JP6099475B2 - Al-Mg-Si-based alloy member and manufacturing method thereof - Google Patents
Al-Mg-Si-based alloy member and manufacturing method thereof Download PDFInfo
- Publication number
- JP6099475B2 JP6099475B2 JP2013096473A JP2013096473A JP6099475B2 JP 6099475 B2 JP6099475 B2 JP 6099475B2 JP 2013096473 A JP2013096473 A JP 2013096473A JP 2013096473 A JP2013096473 A JP 2013096473A JP 6099475 B2 JP6099475 B2 JP 6099475B2
- Authority
- JP
- Japan
- Prior art keywords
- forging
- treatment
- solution treatment
- manufacturing
- alloy member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical & Material Sciences (AREA)
- Forging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Description
本発明は、Al−Mg−Si系合金部材およびその製造方法に係り、特に、高い強度と伸びを付与する技術に関する。 The present invention relates to an Al—Mg—Si alloy member and a method for producing the same, and more particularly to a technique for imparting high strength and elongation.
従来、自動車用構造用部材などの材料として、軽量なアルミニウム合金材が提供されている。アルミニウム合金材を素材として部材を製造するに際しては、まず、アルミニウム合金材に対して所望の形状に鍛造を行い、鍛造されたアルミニウム合金材に対して溶体化処理を行い、その後、アルミニウム合金材内に析出物を析出させる時効処理を行なうという製造方法が行われている。この一般的な製造方法では、鍛造後に溶体化処理が行われるため、鍛造による加工硬化の効果が減殺されてしまい、加工硬化が材料強化に寄与できないという問題がある。 Conventionally, lightweight aluminum alloy materials have been provided as materials for structural members for automobiles and the like. When manufacturing a member using an aluminum alloy material as a raw material, first, the aluminum alloy material is forged into a desired shape, and the forged aluminum alloy material is subjected to a solution treatment. There is a manufacturing method in which an aging treatment is performed to precipitate precipitates. In this general manufacturing method, since solution treatment is performed after forging, the effect of work hardening by forging is diminished, and there is a problem that work hardening cannot contribute to material strengthening.
特許文献1に記載の技術では、6000系Al合金素材を溶体化処理後、150〜250℃の温度で相当歪2以上の鍛造を行うことにより、所望の強度を得ることができるとされている。 In the technique described in Patent Document 1, it is said that a desired strength can be obtained by performing forging with an equivalent strain of 2 or more at a temperature of 150 to 250 ° C. after solution treatment of a 6000 series Al alloy material. .
しかしながら、特許文献1に記載の技術では、所望の強度を得ることができるものの、伸びが低いため靱性に劣るという問題があった。 However, although the technique described in Patent Document 1 can obtain a desired strength, there is a problem that the toughness is inferior because the elongation is low.
したがって、本発明は、高い強度と伸びという二律背反の関係を有する特性を満足するAl−Mg−Si系合金部材およびその製造方法を提供することを目的としている。 Accordingly, an object of the present invention is to provide an Al—Mg—Si alloy member that satisfies the characteristics of a tradeoff between high strength and elongation, and a method for manufacturing the same.
本発明のAl−Mg−Si系合金部材の製造方法は、Al−Mg−Si系合金の素材を溶体化処理した後、素材に対して150〜200℃の温度で相当歪が0.8以上かつ2未満の塑性加工を行い、次いで素材に対して時効処理を行うことを特徴とする。 In the method for producing an Al—Mg—Si alloy member of the present invention, the equivalent strain is 0.8 or more at a temperature of 150 to 200 ° C. with respect to the material after solution treatment of the material of the Al—Mg—Si alloy. Further, it is characterized by performing plastic working of less than 2 and then performing aging treatment on the material.
本発明においては、素材を溶体化処理した後、素材に対して150〜200℃の温度で相当歪が0.8以上かつ2未満の塑性加工を行うから、転位密度が過度に高くならないため、伸びを向上させることができる。これに対して、特許文献1に記載の技術では、相当歪が2以上の強加工であるため転位密度が非常に高い状態となり、加工硬化による強度は非常に増加するが伸びが低下する。 In the present invention, after the material is subjected to solution treatment, plastic processing is performed at a temperature of 150 to 200 ° C. with an equivalent strain of 0.8 or more and less than 2, so the dislocation density does not become excessively high. Elongation can be improved. On the other hand, in the technique described in Patent Document 1, the dislocation density is extremely high because the equivalent strain is strong processing of 2 or more, and the strength by work hardening is greatly increased but the elongation is decreased.
