することができる。例えば疵候補とされた黒色データ部分の被検査領域Kでの座標(例えば黒色データ部分の重心)を判定範囲として相互に比較してもよいし、被検査領域Kを搬送方向Hに複数に区分して判定範囲とし、同一の区分に位置するか否かによって判定してもよい。   Here, in the wrinkle detection determination process of the present embodiment, as shown in FIG. 1, the foreign object determination process is executed in order to discriminate foreign substances F such as a floating scale and wrinkles K (step S4). In the foreign matter determination process in step S4, only when both of the wrinkle candidate information generated for the imaging information captured by the first camera 1 and the second camera 2 are within the same determination range A. Thus, it is determined that there is a wrinkle corresponding to the wrinkle candidate information. Various determination ranges A can be set. For example, the coordinates (for example, the center of gravity of the black data portion) of the black data portion that is set as a wrinkle candidate may be compared with each other as a determination range, or the inspection region K is divided into a plurality in the transport direction H The determination range may be used, and the determination may be made based on whether or not they are located in the same section.

本実施形態では、図3に示すように、被検査領域Kを搬送方向Hに複数に区分して判定範囲Aを設定しており、相互の疵候補情報が同一の判定範囲Aに位置する場合に当該疵候補情報に対応した疵が有るものと判定する。特に本実施形態では、ステップS4では、第一のカメラ1の撮像情報に基づいて生成された疵候補情報が判定範囲A内にあるときに、第二のカメラ2の撮像情報に基づいて生成された疵候補情報も当該判定範囲A内にあるときに第一のカメラ1の撮像情報に基づいて生成された疵候補情報の位置に疵が有るものと判定している。このステップS4が上記課題を解決するための手段に記載の「疵検出手段」に対応する。
画像処理部4は、疵検出部6の判定結果を、例えば表示部に出力して該表示部に表示したり、疵位置を形鋼Wにマーキングするマーキング装置などに出力したりする(ステップS5の結果出力処理)。
In the present embodiment, as shown in FIG. 3, the determination area A is set by dividing the inspection area K into a plurality of conveyance directions H, and mutual wrinkle candidate information is located in the same determination range A It is determined that there is a bag corresponding to the bag candidate information. In particular, in this embodiment, in step S4, when the eyelid candidate information generated based on the imaging information of the first camera 1 is within the determination range A, the information is generated based on the imaging information of the second camera 2. When the wrinkle candidate information is also within the determination range A, it is determined that there is a wrinkle at the position of the wrinkle candidate information generated based on the imaging information of the first camera 1. This step S4 corresponds to the “wrinkle detection means” described in the means for solving the above problems.
The image processing unit 4 outputs the determination result of the wrinkle detection unit 6 to, for example, a display unit and displays it on the display unit, or outputs it to a marking device for marking the wrinkle position on the shape steel W (step S5). Result output processing).

次に、本実施形態の疵検出装置の動作および作用効果について説明する。
この疵検出装置は、被検査領域Kに到来した搬送中の形鋼Wの被検査面Wsに対し、照明装置3からハレーションを発生可能なだけの光量で光を照射し、被検査領域Kでハレーションを発生した状態の像が第一のカメラ1によって撮影される。一方、第二のカメラ2では、被検査領域Kでのハレーションを発生していない状態で、表面の性状がはっきり撮影された像が撮影される。
Next, operations and effects of the wrinkle detection device of this embodiment will be described.
This wrinkle detection device irradiates light to the inspection surface Ws of the shape steel W being conveyed that has arrived at the inspection region K with a light amount that can generate halation from the illumination device 3. An image in a state where halation has occurred is taken by the first camera 1. On the other hand, the second camera 2 captures an image in which the surface properties are clearly captured in a state where no halation occurs in the inspection region K.

