Nothing Special   »   [go: up one dir, main page]

JP6051426B2 - Bactericidal agent with excellent permeability and sterilizing method - Google Patents

Bactericidal agent with excellent permeability and sterilizing method Download PDF

Info

Publication number
JP6051426B2
JP6051426B2 JP2012127305A JP2012127305A JP6051426B2 JP 6051426 B2 JP6051426 B2 JP 6051426B2 JP 2012127305 A JP2012127305 A JP 2012127305A JP 2012127305 A JP2012127305 A JP 2012127305A JP 6051426 B2 JP6051426 B2 JP 6051426B2
Authority
JP
Japan
Prior art keywords
electrolyzed water
water
acidic electrolyzed
micro
slightly acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012127305A
Other languages
Japanese (ja)
Other versions
JP2013010758A (en
Inventor
吉朗 小川
吉朗 小川
歳子 青木
歳子 青木
原田 浩
浩 原田
憲治 中本
憲治 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO JET JAPAN CO., LTD.
Original Assignee
NANO JET JAPAN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO JET JAPAN CO., LTD. filed Critical NANO JET JAPAN CO., LTD.
Priority to JP2012127305A priority Critical patent/JP6051426B2/en
Publication of JP2013010758A publication Critical patent/JP2013010758A/en
Application granted granted Critical
Publication of JP6051426B2 publication Critical patent/JP6051426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Accessories For Mixers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Cosmetics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、殺菌剤及び殺菌方法に係り、特に浸透性に優れた殺菌剤及び殺菌方法に関する。   The present invention relates to a bactericidal agent and a bactericidal method, and more particularly to a bactericidal agent and a bactericidal method having excellent permeability.

中性電解水や 微酸性電解水、それに弱酸性電解水は、強酸性電解水とともに次亜塩素酸水の一種であり、いずれも食品添加物としての使用が認められている殺菌剤の一種である。このうち、特に微酸性電解水は製造からの保存期間が半年以上と長く、微酸性であることによって殺菌成分のほぼ全てが分子状の次亜塩素酸として存在するため、極希薄な溶液にもかかわらず殺菌力が強く有機物と出会ってもトリハロメタンを殆ど生成せず、非常に安全性の高い殺菌剤である。そして、現在では食品製造業を始め、工業、医療、介護、農業、等の分野で広く用いられている。   Neutral electrolyzed water, slightly acidic electrolyzed water, and weakly acidic electrolyzed water are types of hypochlorite water together with strong acid electrolyzed water, all of which are types of disinfectants approved for use as food additives. is there. Among these, in particular, slightly acidic electrolyzed water has a long shelf life of more than half a year, and since it is slightly acidic, almost all of the bactericidal components exist as molecular hypochlorous acid. Regardless of its strong bactericidal power, it produces almost no trihalomethane even when it encounters organic substances, and is a very safe bactericidal agent. Now, it is widely used in fields such as food manufacturing industry, industry, medical care, nursing care, agriculture and the like.

尚、強酸性電解水(強酸性次亜塩素酸水)は殺菌力は強いが保存が殆どきかず、また塩素ガスを発生し易くて金属を腐食する可能性が大きいなど、取り扱いが不便である。また、pHも2.7以下と非常に低く食品によっては変質のおそれがある。この強酸性電解水は塩化ナトリウム水溶液を有隔膜電解槽内で電解して陽極側から得られる水溶液である。   Strongly acidic electrolyzed water (strongly acidic hypochlorous acid water) is strong in sterilizing power but is hardly stored, and it is easy to generate chlorine gas and is likely to corrode metals. . Also, the pH is very low at 2.7 or less, and there is a risk of alteration depending on the food. This strongly acidic electrolyzed water is an aqueous solution obtained from the anode side by electrolyzing a sodium chloride aqueous solution in a diaphragm membrane electrolytic cell.

また弱酸性電解水(弱酸性次亜塩素酸水)は、当初は食品添加物としては認められていなかったが、現在では審議通過しており、0.2%以下の塩化ナトリウム水溶液を有隔膜電解槽内で電解して陽極側から得られる水溶液を言う。或いは陽極から得られる水溶液に陰極から得られる水溶液を加えてpH2.7〜5.0にしたものを言う。殺菌力や保存性は強酸性電解水と微酸性電解水との中間程度であるが、食品添加物としての歴史も浅く情報も少ない。   In addition, weakly acidic electrolyzed water (weakly acidic hypochlorous acid water) was not initially recognized as a food additive, but is now under deliberation, and a 0.2% or less sodium chloride aqueous solution is used as a diaphragm. An aqueous solution obtained from the anode side by electrolysis in an electrolytic cell. Alternatively, an aqueous solution obtained from the cathode is added to an aqueous solution obtained from the anode to adjust the pH to 2.7 to 5.0. Although bactericidal power and preservability are intermediate between strongly acidic electrolyzed water and slightly acidic electrolyzed water, the history as a food additive is short and there is little information.

一方、微酸性電解水(微酸性次亜塩素水)は以前の規格では2〜6%の塩酸を無隔膜電解槽内で得られる水溶液をいい、pH5.0〜6.5、有効塩素含量10〜30mg/kgのものとされていたが、現在では、この規格と3%以下の塩酸及び5%以下の塩化ナトリウムを含む水溶液を無隔膜電解槽内で得られる水溶液のことを言い、pH5.0〜6.5で有効塩素含量50〜80mg/kgのもと言う2つの規格があるようである。前者の規格で有効塩素含量10mg/kg(ppm )と言うのは、食品の味や香りを損ねず殺菌できるものでこれを最低限とし、その以上濃度を濃くしても殺菌力が向上しない30ppm を上限として定められたものである。現在はこの両規格が併存していると思われるが、いずれにしてもpH5.0〜6.5と微弱酸性であり、保存性もほぼ同様である。   On the other hand, slightly acidic electrolyzed water (slightly acidic hypochlorous water) is an aqueous solution in which 2 to 6% hydrochloric acid is obtained in a non-diaphragm electrolyzer according to the previous standard, pH 5.0 to 6.5, effective chlorine content 10 Although it was supposed to be ˜30 mg / kg, it now refers to an aqueous solution in which an aqueous solution containing this standard and 3% or less of hydrochloric acid and 5% or less of sodium chloride is obtained in a non-diaphragm electrolyzer, pH 5. There appear to be two specifications of 0 to 6.5 and an effective chlorine content of 50 to 80 mg / kg. In the former standard, the effective chlorine content of 10 mg / kg (ppm) can be sterilized without impairing the taste and aroma of the food. Minimize this, and even if the concentration is increased, the sterilizing power will not improve. Is defined as the upper limit. Currently, it seems that both standards coexist, but in any case, the pH is 5.0 to 6.5, which is slightly acidic, and the storage stability is almost the same.

この微酸性電解水は、食品に塩素臭が残留すると言った問題がおこらず、すすぎも不要なため節水と省労働が可能であり、手荒れの心配もなく、安全性が高いために口から摂取したり目などに入らないように留意する必要もないなど、多くの利点を有している。   This slightly acidic electrolyzed water does not cause the problem of chlorine odor remaining in the food, and it does not require rinsing, so it can save water and save labor, and it is safe to use without worrying about rough hands. There are many advantages such as no need to take care not to get into the eyes or eyes.

そして、現在のところ微酸性電解水に大きな問題が見られないのか、これの改質については殆ど情報がない。ただ、特許文献1に示すようにポリエーテル変成シリコーンを微酸性電解水に0.001〜1.0%加えることによって表面張力を低くすることによって向上された殺菌効果をもつようにしたものがある。また、特許文献2に示すように塩酸を希釈する水に重炭酸ナトリウムを溶解して低硬度水を使用したときも電解条件の調整を不要にしたり、特許文献3のように低硬度水でも適正なpHを保つようにアルカリ金属塩やアルカリ土類金属塩を加える記述が開示されている。   And at present, there is almost no information about the reformation of whether there is a big problem in slightly acidic electrolyzed water. However, as shown in Patent Document 1, there is one which has an improved bactericidal effect by reducing the surface tension by adding 0.001 to 1.0% of polyether-modified silicone to slightly acidic electrolyzed water. . In addition, as shown in Patent Document 2, even when sodium bicarbonate is dissolved in water for diluting hydrochloric acid and low hardness water is used, it is not necessary to adjust the electrolysis conditions. A description of adding an alkali metal salt or an alkaline earth metal salt so as to maintain a proper pH is disclosed.

尚、最近中性電解水が注目されつつある。この中性電解水は、水道水に含まれる塩素イオンを活用して電解するため、食塩や塩酸などの添加物は一切不要であり、換気も不要なシンプルなものある。また、排水時もそのまま排水できる。しかも、ノロウイルスや鳥インフルエンザなど多くの細菌やウイルスに効果を発揮する。生成後短時間で効果が低下することなく、約20日間は十分な効果を奏する。そして、一般の水道水と比べ圧倒的に高い残留塩素を持ち、濃度の低下や緩やかである。また、ランニングコストも基本的に水道代と電気代のみで経済的である。   Recently, neutral electrolyzed water has been attracting attention. This neutral electrolyzed water is electrolyzed by utilizing the chlorine ions contained in tap water, so there is no need for any additives such as salt and hydrochloric acid, and there is a simple one that does not require ventilation. Moreover, it can drain as it is during drainage. Moreover, it is effective against many bacteria and viruses such as Norovirus and avian influenza. There is a sufficient effect for about 20 days without the effect being reduced in a short time after generation. And it has an overwhelmingly high residual chlorine compared to general tap water, and the concentration is declining or gradual. In addition, running costs are basically economical with only water bills and electricity bills.

特開2006−176489号公報Japanese Patent Application Laid-Open No. 2006-176489 特開2009−136814号公報JP 2009-136814 A 特開2010−082588号公報JP 2010-082588 A

ところが、本発明者らがプラスチック袋に、微酸性電解水とともに未殺菌の細かい疵のある殻剥き茹卵を入れて未加熱の状態のまま10℃以下の温度で14日間保存しておいたところ、液部にとろみは見られなかったが多少の白濁がみられた。そして、標準培地法・デコキシコレート寒天培地法により、一般生菌数と大腸菌群の検査を行ったところ、液部で大量のコロニーが観察された(カウント不可能)。卵部も同様であった。このような現象が起こったのは、剥き卵の細かな疵の中に菌が存在しており、微酸性電解水ではこの疵の中の菌を殺菌出来なかったものによるものと推察された。   However, when the present inventors put in a plastic bag together with slightly acidic electrolyzed water an unsterilized fine shelled shelled egg and kept it in an unheated state at a temperature of 10 ° C. or less for 14 days, Although no thickening was observed in the liquid part, some cloudiness was observed. When the number of viable bacteria and coliform bacteria were examined by the standard medium method / decoxycholate agar medium method, a large number of colonies were observed in the liquid part (not countable). The egg part was the same. It was speculated that this phenomenon occurred due to the presence of bacteria in the fine cocoons of the peeled eggs, and the slightly acidic electrolyzed water could not sterilize the bacteria in the cocoons.

本発明はこのように細かな深いところにある菌の殺菌も出来る、浸透性に優れた中性電解水や微酸性電解水、及び弱酸性電解水を提供することを目的とする。 An object of the present invention is to provide neutral electrolyzed water, slightly acidic electrolyzed water, and weakly acidic electrolyzed water excellent in permeability that can sterilize bacteria in such a fine and deep place.

その手段として、本発明においては、(1)中性電解水や微酸性電解水或いは弱酸性電解水中に微細なマイクロ乃至ナノ級の空気、窒素ガス或いはオゾンガスの泡(バブル)を発生させること、或いは、(2)通常の水道水(微量の塩素を含む)や、希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した水に微細なマイクロ乃至ナノ級の空気などの泡(バブル)を発生させたものを電気分解すること、(3)または水に微細なマイクロ・ナノバブル処理したのちこの水に微量の塩素ガス、或いはこの水に希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加して、これらを電気分解するものである。この操作により、中性電解水や微酸性電解水、弱酸性電解水のクラスターや分子を小さくさせて、卵の細かくて深い疵の所にいる菌をも殺菌できるようにしたものである。   As the means, in the present invention, (1) generating fine micro to nano-grade air, nitrogen gas or ozone gas bubbles in neutral electrolyzed water, slightly acidic electrolyzed water or weakly acidic electrolyzed water, Or, (2) Bubbles such as fine micro to nano-grade air were generated in normal tap water (including a small amount of chlorine) or water containing diluted hydrochloric acid, hydrochloric acid / sodium chloride, or sodium chloride. (3) or after processing micro and nano bubbles in water, add a small amount of chlorine gas to this water, or add dilute hydrochloric acid, hydrochloric acid / sodium chloride, or sodium chloride to this water, Decompose. By this operation, the clusters and molecules of the neutral electrolyzed water, slightly acidic electrolyzed water, and weakly acidic electrolyzed water are made small so that the bacteria in the deep and deep cocoon can be sterilized.

マイクロ・ナノバブルとは、微細な気泡をいう。特に気泡の直径の大きさによって数百nmまでのものをナノバブル、数百nmから数十μmまでのものをマイクロナノバブル、数十μmから数百μmまでのものをマイクロバブル、とに分かれる。本発明において、マイクロ・ナノバブルとは、ナノバブル、マイクロナノバブル、マイクロバブルの全てを含むものとし、また特に定義しないかぎり、ナノバブル、マイクロナノバブル、マイクロバブルがそれぞれ単一に存在する状態だけでなく、混在している状態をも含むものとする。   A micro / nano bubble is a fine bubble. In particular, depending on the size of the bubble diameter, those having a size up to several hundreds of nanometers are divided into nanobubbles, those having several hundreds of nanometers to several tens of μm are divided into micro-nano bubbles, and those having several tens of μm to several hundreds of μm are divided into microbubbles. In the present invention, the term “micro / nanobubble” includes all of nanobubbles, micronanobubbles, and microbubbles. Unless otherwise defined, not only a single state of nanobubbles, micronanobubbles, and microbubbles, but also a mixture Including the state of

マイクロ・ナノバブルを発生させる装置としては、現在2つの形式のものが知られている。一つは、マイクロ・ナノバブル現象を解明した、徳山工業高等専門学校教授の大成博文氏が開発した超高速旋回方式(株式会社ナノプラネット研究所のM2−LM/SUS等)、もう一つが、加圧減圧方式(株式会社アスプのSMX115型やAS−K3型等、株式会社大日のD−1型、D−2型、D−3型等)である。   Two types of devices for generating micro / nano bubbles are currently known. One is an ultra-high-speed turning system developed by Hirofumi Taisei, a professor at Tokuyama National College of Technology, who has clarified the micro / nano bubble phenomenon (M2-LM / SUS, etc. from Nano Planet Research Laboratories) This is a pressure reduction method (Asp SMX115, AS-K3, etc., Daiichi D-1, D-2, D-3, etc.).

