JP5900233B2 - Light control element, light control device, and driving method thereof - Google Patents
Light control element, light control device, and driving method thereof Download PDFInfo
- Publication number
- JP5900233B2 JP5900233B2 JP2012175569A JP2012175569A JP5900233B2 JP 5900233 B2 JP5900233 B2 JP 5900233B2 JP 2012175569 A JP2012175569 A JP 2012175569A JP 2012175569 A JP2012175569 A JP 2012175569A JP 5900233 B2 JP5900233 B2 JP 5900233B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrode
- light control
- shape
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 claims description 150
- 239000002245 particle Substances 0.000 claims description 100
- 238000005192 partition Methods 0.000 claims description 53
- 239000000725 suspension Substances 0.000 claims description 51
- 239000002612 dispersion medium Substances 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 description 17
- 239000011324 bead Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005537 brownian motion Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Description
本発明は、調光素子、調光装置、および、それらの駆動方法に関する。 The present invention relates to a light control element, a light control device, and driving methods thereof.
本技術分野の背景技術として、特許文献1がある。特許文献1には、分散媒中に流動可能な状態で分散した光調整粒子を含む光調整懸濁液を高分子媒体より形成される樹脂マトリックス中に分散してなる調光層を有し、該調光層が透明導電性基板に挟持されてなる調光フィルムであって、低周波数における電界の印加の有無により調光機能を発現する調光フィルムと記載されている(要約参照)。 As a background art of this technical field, there is Patent Document 1. Patent Document 1 has a light control layer formed by dispersing a light control suspension containing light control particles dispersed in a flowable state in a dispersion medium in a resin matrix formed from a polymer medium, The light control layer is described as a light control film in which the light control layer is sandwiched between transparent conductive substrates and exhibits a light control function depending on whether or not an electric field is applied at a low frequency (see summary).
特許文献1では、低周波数の電界の印加の有無による調光機能の発現は可能であるが、何れも交流電圧を印加することで透明状態や中間状態に調光駆動するのみであり、高速に透過状態あるいは中間状態から遮光状態へ調光することが難しい。本発明は、高速に透過状態あるいは中間状態から遮光状態へ調光することができる調光素子、調光装置、および、それらの駆動方法を提供することを目的とする。 In Patent Document 1, it is possible to develop a dimming function depending on whether or not a low-frequency electric field is applied. However, in any case, dimming driving is only performed in a transparent state or an intermediate state by applying an AC voltage, and at high speed. It is difficult to adjust light from a transmission state or an intermediate state to a light shielding state. An object of the present invention is to provide a light control element, a light control device, and a driving method thereof capable of performing light control from a transmission state or an intermediate state to a light shielding state at high speed.
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
第1基板および第2基板と、第1基板上であり、第1基板および第2基板の間に形成された第1電極と、第2基板上であり、第1基板および第2基板の間に形成された第2電極と、第1電極および第2電極の間に形成された懸濁液と、第1基板および懸濁液の間に形成された第1凹凸形状と、を備え、懸濁液は、調光粒子および分散媒を含み、第1電極および第2電極に電圧が印加されることにより調光粒子が制御され、第1凹凸形状はテーパー形状を有する調光素子または調光素子を備えた調光装置。
The features of the present invention for solving the above problems are as follows, for example.
A first substrate and a second substrate, on the first substrate, a first electrode formed between the first substrate and the second substrate, and on the second substrate, between the first substrate and the second substrate A second electrode formed on the substrate, a suspension formed between the first electrode and the second electrode, and a first concavo-convex shape formed between the first substrate and the suspension. The turbid liquid includes dimming particles and a dispersion medium, and the dimming particles are controlled by applying a voltage to the first electrode and the second electrode, and the first uneven shape is a dimming element or dimming having a tapered shape. A light control device provided with an element.
第1基板および第2基板と、第1基板上であり、第1基板および第2基板の間に形成された第1電極と、第2基板上であり、第1基板および第2基板の間に形成された第2電極と、第1電極および第2電極の間に形成された懸濁液と、第1基板および懸濁液の間に形成された第1凹凸形状と、を備えた調光素子の駆動方法であって、懸濁液は、調光粒子および分散媒を含み、第1電極および第2電極に電圧が印加されることにより調光粒子が制御され、第1凹凸形状はテーパー形状を有し、第1電極と第2電極との間に直流電圧を印加して調光素子を遮光状態とする調光素子の駆動方法。 A first substrate and a second substrate, on the first substrate, a first electrode formed between the first substrate and the second substrate, and on the second substrate, between the first substrate and the second substrate A second electrode formed on the substrate, a suspension formed between the first electrode and the second electrode, and a first concavo-convex shape formed between the first substrate and the suspension. An optical element driving method, wherein a suspension includes light control particles and a dispersion medium, and the light control particles are controlled by applying a voltage to the first electrode and the second electrode. A method of driving a light control element having a tapered shape and applying a DC voltage between a first electrode and a second electrode to place the light control element in a light-shielded state.
本発明により、高速に透過状態あるいは中間状態から遮光状態へ調光することができる調光素子、調光装置、および、それらの駆動方法を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a light control element, a light control device, and a driving method thereof capable of performing light control from a transmission state or an intermediate state to a light shielding state at high speed. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の実施例は本願発明の内容の具体例を示すものであり、本願発明がこれらの実施例に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、実施例を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples, but by those skilled in the art within the scope of the technical idea disclosed in this specification. Various changes and modifications are possible. Further, in all the drawings for explaining the embodiments, the same reference numerals are given to those having the same function, and repeated explanation thereof is omitted.
図1、図2、図3は一実施形態の調光装置の概略図であり、調光装置1000は調光素子100と駆動回路200を有する。調光素子100は、第1電極11、第1基板10、第2電極21、第2基板20で構成される。図1では、第1電極11、第1基板10、第2電極21、第2基板20は平板状(ベタ状)となっている。第1基板10に第1電極11が形成され、第2基板20に第2電極21が形成される。第1電極11および第2電極21は、所定の間隙をもって懸濁液32を挟持するように配置される。第1電極11上、つまり、第1電極11に対して懸濁液32が形成される側、にはテーパー形状を有する第1凹凸形状12が配置される。所定の間隙によって形成される懸濁液充填空間には懸濁液32が満たされている。 1, 2, and 3 are schematic views of a light control device according to an embodiment, and the light control device 1000 includes a light control element 100 and a drive circuit 200. The light control device 100 includes a first electrode 11, a first substrate 10, a second electrode 21, and a second substrate 20. In FIG. 1, the 1st electrode 11, the 1st board | substrate 10, the 2nd electrode 21, and the 2nd board | substrate 20 are flat form (solid form). The first electrode 11 is formed on the first substrate 10, and the second electrode 21 is formed on the second substrate 20. The first electrode 11 and the second electrode 21 are arranged so as to sandwich the suspension 32 with a predetermined gap. A first concavo-convex shape 12 having a tapered shape is disposed on the first electrode 11, that is, on the side where the suspension 32 is formed with respect to the first electrode 11. The suspension filling space formed by the predetermined gap is filled with the suspension 32.
懸濁液32は、調光粒子31および分散媒30で構成され、調光粒子31が分散媒30に分散されている。本実施例では図2に示すように、第1基板10の面内法線方向から見て第1基板10と第2基板20はずらして重ね合わせてあり、第1電極接続部11aおよび第2電極接続部21aにより、第1電極11および第2電極21が駆動回路200に接続されている。 The suspension 32 includes light control particles 31 and a dispersion medium 30, and the light control particles 31 are dispersed in the dispersion medium 30. In the present embodiment, as shown in FIG. 2, the first substrate 10 and the second substrate 20 are shifted and overlapped when viewed from the in-plane normal direction of the first substrate 10, and the first electrode connecting portion 11a and the second substrate 20 are overlapped. The first electrode 11 and the second electrode 21 are connected to the drive circuit 200 by the electrode connection portion 21a.