そして、この疵検出装置によれば、被検査面Wsからの反射光を撮像する二台のカメラ1,2を異なる角度に配置し、それらの撮像情報からそれぞれ生成した疵候補情報がいずれも同一の判定範囲Aにあるときに限って、当該疵候補情報に対応した疵Dが有るものと判定するので、図1を参照して説明したように、被検査面Wsとカメラ1,2との間にスケール等の異物Fが存在した場合であっても、カメラ1,2相互の撮像位置が異物と疵の場合には異なることを利用し、それぞれのカメラ1,2の疵候補情報がいずれも判定範囲Aであるか否かの判定により、被検査面Wsに存在する疵か否かを判定でき、異物Fと疵Dとを弁別して、疵Dのみを検出することが可能である。   According to this wrinkle detection device, the two cameras 1 and 2 that image the reflected light from the surface Ws to be inspected are arranged at different angles, and the wrinkle candidate information generated from each of the captured information is the same. Only when it is within the determination range A, it is determined that there is a heel D corresponding to the heel candidate information. Therefore, as described with reference to FIG. Even if there is a foreign substance F such as a scale between them, the fact that the imaging positions of the cameras 1 and 2 are different from each other is different from that of the foreign substance and the flaw. In addition, it is possible to determine whether or not a wrinkle exists on the surface to be inspected Ws by determining whether or not it is within the determination range A, and it is possible to discriminate the foreign material F from the wrinkle D and detect only the wrinkle D.

ここで、形鋼Wには、冷却工程や洗浄工程などの水を使用した処理によって、表面に水滴が付着している場合がある。従来のように、表面の性状をはっきり撮影できる光量の光を照射して撮影した撮影画像のみによって疵検出を行う場合には、例えば1〜2mmの大きさの水滴であっても、その水滴を疵と誤検知するおそれがある。これは、照射した光が水滴によって乱反射し、そのために見かけ上のコントラスト差が生まれることで、誤検知の要因になるからである。   Here, water droplets may adhere to the surface of the shaped steel W due to treatment using water such as a cooling process or a cleaning process. In the case where wrinkle detection is performed only with a photographed image obtained by irradiating light of a quantity that can clearly photograph the surface properties as in the past, for example, even if it is a water droplet having a size of 1 to 2 mm, There is a risk of false detection. This is because the irradiated light is irregularly reflected by the water droplets, and an apparent contrast difference is generated, thereby causing a false detection.

これに対し、第一のカメラ1で撮影された撮像画像では、ハレーションが発生しているために、被検査面Wsに形成されている微小凹凸からなる表面粗さは画像から飛ぶことでマスキングされる。これにより、所定深さ以上の疵Dや異物Fが所定の濃度差で撮影された撮像画像となり、疵と誤検知されるような水滴をマスキングして、より精度良く目的とする疵候補だけを検知可能となる。   On the other hand, in the captured image photographed by the first camera 1, since halation has occurred, the surface roughness formed by minute irregularities formed on the surface to be inspected Ws is masked by flying from the image. The This results in a captured image in which the wrinkles D and foreign matter F having a predetermined depth or more are captured with a predetermined density difference, masks water drops that are erroneously detected as wrinkles, and only the target wrinkle candidates are more accurately detected. Detectable.

このように、本実施形態の疵検出装置であれば、被検査面Wsとカメラ1,2との間に浮遊するスケールなどの疵以外の異物が存在する場合であっても、被検査面Wsの表面性状による誤差の影響を抑えつつ、異物Fと疵Dとを弁別して、表面欠陥をより精度良く検出することが可能となる。また、被検査面Wsの表面性状の影響を軽減できたので、表面性状の影響を排除する設備導入コストも小さく抑えることが出来る。例えば、水切り装置の水切り能力を小さくすることが可能となる。   As described above, in the wrinkle detection apparatus according to the present embodiment, even when foreign matter other than wrinkles such as a scale floating between the surface to be inspected Ws and the cameras 1 and 2 exists, the surface to be inspected Ws. The surface defect can be detected with higher accuracy by discriminating between the foreign matter F and the wrinkles D while suppressing the influence of the error due to the surface property. In addition, since the influence of the surface property of the surface to be inspected Ws can be reduced, the equipment introduction cost for eliminating the influence of the surface property can be suppressed to a low level. For example, it becomes possible to reduce the drainage capacity of the drainer.

次に、上記実施形態の疵検出装置に基づく疵の検出についての実施例について説明する。
本実施例の設定条件は、鋼種がH形鋼であり、その寸法は、ウェブ高さが250mm〜1000mm、フランジ幅が125mm〜500mm、長さが6〜34mである。適用したのは形鋼工場の精整ラインであり、H形鋼の搬送速度は0〜4m/sである。なお、被検査面Wsとして形鋼のウェブ表面に設定した。照明装置3からの照射による被検査領域Kでの照度は1230ルックスとし、各カメラ1、2のシャッタースピードは1/240,絞りを全開とした。
Next, an example of wrinkle detection based on the wrinkle detection device of the above embodiment will be described.
The setting conditions of this example are that the steel type is H-shaped steel, and the dimensions are a web height of 250 mm to 1000 mm, a flange width of 125 mm to 500 mm, and a length of 6 to 34 m. What was applied was a finishing line in a shape steel factory, and the conveyance speed of H-section steel was 0 to 4 m / s. In addition, it set to the web surface of a shape steel as to-be-inspected surface Ws. The illuminance in the region K to be inspected by irradiation from the illumination device 3 was 1230 lux, the shutter speed of each camera 1 and 2 was 1/240, and the aperture was fully open.

本実施例における第一のカメラ1および第二のカメラ2で撮影した撮像画像の一例を、図5に示す。上記設定によって、第一のカメラ1が撮影した撮像画像でハレーションが発生していることを確認した(図5(a)参照)。また、第二のカメラ2では、被検査領域Kでのハレーションを発生していない状態で、表面の性状がはっきり撮影された(図5(b)参照)。なお、画像処理部4での閾値はそれぞれ欠陥を検出可能な値に校正した。   An example of the picked-up image image | photographed with the 1st camera 1 and the 2nd camera 2 in a present Example is shown in FIG. With the above settings, it was confirmed that halation occurred in the captured image taken by the first camera 1 (see FIG. 5A). In the second camera 2, the surface properties were clearly photographed in a state where no halation occurred in the inspection area K (see FIG. 5B). The threshold values in the image processing unit 4 are calibrated to values that can detect defects.

なお、実施例の条件について、被検査領域Kでの照度が変わるように照明装置3の設定を変更して、第一のカメラ1で撮影した撮像画像にハレーションが発生するかどうか確認したところ、942ルックスでは、ハレーション状態になっていなかったが、1000ルックス以上ではハレーション状態となっていることを確認した。この実験は、840〜1143ルックスの範囲で実施した。   In addition, about the conditions of an Example, when changing the setting of the illuminating device 3 so that the illumination intensity in the to-be-inspected area | region K might change, it was confirmed whether the halation generate | occur | produced in the captured image image | photographed with the 1st camera 1, Although it was not in the halation state at 942 lux, it was confirmed that it was in the halation state at 1000 lux or more. This experiment was conducted in the range of 840 to 1143 lux.

ここで、図5(b)に示すように、第二のカメラ2での撮像画像では、被検査面Wsの小さな凹凸も写り込み、検出したい表面欠陥の境界位置でのコントラスト差が小さくなっている。これに対し、図5(a)に示すように、第一のカメラ1の撮像画像では、ハレーションによって被検査面Wsの目的とする疵よりも小さな凹凸が飛んでマスキングされて表面欠陥等の疵候補が浮かび上がっている。なお、図5(a)において、上端側若しくは下端側に灰色の部分が見えているが、この部分は被検査領域Kとされておらず、ハレーションが発生していない部分である。図5(a)に示す撮像画像では、被検査領域Kは、中央側(確実にハレーションが発生している領域)に設定されている。   Here, as shown in FIG. 5B, in the captured image by the second camera 2, small unevenness of the surface to be inspected Ws is also reflected, and the contrast difference at the boundary position of the surface defect to be detected becomes small. Yes. On the other hand, as shown in FIG. 5 (a), in the captured image of the first camera 1, the irregularities smaller than the target wrinkle of the surface Ws to be inspected are masked by halation and masked. Candidates are emerging. In FIG. 5A, a gray portion is visible on the upper end side or the lower end side, but this portion is not the inspection region K and is a portion where no halation occurs. In the captured image shown in FIG. 5A, the inspection area K is set to the center side (an area where halation is reliably generated).