前者は、ポンプで圧力をかけた液体を送り込むと、装置内で旋回運動をする。遠心力で液体が外側へ寄ることで中心部は圧力が下がり、吸気口から気体を吸い込む。液体は装置の外周を、気体は中心部を高速旋回(毎秒400〜600回転)する。この高速旋回する気体の空洞部が、噴出口前後で速度差を生じた結果、空気が回転切断される。その空気はまるできし麺のような平たい帯状となり、捩じられ、引きちぎられ、マイクロバブル(直径が10μm〜数百μm以下の微細な気泡)となって噴出する(特許第3397154号等参照)。   In the former, when a liquid pressurized by a pump is fed, a swivel motion is performed in the apparatus. Centrifugal force causes the liquid to move outward, reducing the pressure in the center and sucking in gas from the inlet. The liquid swirls around the periphery of the device, and the gas swivels around the center (400 to 600 revolutions per second). As a result of the difference in speed between the high-speed swirling gas cavity before and after the jet outlet, the air is rotationally cut. The air becomes a flat belt like round noodles, twisted, torn off, and ejected as microbubbles (fine bubbles with a diameter of 10 μm to several hundred μm or less) (see Japanese Patent No. 3397154).

このマイクロバブルは、周囲の圧力が内部の圧力よりも高いため、次第に収縮してマイクロナノバブル(数百〜10μm以下)、更にはナノバブル(数百nm以下)になると思われる。もっとも、現在ナノバブルは明確には観察されていない。   These microbubbles are thought to gradually shrink to micro-nano bubbles (several hundred to 10 μm or less) and further to nano-bubbles (several hundred nm or less) because the surrounding pressure is higher than the internal pressure. However, nanobubbles are not clearly observed at present.

もう一つの方式は、ポンプ等で液体を加圧し、そこに空気を入れ、加圧下で空気を強制的に溶け込ます。この液体を圧力開放装置まで移送し気泡を発生させる。小さい気泡核が成長して白く見える気泡となる。前者に比べて、気泡の大きさは大きい。その他の方式によってもマイクロ・ナノバブルを発生させることができれば、いかなる方式による装置でもかまわない。尚、これらの各方式で発生する気泡は、周囲がマイナスに帯電しているため、寄り集まって大きくなることはない。   The other method is to pressurize the liquid with a pump, etc., put air into it, and forcibly dissolve the air under pressure. This liquid is transferred to a pressure relief device to generate bubbles. Small bubble nuclei grow into bubbles that look white. The size of the bubbles is larger than the former. As long as micro / nano bubbles can be generated by other methods, any method may be used. Note that the bubbles generated in each of these methods do not gather together and become large because the periphery is negatively charged.

本発明の場合、上記何れの方式も利用できる。但し、以下の実施例ではその多くが前者の装置を用いた。これは、装置や操作が簡単で、且つ効果が大きいことによる。特に、前者で処理した水の場合、生理活性に優れていると言われており、また幾分pHを上げる。更に前者ではマイクロ・ナノバブル処理を繰り返すとその度毎に浸透性が良くなるが、後者の場合、1回処理すれば、後は何回処理しても、効果は変わらないように思われる。処理液のpHが幾分上昇することは、微酸性電解水の場合元のpHを低いものとすることが好ましくまた、弱酸性電解水の場合は微酸性電解水に変化することも考えられる。   In the present invention, any of the above methods can be used. However, most of the following examples used the former apparatus. This is because the apparatus and operation are simple and the effect is great. In particular, the water treated in the former is said to be excellent in physiological activity, and raises the pH somewhat. Further, in the former case, the micro / nano bubble treatment is repeated to improve the permeability each time, but in the latter case, if the treatment is performed once, the effect does not seem to be changed no matter how many times the treatment is performed thereafter. It is preferable that the pH of the treatment liquid rises somewhat to lower the original pH in the case of slightly acidic electrolyzed water, and in the case of weakly acidic electrolyzed water, it can be considered that the pH is changed to slightly acidic electrolyzed water.

従来、このようにマイクロ・ナノバブルで微酸性電解水を処理して浸透性を向上させる技術は本発明者らが知る限り、知られていない。 Conventionally, as far as the present inventors know, a technique for improving the permeability by treating slightly acidic electrolyzed water or the like with micro / nano bubbles is not known.

マイクロ・ナノバブルは、これを発生させる装置に液体を取り込み、装置外部から吸入した空気(或いは、窒素ガスやオゾンガス)を液体に混合させて微細気泡を生じさせ、これを装置から噴出させることによって発生するものである。そこで、微酸性電解水等をマイクロ・ナノバブル発生装置に取り込み、空気と混合させて微細気泡を生じさせ、装置から噴出させる(超高速旋回方式、大成方式)、或いは、水をマイクロ・ナノバブル発生装置に取り込み空気と混合させて微細気泡を生じさせ、装置から噴出させる(加圧、減圧方式)という処理を行う。   Micro / nanobubbles are generated when liquid is taken into the device that generates this, and air (or nitrogen gas or ozone gas) sucked from outside the device is mixed with the liquid to form fine bubbles that are ejected from the device. To do. Therefore, micro-nano bubble generator is taken in micro acid / nano bubble generator and mixed with air to produce fine bubbles and ejected from the device (ultra-high speed swirling method, Taisei method), or micro / nano bubble generator Is mixed with air to generate fine bubbles and ejected from the apparatus (pressurization, decompression method).

尚、一般に液体中で微細空気泡を発生させると浮遊菌が増殖する可能性があるが、本発明の場合微酸性電解水それ自体が殺菌性があるためその問題は生じない。 In general there is a possibility that airborne bacteria and thereby generating fine air bubbles in a liquid to grow, the problem does not occur because the slightly acidic electrolyzed water or the like itself is bactericidal in the present invention.

本発明のマイクロ・ナノバブル処理した微酸性電解水は、通常の微酸性電解水と同様に使用できるとともに、特に浸透性が優れているため、細かな疵がある食品や、凹凸の有る繊維製品や手指など皺のある箇所に噴霧したり浸漬したりして十分な殺菌効果をもたらすものである。また、手足の角質の下に潜んでいる水虫菌のところまで十分に到達し、2〜3週間乃至1〜3ケ月程度で水虫はほぼ完治すると言う効果もある。 Fibers slightly acidic electrolyzed water or the like micro-nano bubble treatment of the present invention, it is possible to use it as a normal slightly acidic electrolyzed water, there especially for permeability is excellent, food and there are fine scratches, uneven It can be sprayed or dipped in a wrinkled part such as a product or fingers to bring about a sufficient sterilizing effect. In addition, there is also an effect that the athlete's foot reaches the place where the athlete's foot is lurking under the limbs of the limbs, and the athlete's foot is almost completely cured in about 2 to 3 weeks to 1 to 3 months.

弱酸性電解水も、微酸性電解水に比べてpHが幾分低いだけで保存性も幾分あり、微酸性電解水と同様にマイクロ・ナノバブル処理できるものである。中性電界水も同様である。   Weakly acidic electrolyzed water is also slightly lower in pH than slightly acidic electrolyzed water and has some storage stability, and can be treated with micro / nano bubbles in the same manner as slightly acidic electrolyzed water. The same applies to neutral electric field water.

