Nothing Special   »   [go: up one dir, main page]

JP6083619B2 - Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil - Google Patents

Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil Download PDF

Info

Publication number
JP6083619B2
JP6083619B2 JP2015149642A JP2015149642A JP6083619B2 JP 6083619 B2 JP6083619 B2 JP 6083619B2 JP 2015149642 A JP2015149642 A JP 2015149642A JP 2015149642 A JP2015149642 A JP 2015149642A JP 6083619 B2 JP6083619 B2 JP 6083619B2
Authority
JP
Japan
Prior art keywords
copper foil
layer
low dielectric
treated
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015149642A
Other languages
Japanese (ja)
Other versions
JP2017031442A (en
Inventor
岡本 健
健 岡本
真鍋 久徳
久徳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2015149642A priority Critical patent/JP6083619B2/en
Priority to TW105112131A priority patent/TWI663268B/en
Priority to CN201610258241.5A priority patent/CN106413248B/en
Priority to KR1020160050719A priority patent/KR101998923B1/en
Publication of JP2017031442A publication Critical patent/JP2017031442A/en
Application granted granted Critical
Publication of JP6083619B2 publication Critical patent/JP6083619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は低誘電性樹脂基材に対しても高い引き剥がし強さを備え、かつ、伝送特性に優れた処理銅箔に関する。   The present invention relates to a treated copper foil having high peel strength even with respect to a low dielectric resin base material and excellent in transmission characteristics.

情報通信機器等に使用されるプリント配線板は、樹脂基材上に導電性のある配線パターンを形成したものである。この樹脂基材としては、ガラス布や紙などの補強材に絶縁性のあるフェノール樹脂やエポキシ樹脂、ポリフェニレンエーテル樹脂、ビスマレイミドトリアジン樹脂などを含浸したリジットプリント配線板用、ポリイミド樹脂やシクロオレフィンポリマー樹脂などで構成されるフレキシブルプリント配線板用が挙げられる。   A printed wiring board used for information communication equipment or the like is obtained by forming a conductive wiring pattern on a resin base material. This resin base material is used for rigid printed wiring boards in which a reinforcing material such as glass cloth or paper is impregnated with insulating phenol resin, epoxy resin, polyphenylene ether resin, bismaleimide triazine resin, polyimide resin or cycloolefin polymer. For flexible printed wiring boards made of resin or the like.

一方、導電性のある配線パターンの材料としては一般的に銅箔が用いられている。   On the other hand, copper foil is generally used as a conductive wiring pattern material.

このプリント配線板は、樹脂基材と銅箔を加熱、加圧することで銅張積層板を作製した後、配線パターンを形成するために銅箔の不要部分をエッチングにより除去することで作製することができる。   This printed wiring board is made by heating and pressurizing the resin base material and copper foil to produce a copper-clad laminate and then removing unnecessary portions of the copper foil by etching to form a wiring pattern. Can do.

銅箔は、その製法によって電解銅箔と圧延銅箔の2種類に大別され、それぞれの特徴から用途に合わせて使い分けられている。なお、いずれの銅箔も、そのまま使用されることはほとんどなく、粗化処理層をはじめ、耐熱処理層、防錆処理層等々の各種処理層を設けたものが使用されている(以下、各種処理層が設けられている銅箔を「処理銅箔」という)。   Copper foils are roughly classified into two types, electrolytic copper foils and rolled copper foils, depending on the production method. In addition, any copper foil is rarely used as it is, and is provided with various treatment layers such as a roughening treatment layer, a heat-resistant treatment layer, a rust prevention treatment layer, and the like (hereinafter referred to as various types). A copper foil provided with a treatment layer is referred to as a “treatment copper foil”).

最近の情報通信機器は高機能化やネットワーク化の拡大等により、情報通信に使用される信号は高速化、高周波化し、高速・高周波に対応できるプリント配線板の需要が高まっている。
しかし、高速・高周波対応のプリント配線板には、これまでのプリント配線板に要求される特性に加えて、伝送損失に代表される「伝送特性」も要求される。
With recent information communication devices having higher functions and wider networking, signals used for information communication have become faster and higher in frequency, and there is an increasing demand for printed wiring boards that can handle high speed and high frequency.
However, high-speed and high-frequency printed wiring boards are required to have “transmission characteristics” represented by transmission loss in addition to the characteristics required for conventional printed wiring boards.

伝送損失とは、プリント配線板を流れる電流が距離などに応じて減衰する度合いを示すもので、一般的に周波数が高くなるにしたがって伝送損失は大きくなる傾向にある。伝送損失が大きいということは、所定の電流の一部しか負荷側に伝わらないということであるので、実用上問題なく使用するには、伝送損失はより低く抑えなければならない。   The transmission loss indicates the degree to which the current flowing through the printed wiring board is attenuated according to the distance or the like. Generally, the transmission loss tends to increase as the frequency increases. A large transmission loss means that only a part of a predetermined current is transmitted to the load side. Therefore, in order to use it without any practical problem, the transmission loss must be kept lower.

プリント配線板の伝送損失は、誘電体損失と導体損失を足し合わせたものである。誘電体損失は樹脂基材に由来するもので、誘電率と誘電正接に起因する。一方、導体損失は導電体、即ち、銅箔に由来するもので、導体抵抗に起因する。したがって、伝送損失を下げるためには、樹脂基材の誘電率や誘電正接を小さくすることはもちろん、銅箔の導体抵抗を小さくすることが必要である。   The transmission loss of a printed wiring board is a sum of dielectric loss and conductor loss. The dielectric loss is derived from the resin base material and is caused by the dielectric constant and the dielectric loss tangent. On the other hand, the conductor loss is derived from the conductor, that is, the copper foil, and is caused by the conductor resistance. Therefore, in order to reduce transmission loss, it is necessary to reduce the conductor resistance of the copper foil as well as the dielectric constant and dielectric loss tangent of the resin base material.

上述の通り、電流の周波数が高くなるにしたがって伝送損失は大きくなる傾向にあるが、それは導体損失、即ち、導体抵抗が高くなるためであって、「表皮効果」と「処理銅箔の表面形状」が関係している。
表皮効果とは、導電体を流れる電流は周波数が高くなるにしたがって導電体の表面近くを流れる効果のことである。そして導電体表面の電流に対して1/e倍の電流となる点までの距離と定義される表皮深さδは、式(1)で表される。

δ=(2/(ωσμ))1/2 (式1)

ωは角周波数、σは導電率、μは透磁率である。
As described above, the transmission loss tends to increase as the current frequency increases. This is because the conductor loss, that is, the conductor resistance increases, and the “skin effect” and “surface shape of the treated copper foil”. Is involved.
The skin effect is an effect in which the current flowing through the conductor flows near the surface of the conductor as the frequency increases. The skin depth δ, which is defined as the distance to a point where the current is 1 / e times the current on the conductor surface, is expressed by equation (1).

δ = (2 / (ωσμ)) 1/2 (Formula 1)

ω is the angular frequency, σ is the conductivity, and μ is the magnetic permeability.

銅の場合、その導電率と比透磁率から、式(1)は次のようになる。

δ=0.066/f1/2 (式2)

fは周波数である。
In the case of copper, Equation (1) is as follows from its conductivity and relative permeability.

δ = 0.066 / f 1/2 (Formula 2)

f is the frequency.

式(2)より、電流は周波数が高くなるにしたがって導電体の表面により近いところを流れることが分かり、例えば、周波数10MHzのときの表皮深さは約20μmであるのに対し、周波数40GHzのときは約1μmとなり、ほとんど表面だけを流れていることになる。   From equation (2), it can be seen that the current flows closer to the surface of the conductor as the frequency increases. For example, when the frequency is 10 MHz, the skin depth is about 20 μm, while the frequency is 40 GHz. Is about 1 μm, and almost flows only on the surface.

このことから、樹脂基材との密着性を高めるために従来どおりの粗化処理層を設けた処理銅箔に高周波電流を流した場合、電流は粗化処理層の表面形状に沿って流れることになり、主に中心部をまっすぐ流れる場合と比べるとその伝播距離が増えるため、導体抵抗が大きくなり、伝送損失の増大につながると考えられる。   From this, when a high-frequency current is passed through a treated copper foil provided with a roughening treatment layer as in the past in order to enhance the adhesion with the resin base material, the current flows along the surface shape of the roughening treatment layer. Therefore, the propagation distance is increased as compared with the case where it mainly flows straight through the central portion, so that the conductor resistance is increased, leading to an increase in transmission loss.