本実施例では、図5に示すように、被検査領域Kを搬送方向Hに複数に区分して判定範囲Aを設定している。判定範囲Aは、例えば同図の符号A3のように広く設定すれば高速搬送に対応する上では好ましく、精度を向上させる上では、符号A1に示すように、狭い範囲に設定することが好ましい。また、符号A2に示すように、被検査領域Kの種々の範囲に複数の判定範囲Aを設定することもできる。この例では、同図(a)に示すように、第一のカメラ1において、黒色データ部分が疵候補として疵候補情報が生成された(同図の異物Fに示す部位)。これに対し、同図(b)に示すように、第二のカメラ2においても対応する黒色データ部分が疵候補として疵候補情報が生成された(同図の異物Fに示す部位)。しかし、相互の疵候補情報が同一の判定範囲Aに位置していない。この例では、第一のカメラ1の疵候補情報が判定範囲A1(またはA3)にあるのに対し、第二のカメラ2の疵候補情報は、いずれの判定範囲にも属していない。よって、相互の疵候補情報が同一の判定範囲A(A1またはA3)に位置しないので、この例は、疵候補情報は異物と判断され、当該疵候補情報に対応した疵は有しないと判定される。   In this embodiment, as shown in FIG. 5, the determination range A is set by dividing the inspection area K into a plurality of areas in the transport direction H. For example, the determination range A is preferably set to a narrow range as indicated by reference numeral A1 in order to cope with high-speed conveyance if it is set wide as indicated by reference numeral A3 in FIG. In addition, as indicated by reference numeral A2, a plurality of determination ranges A can be set in various ranges of the inspection region K. In this example, as shown in FIG. 6A, in the first camera 1, wrinkle candidate information is generated with the black data portion as a wrinkle candidate (part indicated by the foreign object F in the same figure). On the other hand, as shown in FIG. 6B, wrinkle candidate information is generated with the corresponding black data portion as a wrinkle candidate also in the second camera 2 (part indicated by the foreign substance F in the same figure). However, the mutual wrinkle candidate information is not located in the same determination range A. In this example, the eyelid candidate information of the first camera 1 is in the determination range A1 (or A3), whereas the eyelid candidate information of the second camera 2 does not belong to any determination range. Accordingly, since the mutual wrinkle candidate information is not located in the same determination range A (A1 or A3), in this example, it is determined that the wrinkle candidate information is a foreign object and does not have a wrinkle corresponding to the wrinkle candidate information. The

このように、本実施形態の形鋼の表面疵の検出方法および装置によれば、少なくとも二台のカメラ1、2を用いることにより、スケール除去や水滴除去のための設備を大型・複雑化することなく、形鋼表面のスケールや水滴等の異物と疵を弁別することができる。
本実施形態の装置の採用により、誤検知率の低減にて設備の検査精度(信頼性)が向上し、疵流出の防止によりクレームが削減され、品質をより高いレベルで保証可能となった。
なお、本発明に係る疵検出方法および装置は、上記実施形態ないし実施例に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
As described above, according to the method and apparatus for detecting surface defects of the shaped steel of this embodiment, the equipment for removing scales and removing water droplets is enlarged and complicated by using at least two cameras 1 and 2. Therefore, foreign matters such as scales and water droplets on the shape steel surface can be discriminated from soot.
By adopting the apparatus of the present embodiment, the inspection accuracy (reliability) of the equipment is improved by reducing the false detection rate, the complaints are reduced by preventing dredging, and the quality can be guaranteed at a higher level.
Note that the wrinkle detection method and apparatus according to the present invention are not limited to the above-described embodiments or examples, and various modifications can be made without departing from the spirit of the present invention.

例えば上記実施形態では、形鋼Wを搬送中に目的以上の深さの表面欠陥を検出する場合を例示しているが、これに限らず、被検査面を静置した状態で疵検出を実施しても良い。また、疵検出装置の照明装置3と第一のカメラ1および第二のカメラ2の組の方を、相対移動させて疵検出のための走査を行うようにしても良い。
また、本発明の適用対象とする被検査面は、形鋼Wの表面に限定されず、種々の鋼材の表面に対しても適用することができる。本発明は、特に鋼とカメラとの間にスケール等の異物が存在した場合や、水滴が付着している可能性のある状態の被検査面の疵検出に有効である。
For example, in the above-described embodiment, a case where a surface defect having a depth greater than the target is detected during conveyance of the shaped steel W is exemplified. However, the present invention is not limited to this, and wrinkle detection is performed with the surface to be inspected standing still. You may do it. Alternatively, the illuminating device 3 of the wrinkle detection device and the first camera 1 and the second camera 2 may be relatively moved to perform scanning for wrinkle detection.
Moreover, the surface to be inspected to which the present invention is applied is not limited to the surface of the section steel W, and can be applied to the surfaces of various steel materials. The present invention is particularly effective for detecting wrinkles on the surface to be inspected when foreign matter such as a scale exists between the steel and the camera or when water droplets may be attached.