本発明は以上説明した通り、(1)中性電解水や微酸性電解水或いは弱酸性電解水をマイクロ・ナノバブル処理した殺菌剤、(2)通常の水道水(微量の塩素を含む)や、希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した水に微細なマイクロ乃至ナノ級の空気などの泡(バブル)を発生させたものを電気分解した殺菌剤、(3)または水に微細なマイクロ・ナノバブル処理したのちこの水に微量の塩素ガス、或いはこの水に希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加して、これらを電気分解した殺菌剤で、何れも浸透性に優れるものである。
従って、
(1)簡単な操作で食品その他への浸透性に優れた殺菌剤を作ることができる。また、その効果は半月〜1ケ月程度持続する。
(2)皺や凹凸、細かな傷がある食品でも加熱しなくても、殺菌剤が皺や傷の部分に浸透するため殺菌が十分に行われ、エネルギーの節約になる。
(3)凹凸の多い布地や皮膚の角質部分にも十分に浸透して殺菌効果をもたらす。
(4)処理した中性電解水や微酸性電解水或いはや弱酸性電解水を加熱しても、その浸透性の効果は変わらない。また、マイクロ・ナノバブル処理した効果は半月〜1月程度以上持続する。
などの効果がある。
As described above, the present invention includes (1) a bactericide obtained by micro / nano bubble treatment of neutral electrolyzed water, slightly acidic electrolyzed water or weakly acidic electrolyzed water, (2) normal tap water (including a small amount of chlorine), Disinfectant obtained by electrolyzing bubbles containing water such as dilute hydrochloric acid, hydrochloric acid / sodium chloride, and sodium chloride, which generates fine micro- or nano-class air bubbles, (3) or micro After the nanobubble treatment, a small amount of chlorine gas is added to this water, or dilute hydrochloric acid, hydrochloric acid / sodium chloride or sodium chloride is added to this water, and these are electrolyzed, and all have excellent permeability.
Therefore,
(1) A bactericidal agent having excellent permeability to foods and the like can be produced by a simple operation. The effect lasts about half a month to one month.
(2) Even if the food has wrinkles, irregularities, and fine scratches, the bactericidal agent penetrates into the wrinkles and scratches even if it is not heated.
(3) It penetrates well into uneven fabrics and keratinous parts of the skin to bring about a bactericidal effect.
(4) Even if the treated neutral electrolyzed water, slightly acidic electrolyzed water, or slightly acidic electrolyzed water is heated, the permeability effect thereof does not change. The effect of the micro / nano bubble treatment lasts about half a month to one month or more.
There are effects such as.

超高速旋回方式の説明図である。(実施例1)It is explanatory drawing of a super-high-speed turning system. Example 1 マイクロ・ナノバブル処理装置(ナノ処理装置、テストマシン)の正面図である。(実施例1)It is a front view of a micro / nano bubble processing apparatus (nano processing apparatus, test machine). Example 1 加圧減圧式方式の説明図である。(実施例1)It is explanatory drawing of a pressurization pressure reduction system. Example 1 細かな疵のある殻剥き茹で卵(10個)と共に液体をビニール袋に入れ、非加熱の状態で10℃以下の温度で14日間保存したものである。(a)は、液体として井戸水、(b)は微酸性電解水、(c)はマイクロ・ナノバブル処理した微酸性電解水を用いたものである。(実施例2)A shelled cocoon with fine cocoons is used to put the liquid into a plastic bag together with eggs (10 pieces) and stored for 14 days at a temperature of 10 ° C. or less in an unheated state. (A) is a well water as a liquid, (b) is a slightly acidic electrolyzed water, and (c) is a slightly acidic electrolyzed water treated with micro / nano bubbles. (Example 2) マイクロ・ナノバブル処理装置(テストプラント)の一例を示す正面図である。(実施例5)It is a front view which shows an example of a micro nano bubble processing apparatus (test plant). (Example 5)

細かい疵のある殻剥き茹卵殻つき茹卵に、マイクロ・ナノバブル発生装置による処理を加えた微酸性電解水を用いて殺菌する。以下、実施例及び比較例に基づいて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Sterilize by using slightly acidic electrolyzed water that has been treated with a micro / nano bubble generator in shelled eggs with fine shells. EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to these Examples.

(微酸性電解水のマイクロ・ナノバブル処理)
図1は、超高速旋回方式(大成式)装置の説明図、図2は、図1のマイクロバブル発生装置を用いるマイクロ・ナノバブル処理装置(テストマシン)の一例、図3は、加圧減圧式装置の説明図((株)大日工業)、である。これらの装置で、微酸性電解水にマイクロ・ナノバブル処理を行う場合について説明する。本発明では、主として、図2の装置を用いて実験した。
(Micro / nano bubble treatment of slightly acidic electrolyzed water)
FIG. 1 is an explanatory diagram of an ultra-high speed swirling method (Daisei) device, FIG. 2 is an example of a micro / nano bubble processing device (test machine) using the micro bubble generating device of FIG. 1, and FIG. It is explanatory drawing (Corporation | KK Dainichi Kogyo) of an apparatus. The case where micro / nano bubble treatment is performed on slightly acidic electrolyzed water using these apparatuses will be described. In the present invention, the experiment was mainly performed using the apparatus shown in FIG.

図1は、マイクロバブルを発生させる原理図で、まず、ポンプ1で圧力を掛けた液体(微酸性電解水)2をマイクロバブル発生装置3に送り込むと、装置3内で液体2が旋回運動をする。装置3内部では、遠心力で液体2が外側へ寄ることで中心部は圧力が下がり、吸気口4から気体5を吸い込む(自吸)。装置3内で液体と気体が旋回運動をする。その回転数は毎秒400〜600回転にもなる。液体2は装置の外周を、気体5は中心部が超高速で旋回する。この超高速旋回する気体の空洞部が、噴出前後で速度差を生じた結果、気体が回転切断され、マイクロバブルとなって装置3の出口6から噴出する。そして、マイクロバブルは周囲の圧力に押されてナノバブルにまで縮小すると思われている。   FIG. 1 is a principle diagram for generating microbubbles. First, when a liquid (slightly acidic electrolyzed water) 2 applied with pressure by a pump 1 is fed into a microbubble generator 3, the liquid 2 performs a swiveling motion in the apparatus 3. To do. Inside the device 3, the liquid 2 is moved outward by centrifugal force, so that the pressure in the central portion is reduced and the gas 5 is sucked from the air inlet 4 (self-priming). The liquid and the gas swirl within the device 3. The number of revolutions is 400 to 600 revolutions per second. The liquid 2 swirls around the outer periphery of the apparatus, and the gas 5 swirls at the center at an ultra high speed. As a result of the difference in speed between before and after the jetting of the gas cavity that turns at a high speed, the gas is rotationally cut and becomes microbubbles that are jetted from the outlet 6 of the apparatus 3. Microbubbles are thought to shrink to nanobubbles when pressed by ambient pressure.

図2は、図1のマイクロバブル発生装置3を用いた、5L程度の微酸性電解水を処理できる小型のマイクロ・ナノバブル処理装置(以下、ナノ処理装置、テストマシンと言う)10である。この処理装置10は、タンク2Aとポンプ1を吸水管1Aと送水管1Bでつなぎ、送水管1Bの先端はマイクロバブル発生装置3の先端部近くに連結され、マイクロバブル発生装置3の基部には送気管4Aが連結されている。ポンプ1で液体(微酸性電解水)をマイクロバブル発生装置3に送り込むと、空気5が吸気口4から吸い込まれ、微酸性電解水2と攪拌されて出口6からマイクロバブルMBが噴出される。図中、2Bは液面である。そして、以下の実施例(旋回方式)では、この図2に示す装置10を用いて微酸性電解水をナノ処理した。   FIG. 2 shows a small micro / nano bubble processing apparatus (hereinafter referred to as a nano processing apparatus or test machine) 10 that can process about 5 L of slightly acidic electrolyzed water using the micro bubble generating apparatus 3 of FIG. This processing apparatus 10 connects a tank 2A and a pump 1 with a water absorption pipe 1A and a water supply pipe 1B, the tip of the water supply pipe 1B is connected near the tip of the microbubble generator 3, and the base of the microbubble generator 3 is connected to the base of the microbubble generator 3. The air supply pipe 4A is connected. When liquid (slightly acidic electrolyzed water) is sent to the microbubble generator 3 by the pump 1, the air 5 is sucked from the intake port 4, stirred with the slightly acidic electrolyzed water 2, and microbubbles MB are ejected from the outlet 6. In the figure, 2B is a liquid level. In the following example (swivel method), the slightly acidic electrolyzed water was nano-treated using the apparatus 10 shown in FIG.