また、本発明では、溶体化処理と時効処理の間で温間の塑性加工を行うため、結晶粒内に転位が導入され、さらに温間塑性加工時の熱により溶質元素が拡散して時効析出が起こる。ここで、200℃よりも高い温度で塑性加工すると、溶質元素が過度に拡散するため、温間塑性加工中に析出する析出物が粗くなり、転位上にも大きく析出して周辺に無析出帯を生成し、析出強化としては好ましくない状態となる。 Further, in the present invention, since warm plastic working is performed between the solution treatment and the aging treatment, dislocations are introduced into the crystal grains, and solute elements are diffused by the heat during the warm plastic working to cause aging precipitation. Happens. Here, when plastic processing is performed at a temperature higher than 200 ° C., the solute element diffuses excessively, so that the precipitates precipitated during the warm plastic processing become coarse, and precipitates largely on the dislocations, so that no precipitation zone is formed around them. This is an undesirable condition for precipitation strengthening.
この点、本発明においては、200℃以下で塑性加工することにより、溶質元素の拡散距離を短く抑え、これにより、析出物の大きさや存在ピッチを微細に抑え、さらに転位への粗大析出も抑えるので無析出帯の生成が抑制される。このように、本発明では、溶体化処理によりアルミニウムの結晶粒内に固溶させた溶質元素を粗大に析出させることなく、材料の強化に有効な大きさと存在ピッチに保つことができる。そして、時効処理においても析出物を転位に偏在させることなく結晶粒内に析出させることができる。したがって、本発明では、微細な析出物による析出強化により強度を高め、かつ、過度な加工硬化を抑制することで伸びを向上させることができる。 In this respect, in the present invention, the plastic working at 200 ° C. or lower suppresses the diffusion distance of the solute element, thereby suppressing the size and pitch of precipitates and further suppressing coarse precipitation to dislocations. Therefore, the formation of a precipitation-free zone is suppressed. As described above, in the present invention, it is possible to keep the size and the existing pitch effective for strengthening the material without coarsely precipitating the solute element dissolved in the aluminum crystal grains by the solution treatment. In the aging treatment, precipitates can be precipitated in the crystal grains without being unevenly distributed in dislocations. Therefore, in the present invention, the strength can be increased by precipitation strengthening with fine precipitates, and the elongation can be improved by suppressing excessive work hardening.
ここで、前述したような、熱間鍛造、溶体化処理、および時効処理をこの順番で行う従来技術では、溶質元素を均一に固溶せずに熱間鍛造を行うため、大きい析出物が遠いピッチで存在する状態となる。また、溶体化処理により転位密度は低くなるが、転位が存在する場所では拡散が速く、粗大析出物が析出し、その周辺に無析出帯を形成する。したがって、析出強化にとっては好ましくない状態となる。 Here, in the conventional technique in which the hot forging, the solution treatment, and the aging treatment are performed in this order as described above, since the hot forging is performed without uniformly dissolving the solute element, a large precipitate is far away. It will be in a state that exists at the pitch. Further, the dislocation density is lowered by the solution treatment, but the diffusion is fast in the place where the dislocation exists, and a coarse precipitate is deposited, and a non-precipitation zone is formed around it. Therefore, it is not preferable for precipitation strengthening.
また、特許文献1に記載の技術では、鍛造による相当歪が大きいため転位密度が非常に高い状態となる。このため、鍛造中に溶質元素が拡散し転位上に堆積して析出物が大きくなり、粗大析出物の周辺に無析出帯を形成する。このように、特許文献1では、高い転位密度による加工硬化により材料を強化しているため、伸びが犠牲とされているのである。 Moreover, in the technique described in Patent Document 1, the dislocation density is very high because the considerable strain due to forging is large. For this reason, the solute element diffuses during forging and deposits on dislocations, resulting in an increase in precipitates, and a precipitate-free zone is formed around the coarse precipitates. Thus, in patent document 1, since the material is strengthened by work hardening with a high dislocation density, elongation is sacrificed.
本発明では、一般に6000系と呼ばれるAl−Mg−Si系合金を対象としている。また、本発明にいう溶体化処理とは、アルミニウム合金を固溶限温度以上の適温に加熱し、合金成分を十分に固溶させた後、急冷して過飽和固溶状態にする熱処理であり、加熱されたアルミニウム合金を焼入れする処理を含む処理である。発明では、溶体化処理を例えば500〜600℃で行う。 In the present invention, an Al-Mg-Si alloy generally called 6000 series is targeted. In addition, the solution treatment referred to in the present invention is a heat treatment in which an aluminum alloy is heated to an appropriate temperature that is equal to or higher than the solid solution limit temperature, and the alloy components are sufficiently solid solution, and then rapidly cooled to a supersaturated solid solution state. It is a process including the process of quenching the heated aluminum alloy. In the invention, the solution treatment is performed at 500 to 600 ° C., for example.