1 第一のカメラ
2 第二のカメラ
3 照明装置
L1 (第一のカメラの)撮影軸
L2 (第二のカメラの)撮影軸
L3 照射軸
4 画像処理部
5 画像取込部
6 疵検出部
A 判定範囲
D 疵
K 被検査領域
F 異物
H 搬送方向
Ws 形鋼の表面(被検査面)
DESCRIPTION OF SYMBOLS 1 1st camera 2 2nd camera 3 Illumination device L1 Shooting axis | shaft L2 (of 1st camera) Shooting axis | shaft L3 (of 2nd camera) Irradiation axis 4 Image processing part 5 Image capture part 6 Haze detection part A Judgment range D 疵 K Inspected area F Foreign object H Transport direction Ws Shaped steel surface (inspected surface)

Claims (2)

冷間状態で移動している形鋼の表面にある表面欠陥を検出するに際して、前記表面の被検査面を撮影した撮像画像に基づき前記被検査面に存在する疵を検出する疵検出方法であって、
前記被検査面の被検査領域に照明装置で光を照射し、
前記被検査面の被検査領域を互いに異なる角度に設置され、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生している像を撮像する第一のカメラと、ハレーションが発生していない像を撮像する第二のカメラとで撮像し、その撮像された各々の撮像情報に基づいて各々の撮像情報毎に前記被検査面の疵候補情報をそれぞれ生成し、
前記第一のカメラの撮像情報と前記第二のカメラの撮像情報とに基づいて生成され疵候補情報のいずれもが同一の判定範囲内にあるときに限って、当該疵候補情報に対応した疵が有るものと判定するとともに、前記第一のカメラの撮像情報に基づいて生成された疵候補情報の位置に疵が有るものと判定することを特徴とする疵検出方法。
A flaw detection method for detecting wrinkles present on a surface to be inspected based on a captured image obtained by photographing the surface to be inspected when detecting a surface defect on a surface of a shape steel moving in a cold state. And
Irradiate light to the inspection area of the inspection surface with an illumination device,
The inspection area of the inspection surface, is installed in different angles, the lighting device of the reflected light of light irradiated to the surface to be inspected, the first camera that captures an image halation occurs And a second camera that picks up an image in which no halation has occurred, and generates wrinkle candidate information for the surface to be inspected for each piece of image pickup information based on each piece of the picked up image pickup information. ,
Corresponding to the wrinkle candidate information only when both of the wrinkle candidate information generated based on the imaging information of the first camera and the imaging information of the second camera are within the same determination range A wrinkle detection method characterized by determining that there is a wrinkle and determining that there is a wrinkle at a position of wrinkle candidate information generated based on the imaging information of the first camera .
冷間状態で移動している形鋼の表面を被検査面として、該被検査面を撮影した撮像画像に基づき前記表面にある表面欠陥を検出して前記被検査面に存在する疵を検出する疵検出装置であって、
前記被検査面の被検査領域に光を照射する照明装置と、前記被検査領域を互いに異なる角度から撮像する第一のカメラおよび第二のカメラと、該第一のカメラおよび該第二のカメラによって撮像された各々の撮像情報に基づいて、各々の撮像情報毎に前記被検査面の疵候補情報を生成する疵候補情報生成手段と、該疵候補情報生成手段で生成された複数の疵候補情報に基づいて前記被検査面の疵の有無を検出する疵検出手段とを備え、
前記第一のカメラは、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生している像を撮像し、前記第二のカメラは、前記照明装置で前記被検査面に照射された光の反射光のうち、ハレーションが発生していない像を撮像し、
前記疵検出手段は、前記複数の疵候補情報のいずれもが同一の判定範囲内にあるときに限って、当該疵候補情報に対応した疵が有るものと判定するとともに、前記第一のカメラの撮像情報に基づいて生成された疵候補情報の位置に疵が有るものと判定することを特徴とする疵検出装置。
Using the surface of the shape steel moving in the cold state as the surface to be inspected, the surface defect on the surface is detected based on the captured image obtained by photographing the surface to be inspected to detect wrinkles present on the surface to be inspected. A wrinkle detection device,
Wherein an illumination device for irradiating light to the inspection area of the test surface, the a first camera and a second camera that captures the different angles of inspection region, said first camera and said second camera A wrinkle candidate information generating unit that generates wrinkle candidate information of the surface to be inspected for each piece of imaging information on the basis of the respective pieces of imaged information picked up by a plurality of wrinkle candidates generated by the wrinkle candidate information generating unit Wrinkle detection means for detecting the presence or absence of wrinkles on the surface to be inspected based on information,
The first camera captures an image in which halation has occurred among the reflected light of the light irradiated on the surface to be inspected by the illumination device, and the second camera captures the object to be inspected by the illumination device. Of the reflected light of the light irradiated on the inspection surface, take an image where no halation has occurred,
The wrinkle detection means determines that there is a wrinkle corresponding to the wrinkle candidate information only when all of the plurality of wrinkle candidate information are within the same determination range, and the first camera A wrinkle detection apparatus that determines that a wrinkle is present at a position of wrinkle candidate information generated based on imaging information .
JP2012166323A 2012-07-26 2012-07-26 Wrinkle detection method and wrinkle detection device Active JP6007639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166323A JP6007639B2 (en) 2012-07-26 2012-07-26 Wrinkle detection method and wrinkle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166323A JP6007639B2 (en) 2012-07-26 2012-07-26 Wrinkle detection method and wrinkle detection device

Publications (2)

Publication Number Publication Date
JP2014025809A JP2014025809A (en) 2014-02-06
JP6007639B2 true JP6007639B2 (en) 2016-10-12

Family

ID=50199587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166323A Active JP6007639B2 (en) 2012-07-26 2012-07-26 Wrinkle detection method and wrinkle detection device

Country Status (1)

Country Link
JP (1) JP6007639B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828652B2 (en) * 2017-10-13 2021-02-10 王子ホールディングス株式会社 Sanitary paper manufacturing method and defect inspection equipment
JP6996363B2 (en) 2018-03-12 2022-01-17 王子ホールディングス株式会社 Defect inspection equipment and manufacturing method for sheet-like materials
JP7501264B2 (en) 2020-09-15 2024-06-18 株式会社アイシン Anomaly detection device, anomaly detection program, and anomaly detection system
CN114047201A (en) * 2021-10-25 2022-02-15 上海仪电智能科技有限公司 AI intelligent technology-based multiple fabric flaw detection device and operation method
CN116993733B (en) * 2023-09-27 2024-01-09 深圳市冉希古科技有限公司 Earphone sleeve appearance quality detection method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204350A (en) * 1982-05-24 1983-11-29 Kawasaki Steel Corp Method for detecting flaw on surface of metallic object
JPS60253222A (en) * 1984-05-30 1985-12-13 Hitachi Ltd Pattern tester
JPH07306164A (en) * 1994-05-13 1995-11-21 Nippon Steel Corp Flaw detecting device
JP3429966B2 (en) * 1997-01-20 2003-07-28 株式会社リコー Surface defect inspection device and inspection method
JP4882268B2 (en) * 2005-04-20 2012-02-22 オムロン株式会社 Defect detection method for metal cap and defect inspection apparatus for metal cap
JP5561178B2 (en) * 2010-04-09 2014-07-30 新日鐵住金株式会社 Surface defect inspection apparatus, surface defect inspection method, and program

Also Published As

Publication number Publication date
JP2014025809A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
CN107735674B (en) Surface defect detection device, surface defect detection method, and steel product manufacturing method
JP5521377B2 (en) Glass plate defect identification method and apparatus
JP6753553B1 (en) Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model
JP6394514B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
JP6007639B2 (en) Wrinkle detection method and wrinkle detection device
JP6119663B2 (en) Surface defect detection method and surface defect detection apparatus
JP2010071722A (en) Method and device for inspecting unevenness flaws
JP2009293999A (en) Wood defect detector
EP3399302A1 (en) Egg surface inspection apparatus
JP5354187B2 (en) Traveling material surface quality judging device and surface quality judging method
JP6769182B2 (en) Surface inspection equipment and surface inspection method for steel materials
JP2017062181A (en) Surface flaw checkup apparatus, and surface flaw checkup method
JP6699694B2 (en) Inspection system, inspection method
JP2012251983A (en) Wrap film wrinkle inspection method and device
JP2011145082A (en) Surface defect inspection device for sheet-like object
JP2023506778A (en) Contained foreign matter detection system and method using laser
JP6387909B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP5297245B2 (en) Object surface inspection equipment
JP5765040B2 (en) Wrinkle detection method and wrinkle detection device
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP4016381B2 (en) Surface defect inspection equipment
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
JP2007101239A (en) Visual inspection device and visual inspection method
JP2014186030A (en) Defect inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6007639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250