本実施例の調光装置は、例えば以下の方法で作製可能である。
まず、酸化インジウムスズ(ITO)からなる透明電極を形成したガラス基板を1組作製し、それぞれ第1基板10、第1電極11、第1電極接続部11a、第2基板20、第2電極21、第2電極接続部21aとする。第1電極11、第1電極接続部11a、第2電極21、第2電極接続部21aのパターニングはフォトリソグラフィの手法で実施される。
The light control device of the present embodiment can be manufactured, for example, by the following method.
First, a set of glass substrates on which a transparent electrode made of indium tin oxide (ITO) is formed is prepared, and the first substrate 10, the first electrode 11, the first electrode connection portion 11a, the second substrate 20, and the second electrode 21 are formed. The second electrode connection portion 21a is used. The patterning of the first electrode 11, the first electrode connection portion 11a, the second electrode 21, and the second electrode connection portion 21a is performed by a photolithography technique.
図3で示されるように、さらに、第1電極11上にUV硬化型のアクリル樹脂を塗布し、所望とする第1凹凸形状12と逆の凹凸形状を持つ金型で成形、UV光により硬化させることで第1凹凸形状12が第1電極11上に形成される。 Further, as shown in FIG. 3, a UV curable acrylic resin is applied on the first electrode 11, molded with a mold having a concavo-convex shape opposite to the desired first concavo-convex shape 12, and cured by UV light. By doing so, the first concavo-convex shape 12 is formed on the first electrode 11.
次に、第1電極11と第2電極21が向かい合うようにし、両基板端部の対辺にスペーサビーズ等を含む封着剤を塗布して両基板を接着する(図示しない)。これにより、両基板間に距離が25μmである懸濁液32の懸濁液充填空間が形成される。 Next, the first electrode 11 and the second electrode 21 are opposed to each other, and a sealing agent containing spacer beads or the like is applied to opposite sides of both substrate ends to bond the two substrates (not shown). Thereby, a suspension filling space of the suspension 32 having a distance of 25 μm is formed between both the substrates.
懸濁液充填空間には、封着剤で接着していない第1基板10および第2基板20の端部から毛細管現象により懸濁液32が充填される。懸濁液32は、例えば、アクリル酸エステルオリゴマーからなる分散媒30とポリヨウ化物からなる調光粒子31で構成されている。調光粒子31は形状に異方性があり、配向方向に起因して吸光度の異なる光学的異方性を発現し、アスペクト比が1ではない形状をしており、かつ負に帯電している。懸濁液32中の調光粒子31の濃度は例えば3.7wt%である。 The suspension filling space is filled with the suspension 32 by capillarity from the ends of the first substrate 10 and the second substrate 20 that are not bonded with the sealing agent. The suspension 32 is composed of, for example, a dispersion medium 30 made of an acrylate oligomer and light control particles 31 made of polyiodide. The light control particles 31 are anisotropic in shape, exhibit optical anisotropy having different absorbance due to the orientation direction, have a shape with an aspect ratio not 1, and are negatively charged. . The concentration of the light control particles 31 in the suspension 32 is, for example, 3.7 wt%.
懸濁液充填空間に懸濁液32を充填後、接着していない第1基板10および第2基板20の端部を封着剤で接着して封止することで調光素子100が完成する。さらに、調光素子100の第1電極11および第2電極21を第1電極接続部11aおよび第2電極接続部21aを介して駆動回路200に配線接続することで本実施例の調光装置が作製される。 After the suspension 32 is filled in the suspension filling space, the end portions of the first substrate 10 and the second substrate 20 that are not bonded are bonded and sealed with a sealing agent, whereby the light control device 100 is completed. . Furthermore, the light control device of the present embodiment is configured by wiring-connecting the first electrode 11 and the second electrode 21 of the light control element 100 to the drive circuit 200 via the first electrode connection portion 11a and the second electrode connection portion 21a. Produced.
以上の構成、製造方法で作製された本実施例の調光装置は、駆動回路200より第1電極11および第2電極21間に複数の駆動波形により電位差を与えることで、以下に記述するように透過状態、遮光状態あるいはその中間状態へ調光することが可能である。 The light control device of the present embodiment manufactured by the above configuration and manufacturing method is described below by applying a plurality of drive waveforms to the first electrode 11 and the second electrode 21 from the drive circuit 200 by a plurality of drive waveforms. In addition, the light can be adjusted to a transmission state, a light shielding state, or an intermediate state thereof.
電圧無印加の初期状態では図1に示すように調光粒子31はランダム状態であり調光素子100に入射した光(第1基板10から第2基板20に向けて入射、あるいは第2基板20から第1基板10に向けて入射した光)を調光粒子31が吸収する遮光状態になる。 In an initial state in which no voltage is applied, the light control particles 31 are in a random state as shown in FIG. 1 and light incident on the light control element 100 (incident from the first substrate 10 toward the second substrate 20 or the second substrate 20). Light entering the first substrate 10) is absorbed by the light control particles 31.
駆動回路200により第1電極11、第2電極21間に所定の交流電圧を印加することで、調光粒子31は第1基板10および第2基板20の面内方向に対してほぼ垂直方向に並ぶ(図4)。この状態では調光素子100に入射した光は調光粒子31により吸収されにくく、透過状態となる。また、交流の印加電圧を前述の所定の電圧より下げることで調光粒子31はランダム状態と第1基板10および第2基板20の面内方向に対して垂直に配向状態との中間状態をとることができるため、調光素子100は任意の透過状態を得ることができる(図示せず)。ここでいう交流電圧は、正弦波や方形波、三角波やこれらを任意に組み合わせた形状の波形を含み、周波数や波形が多少揺らいでも構わない。その周波数fは30Hz<f<1000Hzの範囲が好適である。また、印加電圧Vは第1電極11と第2電極21間の距離に依存するが概ね5V<V<300V、電界強度Eは0.1×106V/m<E<1×107V/mの範囲が好適である。例えば、正弦波で周波数50Hz程度、電圧100Vで駆動可能であれば、国内の一般のコンセントから供給される電圧を利用することが可能である。 By applying a predetermined alternating voltage between the first electrode 11 and the second electrode 21 by the drive circuit 200, the light control particles 31 are substantially perpendicular to the in-plane directions of the first substrate 10 and the second substrate 20. Line up (Fig. 4). In this state, the light incident on the light control element 100 is not easily absorbed by the light control particles 31 and is in a transmission state. Moreover, the light control particle 31 takes an intermediate state between the random state and the orientation state perpendicular to the in-plane directions of the first substrate 10 and the second substrate 20 by lowering the AC applied voltage below the predetermined voltage. Therefore, the light control element 100 can obtain an arbitrary transmission state (not shown). The AC voltage here includes a sine wave, a square wave, a triangular wave, or a waveform of any combination of these, and the frequency and waveform may fluctuate somewhat. The frequency f is preferably in the range of 30 Hz <f <1000 Hz. The applied voltage V depends on the distance between the first electrode 11 and the second electrode 21, but is approximately 5V <V <300V, and the electric field strength E is 0.1 × 10 6 V / m <E <1 × 10 7 V. A range of / m is preferred. For example, if a sine wave can be driven at a frequency of about 50 Hz and a voltage of 100 V, a voltage supplied from a general domestic outlet can be used.
駆動回路200により第1電極11および第2電極21間に第1電極11より第2電極21側の電位が高くなるように直流電圧を印加することで、負に帯電した調光粒子31が第2電極21側に第2基板20の面内方向に対して垂直になるように配向しながら移動し、かつ、第2電極21上で配向を保つ。この状態では調光素子100に入射した光は調光粒子31により吸収されにくく、透過状態となる(図5)。ここでいう直流電圧は、第1電極11と第2電極21間の距離に依存するが概ね5V<V<300V、電界強度Eは0.1×106V/m<E<1×107V/mの範囲が好適である。また、印加電圧の極性は同一にしたまま2段階にしても良い。例えば、調光粒子31を素早く移動させるために高い電圧100Vで第2電極21まで移動させ、移動後は低い電圧50Vで調光粒子31の配向状態を保つといった駆動も可能である。また複数段階、スロープ状などの波形も適用が可能である。 The drive circuit 200 applies a DC voltage between the first electrode 11 and the second electrode 21 so that the potential on the second electrode 21 side is higher than the first electrode 11, whereby the dimming particles 31 that are negatively charged are The second electrode 21 moves while being oriented so as to be perpendicular to the in-plane direction of the second substrate 20, and the orientation is maintained on the second electrode 21. In this state, the light incident on the light control element 100 is not easily absorbed by the light control particles 31 and is in a transmission state (FIG. 5). The DC voltage here depends on the distance between the first electrode 11 and the second electrode 21, but is approximately 5 V <V <300 V, and the electric field strength E is 0.1 × 10 6 V / m <E <1 × 10 7. A range of V / m is preferred. Further, the polarity of the applied voltage may be made two steps while keeping the same polarity. For example, in order to quickly move the light control particles 31, it is possible to drive the light control particles 31 to the second electrode 21 at a high voltage of 100V, and to keep the alignment state of the light control particles 31 at a low voltage of 50V after the movement. In addition, a waveform having a plurality of steps and a slope shape can be applied.
駆動回路200により前述の直流電圧印加とは逆極性となるように、すなわち、第1電極11および第2電極21間に第2電極21より第1電極11側の電位が高くなるように直流電圧を印加することで、負に帯電した調光粒子31が第1電極11側に移動し第1凹凸形状12に達する。第1凹凸形状12に達した調光粒子31は、なおも電位差により下向きの力を受けるため、第1凹凸形状12の斜面(テーパー部)で第1基板10に垂直な配向状態を保つことができず、調光粒子31が斜面で倒れ第1凹凸形状12上でランダム状態となる。この状態では、調光素子100に入射した光を調光粒子31が吸収する遮光状態となる(図6)。ここでいう直流電圧は、第1電極11と第2電極21間の距離に依存するが概ね5V<V<300V、電界強度Eは0.1×106V/m<E<1×107V/mの範囲が好適である。また、印加電圧の極性は同一にしたまま2段階にしても良い。例えば調光粒子31を素早く移動させるために高い電圧100Vで第1電極11上の第1凹凸形状12まで移動させ、第1凹凸形状12の凹凸形状により調光粒子31の配向を乱し、移動後は低い電圧50Vで調光粒子31の配向を乱した状態を保つといった駆動も可能である。また、波形を複数段階にする、スロープ状にした場合なども適用が可能である。 The DC voltage is applied so that the drive circuit 200 has a polarity opposite to that of the above-described DC voltage application, that is, the potential on the first electrode 11 side is higher than the second electrode 21 between the first electrode 11 and the second electrode 21. Is applied, the negatively charged light control particles 31 move to the first electrode 11 side and reach the first uneven shape 12. Since the light control particles 31 that have reached the first uneven shape 12 still receive a downward force due to the potential difference, the inclined state (tapered portion) of the first uneven shape 12 can maintain an alignment state perpendicular to the first substrate 10. The light control particle 31 falls on the slope and becomes a random state on the first concavo-convex shape 12. In this state, the light control particle 31 absorbs the light incident on the light control element 100 (FIG. 6). The DC voltage here depends on the distance between the first electrode 11 and the second electrode 21, but is approximately 5 V <V <300 V, and the electric field strength E is 0.1 × 10 6 V / m <E <1 × 10 7. A range of V / m is preferred. Further, the polarity of the applied voltage may be made two steps while keeping the same polarity. For example, in order to quickly move the light control particles 31, the light is moved to the first uneven shape 12 on the first electrode 11 with a high voltage of 100 V, and the alignment of the light control particles 31 is disturbed by the uneven shape of the first uneven shape 12. After that, it is possible to drive such that the orientation of the light control particles 31 is disturbed at a low voltage of 50V. Further, the present invention can be applied to a case where the waveform is formed in a plurality of stages or in a slope shape.
一旦、調光粒子31が第1凹凸形状12に到達した後は、電圧印加を止めることで第1凹凸形状12上からブラウン運動などで拡散していくが、その際も調光粒子31はランダムな状態となるので遮光状態となる(図1)。一方、前述の透過状態や中間状態から電圧の印加を止めると調光粒子31がブラウン運動などで拡散し、遮光状態(図1)へ戻る。 Once the light control particles 31 reach the first concave / convex shape 12, the voltage application is stopped to diffuse from the top of the first concave / convex shape 12 by Brownian motion or the like. Therefore, the light is blocked (FIG. 1). On the other hand, when the application of voltage is stopped from the above-described transmission state or intermediate state, the light control particles 31 diffuse due to Brownian motion or the like, and return to the light shielding state (FIG. 1).
以上の様に本実施例では、交流電圧、および直流電圧をとった複数の駆動波形により透過状態、中間状態および遮光状態をとることができる調光装置およびその駆動方法を提供できる。これにより、直流電圧のみ供給する駆動回路や、交流電圧のみを供給する駆動回路や何れも供給可能な駆動回路など多種の駆動回路に対して、同一の調光素子にて調光動作が可能となる。 As described above, in this embodiment, it is possible to provide a light control device capable of taking a transmission state, an intermediate state, and a light shielding state by a plurality of drive waveforms taking an AC voltage and a DC voltage, and a driving method thereof. As a result, dimming operation can be performed with the same dimming element for various driving circuits such as a driving circuit that supplies only a DC voltage, a driving circuit that supplies only an AC voltage, or a driving circuit that can supply both. Become.
また、さらに本実施例の調光装置では、直流電圧を印加することによって調光粒子31を第1凹凸形状12上へ移動させて遮光状態にさせることが可能であるため、ブラウン運動などによる調光粒子31の拡散を待って遮光状態にする場合と比較すると、より高速に透過状態あるいは中間状態から遮光状態へ調光することができる。 Further, in the light control device of this embodiment, it is possible to move the light control particles 31 onto the first concavo-convex shape 12 by applying a DC voltage so as to be in a light-shielded state. Compared with the case of waiting for the diffusion of the light particles 31 to be in the light shielding state, the light can be adjusted from the transmission state or the intermediate state to the light shielding state at a higher speed.
本実施例の調光装置は前述の部材以外にも、以下の部材を適宜利用することも可能である。 In addition to the above-described members, the light control device of the present embodiment can appropriately use the following members.
第1基板10、第2基板20は少なくとも可視光の一部の波長を透過する基板であり、各種ガラスや石英などの透明な無機の基板やポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)等の透明な樹脂基板が利用可能である。また、用途に応じて着色された基板や、散乱性を持つ基板も利用可能である。また、第1基板10もしくは第2基板20の何れか一方に可視光を反射する基板あるいは反射する層を設けた基板を用いることで、反射状態と遮光状態で光変調できる調光装置も形成可能である。 The first substrate 10 and the second substrate 20 are substrates that transmit at least some wavelengths of visible light, such as transparent inorganic substrates such as various types of glass and quartz, polyethylene terephthalate (PET), polycarbonate (PC), and cycloolefin. A transparent resin substrate such as a polymer (COP) can be used. Moreover, the board | substrate colored according to the use and the board | substrate with a scattering property can also be utilized. In addition, by using a substrate that reflects visible light or a layer that reflects light on either the first substrate 10 or the second substrate 20, it is possible to form a light control device that can perform light modulation in a reflective state and a light-shielded state. It is.