したがって、高速・高周波伝送対応プリント配線板用の処理銅箔としては、導体抵抗を低く抑えることが必要で、そのためには、粗化処理層を構成する粗化粒子の粒子径を小さくし、表面粗さを小さくした方がよいと考えられる。   Therefore, it is necessary to keep the conductor resistance low as a treated copper foil for high-speed, high-frequency transmission-compatible printed wiring boards. For that purpose, the particle diameter of the roughened particles constituting the roughened layer is reduced, and the surface It is considered better to reduce the roughness.

また、樹脂基材においても、誘電体損失を抑制するためには、伝送損失を増大させる極性の高い官能基は少ない方が良い。
一般的に低誘電性樹脂基材と呼ばれる樹脂基材は、液晶ポリマー、ポリフッ化エチレン、イソシアネート化合物等を含み、極性の高い官能基を減少又は消失させている。
Also in the resin base material, in order to suppress dielectric loss, it is better that there are few functional groups with high polarity that increase transmission loss.
A resin substrate generally called a low dielectric resin substrate contains a liquid crystal polymer, polyfluorinated ethylene, an isocyanate compound, and the like, and reduces or eliminates highly polar functional groups.

伝送特性のみに着目すると、粗化処理層を備えない未処理銅箔は、表面粗さが小さいため、電流の伝播距離を短くでき、その結果、抵抗を小さくできることから、導体としては最も優れていると考えられるが、銅箔と樹脂基材との密着性に着目した場合、粗化処理層を備えないものは、アンカー効果が少なく樹脂基材との密着力が弱いため、引き剥がし強さを確保できず、プリント配線板に用いることは困難である。   Focusing only on the transmission characteristics, untreated copper foil without a roughened layer has a small surface roughness, so the current propagation distance can be shortened, and as a result, the resistance can be reduced. However, when focusing on the adhesiveness between the copper foil and the resin base material, those without a roughened layer have little anchoring effect and weak adhesion to the resin base material, so the peel strength Cannot be secured, and it is difficult to use it for a printed wiring board.

特に、低誘電性樹脂基材は密着性に寄与する極性の高い官能基が減少、若しくは、消失しており、化学的な結合による密着力が望めないため、粗化粒子によるアンカー効果によって密着力を確保する必要がある。さらには、その粗化粒子径は、高い密着力、すなわち、高い引き剥がし強さを得るために、大きくする必要がある。   In particular, the low-dielectric resin base material has a reduced or disappearance of highly polar functional groups that contribute to adhesion, and the adhesion due to chemical bonds cannot be expected. It is necessary to ensure. Furthermore, the roughened particle diameter needs to be increased in order to obtain a high adhesion force, that is, a high peel strength.

未処理銅箔に粗化処理層を設け、さらに粗化処理層を構成する粗化粒子の付着量を増加させたり、粒子径を大きくしたりすれば、アンカー効果が高まるので、引き剥がし強さを高めることができるが、前述の通り、粗化処理層を設けると電流の伝播距離が長くなり、導体抵抗が大きくなり伝送損失が増加する。   If a roughened layer is provided on the untreated copper foil, and the adhesion amount of the roughened particles constituting the roughened layer is increased or the particle diameter is increased, the anchor effect is enhanced, so that the peeling strength is increased. However, as described above, the provision of the roughening layer increases the current propagation distance, increases the conductor resistance, and increases the transmission loss.

このように、高速・高周波信号対応のプリント配線板の場合、樹脂基材による伝送損失を抑制すべく極性の高い官能基を減らせば処理銅箔との高い密着性が得られず、樹脂基材と処理銅箔との密着性を上げるため粗化粒子の粒子径を大きくすれば、表皮効果によって伝送損失が高まるといったジレンマが生じる。   In this way, in the case of a printed wiring board compatible with high-speed and high-frequency signals, if the functional group with high polarity is reduced to suppress transmission loss due to the resin base material, high adhesion with the treated copper foil cannot be obtained, and the resin base material If the particle size of the roughened particles is increased in order to improve the adhesion between the copper foil and the treated copper foil, a dilemma that transmission loss increases due to the skin effect occurs.

しかし、高速・高周波伝送に対応するプリント配線板は、実用上それらすべてを満足させる必要があり、極性の高い官能基が少ない低誘電性樹脂基材であっても十分な引き剥がし強さが得られ、かつ、伝送損失を抑制したプリント配線板となる処理銅箔の開発が望まれている。   However, printed wiring boards that support high-speed and high-frequency transmission must satisfy all of them in practice, and even if a low-dielectric resin substrate with few polar functional groups has sufficient peel strength, In addition, development of a treated copper foil that becomes a printed wiring board with reduced transmission loss is desired.

特開2013−155415号公報JP2013-155415A 国際公開番号WO2003/102277International Publication Number WO2003 / 102277

特許文献1には、高周波伝送対応の絶縁樹脂との接着性を向上させるべく粗化処理層及び耐熱処理層を設けた処理銅箔が開示されている。   Patent Document 1 discloses a treated copper foil provided with a roughening treatment layer and a heat-resistant treatment layer in order to improve adhesion with an insulating resin compatible with high-frequency transmission.

特許文献1に開示されている処理銅箔は粗化処理層を構成する粒子を大きくすることで引き剥がし強さを確保しようとするものである。   The treated copper foil disclosed in Patent Document 1 is intended to ensure the peel strength by increasing the particles constituting the roughened layer.

しかし、粗化粒子が大きいと電流伝播距離が長くなるため伝送損失が増加するという問題がある。   However, when the coarse particles are large, there is a problem that the transmission loss increases because the current propagation distance becomes long.

また、耐熱処理層、防錆処理層及びシランカップリング剤層によって更に伝送損失が増加し、特に耐熱処理層がNiを含有する場合には、表皮深さが浅くなるので、電流が銅箔の表面部分に集中して流れるようになり、より処理層表面の凹凸の影響を受け、伝送損失が更に増加するという問題がある。   Further, the transmission loss is further increased by the heat-resistant treatment layer, the rust-proof treatment layer, and the silane coupling agent layer, and particularly when the heat-resistant treatment layer contains Ni, the skin depth becomes shallow, so that the current is reduced to the copper foil. There is a problem that the flow is concentrated on the surface portion, and the transmission loss is further increased due to the influence of the unevenness on the surface of the treatment layer.

特許文献2には、高周波伝送対応樹脂基材の接着性を向上させるべく、粗化処理層と亜鉛及びニッケルを含有する防錆処理層、防錆処理層上にクロメート層、クロメート層上にシランカップリング剤吸着層を設けた処理銅箔であって、処理面の表面粗さを一定の範囲に調製することで伝送損失を抑制しようとする処理銅箔が開示されている。   In Patent Document 2, in order to improve the adhesion of a resin base material for high-frequency transmission, a roughened layer, a rust-proof layer containing zinc and nickel, a chromate layer on the rust-proof layer, and a silane on the chromate layer A treated copper foil provided with a coupling agent adsorption layer, which is intended to suppress transmission loss by adjusting the surface roughness of the treated surface to a certain range, is disclosed.

しかし、粗化処理層の粗化粒子が大きいため、電流伝播距離が長くなって伝送損失が増加するという問題がある。   However, since the roughening particles in the roughening layer are large, there is a problem that the current propagation distance becomes long and the transmission loss increases.

また、防錆処理層にNiを含有するため、表皮深さが浅くなって、電流が銅箔の表面部分に集中して流れ、伝送損失が更に増加するという問題がある。   Moreover, since Ni is contained in the rust-proofing layer, there is a problem that the skin depth becomes shallow, current flows in a concentrated manner on the surface portion of the copper foil, and transmission loss further increases.

本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、粗化処理層が粒子径300〜600nmの銅粒子で形成され酸化防止処理層はモリブデンとコバルトを含有し低誘電性樹脂基材と接着させる処理面の十点平均粗さRzは0.6〜2.0μmで、かつ、未処理銅箔と処理面との色差ΔE*abが35〜55である処理銅箔であれば、粗化処理層を設けた場合も未処理銅箔と同程度の伝送損失である伝送特性に優れた導体でありながら、低誘電性樹脂基材に対しても高い引き剥がし強さが得られるという刮目すべき知見を得て、前記技術的課題を達成したものである。   The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of many trial and error trial manufactures and experiments, the roughened layer was formed of copper particles having a particle diameter of 300 to 600 nm. The anti-oxidation treatment layer contains molybdenum and cobalt, the ten-point average roughness Rz of the treated surface to be bonded to the low dielectric resin base material is 0.6 to 2.0 μm, and the color difference ΔE * between the untreated copper foil and the treated surface If the ab is 35 to 55 treated copper foil, it is a conductor with excellent transmission characteristics even when a roughened layer is provided, which has the same transmission loss as that of the untreated copper foil. The above technical problem has been achieved by obtaining a remarkable knowledge that high peel strength can be obtained even for a material.