本発明における塑性加工は、圧延、鍛造、引抜き、押出し等材料に塑性変形を与える加工を全て含み、150〜200℃で行う。また、時効処理とは、溶体化処理したアルミニウム合金内の固溶元素を加熱することにより析出物として析出させる処理であり、本発明では例えば180℃以下で行う。 The plastic working in the present invention includes all processes that give plastic deformation to the material such as rolling, forging, drawing, and extrusion, and is performed at 150 to 200 ° C. The aging treatment is a treatment in which a solid solution element in a solution-treated aluminum alloy is heated to precipitate as a precipitate. In the present invention, for example, the treatment is performed at 180 ° C. or lower.
本発明によれば、加工硬化を抑える一方で微細な析出物を結晶粒内に均一に析出させて材料を強化しているので、強度と伸びに優れたAl−Mg−Si系合金部材を提供することができる。 According to the present invention, an Al-Mg-Si alloy member excellent in strength and elongation is provided because the material is strengthened by precipitating fine precipitates uniformly in crystal grains while suppressing work hardening. can do.
以下、具体的な実施例により本発明をさらに詳細に説明する。
まず、Mg:0.95%,Si:0.66%,Cu:0.25%,Cr:0.08%,残部Alおよび不可避不純物からなる6061系合金の丸棒を準備した。次に、このアルミニウム合金材に溶体化処理を行った。溶体化処理では、アルミニウム合金材を570℃で溶体化の後、水に浸漬して焼入れを行った。次に、上記アルミニウム合金材を150〜200℃に加熱し、所定形状となるように鍛造を行った。鍛造における相当歪は0.8とした。次いで、鍛造品に対して時効処理を行い、実施例1〜3の試料を得た。以上の処理の条件を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
First, a 6061 series alloy round bar made of Mg: 0.95%, Si: 0.66%, Cu: 0.25%, Cr: 0.08%, the balance Al and inevitable impurities was prepared. Next, a solution treatment was performed on the aluminum alloy material. In the solution treatment, the aluminum alloy material was solution-treated at 570 ° C. and then immersed in water and quenched. Next, the aluminum alloy material was heated to 150 to 200 ° C. and forged so as to have a predetermined shape. The equivalent strain in forging was 0.8. Next, an aging treatment was performed on the forged product, and samples of Examples 1 to 3 were obtained. Table 1 shows the conditions of the above processing.
比較のために、実施例1〜3と同じアルミニウム合金材を用い、先ず表1に示す温度条件で鍛造を行った。その際の相当歪は0.8とした。次いで、溶体化処理を行い、表1に示す条件で時効処理を行って比較例1〜3の試料を得た。以上の試料に対して0.2%耐力、引張強さ、および伸びを測定した。その結果を表1に併記する。なお、表1には、引張特性のJIS規格値を併記した。 For comparison, the same aluminum alloy material as in Examples 1 to 3 was used, and forging was first performed under the temperature conditions shown in Table 1. The equivalent strain at that time was 0.8. Next, solution treatment was performed, and an aging treatment was performed under the conditions shown in Table 1 to obtain samples of Comparative Examples 1 to 3. The 0.2% yield strength, tensile strength, and elongation were measured for the above samples. The results are also shown in Table 1. Table 1 also shows the JIS standard values for tensile properties.
表1に示すように、実施例1〜3では、0.2%耐力および引張強さに優れ、伸びもJIS規格の10%以上を保持しており充分である。これに対して、比較例1〜3における0.2%耐力および引張強さは実施例1〜3と比べて低い。これは、比較例1〜3の析出物が粗く、転位にも大きく析出して周辺に無析出帯を生成した状態となったからである。また、比較例1〜3では、鍛造後に溶体化処理を行ったため、鍛造による加工硬化の効果が減殺されてしまったからである。 As shown in Table 1, in Examples 1 to 3, the 0.2% yield strength and the tensile strength are excellent, and the elongation is sufficient to maintain 10% or more of the JIS standard. On the other hand, the 0.2% yield strength and tensile strength in Comparative Examples 1 to 3 are lower than those in Examples 1 to 3. This is because the precipitates of Comparative Examples 1 to 3 are coarse, and are largely precipitated in dislocations, and a precipitate-free zone is generated in the periphery. Moreover, in Comparative Examples 1-3, since the solution treatment was performed after forging, the effect of work hardening by forging was diminished.
本発明は、高い強度と伸びを有するので、たとえば自動車用構造用部材に利用可能である。 Since this invention has high intensity | strength and elongation, it can be utilized for the structural member for motor vehicles, for example.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013096473A JP6099475B2 (en) | 2013-05-01 | 2013-05-01 | Al-Mg-Si-based alloy member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013096473A JP6099475B2 (en) | 2013-05-01 | 2013-05-01 | Al-Mg-Si-based alloy member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014218685A JP2014218685A (en) | 2014-11-20 |
JP6099475B2 true JP6099475B2 (en) | 2017-03-22 |
Family
ID=51937428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013096473A Expired - Fee Related JP6099475B2 (en) | 2013-05-01 | 2013-05-01 | Al-Mg-Si-based alloy member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6099475B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112016001543B4 (en) * | 2015-04-02 | 2021-03-11 | Honda Motor Co., Ltd. | Forging process |
CN105385971B (en) * | 2015-12-17 | 2017-09-22 | 上海友升铝业有限公司 | A kind of aging technique after Al Mg Si systems alloy bending deformation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2312839A1 (en) * | 1975-05-28 | 1976-12-24 | Pechiney Aluminium | IMPROVED ELECTRIC CONDUCTORS IN AL-MG-SI ALLOYS, IN PARTICULAR FOR OVERHEAD CABLES FOR ENERGY TRANSPORTATION, AND PROCESS FOR OBTAINING |
JPS62287033A (en) * | 1986-06-06 | 1987-12-12 | Kobe Steel Ltd | Aluminum alloy for extrusion having superior hardenability |
DE4305091C1 (en) * | 1993-02-19 | 1994-03-10 | Fuchs Otto Fa | One piece aluminium@ alloy wheel prodn. - by soln. annealing, quenching to working temp., extruding or rolling and then age hardening |
JPH06248401A (en) * | 1993-02-26 | 1994-09-06 | Sumitomo Metal Ind Ltd | Production of aluminum wheel |
JP5082483B2 (en) * | 2007-02-13 | 2012-11-28 | トヨタ自動車株式会社 | Method for producing aluminum alloy material |
JP2013542320A (en) * | 2010-09-08 | 2013-11-21 | アルコア インコーポレイテッド | Improved 6XXX aluminum alloy and method for producing the same |
-
2013
- 2013-05-01 JP JP2013096473A patent/JP6099475B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014218685A (en) | 2014-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5082483B2 (en) | Method for producing aluminum alloy material | |
JP5837026B2 (en) | Aluminum alloy forgings for automobiles and manufacturing method thereof | |
JP2013542319A5 (en) | ||
JP6406971B2 (en) | Method for producing aluminum alloy member | |
CN103045974B (en) | Hot working method for improving strength of wrought aluminium alloy and keeping plasticity of wrought aluminium alloy | |
JP6064874B2 (en) | Method for producing aluminum alloy material | |
JP6429519B2 (en) | Warm forming method of Al-Mg-Si alloy rolled sheet | |
US10047425B2 (en) | Artificial aging process for high strength aluminum | |
JP6491452B2 (en) | Aluminum alloy continuous cast material and method for producing the same | |
CN1434877A (en) | Heat treatment of age-hardenable aluminium Alloys | |
JP4328996B2 (en) | Al-Mg-Si aluminum alloy cold forging manufacturing method | |
US10604828B2 (en) | Al—Zn alloy comprising precipitates with improved strength and elongation and method of manufacturing the same | |
JP6378937B2 (en) | Method for producing aluminum alloy member | |
JP2019143232A (en) | Manufacturing method of flexure molded article using aluminum alloy | |
JP6099475B2 (en) | Al-Mg-Si-based alloy member and manufacturing method thereof | |
KR102506754B1 (en) | High strength aluminum alloy plate parts and manufacturing method thereof | |
JP2011231359A (en) | High strength 6000-series aluminum alloy thick plate, and method for producing the same | |
JP6015536B2 (en) | Heat treatment type aluminum alloy for cold plastic working and manufacturing method thereof | |
KR101571665B1 (en) | Aluminum alloy composition for die casting and method for heat treatment of manufacturing aluminum alloy using thereof | |
JP5279119B2 (en) | Partially modified aluminum alloy member and manufacturing method thereof | |
JPH11286759A (en) | Production of forged product using aluminum extruded material | |
JP4452696B2 (en) | Method for producing high-strength aluminum alloy material for automobile headrest frame with improved workability | |
JP5586502B2 (en) | Method for producing extruded aluminum alloy | |
JP5931554B2 (en) | Aluminum alloy material | |
JP2014201787A (en) | High strength aluminum extrusion alloy and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6099475 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |