Nothing Special   »   [go: up one dir, main page]

JP5907083B2 - Manufacturing method and equipment for seamless steel pipe with excellent toughness - Google Patents

Manufacturing method and equipment for seamless steel pipe with excellent toughness Download PDF

Info

Publication number
JP5907083B2
JP5907083B2 JP2013016459A JP2013016459A JP5907083B2 JP 5907083 B2 JP5907083 B2 JP 5907083B2 JP 2013016459 A JP2013016459 A JP 2013016459A JP 2013016459 A JP2013016459 A JP 2013016459A JP 5907083 B2 JP5907083 B2 JP 5907083B2
Authority
JP
Japan
Prior art keywords
less
steel
quenching
point
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013016459A
Other languages
Japanese (ja)
Other versions
JP2014148699A (en
Inventor
鈴木 健史
健史 鈴木
江口 健一郎
健一郎 江口
石黒 康英
康英 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013016459A priority Critical patent/JP5907083B2/en
Priority to EP14746700.5A priority patent/EP2952592B1/en
Priority to CN201480006949.0A priority patent/CN104968808B/en
Priority to US14/764,813 priority patent/US20150368734A1/en
Priority to PCT/JP2014/000297 priority patent/WO2014119251A1/en
Publication of JP2014148699A publication Critical patent/JP2014148699A/en
Application granted granted Critical
Publication of JP5907083B2 publication Critical patent/JP5907083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、靭性に優れた継目無鋼管の製造方法及び製造設備に関する。これは、特にステンレス鋼のようにMs点(=マルテンサイト変態開始温度)、Mf点(=マルテンサイト変態終了温度)が低温となる鋼種の継目無鋼管の製造途上品である管体に、調質熱処理である焼入れ焼戻し処理を施して靭性に優れた製品管となすのに好ましく使用されるものである。   The present invention relates to a production method and production equipment for a seamless steel pipe excellent in toughness. This is particularly true for pipes that are in the process of manufacturing seamless steel pipes of steel grades where the Ms point (= martensite transformation start temperature) and Mf point (= martensite transformation end temperature) are low, such as stainless steel. It is preferably used for forming a product tube excellent in toughness by performing a quenching and tempering treatment which is a quality heat treatment.

此処に云う「靭性に優れた」とは、例えばISO規格13680を満足するものをいう。すなわち、製品管肉厚中心部の管周方向(C方向)シャルピー衝撃試験で測定された試験温度=-10℃における吸収エネルギー(記号:vE-10)が、試験片本数3本の平均で40J以上、かつ40Jに満たないものが3本のうち1本以下で、しかもその値が27J以上(要求値の2/3以上)であることを意味する。 Here, “excellent toughness” means, for example, those satisfying ISO standard 13680. That is, the absorbed energy (symbol: vE- 10 ) at the test temperature = -10 ° C measured in the pipe circumferential direction (C direction) Charpy impact test at the center of the product wall thickness is 40J on average for three test pieces. This means that less than 40J is less than 1 out of 3 and the value is 27J or more (2/3 or more of the required value).

継目無鋼管の製造に関する従来技術として、次のものが挙げられる。
特許文献1には、厚肉13Cr系ステンレス鋼の継目無鋼管製造に際し、焼入れ熱処理時の加熱温度、及び冷却速度を規定する事により、高強度、高靭性の製品を得る技術が開示されている。
特許文献2には、焼入れの冷却速度を大きくできない鋼種を処理する際に、生産効率の低下を最小限とする為の設備が開示されている。但し、熱処理の順序自体はトラブルが無い限り、先入れ‐先出しとなっている。
The following is mentioned as a prior art regarding manufacture of a seamless steel pipe.
Patent Document 1 discloses a technique for obtaining a high-strength and high-toughness product by defining a heating temperature and a cooling rate at the time of quenching heat treatment in the production of a seamless steel pipe of thick 13Cr stainless steel. .
Patent Document 2 discloses a facility for minimizing a decrease in production efficiency when processing a steel type that cannot increase the cooling rate of quenching. However, the order of heat treatment is first-in first-out unless there is a problem.

特許文献3には、マルテンサイト‐フェライト二相鋼の継目無鋼管の製造方法が開示されている。
特許文献4には、管内面側に焼入れ液を一方向に通流させる焼入れ方法において流入側と流出側の液温測定値に基いて液の流量を制御する事で焼入れ後の管の長手方向の硬さのはらつきが小さくする旨開示されている。
Patent Document 3 discloses a method of manufacturing a seamless steel pipe of martensite-ferrite duplex steel.
In Patent Document 4, in the quenching method in which the quenching liquid flows in one direction on the inner surface of the pipe, the longitudinal direction of the pipe after quenching is controlled by controlling the flow rate of the liquid based on the measured liquid temperature on the inflow side and the outflow side. It is disclosed that the variation in hardness of the resin is reduced.

特開2008−189945号公報JP 2008-189945 A 特開2009−242863号公報JP 2009-242863 A 特開2005−336595号公報JP 2005-336595 A 特開2001−032022号公報JP 2001-032022 A

マルテンサイト系ステンレス鋼などの鋼種の継目無鋼管の製造途上品である管体は、熱間加工により所定形状に管圧延後、焼入れ焼戻しの熱処理を施す事により、必要とする強度・靭性レベルに制御される。通常の熱処理は、まず焼入れ処理において、前記管体を加熱炉でAc点以上Ac点以下の温度に加熱後、水冷等により室温近くまで急冷し、続く焼戻し処理において、前記急冷後の管体を別の加熱炉にてAc点以下の温度に加熱後放冷する、と云う工程をとる(例えば特許文献1参照)。最近ではこのような熱処理を行う設備は連続ライン化されており、様々な製品品種に対して、加熱温度や加熱時間等の処理条件が各々設定される。 Pipes that are in the process of manufacturing seamless steel pipes of steel grades such as martensitic stainless steel are rolled to a predetermined shape by hot working and then subjected to quenching and tempering heat treatment to achieve the required strength and toughness level. Be controlled. In normal heat treatment, first, in the quenching process, the tube is heated to a temperature of Ac 1 point or more and Ac 3 point or less in a heating furnace, and then rapidly cooled to near room temperature by water cooling or the like. In the subsequent tempering process, the tube after the quenching is performed. The body is heated in a separate heating furnace to a temperature of Ac 1 point or less and then allowed to cool (see, for example, Patent Document 1). Recently, equipment for performing such heat treatment has been made into a continuous line, and treatment conditions such as heating temperature and heating time are set for various product types.

マルテンサイト系ステンレス鋼(特許文献1参照)やマルテンサイト‐フェライト二相鋼(特許文献3参照)などの鋼種は、前記焼入れ焼戻しによって所望量のマルテンサイト相を得るが、Ms点及びMf点は鋼種を特定する鋼組成により大きく異なり、中にはMs点が100℃未満、Mf点が室温未満となる鋼種もある。焼入れ後の管体の温度は、通常表面温度の計測によって確認するが、上記の様な低Ms点、低Mf点の鋼種については、管体の表面と肉厚内部の温度差(=肉厚方向の不均一温度分布)がマルテンサイト変態率に及ぼす影響が無視できなくなる。即ち、焼入れ後の管体の表面温度が室温近くであっても、肉厚方向の温度分布が均一な定常状態に達する前に焼戻しに入ってしまうと、意図しない組織の分布が生じ、これが調質熱処理後の材質ばらつき(=機械的性質特に靭性のばらつき)を生じる一因となる。   Steel types such as martensitic stainless steel (see Patent Document 1) and martensite-ferrite duplex steel (see Patent Document 3) obtain a desired amount of martensite phase by quenching and tempering, but the Ms point and Mf point are Depending on the steel composition that specifies the steel type, some steel types have an Ms point of less than 100 ° C. and an Mf point of less than room temperature. The temperature of the tube after quenching is normally confirmed by measuring the surface temperature. However, for the steel types with the low Ms point and the low Mf point as described above, the temperature difference between the surface of the tube and the internal thickness (= wall thickness). The influence of the non-uniform temperature distribution on the martensite transformation rate cannot be ignored. That is, even if the surface temperature of the tube body after quenching is near room temperature, if the tempering is started before the temperature distribution in the thickness direction reaches a uniform steady state, an unintended tissue distribution occurs, which is adjusted. This contributes to material variations (= mechanical properties, particularly toughness variations) after heat treatment.

一方、前記焼入れ焼戻しによって所望のマルテンサイト相を得ようとする鋼種(便宜上、特定鋼種と云う)は、焼入れ加熱(=焼入れ処理における加熱)後の冷却速度が放冷の様な低冷却速度でもマルテンサイト変態自体は生じるので、室温までの冷却後そのまま室温で充分な時間放置すれば前記材質ばらつきは低減できる。然し、特定鋼種とこれ以外の異鋼種との熱処理を同じ熱処理ラインにて先入れ‐先出し(例えば特許文献2参照)で実施すると、特定鋼種の室温での放置時間がネックとなって熱処理ライン全体の生産性を低下させると云う問題がある。   On the other hand, a steel type (referred to as a specific steel type for convenience) to obtain a desired martensite phase by quenching and tempering has a cooling rate after quenching heating (= heating in the quenching process) even when the cooling rate is low. Since the martensitic transformation itself occurs, the material variation can be reduced by allowing it to stand at room temperature for a sufficient time after cooling to room temperature. However, if the heat treatment of a specific steel grade and other different steel grades is carried out in the same heat treatment line by first-in-first-out (see, for example, Patent Document 2), the standing time at room temperature of the specific steel grade becomes a bottleneck and the entire heat treatment line There is a problem of lowering productivity.

結局のところ、従来では、焼入れ液流量制御によって管体長手方向の硬さのばらつきを低減する焼入れ方法及び設備は知られている(例えば特許文献4参照)のであるが、上述のように特定鋼種と異鋼種とを同じ熱処理ラインに通して行う熱処理において特定鋼種の管体肉厚方向の組織不均一に起因する材質ばらつきを低減する事と熱処理ライン全体の生産性を維持する事とを両立させるのは困難であると云う課題があった。   After all, conventionally, there is known a quenching method and equipment for reducing the hardness variation in the longitudinal direction of the pipe body by controlling the quenching liquid flow rate (see, for example, Patent Document 4). In the heat treatment performed through the same heat treatment line and different steel grades, it is possible to achieve both reduction of material variation due to non-uniform structure in the tube thickness direction of a specific steel grade and maintenance of productivity of the entire heat treatment line There was a problem that it was difficult.

本発明者らは、前記課題を解決する為に鋭意検討し、その結果、管体を、Ms点:200℃未満の鋼種とそれ以外の鋼種とを判別し、前者は焼入れにおける水冷後、別途、管軸方向直交断面内の最高温部と最低温部の温度差が2.0℃未満になるまで室温環境下で留置すると、前記材質ばらつきが格段に低減し、且つ前記材質ばらつき範囲内のデータの平均値も向上する事を見出した。尚、後者は通常の焼入れ焼戻しルートで処理すればよい。本発明はこれらの知見に基づいて成されたものであり、その要旨は以下の通りである。
(1) 複数の鋼種を同じ熱処理ラインに通して行う継目無鋼管の製造途上品である管体に焼入れ焼戻し処理を施す工程を有する継目無鋼管の製造方法において、予め管体がMs点:200℃未満の鋼種であるかそれ以外の鋼種であるかを判別し、前記焼入れ後、前記判別結果がMs点:200℃未満の鋼種である管体は、前記判別結果がMs点:200℃以上の鋼種である管体の経路とは別の経路である留置床へ移し、その管軸直交断面内の最高温部と最低温部の温度差が2.0℃未満になるまで別途室温環境下で留置した後前記焼戻し処理に供することを特徴とする靭性に優れた継目無鋼管の製造方法。
(2) 継目無鋼管の製造途上品である管体に焼入れ焼戻し処理を施す設備を含む継目無鋼管の製造設備において、予め管体がMs点:200℃未満の鋼種であるかそれ以外の鋼種であるかを判別する判別手段と、前記焼入れ後の管体のうち前記判別結果がMs点:200℃未満の鋼種である管体のみを、前記焼戻しに供する前に、その管軸直交断面内の最高温部と最低温部の差が2.0℃未満になるまで別途室温環境下で留置する留置床とを備えたことを特徴とする靭性に優れた継目無鋼管の製造設備。
The present inventors diligently studied to solve the above-mentioned problems, and as a result, the tube was discriminated from a steel type having an Ms point of less than 200 ° C. and other steel types. The former was separately cooled after water cooling in quenching. In the case where it is placed in a room temperature environment until the temperature difference between the highest temperature portion and the lowest temperature portion in the cross section orthogonal to the tube axis direction is less than 2.0 ° C., the material variation is remarkably reduced and within the material variation range. We found that the average value of the data also improved. The latter may be processed by a normal quenching and tempering route. The present invention has been made based on these findings, and the gist thereof is as follows.
(1) In a method for manufacturing a seamless steel pipe having a step of quenching and tempering a pipe body that is an in-process product of a seamless steel pipe that is made by passing a plurality of steel types through the same heat treatment line, the pipe body has an Ms point: 200 in advance. It is discriminated whether it is a steel type less than ℃ or other steel types, and after the quenching, the discrimination result is Ms point: a steel type less than 200 ° C. , the discrimination result is Ms point: 200 ° C. or more. Move to the detainment floor, which is a different path from the pipe path of the steel grade , and keep it under a separate room temperature environment until the temperature difference between the hottest and coldest parts in the cross section perpendicular to the pipe axis is less than 2.0 ° C. A method for producing a seamless steel pipe excellent in toughness, characterized by being subjected to the tempering treatment after being left in place.
(2) In seamless steel pipe manufacturing equipment, including equipment for subjecting pipes that are in the process of manufacturing seamless steel pipes to quenching and tempering, the pipe body is a steel type with an Ms point of less than 200 ° C or other steel types in advance. Before determining whether the tube is a steel type of which the determination result is Ms point: less than 200 ° C. among the tube bodies after quenching, and before subjecting to the tempering, A facility for producing seamless steel pipes with excellent toughness, comprising a detained floor that is separately detained in a room temperature environment until the difference between the highest temperature part and the lowest temperature part is less than 2.0 ° C.

本発明によれば、Ms点:200℃未満の鋼種は焼入れ後焼戻し前に別途室温環境下で肉厚方向温度分布が十分に均一化するまで留置されて材質ばらつきの小さい優れた靭性の製品管となり、それ以外の鋼種は前記留置に妨げられることなく通常どおり先入れ‐先出しで熱処理されるから、熱処理ライン全体の生産性を維持しつつ靭性に優れた継目無鋼管を製造することができる。   According to the present invention, a steel tube having an Ms point of less than 200 ° C. is placed in an excellent toughness tube with a small variation in material by being kept in a separate room temperature environment until sufficiently uniform in the thickness direction after quenching and before tempering. Thus, other steel types are heat-treated in a first-in first-out manner as usual without being obstructed by the indwelling, so that it is possible to produce a seamless steel pipe excellent in toughness while maintaining the productivity of the entire heat treatment line.

本発明に用いる熱処理ラインの一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the heat processing line used for this invention.

図1は本発明に用いる熱処理ラインの一例を示す平面模式図である。継目無鋼管製造途上品である管体1のうち、Ms点が200℃以上と判別された管体(便宜上、A管とも云う)は、焼入れ加熱炉2で鋼種により異なる適正な加熱温度に加熱された後、焼入れ水槽3内の冷却水中に浸漬されて管体外周面温度が室温近くに低下するまで水冷され、その後冷却床4上を経由して、焼戻し加熱炉5で鋼種により異なる適正な焼戻し温度で焼戻しされる。尚、Ms点は後述の式(1)を用いた計算により求められる。   FIG. 1 is a schematic plan view showing an example of a heat treatment line used in the present invention. Among the pipes 1 that are in the process of manufacturing seamless steel pipes, pipes whose Ms point is determined to be 200 ° C. or higher (also referred to as “A pipe” for convenience) are heated to an appropriate heating temperature depending on the steel type in the quenching furnace 2. After that, it is immersed in cooling water in the quenching water tank 3 and water-cooled until the temperature of the outer peripheral surface of the tube body decreases to near room temperature, and then the appropriate temperature varies depending on the steel type in the tempering heating furnace 5 via the cooling floor 4. Tempering at tempering temperature. The Ms point is obtained by calculation using the formula (1) described later.

一方、Ms点が200℃未満と判別された管体(便宜上、B管とも云う)は、冷却床4に到着するまではA管と同じ経路で処理されるが、其処からA管の経路とは別の経路である留置床(バッファラインとも云う)6へ移され、該バッファライン6上で、管軸方向直交断面内の最高温部と最低温部の温度差(ΔTと記す)が2.0℃未満になるまで室温環境下で留置され、然る後に冷却床4に戻され、以後はA管と同じ経路で焼戻しされる。   On the other hand, the tube (which is also referred to as “B tube” for convenience) whose Ms point is determined to be less than 200 ° C. is processed along the same route as the A tube until it reaches the cooling bed 4. Is moved to a detention floor (also referred to as a buffer line) 6, which is another path, and a temperature difference (denoted by ΔT) between the highest temperature portion and the lowest temperature portion in the cross section orthogonal to the tube axis direction is 2 on the buffer line 6. It is left in a room temperature environment until it becomes less than 0 ° C., then returned to the cooling bed 4 and thereafter tempered by the same route as the A tube.

尚、本例では冷却床4と留置床6とを別個の設備としたが、冷却床4のスペースに余裕があればその一部を留置床として使用してもよい。
本例において、前述の特定鋼種(焼入れ焼戻しによって所望量のマルテンサイト相を得ようとする鋼種)は、例えば、質量%で、C:0.005〜0.05%、Si:0.05〜1.0%、Mn:0.2〜1.8%、P:0.03%以下、S:0.005%以下、Cr:11〜20%、Ni:1.5〜10%、Mo:1〜5%、N:0.15%以下を含有し、残部がFe及び不可避的不純物である組成のものである。尚、該組成において、Feの一部に代えて、質量%で、Al:0.002〜0.05%、Cu:3.5%以下、Nb:0.5%以下、V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、W:3%以下、B:0.01%以下、Ca:0.01%以下、REM:0.01%以下の中から選ばれた1種又は2種以上を含有する組成としたものであってもよい。
In this example, the cooling floor 4 and the detainment floor 6 are provided as separate facilities. However, if the cooling floor 4 has a sufficient space, a part thereof may be used as the detention floor.
In this example, the above-mentioned specific steel type (steel type to obtain a desired amount of martensite phase by quenching and tempering) is, for example, mass%, C: 0.005 to 0.05%, Si: 0.05 to 1.0%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 11 to 20%, Ni: 1.5 to 10%, Mo: 1 to 5%, N: 0.15% or less, with the balance being Fe and inevitable impurities. In this composition, instead of a part of Fe, in mass%, Al: 0.002 to 0.05%, Cu: 3.5% or less, Nb: 0.5% or less, V: 0.5 %, Ti: 0.3% or less, Zr: 0.2% or less, W: 3% or less, B: 0.01% or less, Ca: 0.01% or less, REM: 0.01% or less The composition may contain one or more selected from the above.

前述のように、Mf点が室温未満になる様な鋼種(これは、前記特定鋼種の中の一つである)においては、焼戻し開始時の管体肉厚方向の温度分布(管軸直交断面内の温度分布)によって、該肉厚方向の各位置におけるマルテンサイト変態率、換言すれば残留オーステナイト量が実質的に決定されることになる。斯かる温度分布において、ΔTが10℃未満であっても、管体肉厚方向位置による残留オーステナイト量の差異(ばらつき)は無視できない程度となる。この残留オーステナイト量のばらつきが、製品の材質ばらつきを生む原因の一つとなっている。   As described above, in a steel type in which the Mf point is less than room temperature (this is one of the specific steel types), the temperature distribution in the tube thickness direction at the start of tempering (cross section perpendicular to the tube axis) The martensite transformation rate at each position in the thickness direction, in other words, the amount of retained austenite is substantially determined by the temperature distribution in the inner wall. In such a temperature distribution, even if ΔT is less than 10 ° C., the difference (variation) in the amount of retained austenite depending on the tube thickness direction position cannot be ignored. This variation in the amount of retained austenite is one of the causes of the material variation of the product.

これに対し、本発明では、B管を、ΔTが2.0℃未満となるまで、室温環境下で留置する。これにより、焼戻し開始時の管体肉厚方向の残留オーステナイト量のばらつきは格段に低減し、焼戻し後の製品の材質ばらつきが大幅に小さくなると共に、該材質ばらつき範囲内のデータの平均値が向上すると云う効果が得られる。ΔTが2.0℃未満に低減するよりも前に焼戻しを開始したのでは、斯かる効果は得られない。尚、B管の判別条件を、Ms点:200℃未満である事としたのは、これがMf点:室温未満である事とほぼ等価である、と見做しても実用上差し支えないと云う本発明者らの実験検討結果に基づくものである。   On the other hand, in this invention, B pipe | tube is detained in room temperature environment until (DELTA) T will be less than 2.0 degreeC. As a result, the variation in the amount of retained austenite in the tube thickness direction at the start of tempering is greatly reduced, the material variation of the product after tempering is greatly reduced, and the average value of data within the material variation range is improved. The effect is obtained. If tempering is started before ΔT is reduced to less than 2.0 ° C., such an effect cannot be obtained. It should be noted that the determination condition for the B tube is that the Ms point: less than 200 ° C. may be considered practically equivalent to the fact that this is almost equivalent to the Mf point: less than room temperature. This is based on the results of experiments conducted by the inventors.

本実施形態において、Ms点は、予め前記特定鋼種について、種々の組成の熱膨張試験片を用いた連続冷却変態実験で測定した熱膨張曲線からMs点の実験データを採取し、該実験データを組成成分量 [質量%]で回帰分析して得られたところの、下記式(1)を用いて算出される。
Ms[℃]=502−810[%C]−1230[%N]−13[%Mn]−30[%Ni]−12[%Cr]−54[%Cu]−6[Mo] …(1)
尚、式(1)において、鋼中に含有されない成分元素がある場合はその成分元素項に0を代入するものとする。
In this embodiment, the Ms point is obtained in advance by collecting experimental data of the Ms point from the thermal expansion curve measured in a continuous cooling transformation experiment using thermal expansion test pieces of various compositions for the specific steel type in advance. It is calculated using the following formula (1) obtained by regression analysis with the amount of composition component [% by mass].
Ms [° C] = 502-810 [% C] -1230 [% N] -13 [% Mn] -30 [% Ni] -12 [% Cr] -54 [% Cu] -6 [Mo] (1 )
In addition, in Formula (1), when there exists a component element which is not contained in steel, 0 shall be substituted to the component element term.

具体的な好適実施手段としては、熱処理に入る各鋼種に対し、焼入れ完了(水冷完了)から焼戻し開始までの待機所要時間(リードタイム)を設定する。この設定に際して、前記式(1)によるMs点の事前把握と、雰囲気温度及び管体表面温度の計測と伝熱計算を組み合わせたリードタイム算出ツールを準備する事が好ましい。Ms点が200℃未満の鋼種の管体(前記B管)において、通常の先入れ-先出しでは冷却床4上でのリードタイムがΔT<2.0℃となるまでの温度均一化所要時間に達しないものは、一旦バッファライン6に逃がし、室温環境下でΔT<2.0となるまで留置を行った後、改めて焼戻し処理に供する。   As a specific preferred implementation means, a waiting time (lead time) from the completion of quenching (water cooling completion) to the start of tempering is set for each steel type entering the heat treatment. In this setting, it is preferable to prepare a lead time calculation tool that combines the prior grasp of the Ms point according to the formula (1), the measurement of the ambient temperature and the tube surface temperature, and the heat transfer calculation. In the case of a steel type tube body (B tube) having an Ms point of less than 200 ° C., in the normal first-in-first-out, the time required to equalize the temperature until the lead time on the cooling bed 4 becomes ΔT <2.0 ° C. Those that do not reach are temporarily released to the buffer line 6 and placed in a room temperature environment until ΔT <2.0, and then subjected to tempering again.

表1に化学組成及び式(1)にて計算したMs点を示す鋼ビレットを熱間加工により造管し、該造管後は100℃〜室温まで空冷して、外径195.0mm×肉厚27.0mmの継目無鋼管の素材にする10本の管体と成した。
本発明例として、前記管体のうち無作為抽出した5本(P1〜P5)について以下の熱処理(焼入れ-焼戻し)を行った。熱処理ラインは図1に示したものを用いた。焼入れは、950℃加熱後、水冷する処理とした。水冷後復熱完了時点での管体表面温度(実測値)は30〜36℃であった。この管体を室温下(大気中)で8時間以上留置し、ΔT(計算値)が1.2〜1.8℃となった時点で焼戻し加熱炉に装入し600℃で焼戻しを行った。
A steel billet showing the chemical composition and Ms point calculated by the formula (1) in Table 1 is formed by hot working, and after the tube forming, it is air-cooled from 100 ° C. to room temperature, and an outer diameter of 195.0 mm × meat Ten pipe bodies were formed as a material for a seamless steel pipe having a thickness of 27.0 mm.
As an example of the present invention, the following heat treatment (quenching-tempering) was performed on five randomly extracted pipes (P1 to P5). The heat treatment line shown in FIG. 1 was used. Quenching was performed by heating at 950 ° C. and then water cooling. The tube surface temperature (measured value) at the time of completion of recuperation after water cooling was 30 to 36 ° C. The tube was left at room temperature (in the atmosphere) for 8 hours or longer, and when ΔT (calculated value) reached 1.2 to 1.8 ° C., it was charged into a tempering furnace and tempered at 600 ° C. .

比較例として、残りの5本の管体(P6〜P10)について、本発明例と同じ条件での焼入れを行った後、ΔT<2.0℃による時間管理は行わず、通常の先入れ-先出しで焼戻し加熱炉に装入し、600℃で焼戻しを行った。この場合、焼戻し加熱炉装入時のΔT(計算値)は6.0℃であった。
焼戻し処理後の各管体から、JIS Z 2202の規定に準拠してVノッチ試験片(採取位置=管肉厚中心部、試験片厚さ=10mm、試験片長さ方向=管周方向(C方向)、Vノッチ深さ方向=管長方向(L方向)を3個ずつ採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を行ってv-10を求めた。
As a comparative example, the remaining five pipe bodies (P6 to P10) were quenched under the same conditions as in the present invention example, and then timed control at ΔT <2.0 ° C. was not performed. The tempering furnace was first charged and tempered at 600 ° C. In this case, ΔT (calculated value) at the time of charging the tempering furnace was 6.0 ° C.
From each tube after tempering treatment, V-notch test piece (collection position = tube thickness center, test piece thickness = 10 mm, test piece length direction = pipe circumference direction (C direction) in accordance with JIS Z 2202 regulations. ), V notch depth direction = pipe length direction (L direction) was sampled three by three, and Charpy impact test was performed according to JIS Z 2242, and v E -10 was determined.

得られた結果を表2に示す。表2より、本発明例では、v-10データ(N数=15)の平均値=87.7Jで、40Jに満たない試験片はなかった。また標準偏差=3.8Jと、非常にばらつきの小さい成績が得られた。一方、比較例では、v-10データ(N数=15)の平均値=82.7Jであるが、40Jに満たない試験片が2本生じた。また標準偏差=17.9Jと、平均値の低下及びばらつきの拡大が認められた。管体毎に成績を見ると、比較例では、本発明例並のv-10値が得られているものがある一方、v-10値が大きく低下しているものが認められ、これが平均値の低下及びばらつきの拡大を招いている。 The obtained results are shown in Table 2. From Table 2, in the present invention example, the average value = 87.7J for v E -10 data (N number = 15), no test pieces less than 40 J. In addition, the standard deviation = 3.8 J, and results with very little variation were obtained. On the other hand, in the comparative example, v is a mean value = 82.7J of E -10 data (N number = 15), a test piece of less than 40J occurs two. The standard deviation was 17.9 J, indicating a decrease in average value and an increase in variation. Looking at the results for each tube, in the comparative examples, there were some v E -10 values that were comparable to those of the present invention example, while the v E -10 values were greatly reduced, The average value is lowered and the variation is increased.

この様に、本発明によれば安定した機械的性質が得られる。   Thus, according to the present invention, stable mechanical properties can be obtained.

Figure 0005907083
Figure 0005907083

Figure 0005907083
Figure 0005907083

1 管体
2 焼入れ加熱炉
3 焼入れ水槽
4 冷却床
5 焼戻し加熱炉
6 留置床(バッファライン)
DESCRIPTION OF SYMBOLS 1 Tube 2 Quenching heating furnace 3 Quenching water tank 4 Cooling floor 5 Tempering heating furnace 6 Detention floor (buffer line)

Claims (2)

複数の鋼種を同じ熱処理ラインに通して行う継目無鋼管の製造途上品である管体に焼入れ焼戻し処理を施す工程を有する継目無鋼管の製造方法において、予め管体がMs点:200℃未満の鋼種であるかそれ以外の鋼種であるかを判別し、前記焼入れ後、前記判別結果がMs点:200℃未満の鋼種である管体は、前記判別結果がMs点:200℃以上の鋼種である管体の経路とは別の経路である留置床へ移し、その管軸直交断面内の最高温部と最低温部の温度差が2.0℃未満になるまで別途室温環境下で留置した後前記焼戻し処理に供することを特徴とする靭性に優れた継目無鋼管の製造方法。 In a method for producing a seamless steel pipe having a step of quenching and tempering a tubular body that is an in-process product of a seamless steel pipe that is made by passing a plurality of steel types through the same heat treatment line, the pipe body has an Ms point of less than 200 ° C in advance. It is discriminated whether it is a steel type or a steel type other than that, and after the quenching, the discrimination result is a steel type whose Ms point is less than 200 ° C. Moved to the detainment floor, which is a different route from that of the tube body, and left in a separate room temperature environment until the temperature difference between the highest temperature part and the lowest temperature part in the cross section perpendicular to the tube axis is less than 2.0 ° C. A method for producing a seamless steel pipe excellent in toughness, characterized by being subjected to a subsequent tempering treatment. 継目無鋼管の製造途上品である管体に焼入れ焼戻し処理を施す設備を含む継目無鋼管の製造設備において、予め管体がMs点:200℃未満の鋼種であるかそれ以外の鋼種であるかを判別する判別手段と、前記焼入れ後の管体のうち前記判別結果がMs点:200℃未満の鋼種である管体のみを、前記焼戻しに供する前に、その管軸直交断面内の最高温部と最低温部の差が2.0℃未満になるまで別途室温環境下で留置する留置床とを備えたことを特徴とする靭性に優れた継目無鋼管の製造設備。 In seamless steel pipe manufacturing equipment, including equipment for quenching and tempering pipes that are in the process of manufacturing seamless steel pipes, whether the pipe body is a steel type with an Ms point of less than 200 ° C or other steel types in advance And determining the maximum temperature in the cross section perpendicular to the axis of the tube before subjecting only to the tube body of which the determination result is a steel type whose Ms point is less than 200 ° C. A facility for producing seamless steel pipes with excellent toughness, characterized by comprising a detained floor that is separately detained in a room temperature environment until the difference between the section and the lowest temperature section is less than 2.0 ° C.
JP2013016459A 2013-01-31 2013-01-31 Manufacturing method and equipment for seamless steel pipe with excellent toughness Active JP5907083B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013016459A JP5907083B2 (en) 2013-01-31 2013-01-31 Manufacturing method and equipment for seamless steel pipe with excellent toughness
EP14746700.5A EP2952592B1 (en) 2013-01-31 2014-01-22 Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness
CN201480006949.0A CN104968808B (en) 2013-01-31 2014-01-22 The manufacture method and manufacturing equipment of the seamless steel pipe of tenacity excellent
US14/764,813 US20150368734A1 (en) 2013-01-31 2014-01-22 Method and facility for manufacturing seamless steel pipe with excellent toughness
PCT/JP2014/000297 WO2014119251A1 (en) 2013-01-31 2014-01-22 Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016459A JP5907083B2 (en) 2013-01-31 2013-01-31 Manufacturing method and equipment for seamless steel pipe with excellent toughness

Publications (2)

Publication Number Publication Date
JP2014148699A JP2014148699A (en) 2014-08-21
JP5907083B2 true JP5907083B2 (en) 2016-04-20

Family

ID=51261968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016459A Active JP5907083B2 (en) 2013-01-31 2013-01-31 Manufacturing method and equipment for seamless steel pipe with excellent toughness

Country Status (5)

Country Link
US (1) US20150368734A1 (en)
EP (1) EP2952592B1 (en)
JP (1) JP5907083B2 (en)
CN (1) CN104968808B (en)
WO (1) WO2014119251A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246418B1 (en) * 2015-01-15 2021-02-03 JFE Steel Corporation Seamless stainless steel pipe for oil well, and method for manufacturing same
EP3404120B1 (en) 2016-01-13 2020-03-04 Nippon Steel Corporation Method for manufacturing stainless steel pipe for oil wells and stainless steel pipe for oil wells
CN110484814B (en) * 2019-08-05 2021-05-18 中国科学院金属研究所 High-strength steel seamless tube containing rare earth for aerospace and preparation method thereof
CN111304429B (en) * 2020-04-01 2021-08-27 益大特钢有限公司 Heat treatment equipment for processing seamless steel pipe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739129A (en) * 1980-08-15 1982-03-04 Nippon Kokan Kk <Nkk> Heat-treatment for seamless steel pipe
JPS611922Y2 (en) * 1980-10-14 1986-01-22
JPS6254021A (en) * 1985-05-23 1987-03-09 Kawasaki Steel Corp Manufacture of high strength seamless steel pipe superior in sulfide stress corrosion cracking resistance
WO1996012574A1 (en) * 1994-10-20 1996-05-02 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless steel pipes and manufacturing equipment therefor
JP3694967B2 (en) * 1996-04-19 2005-09-14 住友金属工業株式会社 Method for producing martensitic stainless steel seamless steel pipe
JP2001032022A (en) 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd Method for quenching steel pipe and quenching apparatus
JP3900801B2 (en) * 2000-07-21 2007-04-04 住友金属工業株式会社 Heat treatment equipment for seamless steel pipes
JP2002038219A (en) * 2000-07-25 2002-02-06 Sumitomo Metal Ind Ltd Method for producing martensitic stainless steel tube
JP5109222B2 (en) 2003-08-19 2012-12-26 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP4380487B2 (en) * 2004-09-28 2009-12-09 住友金属工業株式会社 Method for producing martensitic stainless steel pipe
JP4792778B2 (en) * 2005-03-29 2011-10-12 住友金属工業株式会社 Manufacturing method of thick-walled seamless steel pipe for line pipe
JP4940970B2 (en) 2007-01-31 2012-05-30 Jfeスチール株式会社 Manufacturing method for thick 13Cr stainless steel pipe
JP5233366B2 (en) 2008-03-31 2013-07-10 Jfeスチール株式会社 Steel pipe quenching equipment
EP2322679B1 (en) * 2008-09-04 2020-02-26 JFE Steel Corporation Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
AR075976A1 (en) * 2009-03-30 2011-05-11 Sumitomo Metal Ind METHOD FOR THE MANUFACTURE OF PIPE WITHOUT SEWING
JP5487689B2 (en) * 2009-04-06 2014-05-07 Jfeスチール株式会社 Manufacturing method of martensitic stainless steel seamless pipe for oil well pipe
MX352402B (en) * 2011-03-18 2017-11-23 Nippon Steel & Sumitomo Metal Corp Steel pipe quenching method.

Also Published As

Publication number Publication date
JP2014148699A (en) 2014-08-21
EP2952592A1 (en) 2015-12-09
EP2952592B1 (en) 2019-06-12
EP2952592A4 (en) 2016-04-27
CN104968808A (en) 2015-10-07
CN104968808B (en) 2017-11-17
WO2014119251A1 (en) 2014-08-07
US20150368734A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6574307B2 (en) High toughness seamless steel pipe and manufacturing method thereof
JP6197850B2 (en) Method for producing duplex stainless steel seamless pipe
US11313005B2 (en) Seamless steel pipe and method for producing the seamless steel pipe
JP5807630B2 (en) Heat treatment equipment row of seamless steel pipe and method for producing high strength stainless steel pipe
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
US10233520B2 (en) Low-alloy steel pipe for an oil well
JP6596954B2 (en) Seamless steel pipe and manufacturing method thereof
US11821051B2 (en) Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
JP6146542B2 (en) Steel pipe for thick oil well and manufacturing method thereof
JP6686320B2 (en) Manufacturing method of stainless steel pipe
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
EP3222742A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP5907083B2 (en) Manufacturing method and equipment for seamless steel pipe with excellent toughness
JP6805639B2 (en) Manufacturing method of stainless steel pipe
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
JP5041282B2 (en) Method for producing martensitic stainless steel pipe
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
JPWO2015005119A1 (en) Manufacturing method of high Cr steel pipe
JP6202010B2 (en) Manufacturing method of high-strength duplex stainless steel seamless steel pipe
JP3717745B2 (en) Mandrel bar and its manufacturing method
JP6341181B2 (en) Method for producing duplex stainless steel seamless pipe
JP6520892B2 (en) Seamless steel pipe manufacturing method and seamless steel pipe manufacturing equipment
JP6171834B2 (en) Equipment column for manufacturing thick steel
RU2617808C1 (en) Procedure for fabrication of pump-compressor pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250