前記技術的課題は次のとおり、本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

本発明は、未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に酸化防止処理層を備える1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材用の処理銅箔であって、前記粗化処理層は粒子径が300〜600nmの銅粒子で形成され前記酸化防止処理層はモリブデンとコバルトを含有し樹脂基材と接着させる処理面の十点平均粗さRzは0.6〜2.0μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが35〜55である低誘電性樹脂基材用処理銅箔である(請求項1)。   The present invention is for a low dielectric resin base material having a roughened layer on at least one surface of an untreated copper foil and an anti-oxidant layer on the roughened layer and having a dielectric loss tangent of a frequency of 1 GHz or higher of 0.005 or lower The roughened layer is formed of copper particles having a particle diameter of 300 to 600 nm, and the antioxidant layer contains molybdenum and cobalt, and has a ten-point average of the treated surfaces to be bonded to the resin base material. The roughness Rz is 0.6 to 2.0 μm, and the processed copper foil for a low dielectric resin base material having a color difference ΔE * ab between the untreated copper foil and the treated surface of 35 to 55 (Claim 1). .

また、本発明は、前記酸化防止処理層上に次のa、bの層を1つ以上備えた請求項1記載の低誘電性樹脂基材用処理銅箔である(請求項2)。
a.クロメート層
b.シランカップリング剤層
Further, the present invention is the treated copper foil for a low dielectric resin base material according to claim 1, wherein one or more of the following layers a and b are provided on the antioxidant treatment layer (claim 2).
a. Chromate layer
b.Silane coupling agent layer

また、本発明は、請求項1又は2記載の処理銅箔を1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材に張り合わせた銅張積層板である(請求項3)。   Further, the present invention is a copper clad laminate in which the treated copper foil according to claim 1 or 2 is bonded to a low dielectric resin base material having a dielectric loss tangent of 1 GHz or more and 0.005 or less (claim 3).

また、本発明は、液晶ポリマーを含む1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材との引き剥がし強さが0.6kN/m以上である請求項3記載の銅張積層板である(請求項4)。   Further, the present invention provides a copper clad laminate according to claim 3, wherein the peel strength from a low dielectric resin base material having a dielectric loss tangent at a frequency of 1 GHz or more containing a liquid crystal polymer is 0.005 or less is 0.6 kN / m or more. (Claim 4).

また、本発明は、請求項1又は2記載の低誘電性樹脂基材用処理銅箔の粗化処理層を電解法にて設ける処理方法であって、前記電解法の電解液に澱粉分解物を添加することを特徴とする請求項1又は2記載の低誘電性樹脂基材用処理銅箔の粗化処理層の処理方法である(請求項5)。
Further, the present invention is a treatment method of providing a roughened layer of the treated copper foil for low dielectric resin substrate according to claim 1 or 2 by an electrolytic method, the starch decomposition product in the electrolytic solution of the electrolytic method 3. The method for treating a roughened layer of a treated copper foil for a low dielectric resin base material according to claim 1 or 2, characterized in that is added (claim 5).

また、本発明は、処理銅箔と1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材とを加熱しながら加圧して張り合わせることを特徴とする請求項3又は4記載の銅張積層板の製造方法である(請求項6)。   Further, the present invention provides the copper according to claim 3 or 4, wherein the treated copper foil and a low dielectric resin base material having a dielectric loss tangent of a frequency of 1 GHz or more and 0.005 or less are heated and pressed together. A method for producing a tension laminate (claim 6).

また、本発明は、請求項3又は4記載の銅張積層板を用いて形成されたプリント配線板である(請求項7)。   Further, the present invention is a printed wiring board formed using the copper clad laminate according to claim 3 or 4 (claim 7).

本明細書において、本発明における粗化処理層を特に樹脂誘導浸透層と言うことがある。   In the present specification, the roughened layer in the present invention may be particularly referred to as a resin-induced permeation layer.

本発明における処理銅箔は、粗化処理層(樹脂誘導浸透層)を構成する粗化粒子の粒子径が300〜600nmの銅粒子で、樹脂基材と接着させる処理面の十点平均粗さRzは0.6〜2.0μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが35〜55であるため、樹脂基材と加熱、加圧成形する際、その樹脂が粗化粒子間に均一に浸透し、処理銅箔表面と樹脂が大きな面積で立体的に接着し、引き剥がし強さに寄与する極性の高い官能基が少ない低誘電性樹脂基材であったとしても、強い引き剥がし強さを実現することができる。   The treated copper foil in the present invention is a copper particle having a particle size of 300 to 600 nm of the roughened particles constituting the roughened layer (resin-induced permeation layer), and the ten-point average roughness of the treated surface to be bonded to the resin base material Rz is 0.6 to 2.0 μm, and the color difference ΔE * ab between the untreated copper foil and the treated surface is 35 to 55. Therefore, when the resin base material is heated and pressed, the resin is roughened. Even if it is a low-dielectric resin base material that penetrates uniformly between particles, the treated copper foil surface and the resin are three-dimensionally bonded in a large area, and there are few functional groups with high polarity that contribute to the peel strength, Strong peel strength can be achieved.

特に、液晶ポリマーを含む1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材に対しては0.6kN /m以上の引き剥がし強さが得られる。   In particular, a peel strength of 0.6 kN / m or more can be obtained for a low dielectric resin base material having a dielectric loss tangent of 1 GHz or more including a liquid crystal polymer of 0.005 or less.

また、本発明における処理銅箔の低誘電性樹脂基材と接着させる処理面の十点平均粗さRzは0.6〜2.0μmであり、酸化防止処理層はモリブデンとコバルトを含有し、ニッケル等の伝送損失を上昇させる金属を含有しないため,低誘電性樹脂基材に本発明における処理銅箔を張り合わせた銅張積層板は、たとえ、高周波であったとしても、粗化処理層を設けない未処理銅箔と張り合わせた銅張積層板と同程度に伝送損失を抑制することができる。   Further, the ten-point average roughness Rz of the treated surface to be bonded to the low dielectric resin base material of the treated copper foil in the present invention is 0.6 to 2.0 μm, the antioxidant treatment layer contains molybdenum and cobalt, nickel or the like Since it does not contain a metal that increases transmission loss, the copper clad laminate in which the treated copper foil of the present invention is laminated on a low dielectric resin base material is not provided with a roughened layer even if it has a high frequency. Transmission loss can be suppressed to the same extent as a copper clad laminate laminated with a treated copper foil.

特に、液晶ポリマーを含有する1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材に張り合わせた銅張積層板は周波数40GHzの高周波での伝送損失が-5.5dB/100mm以上であり、未処理銅箔と比べて、樹脂誘導浸透層を備えることによる伝送損失を5%未満に抑制することができる。   In particular, the copper-clad laminate bonded to a low dielectric resin base material with a dielectric loss tangent of 1 GHz or more containing liquid crystal polymer of 0.005 or less has a transmission loss of −5.5 dB / 100 mm or more at a high frequency of 40 GHz, Compared with the untreated copper foil, the transmission loss due to the resin-induced permeation layer can be suppressed to less than 5%.

本発明における処理銅箔断面の模式図である。It is a schematic diagram of the process copper foil cross section in this invention. 本発明における処理銅箔断面の15,000倍の走査電子顕微鏡写真である。It is a scanning electron micrograph of 15,000 times the cross section of the treated copper foil in the present invention.

<未処理銅箔>
本発明に使用する各処理前の銅箔(以下「未処理銅箔」という)は特に限定されるものではなく、表裏の区別のない銅箔、表裏の区別のある銅箔いずれも使用することができる。
<Untreated copper foil>
The copper foil before each treatment (hereinafter referred to as “untreated copper foil”) used in the present invention is not particularly limited, and a copper foil with no distinction between front and back and a copper foil with distinction between front and back should be used. Can do.

表面処理を施す一方の面(以下「処理面」という)は特に限定されるものではなく、圧延銅箔はいずれの面でも良いことはもちろんのこと、電解銅箔においても析出面又は光沢面のいずれの面でも良い。
なお、圧延銅箔を用いる際は、炭化水素系有機溶剤に浸漬し、圧延油を除去してから粗化処理を行うことが好ましい。
One surface to be surface-treated (hereinafter referred to as “treated surface”) is not particularly limited, and the rolled copper foil may be any surface, and the electrolytic copper foil may have a precipitation surface or a glossy surface. Either side is acceptable.
In addition, when using rolled copper foil, it is preferable to perform a roughening process after immersing in a hydrocarbon type organic solvent and removing rolling oil.

未処理銅箔の厚さは表面処理後にプリント配線板に使用できる厚さであれば特に限定されるものではないが、6〜300μmが好ましく、より好ましくは9〜70μmである。   Although the thickness of untreated copper foil will not be specifically limited if it is the thickness which can be used for a printed wiring board after surface treatment, 6-300 micrometers is preferable, More preferably, it is 9-70 micrometers.

また、未処理銅箔の表面処理を施す面は、JIS Z8781に定義される表色系L*a*b*を測定したとき、L*83〜88、a*14〜17、b*15〜19の範囲であることが好ましい。   In addition, the surface of the untreated copper foil subjected to surface treatment is L * 83 to 88, a * 14 to 17, b * 15 to when measuring the color system L * a * b * defined in JIS Z8781. A range of 19 is preferred.

<樹脂誘導浸透層(粗化処理層)>
樹脂誘導浸透層を構成する銅粒子の粒子径は300〜600nmが好ましく、より好ましくは380〜530nmである。
本発明においては、下限値を300nmとするが、300nm以下の粒子が含まれることを排除するものではない。しかし、300nmに満たない粒子が多いと低誘電性樹脂基材に張り合わせた場合に、フレキシブルプリント配線板に使用できるだけの十分な引き剥がし強さが得られない虞があり、また、600nmを超えると表面粗さが増加して伝送損失が大きくなるためいずれの場合も好ましくない。
<Resin-induced permeation layer (roughening treatment layer)>
The particle diameter of the copper particles constituting the resin-induced permeation layer is preferably 300 to 600 nm, more preferably 380 to 530 nm.
In the present invention, the lower limit is set to 300 nm, but this does not exclude the inclusion of particles of 300 nm or less. However, if there are many particles less than 300 nm, there is a possibility that sufficient peel strength sufficient for use on a flexible printed wiring board may not be obtained when pasted on a low dielectric resin substrate. In either case, the surface roughness increases and the transmission loss increases.

また、銅粒子の凸部の間隔は350〜450nmの範囲であることが好ましい。   Moreover, it is preferable that the space | interval of the convex part of a copper particle is the range of 350-450 nm.

樹脂誘導浸透層の厚みは370〜810nmが好ましく、より好ましくは500〜680nmである。   The thickness of the resin-induced permeation layer is preferably 370 to 810 nm, more preferably 500 to 680 nm.

厚みが370nmに満たないと十分な引き剥がし強さが得られない虞があり、810nmを超えると伝送損失が大きくなり、いずれの場合も好ましくない。   If the thickness is less than 370 nm, sufficient peel strength may not be obtained, and if it exceeds 810 nm, transmission loss increases, which is not preferable in either case.

樹脂誘導浸透層の粒子径、銅粒子の凸部の間隔及び厚みは、例えば、走査電子顕微鏡等で傾斜角度40°において倍率10,000〜30,000倍に拡大して観察し、計測することで測定することができる。   The particle diameter of the resin-induced permeation layer, the spacing and thickness of the convex portions of the copper particles should be measured by, for example, observing and measuring the magnification at 10,000 to 30,000 times at an inclination angle of 40 ° with a scanning electron microscope or the like. Can do.

樹脂誘導浸透層の形成には、硫酸銅五水和物50〜150g/Lに硫酸90〜110g/Lの電解液が好ましい。   For the formation of the resin-induced permeation layer, an electrolytic solution of copper sulfate pentahydrate 50 to 150 g / L and sulfuric acid 90 to 110 g / L is preferable.

硫酸銅五水和物の濃度が50g/L以下であると、銅粒子の粒子径が300nmに満たない粒子が増え、また、150g/L以上であると粗化粒子が形成されないためいずれも好ましくない。 If the concentration of copper sulfate pentahydrate is less than 50 g / L, more particles having a particle diameter of the copper particles child is less than 300nm is also one for roughening particles When it is 150 g / L or more is not formed It is not preferable.

前記電解液には各種添加剤を添加することができる。
好適に添加できる添加物としては澱粉分解物及び金属硫酸塩、金属酸化物を挙げることができる。
Various additives can be added to the electrolytic solution.
Additives that can be suitably added include starch degradation products, metal sulfates, and metal oxides.

前記電解液に添加する澱粉分解物は特に限定されず、完全分解、部分分解のいずれでも良い。
平均分子量は100〜100,000が好ましく、より好ましくは、100〜10,000である。
The starch decomposition product added to the electrolytic solution is not particularly limited, and may be complete decomposition or partial decomposition.
The average molecular weight is preferably from 100 to 100,000, more preferably from 100 to 10,000.

金属の硫酸塩または酸化物としては、硫酸インジウム、五酸化バナジウム、二酸化ゲルマニウム等が挙げられる。   Examples of the metal sulfate or oxide include indium sulfate, vanadium pentoxide, and germanium dioxide.

電解液に白金酸化物被覆チタン等の不溶性電極を陽極として、未処理銅箔を陰極として浸し、電流密度10〜50A/dm2、電気量80〜100C/dm2、液温35〜45℃の電解条件で電解させて樹脂誘導浸透層を形成させることが好ましい。 As an anode an insoluble electrode such as a platinum group oxide-coated titanium electrolytic solution immersed untreated copper foil as a cathode, a current density of 10 to 50 A / dm 2, the amount of electricity 80~100C / dm 2, a liquid temperature 35 to 45 ° C. It is preferable to form a resin-induced permeation layer by electrolysis under the above electrolysis conditions.

電流密度が10A/dm2、電気量が80C/dm2より低いと、銅粒子が十分に付着せず、また、電流密度が50A/dm2、電気量が100C/dm2より高いと粒子径が600nmを超える銅粒子の割合が増えるのでいずれも好ましくない。 If the current density is 10 A / dm 2 and the amount of electricity is lower than 80 C / dm 2 , copper particles will not adhere sufficiently, and if the current density is 50 A / dm 2 and the amount of electricity is higher than 100 C / dm 2 , the particle diameter Since the ratio of copper particles exceeding 600 nm increases, neither is preferable.

<酸化防止処理層>
本発明における処理銅箔は樹脂誘導浸透層上に酸化防止処理層を備える。
<Antioxidation treatment layer>
The treated copper foil in the present invention includes an antioxidant treatment layer on the resin-induced permeation layer.

酸化防止処理層の付着量は30〜300mg/m2が好ましく、50〜120mg/m2がより好ましい。 Adhesion amount of antioxidant treatment layer is preferably 30~300mg / m 2, 50~120mg / m 2 is more preferable.

酸化防止処理層の付着量が30mg/m2以下であると樹脂誘導浸透層を完全に被覆できず、また、300mg/m2以上であると、伝送損失が増加する虞があり、また、300mg/m2以上より多くても酸化防止性能の向上は望めないからである。 If the adhesion amount of the antioxidant treatment layer is 30 mg / m 2 or less, the resin-induced permeation layer cannot be completely covered, and if it is 300 mg / m 2 or more, transmission loss may increase, and 300 mg This is because an improvement in antioxidant performance cannot be expected even when the amount is more than / m 2 or more.

また、酸化防止処理層に含まれるコバルトは20〜155mg/m2が好ましく、モリブデンは10〜145mg/m2が好ましい。
下限値の各濃度に満たないと酸化防止性能が十分でなく、また、上限値の各濃度を超えると伝送損失が増加する虞があるからである。
Moreover, 20-155 mg / m < 2 > is preferable for cobalt contained in the antioxidant treatment layer, and 10-145 mg / m < 2 > for molybdenum is preferable.
This is because if the concentration is less than the lower limit value, the antioxidant performance is not sufficient, and if the concentration exceeds the upper limit value, transmission loss may increase.

酸化防止処理層を形成する電解液は、コバルト含有化合物10〜100g/L水溶液にモリブデン含有化合物を1〜80g/L含有する水溶液をpH4〜10に調製したものが好ましい。   The electrolytic solution for forming the antioxidant treatment layer is preferably prepared by adjusting an aqueous solution containing 1 to 80 g / L of a molybdenum-containing compound to a pH of 4 to 10 in an aqueous solution of 10 to 100 g / L of a cobalt-containing compound.

コバルト含有化合物としては、例えば、硫酸コバルト七水和物を挙げることができる。   Examples of the cobalt-containing compound include cobalt sulfate heptahydrate.

モリブデン含有化合物としては、例えば、モリブデン酸ニナトリウム二水和物を挙げることができる。   Examples of the molybdenum-containing compound include disodium molybdate dihydrate.

電解液に、白金酸化物被覆チタン等の不溶性電極を陽極として、樹脂誘導浸透層を形成した銅箔を陰極として浸し、電流密度0.1〜10A/dm2、電気量5〜20C/dm2、液温20〜50℃の条件で電解させて酸化防止処理層を形成させることができる。 The electrolyte solution, an insoluble electrode such as a platinum group oxide coated titanium as an anode, immersed copper foil to form a resin derived permeation layer as a cathode, a current density of 0.1 to 10 A / dm 2, the amount of electricity 5~20C / dm 2, The oxidation treatment layer can be formed by electrolysis under conditions of a liquid temperature of 20 to 50 ° C.