実験に用いたマイクロバブル発生装置3は、径が50mm、長さが100mm程度であり、これで、1〜10L程度の液体を処理できる。処理液体が100〜500Lもの量になると、この程度の装置が複数台(4〜6台程度)必要となる。尚、空気の代わりに窒素ガス或いはオゾンガスを用いてもよい。   The microbubble generator 3 used for the experiment has a diameter of 50 mm and a length of about 100 mm, and can process a liquid of about 1 to 10 L. When the amount of the processing liquid is as large as 100 to 500 L, a plurality of apparatuses (about 4 to 6) are required. Nitrogen gas or ozone gas may be used instead of air.

図3は、加圧減圧式装置の一例を示すものである。これは、株式会社大日工業の特開2010−22955の第1図に示されたものである。この装置7は、第一の加圧槽8Aと第二の加圧槽8Bで加圧して気体(空気)を液体に溶解したのち、減圧部9で常圧に戻してマイクロバブルを発生させるものである。この種の装置は、様々な形式のものが提案されており、図3のものはその一例である。   FIG. 3 shows an example of a pressurizing / depressurizing apparatus. This is shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2010-22955 by Dainichi Industry Co., Ltd. This device 7 is a device that pressurizes in a first pressurizing tank 8A and a second pressurizing tank 8B to dissolve gas (air) in a liquid and then returns to normal pressure in a decompression unit 9 to generate microbubbles. It is. Various types of apparatuses of this type have been proposed, and the apparatus shown in FIG. 3 is an example.

図2の装置を用いて、微酸性電解水のナノ処理を行う。この装置は、タンク容量が約8Lで5L程度の微酸性電解水を一度に処理できるテストマシンである。そして、上記マイクロバブル発生装置3の場合、1分間に5L程度の微酸性電解水を処理できる(5Lの微酸性電解水ならば、1分間に1回転処理できる)。そして、5Lの微酸性電解水を20〜30分間処理すると、約20回転〜30回転処理したことになる。これで、微酸性電解水にマイクロバブルやナノバブルが十分に発生したことになる。同じ条件で2時間処理しても、効果は余り変わらない。   Nano-treatment of slightly acidic electrolyzed water is performed using the apparatus of FIG. This apparatus is a test machine capable of treating slightly acidic electrolyzed water of about 5 L at a tank capacity of about 8 L at a time. In the case of the microbubble generator 3, about 5 L of slightly acidic electrolyzed water can be treated per minute (if 5 L of slightly acidic electrolyzed water can be processed once per minute). Then, when 5 L of slightly acidic electrolyzed water is treated for 20 to 30 minutes, it is treated for about 20 to 30 revolutions. Thus, microbubbles and nanobubbles are sufficiently generated in the slightly acidic electrolyzed water. Even if it is processed for 2 hours under the same conditions, the effect does not change much.

(疵のある殻剥き茹卵への殺菌剤の浸透)
図4は、袋11に入れた1Lの液体中に、七部茹での殻剥き茹卵(こまかな疵12a)あり)12の10個(図では5個)を入れ、無加熱の状態で10℃以下の温度で保管した状態を示す。そして、(a)は液体として井戸水13、(b)は液体として微酸性電解水14、(c)は微酸性電解水をマイクロ・ナノバブル処理したもの15を用いた。菌数検査は標準培地法ほデンキシコレート寒天培地法により、一般生菌数と大腸菌群の検査を行った。
(Disinfection of fungicides into cocooned shelled eggs)
FIG. 4 shows that 10 pieces (5 pieces in the figure) of 12 shelled eggs (seven cocoons 12a) in 7 parts are placed in 1 L of liquid in a bag 11 and heated at 10 ° C. The state stored at the following temperature is shown. And (a) used the well water 13 as a liquid, (b) used the slightly acidic electrolyzed water 14 as a liquid, (c) used what carried out the micro-nano bubble process of the slightly acidic electrolyzed water. The number of bacteria was examined for the number of viable bacteria and coliform bacteria by the standard medium method and the denticolate agar medium method.

図の(a)(b)(c)とも保管から14日後の状態を示す。まず、(a)では井戸水13は、官能検査において液部が白濁13aしており、とろみが生じていた。菌数結果においては、液部、卵部とも大量のコロニー形成が観察された(カウント不能)。(b)微酸性電解水14では、官能検査においては液部が多少白濁14aしていたが、井戸水程ではなかった。液部のとろみはなかった。菌数結果においては、井戸水程ではなかったが、液部、卵部とも大量のコロニー形成が観察された(カウント不能)。このような現象が起こったのは、剥き卵の細かな疵の中に菌が存在しており、微酸性電解水ではこの疵の中の菌を殺菌出来なかったものによるものと推察された。   Both (a), (b) and (c) in the figure show the state after 14 days from storage. First, in (a), the well water 13 had a cloudy portion 13a in the sensory test, and thickened. In the bacterial count results, a large amount of colony formation was observed in both the liquid part and the egg part (uncountable). (B) In the slightly acidic electrolyzed water 14, the liquid part was slightly cloudy 14a in the sensory test, but it was not as well as the well water. There was no thickening of the liquid part. In the bacterial count results, a large amount of colony formation was observed in the liquid part and the egg part (not countable), although not as well as in the well water. It was speculated that this phenomenon occurred due to the presence of bacteria in the fine cocoons of the peeled eggs, and the slightly acidic electrolyzed water could not sterilize the bacteria in the cocoons.

これに対し、(c)のマイクロ・ナノバブル処理した微酸性電解水15では、官能検査では液部の濁りもなく、無色透明であった。菌数結果においては、液部、卵部ともコロニー形成は観察されなかった。尚、卵部の菌数結果は卵を摺潰して行った。(表1)

Figure 0006051426
On the other hand, the slightly acidic electrolyzed water 15 treated with micro / nano bubbles in (c) was colorless and transparent without turbidity of the liquid part in the sensory test. In the bacterial count results, no colony formation was observed in either the liquid part or the egg part. In addition, the bacterial count result of the egg part was obtained by crushing the egg. (Table 1)
Figure 0006051426

通常、殻剥き茹卵の出荷保存は、疵のないものを選び、更に袋ごと加熱殺菌を行い冷蔵するので、10日程度は液にもあまり変質はみられないが、それ以上では白濁を生じる。そして、コストの関係で微酸性電解水が使われることも少ない。   Normally, the shelled eggs are shipped and stored in a bag-free product, and the bags are sterilized by heating and refrigerated. Therefore, the liquid does not change much for about 10 days, but it becomes cloudy after that. And, slightly acidic electrolyzed water is rarely used due to cost.

これに対し、本願発明では疵のある剥き卵を選び、しかも液と卵を加熱せずそのままの状態で袋詰めし10℃以下で保存したが、10日たっても液は無色透明で菌数結果もコロニーは観測されなかった。これに対し、従来の微酸性電解水や井戸水では液に白濁やとろみが見られ菌数結果も無限大であった(表1)。   On the other hand, in the present invention, a peeled egg with a wrinkle was selected, and the liquid and egg were packed in a bag without heating and stored at 10 ° C. or less, but the liquid was colorless and transparent even after 10 days. No colonies were observed. In contrast, conventional slightly acidic electrolyzed water and well water showed cloudiness and thickness in the liquid, and the bacterial count results were infinite (Table 1).

これは、本発明の殺菌剤(マイクロ・ナノバブル処理した微酸性電解水)の浸透性が優れているために、卵の細かな奥深い疵の中まで浸透して殺菌を行った結果と推察された。本発明の場合、加熱殺菌が不要のためエネルギーや手間を省くことができる。   This was presumed to be the result of sterilization by penetrating into the deep and deep eggs of the eggs because of the excellent permeability of the bactericide of the present invention (slightly acidic electrolyzed water treated with micro / nano bubbles). . In the case of the present invention, energy and labor can be saved because heat sterilization is not required.

(水虫の治療)
水虫は、白癬菌(真菌)が手足の角質層や表皮に住み着いて発症する病気で、菌自体は弱いがなかなか完治できない難点がある。ところが、本発明のマイクロ・ナノバブル処理した微酸性電解水は、浸透性がよいので、患部に噴霧したり塗布したり或いは浸漬することで、1〜2週間乃至1〜3月で完全に完治してしまう。時々処置を忘れていても、大丈夫である。
(Treatment of athlete's foot)
Athlete's foot disease is a disease caused by ringworm fungus that settles in the stratum corneum and epidermis of the limbs, and the fungus itself is weak but has a difficulty that cannot be completely cured. However, the slightly acidic electrolyzed water treated with micro / nano bubbles of the present invention has good permeability, and can be completely cured in 1 to 2 weeks to 1 to 3 months by spraying, applying, or immersing the affected area. End up. It's okay if you forget the procedure from time to time.

(作業衣の汗くささの脱臭)
しばらく着込んだ作業衣は、汗や汚れに細菌が住み着いて繁殖し所謂汗くさいいやな臭いを発する。この作業衣に微酸性電解水を噴霧したら幾分臭いがしなくなったが、まだ残っていた。そこで、この微酸性電解水にマイクロ・ナノバブル処理を施したものを噴霧したところ、汗くささが綺麗に消臭された。
(Deodorizing work clothes sweatiness)
The work clothes worn for a while give rise to a so-called sweaty smell that germs settle and grow in sweat and dirt. When slightly acidic electrolyzed water was sprayed on the work clothes, it smelled somewhat, but it still remained. Therefore, when this micro-acid electrolyzed water subjected to micro / nano bubble treatment was sprayed, sweatiness was deodorized cleanly.

図5は、図2のマイクロ・ナノバブル処理装置10を移動可能に仕上げたマイクロ・ナノバブル処理装置(テストプラント)である。この処理装置40は、台車41にポンプ42とタンク43を設置し、ポンプ42とタンク43は吸水管44及び排水管45で連結する。排水管45の先端はマイクロバブル発生装置3の前寄りに連結され、また、マイクロバブル発生装置3の基部にはエアホース46が連結されている。エアホース46の基部はエアフィルター47に連結されている。符号48は操作盤、49はキャスターである。また、符号50は、処理した微酸性電解水を取り出すための取り出し口である。この装置40は、約20Lの微酸性電解水を処理することができる。但し、20Lの微酸性電解水を十分に処理するのには1時間も1時間半も時間がかかる。そこで、このようにな場合、マイクロバブル発生装置3の数を2〜4個程度まで増やして処理をおこなえば、処理時間は1/2〜1/4まで短縮できる。その場合、ポンプの数も増やす必要がある。尚、ナノ処理中、かなりの熱量が発生する。そこで、タンク43を二重構造などにして冷却水を流すなどして、微酸性電解水の温度の上昇を防ぐ事が、品質保持上も好ましい。   FIG. 5 shows a micro / nano bubble processing apparatus (test plant) in which the micro / nano bubble processing apparatus 10 of FIG. 2 is finished to be movable. In this processing apparatus 40, a pump 42 and a tank 43 are installed on a carriage 41, and the pump 42 and the tank 43 are connected by a water absorption pipe 44 and a drain pipe 45. The tip of the drain pipe 45 is connected to the front side of the microbubble generator 3, and an air hose 46 is connected to the base of the microbubble generator 3. The base of the air hose 46 is connected to the air filter 47. Reference numeral 48 is an operation panel, and 49 is a caster. Moreover, the code | symbol 50 is a taking-out port for taking out the processed slightly acidic electrolyzed water. This apparatus 40 can process about 20 L of slightly acidic electrolyzed water. However, it takes one hour and one and a half hours to sufficiently treat 20 L of slightly acidic electrolyzed water. In such a case, the processing time can be shortened to 1/2 to 1/4 by increasing the number of microbubble generators 3 to about 2 to 4 for processing. In that case, it is necessary to increase the number of pumps. A considerable amount of heat is generated during nano-processing. Therefore, it is preferable in terms of quality maintenance to prevent the temperature of the slightly acidic electrolyzed water from rising by making the tank 43 have a double structure or the like and flowing cooling water.

尚、工業的に大量の微酸性電解水等が必要になる場合、数百L或いはそれ以上の容量のタンクを使用すれば、よい。その場合、マイクロバブル発生装置3は10個〜20個或いはそれ以上など、処理する微酸性電解水等の容量に合わせた数のマイクロバブル発生装置3及びポンプが必要となる。   When a large amount of slightly acidic electrolyzed water is required industrially, a tank having a capacity of several hundred L or more may be used. In that case, the number of microbubble generators 3 and pumps corresponding to the capacity of the slightly acidic electrolyzed water to be treated, such as 10 to 20 or more, are required.

図2の装置を用いて、実施例1と同様にして中性電解水のナノ処理を行った。得られたナノ処理中性電界水を、実施例2の図4に示す袋11に入れ、同様に殻剥き茹卵(細かな傷12aがある)を入れ、同様にテストしたところ、ナノ未処理の中性電界水では液部のとろみはなかったが、菌数では液部、卵部とも大量のコロニーが観察された(カウント不能)。この場合、微酸性電解水の場合と同様に、剥き卵の細かな疵の中に菌が存在しており、中性電解水ではこの疵の中の菌を殺菌できなかったものによると推察される。ナノ処理した中性電解水は、ナノ処理した微酸性電解水と同様10日たっても液は無色透明であり菌のコロニーも見られなかった。   Using the apparatus of FIG. 2, neutral treatment of neutral electrolyzed water was performed in the same manner as in Example 1. The obtained nano-processed neutral electrolyzed water was put in the bag 11 shown in FIG. 4 of Example 2 and similarly shelled eggs (with fine scratches 12a) were put and tested in the same manner. The neutral electrolyzed water did not melt the liquid part, but by the number of bacteria, a large number of colonies were observed in both the liquid part and the egg part (not countable). In this case, as in the case of the slightly acidic electrolyzed water, the bacteria are present in the fine cocoon of the peeled egg, and it is assumed that the neutral electrolyzed water could not sterilize the bacteria in this cocoon. The The nano-treated neutral electrolyzed water was colorless and transparent and no bacterial colonies were observed even after 10 days, as with the nano-treated slightly acidic electrolyzed water.

次に、通常の水道水(微量の塩素を含む)や、希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した水に微細なマイクロ乃至ナノ級の空気などの泡(バブル)を発生させたものを電気分解することより、本発明の浸透性に優れた殺菌剤を得ることができる。これは、例えば、微酸性電解水の場合、希塩酸などを添加した水に微細なマイクロ・ナノバブルを発生させる。そして、このマイクロ・ナノバブルを発生させた水を定法により電気分解して得る。得られた中性電解水や微酸性電解水それに弱酸性電解水は、実施例2で得られた微酸性電解水と同等の浸透性に優れた殺菌剤となった。   Next, normal tap water (including a small amount of chlorine) or water with dilute hydrochloric acid, hydrochloric acid / sodium chloride, or sodium chloride added to produce bubbles such as fine micro to nano-grade air. By carrying out electrolysis, the bactericidal agent excellent in permeability of the present invention can be obtained. For example, in the case of slightly acidic electrolyzed water, fine micro / nano bubbles are generated in water to which dilute hydrochloric acid or the like is added. The water in which the micro / nano bubbles are generated is obtained by electrolysis according to a conventional method. The obtained neutral electrolyzed water, slightly acidic electrolyzed water and weakly acidic electrolyzed water became a disinfectant excellent in permeability equivalent to the slightly acidic electrolyzed water obtained in Example 2.

更に、水に微細なマイクロ・ナノバブル処理したのちこの水に微量の塩素ガス、或いはこの水に希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加して、これらを電気分解することにより、実施例2と同様に優れた浸透性を呈する中性電界水や微酸性電解水、弱酸性電解水が得られた。この内、微酸性電解水は、実施例2と同様に殻剥き茹卵について同様のテストを行ったが、同様に優れた抗菌効果を示した。   Furthermore, after treating micro water and micro bubbles in water, a small amount of chlorine gas was added to this water, or dilute hydrochloric acid, hydrochloric acid / sodium chloride, and sodium chloride were added to this water, and these were electrolyzed. Similarly, neutral electrolyzed water, slightly acidic electrolyzed water, and weakly acidic electrolyzed water exhibiting excellent permeability were obtained. Of these, the slightly acidic electrolyzed water was subjected to the same test on the shelled eggs in the same manner as in Example 2, but showed an excellent antibacterial effect as well.

(1)中性電解水や微酸性電解水或いは弱酸性電解水をマイクロ・ナノバブル処理(ナノ処理)することにより、又は(2)通常の水道水(微量の塩素を含む)や、希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した水に微細なマイクロ乃至ナノ級の空気などの泡(バブル)を発生させたものを電気分解することにより、更には(3)または水に微細なマイクロ・ナノバブル処理したのちこの水に微量の塩素ガス、或いはこの水に希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加して、これらを電気分解することにより、これらの殺菌剤を各種殺菌対象物への浸透性を大きくでき、細くて狭い疵などがある食品の殺菌を加熱殺菌しなくても確実に行うなど、食品業界を始め多くの中性電解水、微酸性電解水或いは弱酸性電解水を用いる業界への影響は大なるものである。   (1) By performing micro / nano bubble treatment (nano treatment) of neutral electrolyzed water, slightly acidic electrolyzed water or weakly acidic electrolyzed water, or (2) normal tap water (including a small amount of chlorine), dilute hydrochloric acid or hydrochloric acid / By further electrolyzing water with added sodium chloride or sodium chloride and generating bubbles such as fine micro to nano-class air, (3) or fine micro / nano bubbles in water After treatment, a small amount of chlorine gas is added to this water, or dilute hydrochloric acid, hydrochloric acid / sodium chloride, and sodium chloride are added to this water, and these are electrolyzed to make these disinfectants permeable to various sterilization objects. A large amount of neutral electrolyzed water, slightly acidic electrolyzed water or weakly acidic electrolyzed water including the food industry, such as sterilization of foods that can be made large and thin and narrow, without sterilization by heating. Impact on the industry to be used are those large made.

1 ポンプ
1A 吸水管
1B 送水管
2 液体(調味液)
2A タンク
2B 液面
3 マイクロバブル発生装置(旋回方式)
3A マイクロバブル
4 吸気口
4A 送気管
5 気体(空気)
6 出口
7 マイクロバブル発生装置(加圧減圧方式)
8A 第一の加圧槽
8B 第二の加圧槽
9 減圧部
10 マイクロ・ナノバブル処理装置
MB マイクロバブル
11 プラスチック袋
12 殻剥き茹卵
12a 疵
13 井戸水
13a 白濁、とろみ
14 微酸性電解水
14a 薄い白濁
15 マイクロ・ナノバブル処理した微酸性電解水
40 マイクロ・ナノバブル処理装置(テストプラント)
41 台車
42 ポンプ
43 タンク
44 吸水管
45 排水管
46 エアホース
47 エアフィルター
48 操作盤
49 キャスター
50 取り出し口
1 Pump 1A Water absorption pipe 1B Water supply pipe 2 Liquid (seasoning liquid)
2A Tank 2B Liquid level 3 Microbubble generator (swivel method)
3A micro bubble 4 air inlet 4A air pipe 5 gas (air)
6 Outlet 7 Microbubble generator (pressurization and decompression system)
8A 1st pressurization tank 8B 2nd pressurization tank 9 Depressurization part 10 Micro / nano bubble processing device MB Microbubble 11 Plastic bag 12 Shelled eggs 12a 13 13 Well water 13a Cloudiness and thickening 14 Slightly acidic electrolyzed water 14a Thin cloudiness 15 Slightly acidic electrolyzed water treated with micro / nano bubbles 40 Micro / nano bubble treatment equipment (test plant)
41 Bogie 42 Pump 43 Tank 44 Water absorption pipe 45 Drain pipe 46 Air hose 47 Air filter 48 Operation panel 49 Caster 50 Outlet

Claims (3)

中性電解水、微酸性電解水或いは弱酸性電解水をマイクロ・ナノバブル処理した浸透性に優れた殺菌剤を、
プラスチック袋に入れ
そして、熱殺菌していない疵のある殻剥き茹卵を入れて封をする
ことを特徴とする茹卵の保存方法。
A bactericidal agent with excellent permeability by micro / nano bubble treatment of neutral electrolyzed water, slightly acidic electrolyzed water or weakly acidic electrolyzed water,
Placed in a plastic bag,
Then , a method for preserving an incubation egg comprising sealing a shelled incubation egg having a non-heat-killed cocoon.
通常の水道水や、希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した水に
マイクロ乃至ナノ級の空気の泡(バブル)を発生させて電気分解して得た浸透性に優れた殺菌剤を、
プラスチック袋に入れ
そして、熱殺菌していない疵のある殻剥き茹卵を入れて封をする
ことを特徴とする茹卵の保存方法。
A bactericidal agent with excellent permeability obtained by electrolyzing normal tap water or water containing dilute hydrochloric acid, hydrochloric acid / sodium chloride, or sodium chloride by generating micro to nano-class air bubbles.
Placed in a plastic bag,
Then, a method for preserving an incubation egg comprising sealing a shelled incubation egg having a non-heat-killed cocoon.
水にマイクロ・ナノバブル処理したのち、この水に塩素ガス、或いは希塩酸や塩酸/塩化ナトリウム、塩化ナトリウムを添加した後、
これらを電気分解して得た浸透性に優れた殺菌剤を、
プラスチック袋に入れ
そして、熱殺菌していない疵のある殻剥き茹卵を入れて封をする
ことを特徴とする茹卵の保存方法。
After micro / nano bubble treatment in water, after adding chlorine gas or dilute hydrochloric acid, hydrochloric acid / sodium chloride, sodium chloride to this water,
Disinfectant with excellent permeability obtained by electrolysis of these,
Placed in a plastic bag,
And the preservation method of the incubation egg characterized by putting and sealing the shelled incubation egg which has not been heat-sterilized.
JP2012127305A 2011-06-02 2012-06-04 Bactericidal agent with excellent permeability and sterilizing method Expired - Fee Related JP6051426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127305A JP6051426B2 (en) 2011-06-02 2012-06-04 Bactericidal agent with excellent permeability and sterilizing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011124257 2011-06-02
JP2011124257 2011-06-02
JP2012127305A JP6051426B2 (en) 2011-06-02 2012-06-04 Bactericidal agent with excellent permeability and sterilizing method

Publications (2)

Publication Number Publication Date
JP2013010758A JP2013010758A (en) 2013-01-17
JP6051426B2 true JP6051426B2 (en) 2016-12-27

Family

ID=47684961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127305A Expired - Fee Related JP6051426B2 (en) 2011-06-02 2012-06-04 Bactericidal agent with excellent permeability and sterilizing method

Country Status (1)

Country Link
JP (1) JP6051426B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180956A (en) 2012-02-29 2013-09-12 Sunstar Engineering Inc Bactericidal agent composition
CN103562140B (en) 2012-05-24 2016-09-28 铁克股份有限公司 Micro-bubble electrolytic water generating device and micro-bubble electrolyzed water producing method
JP5628403B1 (en) * 2013-11-22 2014-11-19 株式会社テックコーポレーション Bubbling electrolyzed water generating device and automatic cleaning device
CN103932965A (en) * 2014-04-30 2014-07-23 王海云 Toxin-expelling young-keeping skin care product and preparation method
JP2015213569A (en) * 2014-05-08 2015-12-03 株式会社熊本アイディーエム Multipurpose bathing/therapy device
JP2016064401A (en) * 2014-09-19 2016-04-28 株式会社テックコーポレーション Electrolytic water raw material liquid, producing method of electrolytic water raw material liquid, and electrolytic water for hand washing
JP6574785B2 (en) * 2014-11-24 2019-09-11 有限会社中島工業 Method for producing affected part penetrating drug composition
CN106139970A (en) * 2015-05-13 2016-11-23 株式会社片野工业 Agitating device
JP5866743B1 (en) * 2015-06-19 2016-02-17 株式会社E・テック Clothes disinfection device and clothes disinfection method
KR101579044B1 (en) * 2015-09-10 2015-12-21 주식회사 동일그린시스 Apparatus for Generating Electrolyzed Water
JP6447876B2 (en) * 2015-09-15 2019-01-09 株式会社熊本アイディーエム Cleaning device for nursing care
CN110604830A (en) * 2019-10-31 2019-12-24 江苏省家禽科学研究所 Poultry hatching egg disinfection device based on subacid electrolyzed water and use method
JP2021188230A (en) * 2020-06-02 2021-12-13 雅子 加藤 Mask with sterilization function
KR102310270B1 (en) * 2021-03-08 2021-10-07 코리아베르톨드(주) Neutral electrolyzed state water manufacturing system including ultra fine bubble
US20230112608A1 (en) 2021-10-13 2023-04-13 Disruptive Oil And Gas Technologies Corp Nanobubble dispersions generated in electrochemically activated solutions

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561783A (en) * 1978-11-02 1980-05-09 Nagoya Shiyokuran Kako Kk Production of boiled egg in pack
JPH02257858A (en) * 1989-03-30 1990-10-18 Suzuki Yoshisato Production of preservative boiled egg
JP3575726B2 (en) * 1996-11-26 2004-10-13 ホシザキ電機株式会社 Method for producing weakly acidic water
JP3652175B2 (en) * 1999-07-19 2005-05-25 アマノ株式会社 Disinfection / sterilization method and apparatus using acidic electrolyzed water
AU2003213711A1 (en) * 2002-03-06 2003-09-22 The University Of Georgia Research Foundation, Inc. Method and apparatus for electrolyzing water
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP4417076B2 (en) * 2003-11-13 2010-02-17 青葉化成株式会社 Degeneration-inhibited incubation eggs, packed incubation eggs, methods for producing oden incubation eggs, and storage methods for incubation eggs
JP2005160400A (en) * 2003-12-03 2005-06-23 Hoshizaki Electric Co Ltd Method for producing seasoned boiled egg
JP2007145961A (en) * 2005-11-25 2007-06-14 Toei Buhin Kk Sterilizing cleanser and method for removing stains therewith
JP4652318B2 (en) * 2005-12-27 2011-03-16 株式会社富永製作所 Electrolyzed water generator and sterilization method using electrolyzed water
JP2007296507A (en) * 2006-05-02 2007-11-15 Hokuetsu:Kk Slightly acidic electrolytic water production method
JP4726821B2 (en) * 2007-02-20 2011-07-20 ホシザキ電機株式会社 Method for preparing cleaning liquid for sterilization
JP5001200B2 (en) * 2007-03-01 2012-08-15 旭有機材工業株式会社 Dispersion method and dispersion apparatus
KR20100063699A (en) * 2007-07-31 2010-06-11 각코호진 메이지다이가쿠 Food processing method and food processing apparatus
JP2009095776A (en) * 2007-10-17 2009-05-07 White Lily:Kk Production method of synergistic effect water
JP2009183811A (en) * 2008-02-02 2009-08-20 Aqua Science:Kk Production method of water similar to bio-water
JP2010022955A (en) * 2008-07-22 2010-02-04 Dainichi Kogyo:Kk Apparatus for generating microbubble
JP5088274B2 (en) * 2008-08-28 2012-12-05 井関農機株式会社 Farm work vehicle
JP2010207778A (en) * 2009-03-12 2010-09-24 Hideo Hayakawa Disinfectant addition treatment method for water
JP4958319B2 (en) * 2009-07-19 2012-06-20 株式会社プロジェクトジャパン Seasoning method of food
TWI551343B (en) * 2009-08-06 2016-10-01 Ligaric Co Ltd Composition and method for producing the same
JP2011073989A (en) * 2009-09-29 2011-04-14 Japan Techno Co Ltd Functional agent for promoting recovery of damaged surface layer of living body and method of promoting recovery of damaged surface layer of living body using the same
JP5010037B2 (en) * 2011-02-07 2012-08-29 株式会社微酸性電解水研究所 Method for producing electrolyzed water and composition

Also Published As

Publication number Publication date
JP2013010758A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6051426B2 (en) Bactericidal agent with excellent permeability and sterilizing method
WO2013175800A1 (en) Microbubble electrolyzed water generation device and microbubble electrolyzed water generation method
WO2011129262A1 (en) Disinfection aid for ozone disinfection and method for ozone disinfection
WO2015071995A1 (en) Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same
CN107334031A (en) A kind of method of plasma-activated ice keeping fresh aquatic products
Klintham et al. Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables
WO2013065661A1 (en) Washing method and washing device
CN104434669A (en) Traditional Chinese medicine disinfectant and preparation method thereof
CN104828910A (en) Manufacturing method and uses of acid oxidation potential water
JP2017046648A (en) Processing method of perishable food using high concentration hydrogen water, and processing unit
KR101085458B1 (en) Sequential sterilization-disinfection method of fruits and vegetables using chlorine disinfectant
JP2001231525A (en) Method for sterilization of food
JP2014030535A (en) Method for sterilizing article
Gökmen et al. Current approaches in water-assisted systems for foodborne microbial inactivation: A review
KR101825548B1 (en) Apparatus for making medical wet tissue
KR101065278B1 (en) Method and device of sterilizing seawater
JP2008074491A (en) Sterilization method for food container
JPWO2018003087A1 (en) Bactericidal agent combining chlorine-based germicidal agent and microbubbles, and sterilizing method
JP2019083791A (en) Microbicidal cleaning method and microbicidal cleaning device of oyster shell
TW202015520A (en) Method for cleaning eggs with plasma solution capable of reducing the bacteria attached to the egg while giving consideration to both the yield and quality of the sterilized egg
CN103623442A (en) Household cleaning and sterilizing machine
KR20100095272A (en) Manufacturing method of non-harmful sterilizant to human for medical device or grain or vegetables
CN104435035A (en) Traditional Chinese medicine fen-flavor disinfectant
CN110042416A (en) A kind of high oxidation water generation equipment and preparation method thereof
ES2385092T3 (en) Method for treating agricultural products of plant origin and by-products and / or derivatives obtained through treatment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6051426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees