Nothing Special   »   [go: up one dir, main page]

JP6005548B2 - Precious metal injection method for boiling water nuclear power plant - Google Patents

Precious metal injection method for boiling water nuclear power plant Download PDF

Info

Publication number
JP6005548B2
JP6005548B2 JP2013035424A JP2013035424A JP6005548B2 JP 6005548 B2 JP6005548 B2 JP 6005548B2 JP 2013035424 A JP2013035424 A JP 2013035424A JP 2013035424 A JP2013035424 A JP 2013035424A JP 6005548 B2 JP6005548 B2 JP 6005548B2
Authority
JP
Japan
Prior art keywords
platinum oxide
water
pipe
noble metal
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013035424A
Other languages
Japanese (ja)
Other versions
JP2014163811A (en
Inventor
石田 一成
一成 石田
和田 陽一
陽一 和田
正彦 橘
正彦 橘
太田 信之
信之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013035424A priority Critical patent/JP6005548B2/en
Priority to US14/084,157 priority patent/US20140140465A1/en
Publication of JP2014163811A publication Critical patent/JP2014163811A/en
Application granted granted Critical
Publication of JP6005548B2 publication Critical patent/JP6005548B2/en
Priority to US15/583,464 priority patent/US10504628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Catalysts (AREA)
  • Colloid Chemistry (AREA)

Description

本発明は、沸騰水型原子力プラントの貴金属注入方法に関する。   The present invention relates to a method for injecting a noble metal in a boiling water nuclear power plant.

沸騰水型原子力プラントでは、原子炉圧力容器内に設置されている炉内構造物または原子炉圧力容器に接続された配管(例えば、再循環系配管)の応力腐食割れを抑制することが、沸騰水型原子力プラントの稼働率向上の観点から重要である。   In boiling water nuclear power plants, it is possible to suppress stress corrosion cracking in reactor internals installed in the reactor pressure vessel or piping connected to the reactor pressure vessel (eg, recirculation piping). This is important from the viewpoint of improving the operation rate of the water-type nuclear power plant.

応力腐食割れに関して以下のことが知られており、応力腐食割れに対する対策が行われている。炉内構造物、及び原子炉圧力容器に接続された配管に接する高温高圧の冷却水(以下、炉水という)は、原子炉圧力容器内の炉心での炉水の放射線分解により生じた酸素及び過酸化水素を含んでいる。このため、炉水の酸素濃度及び過酸化水素濃度が高いほど応力腐食割れの進展が顕著である。炉水に接触する炉内構造物及び配管のそれぞれにおける応力腐食割れ進展は、炉水の酸素濃度及び過酸化水素濃度を低減することによって抑制できる。   The following is known about stress corrosion cracking, and countermeasures against stress corrosion cracking have been taken. High-temperature and high-pressure cooling water (hereinafter referred to as reactor water) in contact with the reactor internal structure and piping connected to the reactor pressure vessel is oxygen generated by radiolysis of the reactor water in the reactor core inside the reactor pressure vessel. Contains hydrogen peroxide. For this reason, the progress of stress corrosion cracking is more remarkable as the oxygen concentration and hydrogen peroxide concentration in the reactor water are higher. The progress of stress corrosion cracking in each of the in-furnace structures and pipes in contact with the reactor water can be suppressed by reducing the oxygen concentration and hydrogen peroxide concentration in the reactor water.

その応力腐食割れを抑制する代表的な方法として貴金属注入がある。この貴金属注入は、炉水中に貴金属(白金、ロジウムまたはパラジウム)の化合物を注入して炉内構造物の表面及び原子炉圧力容器に接続される配管の内面に貴金属を付着させ、炉水に水素を注入する技術である(例えば、特開平7−311296号公報参照)。貴金属は、水素と酸素及び過酸化水素とのそれぞれの反応を促進し、炉内構造物の表面及び原子炉圧力容器に接続される配管の内面に接触する炉水の酸素、過酸化水素濃度を低減する。特開平7−311296号公報は、炉水に注入する貴金属化合物として貴金属のアセチルアセトナート化合物及び貴金属の硝酸化合物を例示しており、貴金属の硝酸化合物を水に溶解させた水溶液または貴金属のアセチルアセトナート化合物をエタノール等のアルコールに溶解させた溶液を注入している。   As a typical method for suppressing the stress corrosion cracking, there is noble metal injection. In this noble metal injection, a compound of noble metal (platinum, rhodium or palladium) is injected into the reactor water to attach the noble metal to the surface of the reactor internal structure and the inner surface of the pipe connected to the reactor pressure vessel, and hydrogen is added to the reactor water. (See, for example, JP-A-7-311296). The noble metal promotes the reaction between hydrogen, oxygen and hydrogen peroxide, and reduces the oxygen and hydrogen peroxide concentrations in the reactor water contacting the surface of the reactor internal structure and the inner surface of the pipe connected to the reactor pressure vessel. To reduce. Japanese Patent Application Laid-Open No. 7-311296 exemplifies a noble metal acetylacetonate compound and a noble metal nitric acid compound as noble metal compounds to be injected into the reactor water. A solution in which a nate compound is dissolved in an alcohol such as ethanol is injected.

貴金属を含むナノ粒子を炉水に注入することが特開2003−215289号公報に記載されている。特開2003−215289号公報では、中性活物質としてZnO、Al23またはZrO2を使用し、この中性活物質の表面に貴金属(白金、パラジウム、ルテニウム、ロジウム、オスミウムまたはイリジウム)を添着した貴金属ナノ粒子を、原子炉圧力容器に接続される再循環系内を流れる炉水に注入している。水素が炉水に注入され、この水素と炉水に含まれている酸素が、貴金属の触媒作用により反応して水になる。このため、炉水の溶存酸素濃度が低下する。 Japanese Patent Application Laid-Open No. 2003-215289 describes injecting nanoparticles containing noble metals into reactor water. In JP2003-215289A, ZnO, Al 2 O 3 or ZrO 2 is used as a neutral active material, and a noble metal (platinum, palladium, ruthenium, rhodium, osmium or iridium) is used on the surface of the neutral active material. The impregnated noble metal nanoparticles are injected into the reactor water flowing in the recirculation system connected to the reactor pressure vessel. Hydrogen is injected into the reactor water, and this hydrogen and oxygen contained in the reactor water react to become water by the catalytic action of the noble metal. For this reason, the dissolved oxygen concentration of reactor water falls.

また、特開2005−10160号公報は構造材料の応力腐食割れを防止する方法を記載する。この応力腐食割れ防止方法では、貴金属(例えば、白金)の触媒ナノ粒子の濃縮懸濁液を、原子炉圧力容器に接続された配管(例えば、残留熱除去系配管、再循環系配管及び給水配管等)を通して原子炉圧力容器内の炉水に注入している。   Japanese Patent Application Laid-Open No. 2005-10160 describes a method for preventing stress corrosion cracking of a structural material. In this stress corrosion cracking prevention method, a concentrated suspension of precious metal (for example, platinum) catalyst nanoparticles is connected to piping (for example, residual heat removal system piping, recirculation system piping, and water supply piping) connected to a reactor pressure vessel. Etc.) is injected into the reactor water in the reactor pressure vessel.

原子炉圧力容器に接続された配管はステンレス鋼または炭素鋼で構成されているため、高温水に曝されるとその配管の内面(接液表面)は、α−Feを主成分とした酸化被膜に覆われる。α−Feの等電位点(表面電位が0となるpH)は23℃で3.7〜5.2であり、235℃では3.4であることが報告されている(P. Jayaweera et al., Colloids and Surfaces A:Physicaochemical and Engineering Aspects, 85, p19 (1994))。 Since the pipe connected to the reactor pressure vessel is made of stainless steel or carbon steel, when exposed to high temperature water, the inner surface (wet surface) of the pipe is mainly composed of α-Fe 2 O 3. Covered with oxidized oxide film. It has been reported that the equipotential point of α-Fe 2 O 3 (pH at which the surface potential becomes 0) is 3.7 to 5.2 at 23 ° C. and 3.4 at 235 ° C. Jayaweera et al., Colloids and Surfaces A: Physicaochemical and Engineering Aspects, 85, p19 (1994)).

特開平7−311296号公報JP 7-311296 A 特開2003−215289号公報JP 2003-215289 A 特開2005−10160号公報Japanese Patent Laid-Open No. 2005-10160

P. Jayaweera et al., Colloids and Surfaces A:Physicaochemical and Engineering Aspects, 85, p19 (1994)P. Jayaweera et al., Colloids and Surfaces A: Physicaochemical and Engineering Aspects, 85, p19 (1994)

特開平7−311296号公報のように、貴金属の硝酸化合物を水に溶解させた水溶液または貴金属のアセチルアセトナート化合物をエタノール等のアルコールに溶解させた溶液を原子炉圧力容器内の炉水に注入する場合には、貴金属の以外に硝酸、またはアセチルアセトン及びアルコールが炉水中に持ち込まれる。硝酸化合物は炉水に硝酸イオンを放出するため、炉水の電気伝導率が増加する可能性がある。アセチルアセトナート化合物及びアルコールは炉水中に有機酸イオン及び炭酸イオンを放出するため、炉水の電気伝導率が増加する可能性がある。炉水における電気伝導率の増加は、原子力プラントのプラント構造部材の腐食抑制の観点から好ましくない。   As disclosed in JP-A-7-311296, an aqueous solution in which a noble metal nitrate compound is dissolved in water or a solution in which a noble metal acetylacetonate compound is dissolved in alcohol such as ethanol is injected into the reactor water in the reactor pressure vessel. In this case, nitric acid or acetylacetone and alcohol are brought into the reactor water in addition to the noble metal. Since nitrate compounds release nitrate ions into the reactor water, the electrical conductivity of the reactor water may increase. Since the acetylacetonate compound and alcohol release organic acid ions and carbonate ions into the reactor water, the electrical conductivity of the reactor water may increase. An increase in electrical conductivity in the reactor water is not preferable from the viewpoint of suppressing corrosion of plant structural members of a nuclear power plant.

特開2003−215289号公報に記載された、中性活物質の表面に貴金属を添着した貴金属ナノ粒子の注入、及び特開2005−10160号公報に記載された貴金属の触媒ナノ粒子の注入は、硝酸、アセチルアセトン及びアルコールが炉水に注入されないため、炉水における電気伝導率の増加を避けることができ、プラント構造部材の腐食を抑制できる。しかしながら、発明者らが特開2003−215289号公報及び特開2005−10160号公報に記載された貴金属の注入方法を検討した結果、以下に説明する問題が生じることを見出した。   As described in JP-A-2003-215289, injection of noble metal nanoparticles in which a noble metal is attached to the surface of a neutral active material, and injection of noble metal catalyst nanoparticles described in JP-A-2005-10160, Since nitric acid, acetylacetone and alcohol are not injected into the reactor water, an increase in electrical conductivity in the reactor water can be avoided, and corrosion of plant structural members can be suppressed. However, as a result of studying the noble metal injection methods described in Japanese Patent Application Laid-Open Nos. 2003-215289 and 2005-10160, the inventors have found that the following problems arise.

特開2003−215289号公報に記載された中性活物質であるZnO、Al23、及びZrO2の等電位点(表面電位が0となるpH)は9〜11であり、中性純水中(pH7)では中性活物質がプラスに帯電する(等電位点よりアルカリ性の場合はマイナス、酸性の場合はプラスに帯電する)。一方、原子炉圧力容器に接続された配管に接続された、貴金属ナノ粒子注入装置の注入配管の内面は鉄酸化物の被膜に覆われ、鉄酸化物の等電位点が3.7〜5.2であるため、注入配管の内面が、中性純水(pH7)に接触する場合ではマイナスに帯電する。このため、中性活物質は注入配管内面の酸化物に静電的に吸着される恐れがある。貴金属が表面に添着された中性活物質が注入配管の内面に付着すると、原子炉圧力容器内に持ち込まれる貴金属(例えば、白金)の量が減少し、それだけ、貴金属を添着した中性活物質を過剰に注入する必要がある。 The equipotential points (pH at which the surface potential is 0) of ZnO, Al 2 O 3 , and ZrO 2 , which are neutral active materials described in JP-A-2003-215289, are 9-11. In water (pH 7), the neutral active material is positively charged (minus if it is alkaline from the equipotential point, and positively if it is acidic). On the other hand, the inner surface of the injection pipe of the noble metal nanoparticle injection apparatus connected to the pipe connected to the reactor pressure vessel is covered with a film of iron oxide, and the equipotential point of iron oxide is 3.7-5. Therefore, when the inner surface of the injection pipe is in contact with neutral pure water (pH 7), it is negatively charged. For this reason, there is a possibility that the neutral active material is electrostatically adsorbed to the oxide on the inner surface of the injection pipe. When a neutral active material with a precious metal adhering to the surface adheres to the inner surface of the injection pipe, the amount of precious metal (for example, platinum) brought into the reactor pressure vessel is reduced. Need to be injected in excess.

特開2005−10160号公報では、原子炉圧力容器に接続された配管に接続された貴金属ナノ粒子注入装置の注入配管を通して貴金属の触媒ナノ粒子の濃縮懸濁液を、原子炉圧力容器内の炉水に注入する場合には、攪拌装置が設けられていないその注入配管において、濃縮懸濁液に含まれるナノ粒子の一部が沈降する恐れがある。このため、原子炉圧力容器内の炉水に注入される貴金属の量が減少するため、貴金属の触媒ナノ粒子を過剰に注入する必要がある。   In Japanese Patent Application Laid-Open No. 2005-10160, a concentrated suspension of noble metal catalyst nanoparticles is passed through an injection pipe of a noble metal nanoparticle injection apparatus connected to a pipe connected to a reactor pressure vessel. In the case of pouring into water, there is a risk that some of the nanoparticles contained in the concentrated suspension will settle in the injection pipe not provided with a stirring device. For this reason, since the amount of noble metal injected into the reactor water in the reactor pressure vessel is reduced, it is necessary to inject excessively noble metal catalyst nanoparticles.

本発明の目的は、注入配管への貴金属の付着を抑制し、原子炉圧力容器内の冷却水に注入される貴金属の量を増加できる沸騰水型原子力プラントの貴金属注入方法を提供することにある。   An object of the present invention is to provide a method for injecting a noble metal in a boiling water nuclear power plant capable of suppressing the adhesion of noble metal to an injection pipe and increasing the amount of noble metal injected into cooling water in a reactor pressure vessel. .

上記した目的を達成する本発明の特徴は、貴金属酸化物及び貴金属水酸化物を含む、粒径が1nm〜4.5nmの範囲内にあるコロイド粒子であってpHが5.6以上で表面が負に帯電したそのコロイド粒子を含む貴金属化合物コロイド溶液を、原子炉圧力容器に接続された配管に接続された注入配管を通して、原子炉圧力容器に接続されたその配管に注入し、貴金属化合物コロイド溶液を、その配管を通して原子炉圧力容器内の冷却水に注入することにある。 The feature of the present invention that achieves the above-described object is that the colloidal particles containing noble metal oxide and noble metal hydroxide have a particle size in the range of 1 nm to 4.5 nm and have a surface of pH 5.6 or more. A noble metal compound colloid solution containing the negatively charged colloidal particles is injected into the pipe connected to the reactor pressure vessel through the injection pipe connected to the reactor pressure vessel and the noble metal compound colloid solution. Is injected into the cooling water in the reactor pressure vessel through the piping.

貴金属酸化物及び貴金属水酸化物を含むコロイド粒子であってpHが5.6以上で表面が負に帯電したそのコロイド粒子が、注入配管及び原子炉圧力容器に接続された配管の各内面に吸着されず、そのコロイド粒子を含む貴金属化合物コロイド溶液を、原子炉圧力容器に接続された配管に接続された注入配管、及び原子炉圧力容器に接続された配管を通して原子炉圧力容器内の冷却水に注入することができる。このため、原子炉圧力容器内の冷却水に注入されるそのコロイド粒子の量を増加することができ、その冷却水に注入される貴金属の量を増加することができる。また、そのコロイド粒子の粒径が、1.0nm〜4.5nmの範囲内にあるナノ粒子であるため、アルコールなどの分散剤を使用しなくても、そのコロイド粒子が安定にその冷却水中に分散される。このため、原子炉圧力容器内の炉内構造物の表面及び原子炉圧力容器に接続されて冷却水が流れる配管の内面に貴金属を効率良く付着させることができる。 Colloidal particles containing noble metal oxides and noble metal hydroxides, with a pH of 5.6 or higher and negatively charged colloidal particles adsorbed on the inner surfaces of the pipes connected to the injection pipe and the reactor pressure vessel not, the noble metal compound colloid solution containing the colloidal particles, connected injection pipe connected to the pipe in the reactor pressure vessel, and the cooling water in the reactor pressure vessel through a pipe connected to the reactor pressure vessel Can be injected. For this reason, the amount of the colloidal particles injected into the cooling water in the reactor pressure vessel can be increased, and the amount of the noble metal injected into the cooling water can be increased. Further, since the colloidal particles are nanoparticles having a particle size in the range of 1.0 nm to 4.5 nm, the colloidal particles can be stably put into the cooling water without using a dispersant such as alcohol. Distributed. For this reason, a noble metal can be efficiently adhered to the surface of the reactor internal structure in the reactor pressure vessel and the inner surface of the pipe connected to the reactor pressure vessel and through which the cooling water flows.

本発明によれば、注入配管、及び注入配管が接続された、原子炉圧力容器に接続される配管の各内面への貴金属の付着を抑制し、原子炉圧力容器内の冷却水に注入される貴金属の量を増加することができる。   According to the present invention, noble metal is prevented from adhering to the inner surface of the injection pipe and the pipe connected to the reactor pressure vessel to which the injection pipe is connected, and injected into the cooling water in the reactor pressure vessel. The amount of precious metal can be increased.

本発明の好適な一実施例である実施例1の原子力プラントの貴金属注入方法を適用する沸騰水型原子力プラントの構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a boiling water nuclear plant to which a noble metal injection method for a nuclear plant according to embodiment 1, which is a preferred embodiment of the present invention, is applied. 図1に示す貴金属化合物注入装置の詳細構成図である。It is a detailed block diagram of the noble metal compound injection apparatus shown in FIG. 酸化白金コロイド溶液の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a platinum oxide colloid solution. 酸化白金コロイド溶液を製造する製造装置の構成図である。It is a block diagram of the manufacturing apparatus which manufactures a platinum oxide colloid solution. 酸化白金コロイド粒子の電気泳動を示す説明図である。It is explanatory drawing which shows the electrophoresis of a platinum oxide colloid particle. 酸化白金コロイドの塩酸滴定測定結果を示す特性図である。It is a characteristic view which shows the hydrochloric acid titration measurement result of a platinum oxide colloid. 酸化白金コロイドの一例の電子顕微鏡写真。An electron micrograph of an example of a platinum oxide colloid. 酸化白金コロイド溶液に含まれた酸化白金コロイド粒子の粒径分布を示す説明図である。It is explanatory drawing which shows the particle size distribution of the platinum oxide colloidal particle contained in the platinum oxide colloidal solution. 280℃の高温水中への酸化白金コロイド溶液の注入によるステンレス鋼の腐食電位の変化を示す説明図である。It is explanatory drawing which shows the change of the corrosion potential of stainless steel by injection | pouring of the platinum oxide colloid solution in 280 degreeC high temperature water. 280℃高温水中でのステンレス鋼の腐食電位に及ぼす酸素、過酸化水素濃度の影響を示す特性図である。It is a characteristic view which shows the influence of the oxygen and the hydrogen peroxide concentration which have on the corrosion potential of stainless steel in 280 degreeC high temperature water. 本発明の他の好適な実施例である実施例2の原子力プラントの貴金属注入方法に用いられる貴金属化合物注入装置の構成図である。It is a block diagram of the noble metal compound injection | pouring apparatus used for the noble metal injection | pouring method of the nuclear power plant of Example 2 which is another suitable Example of this invention.

発明者らは、貴金属の注入配管内面への吸着を抑制するために、貴金属の吸着現象について検討した。この結果、以下のことが分かった。原子炉圧力容器に接続される配管(例えば、給水配管及び原子炉浄化系配管等)に接続された、貴金属注入装置の注入配管の内面が、貴金属を含む水溶液を、注入配管を通して、原子炉圧力容器に接続される配管に注入している間に注入配管の内面が鉄酸化物で覆われる。この結果、注入配管の内面は、中性純水(pH7)に接触する場合にマイナスに帯電する。貴金属を溶解した中性の水溶液が注入配管内を流れるとき、水溶液中の貴金属のプラスイオン(例えば、Pt4+)が静電気的に注入配管のマイナスに帯電した内面に吸着される。 Inventors examined the adsorption | suction phenomenon of a noble metal, in order to suppress adsorption | suction to the injection pipe inner surface. As a result, the following was found. The inner surface of the injection pipe of the noble metal injection device connected to the pipe connected to the reactor pressure vessel (for example, the water supply pipe and the reactor purification system pipe) is supplied with an aqueous solution containing noble metal through the injection pipe. While injecting into the pipe connected to the container, the inner surface of the injection pipe is covered with iron oxide. As a result, the inner surface of the injection pipe is negatively charged when it comes into contact with neutral pure water (pH 7). When the neutral aqueous solution in which the noble metal is dissolved flows in the injection pipe, the positive ion (for example, Pt 4+ ) of the noble metal in the aqueous solution is electrostatically adsorbed on the negatively charged inner surface of the injection pipe.

物質は、等電位点より酸性の場合はプラスに、アルカリ性の場合はマイナスに帯電する。原子炉圧力容器に接続された配管を流れる水のpHは5.6〜8.6の範囲内にあることから、原子炉圧力容器に接続された配管の内面は、負に帯電していると考えられる。そこで、発明者らは、原子炉圧力容器に接続された配管、及びこの配管に接続される注入配管のマイナスに帯電したそれぞれの内面に貴金属を付着させないために、pHが5.6以上で表面が負に帯電した、貴金属を含む物質を使用すれば、静電反発力により、貴金属を含む物質の、原子炉圧力容器に接続された配管及び注入配管の各内面への吸着を抑制でき、原子炉圧力容器内の炉水に効率良く貴金を含む物質を注入することができるとの結論に達した。   The substance is positively charged when acidic from the equipotential point, and negatively charged when alkaline. Since the pH of water flowing through the pipe connected to the reactor pressure vessel is in the range of 5.6 to 8.6, the inner surface of the pipe connected to the reactor pressure vessel is negatively charged. Conceivable. In view of this, the inventors have a pH of 5.6 or more in order to prevent noble metals from adhering to the negatively charged inner surfaces of the pipe connected to the reactor pressure vessel and the injection pipe connected to the pipe. If negatively charged substances containing noble metals are used, adsorption of substances containing noble metals on the inner surfaces of pipes connected to the reactor pressure vessel and injection pipes can be suppressed by electrostatic repulsion. It has been concluded that the substance containing precious gold can be efficiently injected into the reactor water in the reactor pressure vessel.

この結論に基づいて、発明者らは、表面が負に帯電した、貴金属を含む物質の製造について検討した結果、表面が負に帯電した、酸化白金及び水酸化白金を含み酸化白金が主要成分であるコロイド粒子(酸化白金コロイド粒子)を製造することができた。   Based on this conclusion, the inventors examined the production of a material containing a noble metal having a negatively charged surface, and as a result, the platinum oxide containing platinum oxide and platinum hydroxide having a negatively charged surface was the main component. Some colloidal particles (platinum oxide colloidal particles) could be produced.

この酸化白金コロイド粒子を含む酸化白金コロイド溶液の製造を図3及び図4を用いて説明する。   The production of the platinum oxide colloid solution containing the platinum oxide colloid particles will be described with reference to FIGS.

酸化白金コロイド溶液(白金酸化物コロイド溶液)の製造工程は、図3に示す3つの工程を含んでいる。第1工程は、所定の濃度のヘキサヒドロキソ白金酸アルカリ(ヘキサヒドロキソ白金酸塩)の水溶液の作製である。第2工程は、この水溶液からの金属イオン(ナトリウムイオン、カリウムイオン等の陽イオン)の除去である(イオン交換工程)。第3工程は、金属イオンを除去した水溶液へのガンマ線の照射である(コロイド生成工程)。   The manufacturing process of the platinum oxide colloid solution (platinum oxide colloid solution) includes the three processes shown in FIG. The first step is preparation of an aqueous solution of alkali hexahydroxoplatinate (hexahydroxoplatinate) having a predetermined concentration. The second step is removal of metal ions (cations such as sodium ions and potassium ions) from this aqueous solution (ion exchange step). The third step is irradiation of gamma rays to the aqueous solution from which metal ions have been removed (colloid generation step).

酸化白金コロイド溶液、例えば、ヘキサヒドロキソ白金酸コロイド溶液の製造は、図4に示す酸化白金コロイド溶液製造装置30を用いて行われる。この酸化白金コロイド溶液製造装置30は、貯蔵容器31、陽イオン交換樹脂塔33、反応容器34、貯蔵容器35及びガンマ線発生装置38を備えている。貯蔵容器31と反応容器34は配管36で接続され、陽イオン交換樹脂塔33が配管36に設けられる。ポンプ32が陽イオン交換樹脂塔33よりも上流で配管36に設けられる。配管37が反応容器34及び貯蔵容器35に接続される。ガンマ線発生装置38が反応容器34に対向して配置される。貯蔵容器31は、ヘキサヒドロキソ白金酸アルカリ(ヘキサヒドロキソ白金酸塩)の水溶液を充填している。陽イオン交換樹脂塔33には、水素イオン型陽イオン交換樹脂が充填される。   Production of a platinum oxide colloidal solution, for example, a hexahydroxoplatinic acid colloidal solution is performed using a platinum oxide colloidal solution production apparatus 30 shown in FIG. The platinum oxide colloid solution manufacturing apparatus 30 includes a storage container 31, a cation exchange resin tower 33, a reaction container 34, a storage container 35, and a gamma ray generator 38. The storage container 31 and the reaction container 34 are connected by a pipe 36, and a cation exchange resin tower 33 is provided in the pipe 36. A pump 32 is provided in the pipe 36 upstream of the cation exchange resin tower 33. A pipe 37 is connected to the reaction vessel 34 and the storage vessel 35. A gamma ray generator 38 is disposed opposite the reaction vessel 34. The storage container 31 is filled with an aqueous solution of alkali hexahydroxoplatinate (hexahydroxoplatinate). The cation exchange resin tower 33 is filled with a hydrogen ion type cation exchange resin.

白金酸化物コロイド溶液の製造を、図3を用いて説明する。貯蔵容器31に充填するヘキサヒドロキソ白金酸アルカリの水溶液を作製する(ステップS1)。ヘキサヒドロキソ白金酸アルカリ(ヘキサヒドロキソ白金酸塩)としては、ヘキサヒドロキソ白金酸ナトリウム(Na2Pt(OH)6)及びヘキサヒドロキソ白金酸カリウム(K2Pt(OH)6)などがある。ヘキサヒドロキソ白金酸アルカリを固体として入手した場合は、純水に溶解し、所定の濃度のヘキサヒドロキソ白金酸アルカリの水溶液を作製する。ヘキサヒドロキソ白金酸アルカリを水溶液として入手した場合は、純水で希釈し、所定の濃度にする。ステップS1で作製されたヘキサヒドロキソ白金酸アルカリの水溶液を、貯蔵容器31に充填する。 The production of the platinum oxide colloid solution will be described with reference to FIG. An aqueous solution of hexahydroxoplatinate alkali to be filled in the storage container 31 is prepared (step S1). Examples of the alkali hexahydroxoplatinate (hexahydroxoplatinate) include sodium hexahydroxoplatinate (Na 2 Pt (OH) 6 ) and potassium hexahydroxoplatinate (K 2 Pt (OH) 6 ). When alkali hexahydroxoplatinate is obtained as a solid, it is dissolved in pure water to prepare an aqueous solution of alkali hexahydroxoplatinate with a predetermined concentration. When an alkali hexahydroxoplatinate is obtained as an aqueous solution, it is diluted with pure water to a predetermined concentration. The storage container 31 is filled with the aqueous solution of alkali hexahydroxoplatinate prepared in step S1.

ヘキサヒドロキソ白金酸アルカリの水溶液を、水素イオン型陽イオン交換樹脂層に通水する(ステップS2)。ポンプ32を駆動し、貯蔵容器31内のヘキサヒドロキソ白金酸アルカリの水溶液を、配管36を通して陽イオン交換樹脂塔33に供給する。ヘキサヒドロキソ白金酸アルカリの水溶液は、陽イオン交換樹脂塔33内で水素イオン型陽イオン交換樹脂が充填されている水素イオン型陽イオン交換樹脂層を通過する。このとき、ヘキサヒドロキソ白金酸アルカリの水溶液が水素イオン型陽イオン交換樹脂に接触すると、この水溶液に含まれる陽イオンであるアルカリイオン(Na+またはK+)が水素イオン型陽イオン交換樹脂に吸着されて除去されるとともに、水素イオン型陽イオン交換樹脂に含まれる水素イオンが当該水溶液中に放出される。これにより、ヘキサヒドロキソ白金酸アルカリの水溶液に含まれた陽イオンが水素イオンに置換される。ヘキサヒドロキソ白金酸アルカリの水溶液に含まれるアルカリイオンを水素イオンに置換すると、ヘキサヒドロキソ白金酸懸濁液が生成される。 The aqueous solution of alkali hexahydroxoplatinate is passed through the hydrogen ion type cation exchange resin layer (step S2). The pump 32 is driven, and an aqueous solution of alkali hexahydroxoplatinate in the storage container 31 is supplied to the cation exchange resin tower 33 through the pipe 36. The aqueous solution of alkali hexahydroxoplatinate passes through the hydrogen ion cation exchange resin layer filled with the hydrogen ion cation exchange resin in the cation exchange resin tower 33. At this time, when an aqueous solution of alkali hexahydroxoplatinate comes into contact with the hydrogen ion cation exchange resin, alkali ions (Na + or K + ) contained in the aqueous solution are adsorbed on the hydrogen ion cation exchange resin. As a result, the hydrogen ions contained in the hydrogen ion type cation exchange resin are released into the aqueous solution. Thereby, the cation contained in the aqueous solution of alkali hexahydroxoplatinate is replaced with a hydrogen ion. When alkali ions contained in an aqueous solution of alkali hexahydroxoplatinate are replaced with hydrogen ions, a hexahydroxoplatinate suspension is generated.

ヘキサヒドロキソ白金酸懸濁液にガンマ線を照射する(ステップS3)。陽イオン交換樹脂塔33内で生成されたヘキサヒドロキソ白金酸懸濁液が、反応容器34に供給される。ガンマ線発生装置38から放出されたガンマ線39が、反応容器34内のヘキサヒドロキソ白金酸懸濁液に照射される。ガンマ線39の照射量は、吸収線量が7kGy以上となるようにする。ヘキサヒドロキソ白金酸懸濁液にガンマ線39を照射することにより、茶褐色透明の酸化白金コロイド溶液を生成する。酸化白金コロイド溶液の生成は、照射するガンマ線39の吸収線量率と照射時間との積である吸収線量に依存する。吸収線量が小さいと、ヘキサンヒドロキソ白金酸粒子が残留する。アルカリイオンを水素イオンに置換することにより生成したヘキサヒドロキソ白金酸懸濁液中のヘキサヒドロキソ白金酸粒子は、1〜2日程度であれば水中に浮遊しているが、それより長時間になると沈殿する。このため、ヘキサヒドロキソ白金酸粒子が浮遊している間にガンマ線39の照射を行う。ガンマ線を吸収線量として7kGy以上照射すると、ヘキサヒドロキソ白金酸を、二酸化白金(PtO2)、一酸化白金(PtO)及び水酸化白金(Pt(OH)2)を含むコロイド粒子(酸化白金コロイド粒子)が存在する酸化白金コロイド溶液(白金酸化物コロイド溶液)を生成することができる。この酸化白金コロイド粒子をX線光電子分光(XPS)により分析した結果、酸化白金コロイド粒子は、91原子%のPtO2、6原子%のPtO、及び3原子%のPt(OH)2を含んでいた。このように酸化白金コロイド粒子は大部分が酸化白金である。二酸化白金(PtO2)及び一酸化白金(PtO)は白金酸化物であり、水酸化白金(Pt(OH)2)は白金水酸化物である。酸化白金コロイド溶液は、白金酸化物及び白金水酸化物を含むコロイド粒子を含む貴金属化合物コロイド溶液である。 Gamma rays are irradiated to the hexahydroxoplatinic acid suspension (step S3). The hexahydroxoplatinic acid suspension generated in the cation exchange resin tower 33 is supplied to the reaction vessel 34. Gamma rays 39 emitted from the gamma ray generator 38 are irradiated to the hexahydroxoplatinic acid suspension in the reaction vessel 34. The irradiation amount of the gamma ray 39 is set so that the absorbed dose is 7 kGy or more. By irradiating the hexahydroxoplatinic acid suspension with gamma rays 39, a transparent brown oxide platinum colloidal solution is produced. The production of the colloidal platinum oxide solution depends on the absorbed dose which is the product of the absorbed dose rate of the gamma ray 39 to be irradiated and the irradiation time. When the absorbed dose is small, hexanehydroxoplatinic acid particles remain. Hexahydroxoplatinic acid particles in the hexahydroxoplatinic acid suspension produced by substituting alkali ions with hydrogen ions are floating in water for about 1 to 2 days. Precipitate. Therefore, irradiation with gamma rays 39 is performed while the hexahydroxoplatinic acid particles are floating. Colloidal particles (platinum oxide colloidal particles) containing hexahydroxoplatinic acid, platinum dioxide (PtO 2 ), platinum monoxide (PtO) and platinum hydroxide (Pt (OH) 2 ) when irradiated with gamma rays as an absorbed dose of 7 kGy or more It is possible to produce a platinum oxide colloidal solution (platinum oxide colloidal solution) in which is present. As a result of analyzing the platinum oxide colloidal particles by X-ray photoelectron spectroscopy (XPS), the platinum oxide colloidal particles contain 91 atomic% PtO 2 , 6 atomic% PtO, and 3 atomic% Pt (OH) 2 . It was. Thus, most of the platinum oxide colloidal particles are platinum oxide. Platinum dioxide (PtO 2 ) and platinum monoxide (PtO) are platinum oxides, and platinum hydroxide (Pt (OH) 2 ) is a platinum hydroxide. The platinum oxide colloid solution is a noble metal compound colloid solution containing colloidal particles containing platinum oxide and platinum hydroxide.

以上の製造方法により、pHが5.6以上で粒子表面が負に帯電した、酸化白金及び水酸化白金を含むコロイド粒子が存在する酸化白金コロイド溶液を生成することができる。   By the above production method, a platinum oxide colloidal solution containing colloidal particles containing platinum oxide and platinum hydroxide having a pH of 5.6 or more and a negatively charged particle surface can be produced.

発明者らは、生成された白金酸化物コロイド溶液の電気泳動を調べる実験を行った。図5に示すように、シャーレ40内に塩化カリウムを添加した寒天45を張り、導電線42に接続された陽極41及び導電線44に接続された陰極43をシャーレ40の、対向する両側壁に別々に設置した。陽極41及び陰極43はシャーレ40内の寒天45に接触している。茶褐色の酸化白金コロイド溶液46をシャーレ40内の寒天45上に滴下した。この状態で、陽極41と陰極43の間に電圧を印加し、酸化白金コロイド溶液46を電気泳動させた。この結果、図5に示すように、酸化白金コロイド溶液46中に存在する、茶褐色の酸化白金及び水酸化白金を含むコロイド粒子47が陽極41側に集まり、このコロイド粒子47がマイナスに帯電していることが分かった。   The inventors conducted an experiment to examine the electrophoresis of the produced platinum oxide colloidal solution. As shown in FIG. 5, an agar 45 to which potassium chloride is added is stretched in the petri dish 40, and the anode 41 connected to the conductive wire 42 and the cathode 43 connected to the conductive wire 44 are placed on opposite side walls of the petri dish 40. Installed separately. The anode 41 and the cathode 43 are in contact with the agar 45 in the petri dish 40. A brownish platinum oxide colloidal solution 46 was dropped on the agar 45 in the petri dish 40. In this state, a voltage was applied between the anode 41 and the cathode 43, and the platinum oxide colloid solution 46 was electrophoresed. As a result, as shown in FIG. 5, colloidal particles 47 containing brown platinum oxide and platinum hydroxide present in the platinum oxide colloidal solution 46 gather on the anode 41 side, and the colloidal particles 47 are negatively charged. I found out.

さらに、発明者らは、塩酸を酸化白金コロイド溶液46に滴定して酸化白金コロイド溶液46のpHを変化させ、酸化白金コロイド溶液46のpHを測定する共に、酸化白金コロイド粒子47の析出を観察した。酸化白金コロイド溶液46のpH測定値を酸化白金コロイド溶液46のpH計算値と共に図6に示す。図6より、塩酸の注入から計算されたpH計算値とpH測定値がpH3.0付近で一致し、酸化白金コロイド粒子の表面電位が0になることが分かる。塩酸の滴定の際、酸化白金コロイド溶液46のpHが3.5付近で酸化白金コロイド粒子の析出が生じた。このため、生成された酸化白金コロイド溶液は、pH5.6以上で負に帯電していることが分かった。   Further, the inventors titrated hydrochloric acid to the platinum oxide colloid solution 46 to change the pH of the platinum oxide colloid solution 46, measure the pH of the platinum oxide colloid solution 46, and observe the precipitation of the platinum oxide colloid particles 47. did. FIG. 6 shows the measured pH value of the platinum oxide colloid solution 46 together with the calculated pH value of the platinum oxide colloid solution 46. From FIG. 6, it can be seen that the calculated pH value calculated from the injection of hydrochloric acid and the measured pH value are in the vicinity of pH 3.0, and the surface potential of the platinum oxide colloidal particles becomes zero. During the titration of hydrochloric acid, platinum oxide colloid particles were precipitated when the pH of the platinum oxide colloid solution 46 was around 3.5. For this reason, it was found that the produced platinum oxide colloidal solution was negatively charged at pH 5.6 or higher.

生成された酸化白金コロイド粒子の透過電子顕微鏡写真を図7に示す。また、透過電子顕微鏡で観察した酸化白金コロイド粒子の粒径分布を図8に示す。透過電子顕微鏡で観察した結果、酸化白金コロイド粒子の粒径(直径)が1.0nm〜4.5nmの範囲内にあり、その酸化白金コロイド粒子はナノ粒子であることが分かった。上記した方法で製造された酸化白金コロイド溶液は、室温静置状態で、6カ月以上安定に分散した状態を維持した。   FIG. 7 shows a transmission electron micrograph of the produced platinum oxide colloidal particles. FIG. 8 shows the particle size distribution of the platinum oxide colloidal particles observed with a transmission electron microscope. As a result of observation with a transmission electron microscope, it was found that the particle diameter (diameter) of the platinum oxide colloidal particles was in the range of 1.0 nm to 4.5 nm, and the platinum oxide colloidal particles were nanoparticles. The platinum oxide colloidal solution produced by the above-described method maintained a state of being stably dispersed for 6 months or more in a stationary state at room temperature.

本発明の好適な一実施例である実施例1の原子力プラントの貴金属注入方法を、図1及び図2を用いて説明する。   A noble metal injection method for a nuclear power plant according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIGS.

まず、本実施例の原子力プラントの貴金属注入方法が適用される沸騰水型原子力プラント25の構成を図1により説明する。沸騰水型原子力プラント25は、原子炉圧力容器1、タービン4、復水器5、原子炉浄化系及び給水系等を備えている。原子炉圧力容器1は、内部に、複数の燃料集合体を装荷した炉心2を配置している。燃料集合体は、核燃料物質で製造された複数の燃料ペレットが充填された複数の燃料棒を含んでいる。複数のインターナルポンプ(図示せず)が、原子炉圧力容器1の底部に設けられる。原子炉圧力容器1に接続された主蒸気配管3が、タービン4に接続される。   First, the configuration of a boiling water nuclear power plant 25 to which the noble metal injection method of the nuclear power plant of this embodiment is applied will be described with reference to FIG. The boiling water nuclear power plant 25 includes a reactor pressure vessel 1, a turbine 4, a condenser 5, a reactor purification system, a water supply system, and the like. The reactor pressure vessel 1 has a core 2 loaded with a plurality of fuel assemblies disposed therein. The fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material. A plurality of internal pumps (not shown) are provided at the bottom of the reactor pressure vessel 1. A main steam pipe 3 connected to the reactor pressure vessel 1 is connected to a turbine 4.

給水系は、復水器5と原子炉圧力容器1を連絡する給水配管6に、復水ろ過脱塩装置7、給水ポンプ8及び給水加熱器9を、復水器から原子炉圧力容器1に向って、この順に設置して構成されている。タービン4は復水器5上に設置され、復水器5はタービン4に連絡される。主蒸気配管3に接続されたバイパス配管10が、給水加熱器9を通って復水器5に接続される。 The feed water system is connected to a feed water pipe 6 that connects the condenser 5 and the reactor pressure vessel 1, a condensate filtration desalination device 7, a feed water pump 8, and a feed water heater 9 from the condenser 5 to the reactor pressure vessel 1. This is installed in this order. The turbine 4 is installed on the condenser 5, and the condenser 5 is connected to the turbine 4. A bypass pipe 10 connected to the main steam pipe 3 is connected to the condenser 5 through the feed water heater 9.

原子炉浄化系は、原子炉圧力容器1と給水配管10を連絡する浄化系配管11に、浄化系ポンプ12、再生熱交換器13、非再生熱交換器(図示せず)及び炉水浄化装置14をこの順に設置している。浄化系配管11は、給水加熱器9の下流で給水配管6に接続される。原子炉圧力容器1は、原子炉建屋(図示せず)内に配置された原子炉格納容器内に設置されている。   The reactor purification system includes a purification system pipe 11 that connects the reactor pressure vessel 1 and the water supply pipe 10, a purification system pump 12, a regenerative heat exchanger 13, a non-regenerative heat exchanger (not shown), and a reactor water purification device. 14 are installed in this order. The purification system pipe 11 is connected to the feed water pipe 6 downstream of the feed water heater 9. The reactor pressure vessel 1 is installed in a reactor containment vessel arranged in a reactor building (not shown).

原子炉圧力容器1内の冷却水(以下、炉水という)は、インターナルポンプで昇圧され、炉心2に供給される。炉心2に供給された炉水は燃料棒内の核燃料物質の核分裂で発生する熱によって加熱され、加熱された炉水の一部が蒸気になる。この蒸気は、原子炉圧力容器1内に設けられた気水分離器(図示せず)及び蒸気乾燥器(図示せず)にて水分が除去された後に、原子炉圧力容器1から主蒸気配管3を通ってタービン4に導かれ、タービン4を回転させる。タービン4に連結された発電機(図示せず)が回転し、電力が発生する。   Cooling water in the reactor pressure vessel 1 (hereinafter referred to as reactor water) is pressurized by an internal pump and supplied to the reactor core 2. The reactor water supplied to the core 2 is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel rod, and a part of the heated reactor water becomes steam. This steam is removed from the reactor pressure vessel 1 after the water is removed by a steam separator (not shown) and a steam dryer (not shown) provided in the reactor pressure vessel 1. 3 is led to the turbine 4 to rotate the turbine 4. A generator (not shown) connected to the turbine 4 rotates to generate electric power.

タービン4から排出された蒸気は、復水器5で凝縮されて水になる。この水は、給水として、給水配管6を通り原子炉圧力容器1内に供給される。給水配管6を流れる給水は、復水ろ過脱塩装置7で不純物が除去され、給水ポンプ8で昇圧される。給水は、給水加熱器9内で、抽気配管10で主蒸気管3から抽気された抽気蒸気によって加熱され、給水配管6を通して原子炉圧力容器1内に導かれる。   The steam discharged from the turbine 4 is condensed by the condenser 5 to become water. This water is supplied to the reactor pressure vessel 1 through the water supply pipe 6 as water supply. Impurities are removed from the feed water flowing through the feed water pipe 6 by the condensate filtration and desalination apparatus 7 and the pressure is raised by the feed water pump 8. The feed water is heated by the extraction steam extracted from the main steam pipe 3 by the extraction pipe 10 in the feed water heater 9 and guided into the reactor pressure vessel 1 through the water supply pipe 6.

原子炉圧力容器1内の炉水の一部は、浄化系ポンプ12の駆動によって原子炉浄化系の浄化系配管11内に流入し、再生熱交換器13及び非再生熱交換器で冷却された後、炉水浄化装置14で浄化される。浄化された炉水は、再生熱交換器13で加熱されて浄化系配管11及び給水配管6を経て原子炉圧力容器1内に戻される。   A part of the reactor water in the reactor pressure vessel 1 flows into the purification system piping 11 of the reactor purification system by driving the purification system pump 12, and is cooled by the regenerative heat exchanger 13 and the non-regenerative heat exchanger. Then, it is purified by the reactor water purification device 14. The purified reactor water is heated by the regenerative heat exchanger 13 and returned to the reactor pressure vessel 1 through the purification system pipe 11 and the water supply pipe 6.

水素注入装置15及び酸化白金コロイド注入装置16が、復水ろ過脱塩装置7の下流で給水配管6に接続される。酸化白金コロイド注入装置16は、図2に示すように、コロイド溶液タンク17、注入配管18及び注入ポンプ19を有する。コロイド溶液タンク17に接続された注入配管18は、給水配管6に接続される。開閉弁20、流量計22、注入ポンプ19及び開閉弁21が、コロイド溶液タンク17から給水配管6に向かってこの順番で注入配管18に設けられている。図3に示された酸化白金コロイド溶液の製造方法で作製された酸化白金コロイド溶液、すなわち、pHが7〜8.5で、負に帯電している酸化白金コロイド粒子を含む酸化白金コロイド溶液が、コロイド溶液タンク17に充填されている。この酸化白金コロイド溶液は、直径が1.0nm〜4.5nmの範囲内の、二酸化白金(PtO2)、一酸化白金(PtO)及び水酸化白金(Pt(OH)2)を含む酸化白金コロイド粒子、すなわち、酸化白金及び水酸化白金を含む酸化白金コロイド粒子を含んでいる。この酸化白金コロイド粒子は、pH5.6以上で負に帯電する。 A hydrogen injection device 15 and a platinum oxide colloid injection device 16 are connected to the water supply pipe 6 downstream of the condensate filtration and desalination device 7. As shown in FIG. 2, the platinum oxide colloid injection device 16 includes a colloid solution tank 17, an injection pipe 18, and an injection pump 19. The injection pipe 18 connected to the colloid solution tank 17 is connected to the water supply pipe 6. The on-off valve 20, the flow meter 22, the injection pump 19, and the on-off valve 21 are provided in the injection pipe 18 in this order from the colloid solution tank 17 toward the water supply pipe 6. A platinum oxide colloid solution prepared by the method for producing a platinum oxide colloid solution shown in FIG. 3, that is, a platinum oxide colloid solution having a pH of 7 to 8.5 and containing negatively charged platinum oxide colloid particles. The colloid solution tank 17 is filled. This platinum oxide colloid solution is a platinum oxide colloid containing platinum dioxide (PtO 2 ), platinum monoxide (PtO) and platinum hydroxide (Pt (OH) 2 ) having a diameter in the range of 1.0 nm to 4.5 nm. Particles, ie, platinum oxide colloidal particles comprising platinum oxide and platinum hydroxide. The platinum oxide colloidal particles are negatively charged at pH 5.6 or higher.

沸騰水型原子力プラント25の運転中に、水素注入装置15から水素が給水配管6に注入され、酸化白金コロイド注入装置16から給水配管6に酸化白金コロイド溶液が注入される。給水配管6を流れる給水に注入された水素及び酸化白金コロイド溶液は、給水配管6を通って原子炉圧力容器1内の炉水に注入される。   During operation of the boiling water nuclear power plant 25, hydrogen is injected from the hydrogen injection device 15 into the water supply pipe 6, and a platinum oxide colloid solution is injected from the platinum oxide colloid injection device 16 into the water supply pipe 6. The hydrogen and platinum oxide colloidal solution injected into the feed water flowing through the feed water pipe 6 are injected into the reactor water in the reactor pressure vessel 1 through the feed water pipe 6.

酸化白金コロイド溶液の注入について、具体的に説明する。開閉弁20及び21を開いてポンプを駆動すると、コロイド溶液タンク17内の酸化白金コロイド粒子を含む酸化白金コロイド溶液が、注入配管18を通って給水配管6を流れる給水に注入される。コロイド溶液タンク17内の酸化白金コロイド溶液、給水配管6内を流れる給水、及び原子炉圧力容器内の炉水は、pHが5.6である。pHが7〜8.5で、負に帯電している酸化白金コロイド粒子を含む酸化白金コロイド溶液が、内面が負に帯電した注入配管18内を流れるため、負に帯電した酸化白金コロイド粒子と注入配管18の内面とが反発して酸化白金コロイド溶液に含まれる酸化白金コロイド粒子が注入配管18の内面に吸着されず、酸化白金コロイド溶液が給水配管6内に注入される。酸化白金コロイド粒子が注入配管18の内面に吸着されない分、給水配管6内に注入される酸化白金コロイド粒子が多くなり、それだけ、給水配管6に注入される酸化白金の量が増加する。   The injection of the platinum oxide colloid solution will be specifically described. When the on-off valves 20 and 21 are opened to drive the pump, the platinum oxide colloidal solution containing the platinum oxide colloidal particles in the colloidal solution tank 17 is injected into the feed water flowing through the feed water pipe 6 through the injection pipe 18. The platinum oxide colloid solution in the colloid solution tank 17, the feed water flowing in the feed water pipe 6, and the reactor water in the reactor pressure vessel have a pH of 5.6. Since the platinum oxide colloid solution containing the negatively charged platinum oxide colloid particles having a pH of 7 to 8.5 flows in the injection pipe 18 whose inner surface is negatively charged, the negatively charged platinum oxide colloid particles and The platinum oxide colloid particles contained in the platinum oxide colloid solution are repelled from the inner surface of the injection pipe 18 and are not adsorbed on the inner surface of the injection pipe 18, and the platinum oxide colloid solution is injected into the water supply pipe 6. Since the platinum oxide colloidal particles are not adsorbed on the inner surface of the injection pipe 18, the platinum oxide colloidal particles injected into the water supply pipe 6 increase, and the amount of platinum oxide injected into the water supply pipe 6 increases accordingly.

給水配管6の内面も負に帯電しているため、pHが5.6である給水に注入された、負に帯電している酸化白金コロイド粒子が給水配管6の内面にも吸着されず、原子炉圧力容器1内の炉水に注入される酸化白金コロイド粒子が増加する。原子炉圧力容器1内では、燃料棒に含まれている核燃料物質の核分裂で発生したγ線が炉水に照射されるために、炉水の放射線分解及び炉水に含まれる過酸化水素の放射線分解により、水素イオン(H+)が生成される。この水素イオンが、炉水に注入された酸化白金コロイド粒子に含まれている酸化白金の酸素または水酸化白金のOHと結合して水を生成するため、酸化白金及び水酸化白金の白金が白金イオン(Pt4+)になる。この白金イオンが原子炉圧力容器1内の炉内構造部材等の表面(炉水と接触する表面)及び原子炉圧力容器1に接続されて炉水が流れる配管の内面に吸着される。 Since the inner surface of the water supply pipe 6 is also negatively charged, the negatively charged platinum oxide colloidal particles injected into the water supply having a pH of 5.6 are not adsorbed on the inner surface of the water supply pipe 6 and atoms The platinum oxide colloidal particles injected into the reactor water in the reactor pressure vessel 1 increase. In the reactor pressure vessel 1, the reactor water is irradiated with gamma rays generated by fission of the nuclear fuel material contained in the fuel rods. Hydrogen ions (H + ) are generated by the decomposition. Since this hydrogen ion combines with the oxygen of platinum oxide or the OH of platinum hydroxide contained in the colloidal particles of platinum oxide injected into the reactor water to produce water, platinum oxide and platinum hydroxide are platinum. Ion (Pt 4+ ). The platinum ions are adsorbed on the surface (the surface in contact with the reactor water) of the reactor internal structure in the reactor pressure vessel 1 and the inner surface of the pipe through which the reactor water flows.

前述したように炉水に水素が注入されるため、炉内構造部材等の表面及び配管の内面に吸着された白金の作用により、炉水に含まれる溶存酸素及び過酸化水素と水素の反応が促進される。したがって、炉水の酸素濃度及び過酸化水素濃度が低減され、炉水と接触する炉内構造物及び配管の応力腐食割れが抑制される。   As described above, since hydrogen is injected into the reactor water, the reaction between the dissolved oxygen and hydrogen peroxide contained in the reactor water and hydrogen is caused by the action of platinum adsorbed on the surface of the structural members in the reactor and the inner surface of the piping. Promoted. Therefore, the oxygen concentration and the hydrogen peroxide concentration in the reactor water are reduced, and the stress corrosion cracking of the in-furnace structure and the piping that is in contact with the reactor water is suppressed.

図3に示す製造工程で作製された、二酸化白金(PtO2)、一酸化白金(PtO)及び水酸化白金(Pt(OH)2)を含む酸化白金コロイド粒子が存在する酸化白金コロイド溶液を、炉水を模擬した280℃の高温水が流れるステンレス鋼配管に注入してこのステンレス鋼配管の内面の応答を調べた結果を、図9に示す。過酸化水素400ppb、水素130ppbを含む280℃の高温水がステンレス鋼配管を流れており、その上流から上記した酸化白金コロイド粒子が存在する酸化白金コロイド溶液を注入した。この結果、その酸化白金コロイド溶液が注入されると、すぐにステンレス鋼配管の腐食電位が0.0VvsSHEから、−0.5VvsSHEまで低下した。酸化白金コロイド溶液の注入を停止してもステンレス鋼配管の腐食電位は−0.5VvsSHEのままで維持された。 A platinum oxide colloid solution containing platinum oxide colloidal particles containing platinum dioxide (PtO 2 ), platinum monoxide (PtO) and platinum hydroxide (Pt (OH) 2 ) produced in the production process shown in FIG. FIG. 9 shows the result of investigating the response of the inner surface of the stainless steel pipe by injecting it into the stainless steel pipe through which high-temperature water at 280 ° C. simulating the reactor water flows. High-temperature water at 280 ° C. containing 400 ppb hydrogen peroxide and 130 ppb hydrogen was flowing through the stainless steel pipe, and the platinum oxide colloid solution containing the above-described platinum oxide colloid particles was injected from the upstream thereof. As a result, as soon as the platinum oxide colloidal solution was injected, the corrosion potential of the stainless steel pipe immediately decreased from 0.0 V vs SHE to -0.5 V vs SHE. Even when the injection of the platinum oxide colloidal solution was stopped, the corrosion potential of the stainless steel pipe was maintained at -0.5 V vs SHE.

高温水の酸素及び過酸化水素のそれぞれの濃度とステンレス鋼配管の腐食電位の関係を図10に示す。高温水の酸素濃度が10ppb以下、また、高温水の過酸化水素濃度が1ppb以下になると、ステンレス鋼配管の腐食電位が−0.5VvsSHEまで低下する。すなわち、本実験により、酸化白金コロイド粒子がステンレス鋼配管の内面に付着し、ステンレス鋼配管の内面の酸素は10ppb、過酸化水素濃度は1ppb以下に低下したことが確認された。   FIG. 10 shows the relationship between the concentrations of oxygen and hydrogen peroxide in high-temperature water and the corrosion potential of stainless steel piping. When the oxygen concentration of the high temperature water is 10 ppb or less and the hydrogen peroxide concentration of the high temperature water is 1 ppb or less, the corrosion potential of the stainless steel pipe is lowered to -0.5 V vs SHE. That is, this experiment confirmed that the platinum oxide colloidal particles adhered to the inner surface of the stainless steel pipe, and that the oxygen on the inner surface of the stainless steel pipe was reduced to 10 ppb and the hydrogen peroxide concentration was reduced to 1 ppb or less.

本実施例によれば、pH5.6以上で負に帯電した、酸化白金及び水酸化白金を含む酸化白金コロイド粒子を含む酸化白金コロイド溶液を注入配管18を通して給水配管6に注入し、さらに原子炉圧力容器1内の炉水に注入するので、注入配管18の内面に酸化白金コロイド粒子が吸着されず、原子炉圧力容器1内の炉水に注入される酸化白金コロイド粒子の量が増大する。このため、従来のように、注入配管18及び給水配管6のそれぞれの内面に白金が付着することを考慮して過剰に白金を注入することを避けることができる。本実施例では、酸化白金コロイド粒子の炉水への注入量の増加により、炉水に注入される白金の量が必要な所定量を超える場合には、コロイド溶液タンク17から給水配管6に注入する酸化白金コロイド溶液の減少させることができる。   According to the present embodiment, a platinum oxide colloid solution containing platinum oxide colloid particles containing platinum oxide and platinum hydroxide, which is negatively charged at pH 5.6 or more, is injected into the water supply pipe 6 through the injection pipe 18, and further, the nuclear reactor. Since it is injected into the reactor water in the pressure vessel 1, the platinum oxide colloid particles are not adsorbed on the inner surface of the injection pipe 18, and the amount of the platinum oxide colloid particles injected into the reactor water in the reactor pressure vessel 1 increases. For this reason, it is possible to avoid excessively injecting platinum in consideration of the fact that platinum adheres to the inner surfaces of the injection pipe 18 and the water supply pipe 6 as in the prior art. In this embodiment, when the amount of platinum injected into the reactor water exceeds the required predetermined amount due to an increase in the amount of colloidal platinum oxide particles injected into the reactor water, the colloid solution tank 17 injects the platinum water into the water supply pipe 6. The amount of colloidal platinum oxide solution can be reduced.

炉水に注入される酸化白金コロイド粒子は、粒径が1.0nm〜4.5nmの範囲内にあるナノ粒子であるため、アルコールなどの分散剤を使用しなくても、安定に炉水中に分散される。このため、原子炉圧力容器1内の炉内構造物の表面及び原子炉圧力容器1に接続されて炉水が流れる配管の内面に白金を効率良く付着させることができる。 Oxidation colloidal platinum particles that will be injected into the reactor water, because the particle size is nanoparticles that are within the scope of 1.0Nm~4.5Nm, without using dispersing agents such as alcohol, stably reactor water To be distributed. For this reason, platinum can be efficiently adhered to the surface of the reactor internal structure in the reactor pressure vessel 1 and the inner surface of the pipe connected to the reactor pressure vessel 1 and through which the reactor water flows.

本実施例において炉水に注入される、酸化白金コロイド粒子を含む酸化白金コロイド溶液は、図3に示す工程において、ヘキサヒドロキソ白金酸塩)の水溶液に含まれる陽イオンを水素イオンに置換してヘキサヒドロキソ白金酸懸濁液を生成し、このヘキサヒドロキソ白金酸懸濁液にガンマ線を照射して生成されるので、不純物の含有量が少なく、酸化白金コロイド粒子がナノ粒子になる。このため、酸化白金コロイド溶液の炉水の注入により炉水に注入される不純物が極めて少なくなる。酸化白金コロイド粒子が上記した粒径のナノ粒子であるため、上記したように炉水への分散性が向上する。   In the present embodiment, the platinum oxide colloidal solution containing the platinum oxide colloidal particles injected into the reactor water is obtained by substituting hydrogen ions for cations contained in an aqueous solution of hexahydroxoplatinate in the step shown in FIG. Since a hexahydroxoplatinic acid suspension is produced, and this hexahydroxoplatinic acid suspension is produced by irradiating gamma rays, the content of impurities is small, and the platinum oxide colloidal particles become nanoparticles. For this reason, the amount of impurities injected into the reactor water by the injection of the platinum oxide colloid solution into the reactor water becomes extremely small. Since the platinum oxide colloidal particles are nanoparticles having the above-described particle diameter, the dispersibility in the reactor water is improved as described above.

酸化白金コロイド注入装置16の注入配管18は、給水配管6ではなく、原子炉圧力容器1に接続される他の配管、例えば、浄化系配管11または残留熱除去系の配管に接続しても良い。注入配管18を浄化系配管11に接続する場合には、注入配管18は炉水浄化装置14よりも下流側で浄化系配管11に接続すると良い。   The injection pipe 18 of the platinum oxide colloid injection device 16 is not connected to the water supply pipe 6 but may be connected to another pipe connected to the reactor pressure vessel 1, such as the purification system pipe 11 or the residual heat removal system pipe. . When connecting the injection pipe 18 to the purification system pipe 11, the injection pipe 18 may be connected to the purification system pipe 11 on the downstream side of the reactor water purification device 14.

本発明の他の好適な実施例である実施例2の原子力プラントの貴金属注入方法を、図11を用いて説明する。   A noble metal injection method for a nuclear power plant according to embodiment 2, which is another preferred embodiment of the present invention, will be described with reference to FIG.

本実施例の貴金属注入方法に用いられる酸化白金コロイド注入装置16Aは、図11に示すように、酸化白金コロイド注入装置16と同様に、コロイド溶液タンク17、注入配管18及び注入ポンプ19を有する。コロイド溶液タンク17に接続された注入配管18には、開閉弁20、流量計22及び注入ポンプ19が、この順番でコロイド溶液タンク17から下流に向かって注入配管18に設けられている。注入配管18は、給水配管6に接続された亜鉛注入装置の注入配管23に接続される。注入配管23には開閉弁24が設けられ、注入配管18と注入配管23の接続点は開閉弁24の上流に位置している。コロイド溶液タンク17には、pHが7〜8.5で、負に帯電している酸化白金コロイド粒子を含む酸化白金コロイド溶液が充填されている。   As shown in FIG. 11, the platinum oxide colloid injection device 16 </ b> A used in the noble metal injection method of this embodiment includes a colloid solution tank 17, an injection pipe 18, and an injection pump 19, similar to the platinum oxide colloid injection device 16. The injection pipe 18 connected to the colloid solution tank 17 is provided with an on-off valve 20, a flow meter 22 and an injection pump 19 in this order in the injection pipe 18 downstream from the colloid solution tank 17. The injection pipe 18 is connected to an injection pipe 23 of a zinc injection device connected to the water supply pipe 6. The injection pipe 23 is provided with an on-off valve 24, and the connection point between the injection pipe 18 and the injection pipe 23 is located upstream of the on-off valve 24. The colloid solution tank 17 is filled with a platinum oxide colloid solution having a pH of 7 to 8.5 and containing negatively charged platinum oxide colloid particles.

本実施例の貴金属注入方法が適用される原子力プラントは、図1に示す沸騰水型原子力プラント25において酸化白金コロイド注入装置16を酸化白金コロイド注入装置16Aに替えた構成を有する。注入配管23は給水配管6に接続される。実施例1と同様に、注入配管23は、炉水浄化装置14よりも下流側で浄化系配管11に接続してもよい。   The nuclear power plant to which the noble metal injection method of the present embodiment is applied has a configuration in which the platinum oxide colloid injection device 16 is replaced with a platinum oxide colloid injection device 16A in the boiling water nuclear power plant 25 shown in FIG. The injection pipe 23 is connected to the water supply pipe 6. Similarly to the first embodiment, the injection pipe 23 may be connected to the purification system pipe 11 on the downstream side of the reactor water purification device 14.

沸騰水型原子力プラントの運転中において、開閉弁20及び24を開いて注入ポンプ19を駆動することにより、pHが7〜8.5で、負に帯電している酸化白金コロイド粒子を含む酸化白金コロイド溶液が、コロイド溶液タンク17から注入配管18及び23を通って給水配管6内の給水に注入される。酸化白金コロイド粒子を含むpH6の給水が給水配管6を通って原子炉圧力容器1内のpH5.6の炉水に注入される。炉水中の酸化白金コロイド粒子に含まれた白金は、実施例1と同様に、炉内構造物の炉水に接触する表面、及び原子炉圧力容器1に接続される配管の内面に吸着される。この白金の作用により、炉水の溶存酸素濃度及び過酸化水素濃度が低下し、炉内構造物及び配管における応力腐食割れの発生が抑制される。   During operation of the boiling water nuclear power plant, by opening the on-off valves 20 and 24 and driving the injection pump 19, platinum oxide containing colloidal particles of negatively charged platinum oxide having a pH of 7 to 8.5. The colloidal solution is injected from the colloidal solution tank 17 through the injection pipes 18 and 23 into the water supply in the water supply pipe 6. A pH 6 feed water containing colloidal platinum oxide particles is injected into the reactor water of pH 5.6 in the reactor pressure vessel 1 through the feed water pipe 6. The platinum contained in the platinum oxide colloidal particles in the reactor water is adsorbed on the surface in contact with the reactor water of the reactor internal structure and the inner surface of the pipe connected to the reactor pressure vessel 1 as in the first embodiment. . Due to the action of platinum, the dissolved oxygen concentration and the hydrogen peroxide concentration in the reactor water are reduced, and the occurrence of stress corrosion cracking in the reactor internal structure and piping is suppressed.

亜鉛注入装置の注入配管23から給水配管6に亜鉛を含む溶液が注入される。この結果、亜鉛を含む溶液及び酸化白金コロイド溶液が注入配管23内で混合されて、給水配管6に供給される。亜鉛を含む溶液のpHは4〜6であるため、酸化白金コロイド溶液に含まれた、負に帯電した白金コロイド粒子が注入配管18及び23のそれぞれの内面に吸着されない。   A solution containing zinc is injected from the injection pipe 23 of the zinc injection device into the water supply pipe 6. As a result, the zinc-containing solution and the platinum oxide colloidal solution are mixed in the injection pipe 23 and supplied to the water supply pipe 6. Since the pH of the solution containing zinc is 4 to 6, the negatively charged platinum colloid particles contained in the platinum oxide colloid solution are not adsorbed on the inner surfaces of the injection pipes 18 and 23.

本実施例は実施例1で生じる各効果を得ることができる。本実施例は、亜鉛を含む水溶液を注入する注水配管23の一部を、酸化白金コロイド溶液を注入する配管として供用するため、酸化白金コロイド注入装置16Aを酸化白金コロイド注入装置16に比べてコンパクト化することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. In this embodiment, since a part of the water injection pipe 23 for injecting an aqueous solution containing zinc is used as a pipe for injecting a platinum oxide colloid solution, the platinum oxide colloid injection apparatus 16A is more compact than the platinum oxide colloid injection apparatus 16. Can be

1…原子炉圧力容器、2…炉心、4…タービン、5…復水器、6…給水配管、8…給水ポンプ、11…浄化系配管、14…炉水浄化装置、15…水素注入設備、16,16A…酸化白金コロイド注入装置、17…コロイド溶液タンク、18,23…注入配管、31,35…貯蔵容器、33…陽イオン交換樹脂塔、38…ガンマ線発生装置。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Core, 4 ... Turbine, 5 ... Condenser, 6 ... Feed water piping, 8 ... Feed water pump, 11 ... Purification system piping, 14 ... Reactor water purification apparatus, 15 ... Hydrogen injection equipment, DESCRIPTION OF SYMBOLS 16,16A ... Platinum oxide colloid injection apparatus, 17 ... Colloid solution tank, 18, 23 ... Injection piping, 31, 35 ... Storage container, 33 ... Cation exchange resin tower, 38 ... Gamma ray generator.

Claims (2)

貴金属酸化物及び貴金属水酸化物を含む、粒径が1nm〜4.5nmの範囲内にあるコロイド粒子であってpHが5.6以上で表面が負に帯電した前記コロイド粒子を含む貴金属化合物コロイド溶液を、原子炉圧力容器に接続された配管に接続された注入配管を通して、前記原子炉圧力容器に接続された前記配管に注入し、前記貴金属化合物コロイド溶液を、前記配管を通して前記原子炉圧力容器内の冷却水に注入し、
ヘキサヒドロキソ白金酸塩の水溶液に含まれる陽イオンを水素イオンに置換して生成されたヘキサヒドロキソ白金酸塩懸濁液に、ガンマ線を照射し、このガンマ線の照射により生成された、酸化白金及び水酸化白金を含む前記コロイド粒子を含む酸化白金コロイド溶液を、前記貴金属化合物コロイド溶液として用いることを特徴とする沸騰水型原子力プラントの貴金属注入方法。
Colloidal particles containing noble metal oxide and noble metal hydroxide and having colloidal particles having a particle diameter in the range of 1 nm to 4.5 nm and having a pH of 5.6 or more and a negatively charged surface. A solution is injected into the pipe connected to the reactor pressure vessel through an injection pipe connected to a pipe connected to the reactor pressure vessel, and the noble metal compound colloid solution is injected into the reactor pressure vessel through the pipe. Pour into the cooling water inside,
The hexahydroxoplatinum salt suspension cations generated by substituting hydrogen ions contained in an aqueous solution of hexahydroxoplatinum acid salts, gamma-irradiated, produced by irradiation with gamma rays, oxidation platinum及platinum oxide colloidal solution containing the colloidal particles containing beauty water platinum oxide, noble metal injection method of the boiling water nuclear plant, which comprises using as the noble metal compound colloid solution.
前記コロイド粒子を含む前記酸化白金コロイド溶液が亜鉛を含む溶液と混合されて前記原子炉圧力容器に接続された前記配管に注入される請求項1に記載の沸騰水型原子力プラントの貴金属注入方法。 The method for injecting a noble metal in a boiling water nuclear plant according to claim 1, wherein the platinum oxide colloidal solution containing the colloidal particles is mixed with a solution containing zinc and injected into the pipe connected to the reactor pressure vessel.
JP2013035424A 2012-11-19 2013-02-26 Precious metal injection method for boiling water nuclear power plant Active JP6005548B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013035424A JP6005548B2 (en) 2013-02-26 2013-02-26 Precious metal injection method for boiling water nuclear power plant
US14/084,157 US20140140465A1 (en) 2012-11-19 2013-11-19 Platinum Oxide Colloidal Solution, Manufacturing Method Therefor, Manufacture Apparatus Thereof, and Method of Injection Noble Metal of Boiling Water Nuclear Power Plant
US15/583,464 US10504628B2 (en) 2012-11-19 2017-05-01 Platinum oxide colloidal solution, manufacturing method therefor, manufacture apparatus thereof, and method of injection noble metal of boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035424A JP6005548B2 (en) 2013-02-26 2013-02-26 Precious metal injection method for boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2014163811A JP2014163811A (en) 2014-09-08
JP6005548B2 true JP6005548B2 (en) 2016-10-12

Family

ID=51614547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035424A Active JP6005548B2 (en) 2012-11-19 2013-02-26 Precious metal injection method for boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP6005548B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552892B2 (en) * 2015-07-07 2019-07-31 日立Geニュークリア・エナジー株式会社 Method for attaching noble metals to structural members of nuclear power plants
US10457583B2 (en) * 2016-03-31 2019-10-29 Hitachi-Ge Nuclear Energy, Ltd. Method for relieving corrosive environment of boiling water reactor, nuclear power plant, and method for injecting noble metal which is carried out in nuclear power plant
JP6486860B2 (en) * 2016-03-31 2019-03-20 日立Geニュークリア・エナジー株式会社 Method for mitigating corrosive environment of boiling water reactor and nuclear power plant
ES2892949T3 (en) 2016-08-04 2022-02-07 Dominion Eng Inc Suppression of radionuclide deposition on components of nuclear power plants
JP6899302B2 (en) * 2017-09-29 2021-07-07 日立Geニュークリア・エナジー株式会社 Method for producing platinum oxide colloidal solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017302A1 (en) * 1997-10-01 1999-04-08 Hitachi, Ltd. Nuclear plant and its water quality control method
JPH11295480A (en) * 1998-04-13 1999-10-29 Hitachi Ltd Method for forming catalyst surface
GB0413771D0 (en) * 2004-06-21 2004-07-21 Johnson Matthey Plc Metal oxide sols
US7264770B2 (en) * 2005-05-02 2007-09-04 General Electric Company Mitigation of stress corrosion cracking of structural materials exposed to a high temperature water
JP4810617B1 (en) * 2010-07-27 2011-11-09 株式会社東芝 Plant corrosion control method and plant
JP5619685B2 (en) * 2011-06-23 2014-11-05 日立Geニュークリア・エナジー株式会社 Method for producing platinum-impregnated oxide nanoparticles

Also Published As

Publication number Publication date
JP2014163811A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
US10504628B2 (en) Platinum oxide colloidal solution, manufacturing method therefor, manufacture apparatus thereof, and method of injection noble metal of boiling water nuclear power plant
JP6005548B2 (en) Precious metal injection method for boiling water nuclear power plant
JP6034149B2 (en) Method of attaching noble metal to components of nuclear power plant
JP4538022B2 (en) Method for suppressing radionuclide adhesion to nuclear plant components and ferrite film forming apparatus
JP5676888B2 (en) Drug injection system and drug injection method
JP2012247322A (en) Method for forming platinum film on plant component
JP2011247651A (en) Ferrite film formation method to plant configuration member
JP2018054538A (en) Method for depositing precious metal on carbon steel member in nuclear power plant and method for preventing attachment of radioactive nuclide to carbon steel member in nuclear power plant
JP6209128B2 (en) Method for producing platinum oxide colloidal solution
JP2014101240A (en) Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
JP6931622B2 (en) Method of attaching precious metals to carbon steel members of nuclear power plants and methods of suppressing adhesion of radionuclides to carbon steel members of nuclear power plants
JP3972050B1 (en) Method for treating solution after formation of ferrite film
JP6751044B2 (en) Method for depositing precious metal on carbon steel member of nuclear power plant, and method for suppressing deposition of radionuclide on carbon steel member of nuclear power plant
JP2017020786A (en) Method for noble metal adhesion to structural member of atomic power plant
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JP5619685B2 (en) Method for producing platinum-impregnated oxide nanoparticles
JP6486860B2 (en) Method for mitigating corrosive environment of boiling water reactor and nuclear power plant
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP2017122593A (en) Method for suppressing adhesion of radionuclide and device for forming film on carbon steel pipe
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
JP6899302B2 (en) Method for producing platinum oxide colloidal solution
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
US20200248317A1 (en) Method for Depositing Noble Metal to Carbon Steel Member of Nuclear Power Plant and Method for Suppressing Radionuclide Deposition on Carbon Steel Member of Nuclear Power Plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150