<クロメート層及びシランカップリング剤層>
本発明おける処理銅箔は、必要に応じて酸化防止処理層上にクロメート層及びシランカップリング剤層から選択される層を1つ以上設けることができる。
<Chromate layer and silane coupling agent layer>
In the treated copper foil in the present invention, one or more layers selected from a chromate layer and a silane coupling agent layer can be provided on the antioxidant treatment layer as necessary.

クロメート層を形成する電解液は、クロム酸含有化合物10〜100g/L水溶液をpH2〜12に調製したものが好ましい。   The electrolytic solution for forming the chromate layer is preferably prepared by adjusting the pH of the chromic acid-containing compound to 10 to 100 g / L.

クロム酸含有化合物としては、例えば、二クロム酸ナトリウム二水和物を挙げることができる。   Examples of the chromic acid-containing compound include sodium dichromate dihydrate.

クロメート層は、電解液に白金酸化物被覆チタン等の不溶性電極を陽極として、酸化防止処理層を形成した銅箔を陰極として浸し、液温20〜50℃、電流密度0.1〜10A/dm2、電気量0.5〜20C/dm2の条件で電解させて形成させることができる。 Chromate layer is immersed as an anode an insoluble electrode such as a platinum group oxide-coated titanium electrolytic solution, a copper foil to form an anti-oxidation treatment layer as a cathode, a liquid temperature 20 to 50 ° C., a current density of 0.1 to 10 A / dm 2 It can be formed by electrolysis under the condition of an electric quantity of 0.5 to 20 C / dm 2 .

なお、クロメート層に亜鉛を含有させても良い。   Note that zinc may be contained in the chromate layer.

クロメート層上、若しくは、酸化防止処理層上にシランカップリング剤層を設けることができる。   A silane coupling agent layer can be provided on the chromate layer or the antioxidant treatment layer.

シランカップリング剤層に用いるシランカップリング剤は特に限定されるものではなく、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基及びメルカプト基を含有するシランカップリング剤を使用することができるが、アミノ基、エポキシ基又はビニル基含有のシランカップリング剤は耐吸湿性と防錆性の効果が非常に高く、より好適に用いることができる。   The silane coupling agent used in the silane coupling agent layer is not particularly limited, and includes a vinyl group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an amino group, a ureido group, and a mercapto group. However, the amino group, epoxy group or vinyl group-containing silane coupling agent has very high effects of moisture absorption resistance and rust prevention, and can be used more suitably.

シランカップリング剤は1種でも、2種以上を組み合わせて使用しても良い。   One silane coupling agent may be used, or two or more silane coupling agents may be used in combination.

液温20〜50℃に調製したシランカップリング剤水溶液に浸漬した後、または、スプレー等の方法で散布した後、水洗することで形成することができる。   After immersing in a silane coupling agent aqueous solution prepared at a liquid temperature of 20 to 50 ° C. or after spraying by a method such as spraying, it can be formed by washing with water.

<樹脂基材>
本発明における処理銅箔を張り合わせる低誘電性樹脂基材は、銅箔と樹脂基材との接着に寄与する極性の大きな官能基を低減させた若しくは消失させた樹脂基材であって、1GHz以上の周波数で誘電正接が0.005以下の樹脂基材である。
<Resin substrate>
The low dielectric resin base material for laminating the treated copper foil in the present invention is a resin base material in which a large polar functional group contributing to adhesion between the copper foil and the resin base material is reduced or eliminated, and 1 GHz A resin substrate having a dielectric loss tangent of 0.005 or less at the above frequency.

低誘電性樹脂基材としては、液晶ポリマー、ポリフッ化エチレン、イソシアネート化合物、変性ポリフェニレンエーテルを含有する樹脂を例示することができる。   Examples of the low dielectric resin base material include a resin containing a liquid crystal polymer, polyfluorinated ethylene, an isocyanate compound, and a modified polyphenylene ether.

<色差ΔE*abの測定>
未処理銅箔の処理前の面と処理銅箔処理面のJIS Z8781に定義される表色系L*a*b*を測定した後、( [ΔL*]2+[Δa*]2+[Δb*]2)1/2に表される式によって算出することができる。
<Measurement of color difference ΔE * ab>
After measuring the color system L * a * b * defined in JIS Z8781 of the untreated copper foil surface and the treated copper foil treated surface, ([ΔL *] 2 + [Δa *] 2 + [ Δb *] 2 ) 1/2 can be calculated.

本発明の実施例を以下に示すが、本発明はこれに限定されない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

<未処理銅箔>
実施例及び比較例の未処理銅箔として、厚さ12μmの圧延銅箔又は電解銅箔を用いた。
なお、圧延銅箔は、炭化水素系有機溶剤に60秒間浸漬して圧延油の除去を行ったのちに各処理を行った。
<Untreated copper foil>
As an untreated copper foil of Examples and Comparative Examples, a rolled copper foil or an electrolytic copper foil having a thickness of 12 μm was used.
The rolled copper foil was immersed in a hydrocarbon-based organic solvent for 60 seconds to remove the rolling oil and then subjected to each treatment.

(実施例1〜6)
<樹脂誘導浸透層の形成>
表1記載の電解液を調した。陽極には白金族酸化物にて表面を被覆したチタンを使用し、陰極には未処理銅箔を使用し、両極を各電解液に浸し、表1記載の各電解条件で電解を行って各未処理銅箔の一方の面にそれぞれ樹脂誘導浸透層を形成した。
なお、澱粉分解物としては、分子量が100〜10,000の分解物の混合物を用いた。
(Examples 1 to 6)
<Formation of resin-induced permeation layer>
Table 1 electrolyte solution was made the adjustment described. Titanium whose surface is coated with platinum group oxide is used for the anode, untreated copper foil is used for the cathode, both electrodes are immersed in each electrolytic solution, and electrolysis is performed under each electrolytic condition described in Table 1. A resin-induced permeation layer was formed on one surface of the untreated copper foil.
As the starch degradation product, a mixture of degradation products having a molecular weight of 100 to 10,000 was used.

<コバルト−モリブデン含有酸化防止処理層>
硫酸コバルト七水和物38g/L、モリブデン酸ニナトリウム二水和物23g/L、クエン酸三ナトリウム二水和物45g/L、硫酸ナトリウム80g/Lを含有するpH5.6、液温30℃の水溶液に、陽極として白金酸化物にて表面を被覆したチタン、陰極に樹脂誘導浸透層を備えた処理銅箔を使用して、両極に対して電流密度7.0A/dm2、電気量14C/dm2の電解条件で樹脂誘導浸透層上にコバルト-モリブデン含有酸化防止処理層を設けた。
<Cobalt-molybdenum-containing antioxidant treatment layer>
Cobalt sulfate heptahydrate 38g / L, disodium molybdate dihydrate 23g / L, trisodium citrate dihydrate 45g / L, pH 5.6 containing sodium sulfate 80g / L, liquid temperature 30 ° C Using a treated copper foil with a platinum group oxide surface coated as an anode and a resin-induced permeation layer on the cathode, an electric current density of 7.0 A / dm 2 and an electric charge of 14 C A cobalt-molybdenum-containing antioxidant treatment layer was provided on the resin-induced permeation layer under the electrolytic conditions of / dm 2 .

<クロメート層>
液温30℃の二クロム酸ナトリウム二水和物40g/L水溶液を水酸化ナトリウムにてpH12.0に調製したクロメート水溶液に、陽極に白金族酸化物にて表面を被覆したチタンを使用するとともに、陰極に樹脂誘導浸透層及びコバルト−モリブデン含有酸化防止処理層を備えた処理銅箔を使用して、両極に対して電流密度2.0A/dm2、電気量10C/dm2の電解条件でコバルト-モリブデン含有酸化防止処理層上にクロメート層を設けた。
<Chromate layer>
Using chromate aqueous solution prepared at pH 12.0 with sodium hydroxide, sodium dichromate dihydrate 40g / L aqueous solution with a liquid temperature of 30 ° C, and titanium coated with platinum group oxide on the anode. , Using a treated copper foil with a resin-induced permeation layer and a cobalt-molybdenum-containing anti-oxidation treatment layer on the cathode, cobalt under electrolysis conditions of current density 2.0 A / dm 2 and electric quantity 10 C / dm 2 for both electrodes -A chromate layer was provided on the molybdenum-containing antioxidant treatment layer.

<シランカップリング剤層>
液温30℃のγ−アミノプロピルトリエトキシシラン5ml/Lを含有する水溶液に各処理層を備えた処理銅箔を10秒間浸漬して、クロメート層上にシランカップリング剤層を形成させた。
<Silane coupling agent layer>
A treated copper foil provided with each treatment layer was immersed in an aqueous solution containing 5 ml / L of γ-aminopropyltriethoxysilane at a liquid temperature of 30 ° C. for 10 seconds to form a silane coupling agent layer on the chromate layer.

シランカップリング剤層を形成させた後、温度約25℃にて自然乾燥させて、各実施例の処理銅箔とした。   After forming the silane coupling agent layer, it was naturally dried at a temperature of about 25 ° C. to obtain a treated copper foil of each example.

(比較例1)
樹脂誘導浸透層を設けなかった以外は実施例1と同一の条件で作成した。
(Comparative Example 1)
It was created under the same conditions as in Example 1 except that the resin-induced permeation layer was not provided.

(比較例2)
硫酸銅五水和物47g/L、硫酸100g/Lからなる電解液に未処理銅箔を浸し、電流密度50A/dm2、電気量130C/dm2、液温30℃の電解条件にて電解して微細粒子層を形成させた後、硫酸銅五水和物200g/L、硫酸100g/Lからなる電解液に浸して電流密度5A/dm2、電気量400C/dm2、液温40℃の電解条件にて電解することで樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 2)
Untreated copper foil is immersed in an electrolytic solution consisting of 47 g / L copper sulfate pentahydrate and 100 g / L sulfuric acid, and electrolysis is performed under electrolysis conditions of current density 50 A / dm 2 , electric quantity 130 C / dm 2 , and liquid temperature 30 ° C. After forming a fine particle layer, it is immersed in an electrolytic solution consisting of copper sulfate pentahydrate 200 g / L, sulfuric acid 100 g / L, current density 5 A / dm 2 , electric quantity 400 C / dm 2 , liquid temperature 40 ° C. It was produced under the same conditions as in Example 1 except that the resin-induced permeation layer was formed by electrolysis under the above electrolysis conditions.

(比較例3)
硫酸銅五水和物55g/L、ジエチレントリアミン五酢酸五ナトリウム100g/Lからなる電解液を硫酸にてpH4.5に調製した後、未処理銅箔を浸して電流密度1.4A/dm2、電気量85C/dm2、液温32℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 3)
After preparing an electrolytic solution consisting of copper sulfate pentahydrate 55g / L and diethylenetriaminepentaacetic acid pentasodium 100g / L with sulfuric acid to pH 4.5, untreated copper foil was immersed in a current density of 1.4A / dm 2 , electricity It was produced under the same conditions as in Example 1 except that a resin-induced permeation layer was formed by electrolysis under the electrolytic conditions of an amount of 85 C / dm 2 and a liquid temperature of 32 ° C.

(比較例4)
硫酸銅五水和物45g/L、硫酸80g/L、硫酸チタニル2g/L、タングステン酸ナトリウム二水和物0.045 g/Lからなる電解液に未処理銅箔を浸し、電流密度10A/dm2、電気量50C/dm2、液温35℃の電解条件にて電解して微細粒子層を形成した後、硫酸銅五水和物200g/L、硫酸100g/Lからなる電解液に浸して電流密度10A/dm2、電気量250C/dm2、液温40℃の電解条件にて樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 4)
Immerse untreated copper foil in an electrolyte solution consisting of copper sulfate pentahydrate 45 g / L, sulfuric acid 80 g / L, titanyl sulfate 2 g / L, sodium tungstate dihydrate 0.045 g / L, and current density 10 A / dm 2 After forming a fine particle layer by electrolysis under an electrolysis condition of 50C / dm 2 and a liquid temperature of 35 ° C, an electric current is immersed in an electrolytic solution of copper sulfate pentahydrate 200g / L and sulfuric acid 100g / L. It was produced under the same conditions as in Example 1 except that the resin-induced permeation layer was formed under electrolytic conditions of a density of 10 A / dm 2 , an amount of electricity of 250 C / dm 2 , and a liquid temperature of 40 ° C.

(比較例5)
硫酸銅五水和物61g/L、硫酸コバルト七水和物29g/L、硫酸ニッケル六水和物49 g/L、硫酸ナトリウム80 g/Lからなる電解液を硫酸にてpH2.5に調製した後未処理銅箔を浸し、電流密度5A/dm2、電気量45C/dm2、液温30℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 5)
Prepare an electrolyte solution consisting of copper sulfate pentahydrate 61 g / L, cobalt sulfate heptahydrate 29 g / L, nickel sulfate hexahydrate 49 g / L, sodium sulfate 80 g / L with sulfuric acid to pH 2.5. After that, it was the same as Example 1 except that the untreated copper foil was immersed and electrolyzed under electrolysis conditions of current density 5 A / dm 2 , electric quantity 45 C / dm 2 , and liquid temperature 30 ° C. to form a resin-induced permeation layer. It was produced under the conditions of

(比較例6)
比較例5の電解液に未処理銅箔を浸し、電流密度5A/dm2、電気量105C/dm2、液温30℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 6)
Except for immersing an untreated copper foil in the electrolyte of Comparative Example 5 and forming a resin-induced permeation layer by electrolysis under electrolysis conditions of a current density of 5 A / dm 2 , an amount of electricity of 105 C / dm 2 and a liquid temperature of 30 ° C. It was produced under the same conditions as in Example 1.

(比較例7)
硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物2.0g/L、酢酸ナトリウム三水和物10g/Lからなる電解液を硫酸にてpH4.5に調製した後、電流密度5.0A/dm2、電気量10C/dm2、液温30℃の電解条件で電解させて酸化防止処理層を形成させた以外は実施例1と同一の条件にて作製した。
(Comparative Example 7)
An electrolytic solution consisting of nickel sulfate hexahydrate 30 g / L, sodium hypophosphite monohydrate 2.0 g / L, sodium acetate trihydrate 10 g / L was adjusted to pH 4.5 with sulfuric acid, It was produced under the same conditions as in Example 1 except that the oxidation treatment layer was formed by electrolysis under the conditions of density 5.0 A / dm 2 , electric quantity 10 C / dm 2 , and liquid temperature 30 ° C.

(比較例8)
硫酸ニッケル六水和物55g/L、硫酸コバルト七水和物22g/Lからなる電解液を硫酸にてpH3.0に調製した電解液を、電流密度5.0A/dm2、電気量10C/dm2、液温40℃の電解条件で電解させて酸化防止処理層を形成させた以外は実施例1と同一の条件にて作製した。
(Comparative Example 8)
Electrolyte prepared from nickel sulfate hexahydrate 55g / L, cobalt sulfate heptahydrate 22g / L, adjusted to pH 3.0 with sulfuric acid, current density 5.0A / dm 2 , electric charge 10C / dm 2. It was produced under the same conditions as in Example 1 except that the oxidation treatment layer was formed by electrolysis under an electrolytic condition of a liquid temperature of 40 ° C.

(比較例9)
比較例3の処理銅箔を低誘電性ではないポリイミド樹脂と張り合わせたものである。
(Comparative Example 9)
The treated copper foil of Comparative Example 3 is laminated with a non-low dielectric polyimide resin.

(参考例1〜6)
実施例1〜6の処理銅箔を低誘電性ではないポリイミド樹脂と張り合わせたものである。
(Reference Examples 1-6)
The treated copper foils of Examples 1 to 6 are laminated with a polyimide resin that is not low dielectric.

<銅張積層板A>
実施例1〜6及び比較例1〜8の各処理銅箔の各処理面を被接着面としてトリプレート線路共振機による25GHzの誘電正接が0.002である液晶ポリマー樹脂基材(株式会社クラレ製、品名:CT-Z、厚さ50μm)に合わせた後、真空熱プレス機(北川精機製KVHC-II)を使用して、真空下(7torr)、温度260℃で15分間予熱した後、真空下(7torr)、温度300℃、圧力4MPaで10分間、加熱・加圧成型を行い、銅張積層板Aを得た。
銅張積層板Aは引き剥がし強さの測定に使用した。
<Copper-clad laminate A>
A liquid crystal polymer resin substrate (produced by Kuraray Co., Ltd.) having a dielectric loss tangent at 25 GHz by a triplate line resonator of 0.002 for each treated surface of each treated copper foil of Examples 1 to 6 and Comparative Examples 1 to 8 as an adherend surface. Product name: CT-Z, 50μm thickness), preheated under vacuum (7torr) at 260 ° C for 15 minutes using a vacuum heat press (KVHC-II manufactured by Kitagawa Seiki), then under vacuum (7 torr), temperature 300 ° C., pressure 4 MPa, heating and pressure molding were performed for 10 minutes to obtain a copper clad laminate A.
Copper-clad laminate A was used to measure the peel strength.

<銅張積層板B>
実施例1〜6及び比較例1〜8の各処理銅箔の各処理面と液晶ポリマー樹脂基材(株式会社クラレ製、品名:CT-Z、厚さ50μm)とを合わせ、前記各処理銅箔のもう一方の面にグラ
ンド用銅箔(70μm)を合わせた後、真空熱プレス機を使用して、真空下(7torr)、温度260℃で15分間予熱した後、真空下(7torr)、温度300℃、圧力4MPaで10分間、加熱、加圧成型を行い、銅張積層板Bを得た。
銅張積層板Bは伝送損失の測定に使用した。
<Copper-clad laminate B>
The treated surfaces of each treated copper foil of Examples 1 to 6 and Comparative Examples 1 to 8 were combined with a liquid crystal polymer resin substrate (manufactured by Kuraray Co., Ltd., product name: CT-Z, thickness 50 μm), and each treated copper was combined. After matching the copper foil for grounding (70μm) on the other side of the foil, using a vacuum heat press machine, preheat for 15 minutes at 260 ° C under vacuum (7torr), then under vacuum (7torr), A copper-clad laminate B was obtained by heating and pressure molding at a temperature of 300 ° C. and a pressure of 4 MPa for 10 minutes.
Copper-clad laminate B was used to measure transmission loss.

<銅張積層板C>
比較例9及び参考例1〜6の各処理銅箔の各処理面を被接着面として、ポリイミド樹脂基材(株式会社カネカ製、品名:FRS‐142、厚さ25μm)に合わせた後、真空熱プレス機を使用して、真空下(7torr)、温度260℃で15分間予熱した後、真空下(7torr)、温度300℃、圧力4MPaで10分間、加熱、加圧成型を行い、銅張積層板Cを得た。
<Copper laminate C>
Each treated surface of each treated copper foil of Comparative Example 9 and Reference Examples 1 to 6 was used as an adherend surface, and after matching with a polyimide resin substrate (manufactured by Kaneka Corporation, product name: FRS-142, thickness 25 μm), vacuum Using a hot press machine, preheat for 15 minutes at 260 ° C under vacuum (7torr), then heat and press mold under vacuum (7torr), 300 ° C, pressure 4MPa for 10 minutes, and copper-clad Laminate C was obtained.

未処理銅箔又は、処理銅箔の評価は次の方法により行った。   Evaluation of untreated copper foil or treated copper foil was performed by the following method.

<表面粗さの測定>
未処理銅箔又は、処理銅箔の処理層が設けられた各面について、JIS B0651-2001に規定される触針式表面粗さ計に適合するサーフコーダーSE1700α(株式会社小坂研究所製)にて触針として触針先端半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される十点平均粗さRzを測定した。
<Measurement of surface roughness>
For each surface provided with a treated layer of untreated copper foil or treated copper foil, surf coder SE1700α (manufactured by Kosaka Laboratory Co., Ltd.) that conforms to the stylus type surface roughness meter specified in JIS B0651-2001 A ten-point average roughness Rz defined in JISB0601-1994 was measured with a stylus tip radius of 2 μm as the stylus and a cut-off value for the roughness curve of 0.8 mm and a measurement distance of 4.0 mm.

<粒子径の測定>
走査顕微鏡SEM(日本電子製JSM-6010LA)を使用し、試料台を40°傾斜させながら倍率10,000〜30,000倍で観察し、観察された樹脂誘導浸透層を構成する銅粒子群の粒子の長さを10点計測した平均値を粒子径の値とした。
<Measurement of particle size>
Using a scanning microscope SEM (JEOL JSM-6010LA) and observing the sample stage at a magnification of 10,000 to 30,000 while tilting the sample stage by 40 °, the observed length of the copper particle group constituting the resin-induced permeation layer The average value obtained by measuring 10 points was taken as the particle size value.

<色差ΔE*ab>
分光測色計(コニカミノルタ製CM-600d)を使用し、各処理銅箔のJIS Z8781に定義される表色系L*a*b*を測定し、未処理銅箔のL*a*b*との色差ΔE*ab(=([ΔL*]2+[Δa*]2+[Δb*]2)1/2)を求めた。
<Color difference ΔE * ab>
Using a spectrocolorimeter (CM-600d manufactured by Konica Minolta), the color system L * a * b * defined in JIS Z8781 of each treated copper foil is measured, and the L * a * b of untreated copper foil A color difference ΔE * ab (= ([ΔL *] 2 + [Δa *] 2 + [Δb *] 2 ) 1/2 ) from * was determined.

銅張積層板の評価は次の方法により行った。   The copper clad laminate was evaluated by the following method.

<引き剥がし強さ>
エッチングマシン(株式会社二宮システム製SPE-40)を使用し、エッチングにより幅1mmの銅回路サンプルを作製した。JIS C6481に準拠し、万能試験機を用いて引き剥がし強さを測定した。
<Stripping strength>
Using an etching machine (SPE-40, manufactured by Ninomiya System Co., Ltd.), a copper circuit sample having a width of 1 mm was produced by etching. In accordance with JIS C6481, the peel strength was measured using a universal testing machine.

<伝送損失>
エッチングマシンを使用し、エッチングによりシングルエンドのマイクロストリップラインを形成した。なお、本基板の回路幅は特性インピーダンスが50Ωになるように、銅張積層板Bの場合は幅110μm、銅張積層板Cの場合は幅50μmとした。作製した回路基板をネットワークアナライザー(アジレント・テクノロジー株式会社製N5247A)を使用して周波数160MHz〜40GHzのSパラメータ(S21)を測定した。
<Transmission loss>
Using an etching machine, single-ended microstrip lines were formed by etching. The circuit width of the substrate was 110 μm for the copper-clad laminate B and 50 μm for the copper-clad laminate C so that the characteristic impedance was 50Ω. The S circuit (S21) having a frequency of 160 MHz to 40 GHz was measured on the fabricated circuit board using a network analyzer (N5247A manufactured by Agilent Technologies).

各評価結果を表2に示す。
The evaluation results are shown in Table 2.

実施例1〜6より、本発明における処理銅箔の伝送損失は、樹脂誘導浸透層を備えない処理銅箔(比較例1)と同程度であり、かつ、本発明における処理銅箔は低誘電性樹脂基材との高い引き剥がし強さを備えることが確認された。   From Examples 1 to 6, the transmission loss of the treated copper foil in the present invention is comparable to that of the treated copper foil (Comparative Example 1) that does not include the resin-induced permeation layer, and the treated copper foil in the present invention has a low dielectric constant. It was confirmed to have high peel strength with the conductive resin substrate.

本発明における処理銅箔は伝送損失が未処理銅箔と同程度という優れた導体でありながら、接着に寄与する極性の大きな官能基が少なく高い引き剥がし強さが得られにくい低誘電性樹脂基材であっても高い引き剥がし強さを実現することができるので、フレキシブルプリント配線板にも好適に使用できる銅張積層板を提供することができる。
したがって、本発明の処理銅箔は産業上の利用可能性の高い発明である。
The treated copper foil in the present invention is an excellent conductor having a transmission loss comparable to that of the untreated copper foil, but has a low dielectric resin group that has few functional groups with a large polarity that contribute to adhesion and is difficult to obtain high peel strength. Even if it is a material, since high peeling strength can be implement | achieved, the copper clad laminated board which can be used conveniently also for a flexible printed wiring board can be provided.
Therefore, the treated copper foil of the present invention is an invention with high industrial applicability.

1 銅箔
2 樹脂誘導浸透層
3 酸化防止処理層
1 Copper foil 2 Resin-induced permeation layer 3 Antioxidation treatment layer

Claims (7)

未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に酸化防止処理層を備える1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材用の処理銅箔であって、前記粗化処理層は粒子径が300〜600nmの銅粒子で形成され前記酸化防止処理層はモリブデンとコバルトを含有し樹脂基材と接着させる処理面の十点平均粗さRzは0.6〜2.0μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが35〜55である低誘電性樹脂基材用処理銅箔。 A treated copper foil for a low dielectric resin base material having a roughening treatment layer on at least one surface of the untreated copper foil and an anti-oxidation treatment layer on the roughening treatment layer and having a dielectric loss tangent of a frequency of 1 GHz or more of 0.005 or less The roughening treatment layer is formed of copper particles having a particle diameter of 300 to 600 nm, and the antioxidant treatment layer contains molybdenum and cobalt, and the ten-point average roughness Rz of the treatment surface to be bonded to the resin substrate is A treated copper foil for a low dielectric resin base material having a color difference ΔE * ab of 35 to 55 between 0.6 and 2.0 μm and the untreated copper foil and the treated surface. 前記酸化防止処理層上に次のa、bの層を1つ以上備えた請求項1記載の低誘電性樹脂基材用処理銅箔。
a.クロメート層
b.シランカップリング剤層
2. The treated copper foil for a low dielectric resin substrate according to claim 1, wherein one or more of the following layers a and b are provided on the antioxidant treatment layer.
a. Chromate layer
b.Silane coupling agent layer
請求項1又は2記載の処理銅箔を1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材に張り合わせた銅張積層板。 A copper-clad laminate obtained by bonding the treated copper foil according to claim 1 or 2 to a low dielectric resin base material having a dielectric loss tangent of 1 GHz or more and 0.005 or less. 液晶ポリマーを含む1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材との引き剥がし強さが0.6kN/m以上である請求項3記載の銅張積層板。 4. The copper clad laminate according to claim 3, wherein the peel strength from the low dielectric resin base material having a dielectric loss tangent of 1 GHz or more containing liquid crystal polymer of 0.005 or less is 0.6 kN / m or more. 請求項1又は2記載の低誘電性樹脂基材用処理銅箔の粗化処理層を電解法にて設ける処理方法であって、前記電解法の電解液に澱粉分解物を添加することを特徴とする請求項1又は2記載の低誘電性樹脂基材用処理銅箔の粗化処理層の処理方法。A processing method for providing a roughened layer of the copper foil for low dielectric resin substrate according to claim 1 or 2 by an electrolytic method, wherein a starch decomposition product is added to the electrolytic solution of the electrolytic method The method for treating a roughened layer of the treated copper foil for a low dielectric resin substrate according to claim 1 or 2. 処理銅箔と1GHz以上の周波数の誘電正接が0.005以下の低誘電性樹脂基材とを加熱しながら加圧して張り合わせることを特徴とする請求項3又は4記載の銅張積層板の製造方法。 5. The method for producing a copper-clad laminate according to claim 3, wherein the treated copper foil and a low dielectric resin base material having a dielectric loss tangent of a frequency of 1 GHz or more and 0.005 or less are pressed and bonded together while being heated. . 請求項3又は4記載の銅張積層板を用いて形成されたプリント配線板。
A printed wiring board formed using the copper-clad laminate according to claim 3 or 4.
JP2015149642A 2015-07-29 2015-07-29 Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil Active JP6083619B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015149642A JP6083619B2 (en) 2015-07-29 2015-07-29 Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil
TW105112131A TWI663268B (en) 2015-07-29 2016-04-19 Processed copper foil for low dielectric constant resin substrate and copper-clad laminate using the same, method for processing roughened layer of the processed copper foil, manufacturing method of copper-clad laminate, and printed wiring board
CN201610258241.5A CN106413248B (en) 2015-07-29 2016-04-22 Low-k resin base material processing copper foil and copper clad laminate and printing distributing board using the processing copper foil
KR1020160050719A KR101998923B1 (en) 2015-07-29 2016-04-26 Treated copper foil for low dielectric resin substrate, and copper-clad laminate and printed writing board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149642A JP6083619B2 (en) 2015-07-29 2015-07-29 Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil

Publications (2)

Publication Number Publication Date
JP2017031442A JP2017031442A (en) 2017-02-09
JP6083619B2 true JP6083619B2 (en) 2017-02-22

Family

ID=57985668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149642A Active JP6083619B2 (en) 2015-07-29 2015-07-29 Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil

Country Status (4)

Country Link
JP (1) JP6083619B2 (en)
KR (1) KR101998923B1 (en)
CN (1) CN106413248B (en)
TW (1) TWI663268B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094740A (en) 2017-12-05 2020-08-07 후루카와 덴키 고교 가부시키가이샤 Surface-treated copper foil and copper clad laminate and printed wiring board using the same
LU501394B1 (en) 2022-02-07 2023-08-07 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697759B2 (en) * 2016-02-05 2020-05-27 パナソニックIpマネジメント株式会社 Metal-clad laminate, method of manufacturing metal-clad laminate, metal member with resin, method of manufacturing metal member with resin, wiring board, and method of manufacturing wiring board
TWI721236B (en) * 2017-03-28 2021-03-11 日商京瓷股份有限公司 Copper foil, copper foil laminated board and wiring board with adhesive
CN108696987B (en) * 2017-03-31 2021-11-30 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
WO2019024973A1 (en) * 2017-07-31 2019-02-07 Circuit Foil Luxembourg, Sàrl Surface treated copper foil and copper-clad laminate
CN108963402B (en) * 2018-08-16 2023-09-26 北京华镁钛科技有限公司 Transmission structure for manufacturing radio frequency microwave device and antenna and manufacturing method
JP2021095596A (en) * 2019-12-13 2021-06-24 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
TWI740515B (en) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
TWI697549B (en) 2019-12-23 2020-07-01 長春人造樹脂廠股份有限公司 Liquid crystal polymer film and laminate comprising the same
CN116507670B (en) * 2020-11-24 2024-08-13 富士胶片株式会社 Polymer film and laminate
WO2022113973A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Polymer film and laminate
KR102495997B1 (en) * 2021-03-11 2023-02-06 일진머티리얼즈 주식회사 Surface-treated copper foil with low surface roughness and low flexural strain, copper foil laminate comprising the same, and printed wiring board comprising the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217564C (en) * 2001-05-14 2005-08-31 日本电解株式会社 Roughened copper foil and making method thereof
CN1316066C (en) 2002-06-04 2007-05-16 三井金属矿业株式会社 Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board
JP2005206915A (en) * 2004-01-26 2005-08-04 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuited board, and its production method
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
JP5563849B2 (en) * 2010-03-02 2014-07-30 福田金属箔粉工業株式会社 Treated copper foil
CN103124810A (en) * 2010-09-24 2013-05-29 吉坤日矿日石金属株式会社 Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board
JP5654416B2 (en) * 2011-06-07 2015-01-14 Jx日鉱日石金属株式会社 Liquid crystal polymer copper clad laminate and copper foil used for the laminate
MY175198A (en) * 2011-09-30 2020-06-15 Jx Nippon Mining & Metals Corp Copper foil excellent in adherence with resin, method for manufacturing the copper foil, and printed wiring board or battery negative electrode material using the electrolytic copper foil
JP5871426B2 (en) 2012-01-31 2016-03-01 古河電気工業株式会社 Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
JP5362898B1 (en) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate
JP5362924B1 (en) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
CN104120471B (en) * 2013-04-26 2018-06-08 Jx日矿日石金属株式会社 High-frequency circuit copper foil, copper-clad plate, printing distributing board, the copper foil with carrier, electronic equipment and printing distributing board manufacturing method
JP2014224313A (en) * 2013-04-26 2014-12-04 Jx日鉱日石金属株式会社 Copper foil for high-frequency circuit, copper-clad laminate sheet for high-frequency circuit, printed wiring board for high-frequency circuit, carrier-provided copper foil for high-frequency circuit, electronic apparatus and method of producing printed wiring board
JP5870148B2 (en) * 2013-11-27 2016-02-24 Jx金属株式会社 Copper foil with carrier, method for producing printed circuit board, copper-clad laminate, method for producing copper-clad laminate, and method for producing printed wiring board
JP6278817B2 (en) * 2014-04-24 2018-02-14 Jfeケミカル株式会社 Polyamic acid composition and polyimide composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094740A (en) 2017-12-05 2020-08-07 후루카와 덴키 고교 가부시키가이샤 Surface-treated copper foil and copper clad laminate and printed wiring board using the same
LU501394B1 (en) 2022-02-07 2023-08-07 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing the same
WO2023148384A1 (en) 2022-02-07 2023-08-10 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing the same

Also Published As

Publication number Publication date
CN106413248B (en) 2019-05-14
TW201704484A (en) 2017-02-01
JP2017031442A (en) 2017-02-09
TWI663268B (en) 2019-06-21
KR20170015111A (en) 2017-02-08
KR101998923B1 (en) 2019-07-10
CN106413248A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6083619B2 (en) Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil
JP6487704B2 (en) Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board
CN110088361B (en) Surface-treated copper foil and copper-clad laminate
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
CN105556004B (en) Copper foil, copper foil and copper clad laminate with carrier foils
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
JP6632739B2 (en) Surface treated copper foil
TWI479958B (en) Copper foil for printed wiring board and manufacturing method thereof
JP6294862B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
TWI627307B (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP6479254B2 (en) Copper foil and copper-clad laminate having the same
KR101931895B1 (en) Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
TWI728012B (en) High-chroma processed copper foil, copper clad laminate using the processed copper foil, and manufacturing method of the processed copper foil
WO2022215330A1 (en) Surface-treated copper foil, and copper-cladded laminate and printed wiring board each using said surface-treated copper foil
TW202246581A (en) Surface-treated copper foil with low surface roughness and low warpage, copper clad laminate including same, and printed wiring board including same
JP7492090B1 (en) Surface-treated copper foil, and copper-clad laminate and printed wiring board using said surface-treated copper foil
JP6588290B2 (en) Metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device, laminate manufacturing method, and printed wiring board manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6083619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250