第1電極11、第1電極接続部11a、第2電極21、第2電極接続部21aは前述の第1基板10および第2基板20上に形成される電極であり、少なくとも可視光の一部の波長を透過する、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化スズ、酸化亜鉛やカーボンナノチューブ、グラフェン等が利用可能である。また、銀などの金属や各種導電体をナノワイヤー化して、樹脂中に分散させ、透明電極としたものを用いても良い。本実施例では透明電極はベタ状にして第1基板10や第2基板20上に一面に形成しているが、これに限らず円などの模様や文字型に配設しても構わない。また、配線自体が銅、クロム、Ag、アルミや各種金属など可視光を透過しない場合においても、電極を櫛歯状にして、かつその櫛歯状の各配線幅を狭くし、配線による遮光率を少なくすることで利用することも可能である。また、第1電極11、第2電極21と第1電極接続部11a、第2電極接続部21aとで材質を変える等複数の材質を使い分けて利用してもよい。 The first electrode 11, the first electrode connecting portion 11a, the second electrode 21, and the second electrode connecting portion 21a are electrodes formed on the first substrate 10 and the second substrate 20, and at least a part of visible light. Indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, carbon nanotubes, graphene, and the like that can transmit the above wavelengths can be used. Further, a metal such as silver or various conductors may be converted into nanowires and dispersed in a resin to form a transparent electrode. In this embodiment, the transparent electrode is formed in a solid shape on the first substrate 10 or the second substrate 20, but the transparent electrode is not limited to this and may be arranged in a pattern such as a circle or a character type. Even when the wiring itself does not transmit visible light, such as copper, chromium, Ag, aluminum, and various metals, the electrodes are comb-shaped and the width of each of the comb-shaped wirings is reduced to reduce the light shielding rate by the wiring. It is also possible to use it by reducing the number. Also, a plurality of materials such as changing the material between the first electrode 11, the second electrode 21, the first electrode connecting portion 11a, and the second electrode connecting portion 21a may be used.
スペーサビーズはガラスやポリマーなどが挙げられ、接着材に対して安定であることが望ましい。なお、懸濁液充填空間及び両基板間の距離は4μm以上150μm以下が透過率や駆動電圧の観点から好適である。また、スペーサビーズを第1基板10と第2基板20との間に散布し、懸濁液充填空間を維持しても構わない。スペーサビーズを第1基板10と第2基板20との間に散布する場合、スペーサビーズの屈折率は分散媒30の屈折率が近い方が屈折率差によるスペーサビーズの散乱が起こらず好ましい。好ましいスペーサビーズの屈折率と分散媒30の屈折率の差はΔn<0.2、より好ましくはΔn<0.1である。 Examples of the spacer beads include glass and polymer, and it is desirable that the spacer beads are stable with respect to the adhesive. The distance between the suspension filling space and the two substrates is preferably 4 μm or more and 150 μm or less from the viewpoint of transmittance and driving voltage. Alternatively, spacer beads may be dispersed between the first substrate 10 and the second substrate 20 to maintain the suspension filling space. When the spacer beads are scattered between the first substrate 10 and the second substrate 20, it is preferable that the spacer beads have a refractive index close to that of the dispersion medium 30 because the spacer beads are not scattered due to the difference in refractive index. The difference between the refractive index of the preferred spacer beads and the refractive index of the dispersion medium 30 is Δn <0.2, more preferably Δn <0.1.
懸濁液32は調光粒子31が分散媒30に分散されたものであり、第1基板10と第2基板20間で形成される懸濁液充填空間を満たしている。本実施例では毛細管現象により懸濁液32を充填したが、懸濁液32を第1基板10と第2基板20を接着する前にバーコート法や真空下での滴下注入法(ODF)法などで塗布し、その後に第1基板10と第2基板20を貼り合わせて接着と封止をしても構わない。 The suspension 32 is obtained by dispersing the light control particles 31 in the dispersion medium 30 and fills the suspension filling space formed between the first substrate 10 and the second substrate 20. In this embodiment, the suspension 32 is filled by a capillary phenomenon, but before the first substrate 10 and the second substrate 20 are bonded to each other, the bar coating method or the dropping injection method (ODF) method under vacuum is used. The first substrate 10 and the second substrate 20 may be bonded to each other and bonded and sealed.
調光粒子31は、例えば、ポリ過ヨウ化物であり、形状に異方性があり、配向方向に起因して吸光度の異なる光学的異方性を発現し、アスペクト比が1ではない形状をしている。調光粒子31を合成する過程において、粒子サイズの均一性を上げるためニトロセルロース等を加えても良い。このような調光粒子31は電圧印加により動作を制御可能であること、すなわち、ある周波数範囲の交流電圧の印加において、調光粒子31が配向を生じ、かつある直流電圧の印加において一方向に移動する(正あるいは負に帯電している)ことが望ましい。調光粒子31として導電性の低い誘電体材料を用いることが望ましい。導電性の低い誘電体材料としてはポリマー粒子、ポリマーでコートした粒子などが挙げられる。 The light control particles 31 are, for example, polyperiodide, have anisotropy in shape, exhibit optical anisotropy having different absorbance due to the orientation direction, and have a shape in which the aspect ratio is not 1. ing. In the process of synthesizing the light control particles 31, nitrocellulose or the like may be added to increase the uniformity of the particle size. The operation of such a light control particle 31 can be controlled by applying a voltage, that is, the light control particle 31 is oriented in application of an AC voltage in a certain frequency range, and is unidirectional in application of a DC voltage. It is desirable to move (positively or negatively charged). It is desirable to use a dielectric material with low conductivity as the light control particles 31. Examples of the dielectric material having low conductivity include polymer particles and particles coated with a polymer.
調光粒子31の形状として、棒状や板状などが考えられる。特に、調光粒子31を棒状とすることで、電界に対する粒子回転運動の抵抗や透過時のヘイズの上昇を抑制できる。この時の調光粒子31の短軸と長軸のアスペクト比は、例えば、5以上30以下程度が望ましい。アスペクト比を5以上とすることにより、調光粒子31の形状に起因する光学的異方性を発現できる。 The shape of the light control particle 31 may be a rod shape or a plate shape. In particular, by making the light control particles 31 into a rod shape, it is possible to suppress the resistance of the particle rotational motion to the electric field and the increase in haze during transmission. At this time, the aspect ratio of the minor axis to the major axis of the light control particles 31 is preferably about 5 or more and 30 or less, for example. By setting the aspect ratio to 5 or more, optical anisotropy due to the shape of the light control particles 31 can be expressed.
調光粒子31が棒状や板状である場合、調光粒子31の長軸の大きさは1μm以下であることが好ましく、0.1μm以上1μm以下であることがより好ましく、0.1μm以上0.5μm以下であることがさらに好ましい。調光粒子31の長軸の大きさが1μmを超える場合には、光散乱が生じたり、電界が印加された場合に分散媒30中での配向運動が低下したりするなど、透明性が低下する問題が発生することがあるためである。なお、調光粒子31の大きさは、電子顕微鏡観察等により計測される。 When the light control particles 31 are rod-shaped or plate-shaped, the size of the long axis of the light control particles 31 is preferably 1 μm or less, more preferably 0.1 μm to 1 μm, and more preferably 0.1 μm to 0 μm. More preferably, it is 0.5 μm or less. If the size of the long axis of the light control particle 31 exceeds 1 μm, light scattering occurs, and the orientation movement in the dispersion medium 30 decreases when an electric field is applied. This is because problems may occur. In addition, the magnitude | size of the light control particle 31 is measured by electron microscope observation etc.
調光粒子31の材質は、上記のポリヨウ化物以外に、カーボンブラックなどの炭素系材料、銅、ニッケル、鉄、コバルト、クロム、チタン、アルミニウムなどの金属材料、窒化ケイ素、窒化チタン、酸化アルミニウムなどの無機化合物を主原料とした粒子であっても構わない。これらの材料にポリマー等で表面コートあるいは表面処理し、前述の配向や帯電の機能を付与した調光粒子として利用可能である。調光粒子31として、上記の材料が一種類のみ含まれていても良く、上記の材料が二種類以上含まれていても構わない。 In addition to the above polyiodide, the light control particles 31 are made of carbon-based materials such as carbon black, metal materials such as copper, nickel, iron, cobalt, chromium, titanium, and aluminum, silicon nitride, titanium nitride, and aluminum oxide. It is also possible to use particles made mainly of these inorganic compounds. These materials can be used as light-controlling particles obtained by surface-coating or surface-treating with a polymer or the like and imparting the aforementioned orientation and charging functions. As the light control particles 31, only one type of the above material may be included, or two or more types of the above materials may be included.
分散媒30として、アクリル酸エステルオリゴマーからなる液状共重合体、ポリシロキサン(シリコーンオイル)などが挙げられる。また、これら複数の材料をブレンドし、粘度調整や信頼性を高めた分散媒も利用可能である。調光粒子31が浮遊、動作可能な粘度であり、高抵抗で、第1基板10、第2基板20、第1電極11、第2電極21とは親和性がなく、かつこれらに屈折率が近く、調光粒子31と誘電率が異なる液状共重合体を使用することが好ましい。具体的には、温度298Kにおいて、分散媒30の抵抗率が1012Ωm以上1015Ωm以下であることが望ましい。分散媒30と調光粒子31に誘電率差があると、調光粒子31の配向動作において交流電界下における配向の駆動力として作用させることができる。分散媒30の比誘電率は3.0以上5.0以下とすることが好ましい。 Examples of the dispersion medium 30 include a liquid copolymer composed of an acrylate oligomer, polysiloxane (silicone oil), and the like. Also, a dispersion medium in which a plurality of these materials are blended to improve viscosity adjustment and reliability can be used. The light control particles 31 have a floating and operable viscosity, high resistance, no affinity with the first substrate 10, the second substrate 20, the first electrode 11, and the second electrode 21, and the refractive index thereof. Nearly, it is preferable to use a liquid copolymer having a dielectric constant different from that of the light control particles 31. Specifically, it is desirable that the resistivity of the dispersion medium 30 is 10 12 Ωm or more and 10 15 Ωm or less at a temperature of 298K. When there is a dielectric constant difference between the dispersion medium 30 and the light control particles 31, the light control particles 31 can act as a driving force for alignment under an alternating electric field in the alignment operation. The relative dielectric constant of the dispersion medium 30 is preferably 3.0 or more and 5.0 or less.
第1凹凸形状12は、少なくとも可視光の一部の波長を透過する材質であり、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、アクリル、エポキシ、シクロオレフィンポリマー(COP)等の透明な樹脂材料や各種ガラスや石英などを任意の成型、加工方法で第1基板10上に成型あるいは後から張り合わせることで利用可能である。特に、UV硬化型や熱硬化型の樹脂を第1基板10上に塗布し、金型等の型を押しあてながら硬化し、第1凹凸形状12を第1基板10上に一括成型するとプロセスの簡易化の観点から好適である。 The first concavo-convex shape 12 is a material that transmits at least a part of the wavelength of visible light, and includes a transparent resin material such as polyethylene terephthalate (PET), polycarbonate (PC), acrylic, epoxy, and cycloolefin polymer (COP). Various types of glass, quartz, etc. can be used by molding on the first substrate 10 by any molding or processing method or pasting them together. In particular, a UV curable resin or a thermosetting resin is applied onto the first substrate 10, cured while pressing a mold such as a mold, and the first concavo-convex shape 12 is collectively formed on the first substrate 10. This is preferable from the viewpoint of simplification.
また、第1基板10の第1電極11側にあらかじめ凹凸形状を施し(図7(a))その凹凸形状に沿って第1電極11を形成して第1凹凸形状12としても良い。図7(a)のように第1凹凸形状12を形成することにより、凹凸構造形成のための部材の種類を減らせる。また、平坦な第1基板10の上に凹凸形状を有する第1電極11を形成し第1凹凸形状12と兼ねても良い(図7(b))。図7(b)のように第1電極11が第1凹凸形状12を兼ねることにより、凹凸構造形成のための部材の種類を減らせる。第1凹凸形状12は、図8(a)に示すようにほぼ等方のお椀状、図8(b)に示す1方向に長いお椀状、あるいは図8(c)に示す溝形状でもよい。また、これらは周期的に配列されていても良いし、サイズや形状が異なる凹凸がランダムに配置されていてもよい。図8(b)のようなお椀状は略等方であるため、あらゆる方向に粒子が倒れ、遮光性が良い。 Alternatively, an uneven shape may be provided in advance on the first electrode 11 side of the first substrate 10 (FIG. 7A), and the first electrode 11 may be formed along the uneven shape to obtain the first uneven shape 12. By forming the first concavo-convex shape 12 as shown in FIG. 7A, the types of members for forming the concavo-convex structure can be reduced. Moreover, the 1st electrode 11 which has uneven | corrugated shape may be formed on the flat 1st board | substrate 10, and you may serve as the 1st uneven | corrugated shape 12 (FIG.7 (b)). As shown in FIG. 7B, the first electrode 11 also serves as the first concavo-convex shape 12, whereby the types of members for forming the concavo-convex structure can be reduced. The first concavo-convex shape 12 may be a substantially isotropic bowl shape as shown in FIG. 8A, a bowl shape long in one direction as shown in FIG. 8B, or a groove shape as shown in FIG. 8C. Moreover, these may be arranged periodically and the unevenness | corrugation from which a size and a shape differ may be arrange | positioned at random. Since the bowl shape as shown in FIG. 8B is substantially isotropic, the particles fall down in all directions, and the light shielding property is good.
また、本実施例の第1凹凸形状12は調光粒子31の配向を解消するための図9(a)、図9(b)、図9(c)のようなテーパー部120が必要である。テーパー部120として、各凹凸形状の開口部の最短距離で基板に垂直に切断した際の断面形状が図9(a)に示すような円弧、楕円、放物線などの各種曲線や、図9(b)に示すようなV字形状や、図9(c)に示すような複数の頂点を持つ線、あるいはこれらを任意に組み合わせた形状などが挙げられる。テーパー部120とは、第1凹凸形状12の断面におけるある接線が第1基板10とのなす角度が少なくとも0°<θ<90°の範囲の角度を有することである。 Further, the first concavo-convex shape 12 of this embodiment requires a tapered portion 120 as shown in FIGS. 9A, 9B, and 9C for eliminating the orientation of the light control particles 31. FIG. . As the taper portion 120, the cross-sectional shape when cut perpendicularly to the substrate at the shortest distance of each concavo-convex opening is various curves such as an arc, an ellipse, and a parabola as shown in FIG. ), A line having a plurality of vertices as shown in FIG. 9C, or a combination of these arbitrarily. The taper portion 120 is that an angle between a tangent line in the cross section of the first concavo-convex shape 12 and the first substrate 10 has an angle in a range of at least 0 ° <θ <90 °.
また、第1凹凸形状12のサイズが調光粒子31の長軸方向の長さと比較して大きいと、直流電圧印加により第1凹凸形状12に移動してきた調光粒子31が、第1凹凸形状12の凹部の底にたまり第1凹凸形状12の凸部近傍には調光粒子31がほとんどない状態、すなわち遮光性が落ちる状態となる。そのため、調光粒子31の長軸方向の長さをlとした時の第1凹凸形状12の断面形状の深さdは0.1l<d<20l、より好ましくは0.5l<d<3l、第1凹凸形状12の断面形状の開口の短軸方向をwとすると、w<20l、より好ましくはw<6lであることが望ましい。第1凹凸形状12の断面形状の接線と第1基板10面とのなす角度の最大値をθmaxとすると、20°<θmax≦90°、より好ましくは45°<θmax≦90°であると、調光粒子31がテーパー部120で倒れやすく良好な遮光状態が得られる。 In addition, when the size of the first uneven shape 12 is larger than the length of the light control particle 31 in the major axis direction, the light control particle 31 that has moved to the first uneven shape 12 by applying a DC voltage is converted into the first uneven shape. In the vicinity of the convex portions of the first concave-convex shape 12, the light-controlling particles 31 are almost absent, that is, the light-shielding property is lowered. Therefore, the depth d of the cross-sectional shape of the first concavo-convex shape 12 when the length of the light control particle 31 in the major axis direction is l is 0.1 l <d <20 l, more preferably 0.5 l <d <3 l. When the short axis direction of the opening having the cross-sectional shape of the first concavo-convex shape 12 is w, it is desirable that w <20 l, more preferably w <6 l. Assuming that the maximum value of the angle formed between the tangent to the first concavo-convex shape 12 and the surface of the first substrate 10 is θmax, 20 ° <θmax ≦ 90 °, more preferably 45 ° <θmax ≦ 90 °, The light control particles 31 easily fall down at the tapered portion 120, and a good light shielding state is obtained.
また、ここで用いる第1凹凸形状12の材質は分散媒30と屈折率が近いほど界面による散乱が起こりにくく好適である。好ましい第1凹凸形状12の屈折率と分散媒30の屈折率との屈折率差ΔnはΔn<0.2、より好ましくはΔn<0.1である。樹脂材料をベースとした材質の方が分散媒30と屈折率を合わせやすい。また、樹脂材料で第1凹凸形状12を形成することで第1電極11を懸濁液32に直接触れさせず、電圧印加時の電極―懸濁液界面での電気化学反応などに起因する劣化を抑えるという利点もある。 Further, the material of the first concavo-convex shape 12 used here is suitable as the dispersion medium 30 is closer to the refractive index, and the scattering by the interface is less likely to occur. The refractive index difference Δn between the refractive index of the first uneven shape 12 and the refractive index of the dispersion medium 30 is Δn <0.2, more preferably Δn <0.1. The material based on the resin material is easier to match the refractive index with the dispersion medium 30. Further, by forming the first concavo-convex shape 12 with a resin material, the first electrode 11 is not directly brought into contact with the suspension 32, but is deteriorated due to an electrochemical reaction at the electrode-suspension interface during voltage application. There is also an advantage of suppressing.
図10、図11は一実施形態の調光装置の概略図であり、隔壁33が第1基板10および第2基板20間に配置され、懸濁液32が隔壁33により小分けにされている以外は前述の実施例と同様である。図10において、懸濁液32を小分けにするために、隔壁33は第2電極21に接するように構成されている。 10 and 11 are schematic views of the light control device according to the embodiment, except that the partition wall 33 is disposed between the first substrate 10 and the second substrate 20, and the suspension 32 is subdivided by the partition wall 33. Is the same as in the previous embodiment. In FIG. 10, the partition 33 is configured to contact the second electrode 21 in order to divide the suspension 32 into small portions.
本実施例では、前述の効果の他に、隔壁33により懸濁液32が小分けにされているために、調光素子100内での調光粒子31の偏りを抑え、より面内の透過率分布が均一である調光装置を提供できる。また、隔壁33により懸濁液32が小分けにされていることで、調光素子100を任意に切断した際の懸濁液32の流出量をごく少量に制限できる。そのため、特に、第1基板10および第2基板20にPETなどの樹脂基板を利用する場合、調光素子100を利用したいサイズに合わせて切断加工することができる。また、隔壁33を設けることで調光素子100をより丈夫な構造にすることできる。 In the present embodiment, in addition to the above-described effects, the suspension 32 is subdivided by the partition wall 33. Therefore, the bias of the light control particles 31 in the light control element 100 is suppressed, and the in-plane transmittance is further increased. A light control device having a uniform distribution can be provided. Further, since the suspension 32 is subdivided by the partition wall 33, the outflow amount of the suspension 32 when the dimming element 100 is arbitrarily cut can be limited to a very small amount. Therefore, especially when using resin substrates, such as PET, for the 1st board | substrate 10 and the 2nd board | substrate 20, it can cut according to the size which the light control element 100 wants to utilize. Moreover, the light control element 100 can be made to have a more durable structure by providing the partition wall 33.
隔壁33の形状は、第1基板10の面内法線方向からみると、例えば図11(a)に示す四角形状や図11(b)に示すような直線形状(溝形状)や図11(c)に示すような六角形状などである。隔壁33の形状を図11(b)に示すような直線形状とすることにより、調光粒子31が動ける面積が大きく、遮光時と透過時の差を大きくとれ、開口率を広くとれる。隔壁33の形状を図11(c)に示すような六角形状とすることにより、調光素子100をより丈夫な構造にすることできる。隔壁33の形状は、これらに限定されるものではなく、ランダムの形状であっても同様の効果を得ることができる。隣り合う隔壁33の表面から表面までの距離は20μm以上500μm以下が好ましく、隔壁33の幅は50μm以下、より好ましくは20μm以下である。特に、図11に示したように、第1基板10の面内法線方向から見た際の隔壁33以外の部分が、調光粒子31を調光動作する領域となるため、第1基板10の面内法線方向から見た際の第1基板10または第2基板20の面積に対する隔壁33の面積比をより小さくした方が好ましい。例えば、隔壁33の面積比は50%以下とすることが望ましい。 When viewed from the in-plane normal direction of the first substrate 10, the shape of the partition wall 33 is, for example, a quadrangular shape shown in FIG. 11A, a linear shape (groove shape) as shown in FIG. Hexagonal shape as shown in c). By making the shape of the partition wall 33 into a linear shape as shown in FIG. 11B, the area in which the light control particles 31 can move is large, the difference between light shielding and transmission can be made large, and the aperture ratio can be widened. By making the shape of the partition wall 33 a hexagonal shape as shown in FIG. 11C, the light control element 100 can be made to have a more durable structure. The shape of the partition 33 is not limited to these, and the same effect can be acquired even if it is a random shape. The distance from the surface of the adjacent partition wall 33 to the surface is preferably 20 μm or more and 500 μm or less, and the width of the partition wall 33 is 50 μm or less, more preferably 20 μm or less. In particular, as shown in FIG. 11, the portion other than the partition wall 33 when viewed from the in-plane normal direction of the first substrate 10 is a region in which the dimming particles 31 are dimmed. It is preferable that the area ratio of the partition wall 33 to the area of the first substrate 10 or the second substrate 20 when viewed from the in-plane normal direction is smaller. For example, the area ratio of the partition wall 33 is desirably 50% or less.
隔壁33として、例えばガラスやポリマーからなる透明な絶縁性の誘電体材料が挙げられ、他の構成材料に対して安定で有ることが好ましい。 Examples of the partition wall 33 include a transparent insulating dielectric material made of, for example, glass or polymer, and it is preferable that the partition wall 33 is stable with respect to other constituent materials.
また、分散媒30と隔壁33の屈折率を近づけ、両者の界面での反射を減らすことで隔壁33を目立ちにくくする効果がある。好ましい分散媒30の屈折率と隔壁33の屈折率屈折率差ΔnはΔn<0.2、より好ましくはΔn<0.1である。特に、隔壁33と第1凹凸形状12とを同じ材質にすると、例えば金型などで第1電極11を形成した第1基板10上に第1凹凸形状12と隔壁33を一括で成型でき、製造工程を簡易化できる。この際に、隔壁33が金型から抜けやすいように、第1基板10側の隔壁33の太さを第2基板20側の隔壁33の太さより大きくしてもよい。その後、懸濁液32を隔壁33で小分けされた領域に充填し、第2電極21を形成した第2基板20と貼り合わせることで調光素子100を作製可能である。また、懸濁液32を隔壁33で小分けされたそれぞれの領域に充填後、UV硬化樹脂や光硬化樹脂で封止し、その後、第2基板20と貼り合わせても良い。第1凹凸形状12と隔壁33を別部材としても良い。 Moreover, the refractive index of the dispersion medium 30 and the partition 33 is brought close to each other, and the reflection at the interface between the two is reduced to make the partition 33 less noticeable. The refractive index difference Δn between the preferable dispersion medium 30 and the partition wall 33 is Δn <0.2, more preferably Δn <0.1. In particular, when the partition wall 33 and the first concavo-convex shape 12 are made of the same material, the first concavo-convex shape 12 and the partition wall 33 can be collectively formed on the first substrate 10 on which the first electrode 11 is formed using, for example, a mold. The process can be simplified. At this time, the thickness of the partition wall 33 on the first substrate 10 side may be larger than the thickness of the partition wall 33 on the second substrate 20 side so that the partition wall 33 can be easily removed from the mold. Then, the light control element 100 can be manufactured by filling the suspension 32 into the region subdivided by the partition wall 33 and attaching the suspension 32 to the second substrate 20 on which the second electrode 21 is formed. Alternatively, the suspension 32 may be filled in each region divided by the partition wall 33, sealed with a UV curable resin or a photocurable resin, and then bonded to the second substrate 20. The first uneven shape 12 and the partition wall 33 may be separate members.
また、遮光状態における透過率をより低下させるため、少なくとも隔壁33の頂上部分あるいは全体を黒色に着色、または/および、第1凹凸形状12の凸部または全体を黒色に着色してもよい。第1凹凸形状12や隔壁33の全体が黒色に着色されている場合でも、第1凹凸形状12の凹部の厚さは小さいので光を透過し、第1凹凸形状12の凸部の厚さや隔壁33の厚さは大きいので光を遮ることができる。第1凹凸形状12の凸部や隔壁33上では調光粒子31が乗らない、または、倒れないため、遮光時の透過率をより下げることができる。また、隔壁33または第1凹凸形状12の全体が黒色で着色している場合、隔壁33または第1凹凸形状12を同一材料で一括作製できる。 In order to further reduce the transmittance in the light-shielding state, at least the top portion or the whole of the partition wall 33 may be colored black, and / or the convex portion or the whole of the first uneven shape 12 may be colored black. Even when the first concavo-convex shape 12 and the entire partition 33 are colored black, the thickness of the concave portion of the first concavo-convex shape 12 is small, so that light is transmitted, and the thickness of the convex portion of the first concavo-convex shape 12 and the partition wall Since the thickness of 33 is large, it can block light. Since the light control particles 31 do not get on or fall over the convex portions of the first concavo-convex shape 12 or the partition wall 33, the transmittance during light shielding can be further reduced. Moreover, when the partition 33 or the 1st uneven | corrugated shape 12 whole is colored with black, the partition 33 or the 1st uneven | corrugated shape 12 can be collectively produced with the same material.
また、調光素子100の透過光の色度補正のために他の色に着色したりしても構わない。例えば、遮光状態で青色の光を多く透過するような調光素子100(調光粒子31)を用いた場合には、補色となる黄色の波長を透過する隔壁33を利用することで、遮光状態の青色の光を無彩色に近づけることができる。この場合、隔壁33の頂上部分あるいは全体を調光素子100の遮光時の色の補色に着色、または/および、第1凹凸形状12の凸部または全体を調光素子100の遮光時の色の補色に着色してもよい。調光素子100透過時に完全な無彩色でなければ、第1凹凸形状12のみを遮光時の色の補色に着色にしても良い。 Further, other colors may be used for correcting the chromaticity of the transmitted light of the light control element 100. For example, when the light control element 100 (light control particles 31) that transmits a large amount of blue light in a light-shielded state is used, the light-blocking state is obtained by using a partition wall 33 that transmits a complementary yellow wavelength. The blue light can be brought closer to an achromatic color. In this case, the top part or the whole of the partition wall 33 is colored with a complementary color of the color when the light control element 100 is shielded, or / and the convex part or the whole of the first uneven shape 12 is colored with the light when the light control element 100 is shielded. A complementary color may be used. If the achromatic color is not completely achromatic when transmitted through the light control element 100, only the first uneven shape 12 may be colored to the complementary color of the color at the time of shading.
図12は一実施形態の調光装置の概略図であり、実施例2の小分け構造が積層されている以外は前述の実施例と同様である。図12では第1電極11および第2電極21間に直流電圧印加して得られる遮光状態を表しており、図中矢印は調光素子100に入射した光線を示している。図12において、1層目の隔壁331は第2電極21に接するように構成されており、2層目の隔壁332は1層目の凹凸形状121に接するように構成されている。つまり、複数の凹凸形状である凹凸形状121、凹凸形状122は第1電極11上に積層されている。 FIG. 12 is a schematic view of a light control device according to an embodiment, which is the same as the above-described example except that the subdivision structures of Example 2 are stacked. FIG. 12 shows a light shielding state obtained by applying a DC voltage between the first electrode 11 and the second electrode 21, and an arrow in the figure indicates a light ray incident on the light control element 100. In FIG. 12, the first-layer partition 331 is configured to contact the second electrode 21, and the second-layer partition 332 is configured to contact the first-layer uneven shape 121. That is, the uneven shape 121 and the uneven shape 122 which are a plurality of uneven shapes are stacked on the first electrode 11.
図中の光線(a)の様に1層目の隔壁331に入射した光や、光線(b)の様に1層目の凹凸形状121の凸部に入射した光は、1層目の調光粒子311に吸収されることなく2層目の小分け構造に達するが、本実施例の様に1層目の隔壁331と2層目の隔壁332や、1層目の凹凸形状121の凸部と2層目の凹凸形状122の凸部が第1基板10の面内法線方向から観察した際にずれて配置されることで2層目の調光粒子31によって遮光することができる。すなわち、本実施例では、前述の効果の他に、特に遮光時の凹凸形状の凸部あるいは隔壁を介しての光漏れを防ぐ効果がある。1層目の凹凸形状121の凸部と2層目の凹凸形状122の凸部が、第1基板10の面内方向から観察した際に全てずれて配置されていてもよいし、一部がずれて配置されていてもよい。2層目の調光粒子31による遮光効果を増大させるには、1層目の凹凸形状121の凸部と2層目の凹凸形状122の凸部が、第1基板10の面内方向から観察した際に全てずれて配置されていることが望ましい。 The light incident on the first-layer partition wall 331 as in the light ray (a) in the figure, and the light incident on the convex portion of the first uneven surface 121 as in the light beam (b) The second layer subdivision structure is reached without being absorbed by the light particles 311, but the first layer partition 331 and the second layer partition 332, and the convex portions of the first layer uneven shape 121 as in this embodiment. And the convex part of the uneven | corrugated shape 122 of the 2nd layer can be light-shielded by the light control particle 31 of the 2nd layer because it arrange | positions shifting | deviating when it observes from the in-plane normal line direction of the 1st board | substrate 10. In other words, in this embodiment, in addition to the above-described effects, there is an effect of preventing light leakage particularly through the concavo-convex convex portions or partition walls at the time of light shielding. The convex portions of the first-layer concavo-convex shape 121 and the convex portions of the second-layer concavo-convex shape 122 may all be shifted from each other when observed from the in-plane direction of the first substrate 10, or a part thereof It may be displaced. In order to increase the light shielding effect of the second layer of light control particles 31, the convex portions of the first layer uneven shape 121 and the convex portions of the second layer uneven shape 122 are observed from the in-plane direction of the first substrate 10. In this case, it is desirable that they are all displaced.
また、同様に図13の一実施形態の調光装置の概略図に示すように、隔壁33中に複数の微小の小分け構造を設け、各微小の小分け構造に凹形状123を有する構造としても同様の効果が得られる。微小の小分け構造は規則的にずらしても、ランダムにしても前述と同様に隔壁を介しての光漏れを防ぐ効果がある。また、図示しないが、微小の小分け領域の中に凹形状ではなく複数の凹凸形状を有してもよい。 Similarly, as shown in the schematic diagram of the light control device according to one embodiment of FIG. 13, a structure in which a plurality of minute subdivision structures are provided in the partition wall 33 and each micro subdivision structure has a concave shape 123 is also the same. The effect is obtained. Even if the minute subdivision structure is regularly shifted or random, there is an effect of preventing light leakage through the partition wall as described above. Moreover, although not shown in figure, you may have a some uneven | corrugated shape instead of a concave shape in a minute subdivision area | region.
図14および図15は、一実施形態の調光装置の概略図であり第2電極21が第2基板20上に櫛歯状に形成されている以外は前述の実施例と同様である。 14 and 15 are schematic views of the light control device according to the embodiment, which are the same as those in the above-described example except that the second electrode 21 is formed in a comb shape on the second substrate 20.
本実施例では、駆動回路200により第2電極21の電位が第1電極11の電位より高くなるように電圧を印加すると、図14(a)に示すように、負に帯電した調光粒子31は櫛状の第2電極21に偏在し、透過状態になる。さらに、電圧を非印加としても、調光粒子31と第2電極21との鏡像効果や調光粒子31同士や調光粒子31と第2電極21との分子間力により暫くこの状態を保持する。また、調光粒子31は緩やかに拡散し遮光状態へ移行するが、完全に遮光状態になるまでには時間がかかる。すなわち、本実施例では前述の効果の他に、透過状態を電圧非印加状態でも保持するメモリー性を持つ調光素子を提供できる効果がある。 In this embodiment, when a voltage is applied by the drive circuit 200 so that the potential of the second electrode 21 is higher than the potential of the first electrode 11, as shown in FIG. Are unevenly distributed in the comb-like second electrode 21 and become transparent. Further, even when no voltage is applied, this state is maintained for a while due to the mirror image effect between the light control particles 31 and the second electrode 21 and the intermolecular force between the light control particles 31 and between the light control particles 31 and the second electrode 21. . Moreover, although the light control particle 31 diffuses gently and shifts to a light shielding state, it takes time until it completely enters the light shielding state. That is, in this embodiment, in addition to the above-described effects, there is an effect that it is possible to provide a light control element having a memory property that maintains the transmission state even when no voltage is applied.
また、調光粒子31の拡散速度(直流電圧印加状態から電圧非印加で拡散による遮光への移行速度)は分散媒30の粘度に依存するため、高粘度の分散媒30を利用することで、このメモリー時間を長くすることができる。一方、メモリー時間を長くするための高粘度化は、拡散による遮光状態への移行に時間がかかることを意味するが、本実施例では電圧印加により図14(b)に示すように調光粒子31を第1電極11に向かって泳動させ、かつ第1凹凸形状12のテーパー部によって調光粒子31をランダムに倒した遮光状態へ移行させることが可能である。すなわち、前述の効果の他に、透過状態での長時間のメモリー性と高速遮光を兼ねた調光装置を提供することができる。 In addition, since the diffusion speed of the light control particles 31 (the transition speed from the DC voltage application state to the light shielding by diffusion when no voltage is applied) depends on the viscosity of the dispersion medium 30, by using the dispersion medium 30 having a high viscosity, This memory time can be lengthened. On the other hand, increasing the viscosity to increase the memory time means that it takes time to shift to a light-shielding state by diffusion. In this embodiment, as shown in FIG. 31 can be migrated toward the first electrode 11, and the light control particles 31 can be shifted to a light-shielding state in which the light control particles 31 are randomly tilted by the tapered portion of the first concavo-convex shape 12. In other words, in addition to the above-described effects, it is possible to provide a light control device that has both long-term memory performance in a transmissive state and high-speed light shielding.
櫛歯状の第2電極21の短軸方向の配線幅と隣接する櫛歯状の第2電極21の配線間距離は、調光粒子31を第2電極21上に偏在させた際の透過率に影響し、短軸方向の配線幅は細く、配線間距離は広い方がより高い透過率が得られ好適である。一例を挙げると櫛歯状の第2電極21の配線幅が10μm、配線間隔50μmとすることが好ましい。 The wiring width in the minor axis direction of the comb-shaped second electrode 21 and the inter-wiring distance between adjacent comb-shaped second electrodes 21 are the transmittance when the light control particles 31 are unevenly distributed on the second electrode 21. Therefore, it is preferable that the width of the wiring in the minor axis direction is narrow and the distance between the wirings is wide because higher transmittance is obtained. As an example, it is preferable that the wiring width of the comb-like second electrode 21 is 10 μm and the wiring interval is 50 μm.
また、本実施例は図16の一実施形態の調光装置の概略図に示すように、実施例2の様に隔壁33を有する構造と併せて利用することも可能である。この際には、少なくとも1本以上の櫛歯状の第2電極21が各小分け領域内にあることが好ましい。櫛歯状の第2電極21が、各隔壁33と第2基板20間に間に配置されてもよい(図示せず)。また、ある方向における隔壁33の周期は櫛歯状の第2電極21の各配線の周期の整数倍に成っていてもよい。 In addition, as shown in the schematic diagram of the light control device according to the embodiment of FIG. 16, this example can be used together with the structure having the partition wall 33 as in Example 2. At this time, it is preferable that at least one or more comb-shaped second electrodes 21 are present in each subdivided region. The comb-shaped second electrode 21 may be disposed between each partition wall 33 and the second substrate 20 (not shown). Moreover, the period of the partition 33 in a certain direction may be an integral multiple of the period of each wiring of the comb-shaped second electrode 21.
また、第2電極21をベタ状ではなく櫛歯状とすることで、利用する電極の面積が減らせるため、省資源の効果がある。特に、ITO等に利用されるインジウム等の希少な材料は価格変動も大きいため、これらの使用量削減は望まれている。 Moreover, since the area of the electrode to be utilized can be reduced by making the 2nd electrode 21 into a comb-tooth shape instead of a solid shape, there exists a resource-saving effect. In particular, since rare materials such as indium used for ITO or the like have a large price fluctuation, reduction of the amount of use thereof is desired.
図17は一実施形態の調光装置の概略図であり、第2電極21上に第2凹凸形状22を設けた以外は前述の実施例と同様である。 FIG. 17 is a schematic view of a light control device according to an embodiment, which is the same as the above-described example except that the second uneven shape 22 is provided on the second electrode 21.
本実施例では透過状態は駆動回路200からの交流駆動で得られる。一方、遮光状態は直流駆動によって、第1凹凸形状12あるいは第2凹凸形状22の何れかに調光粒子31を泳動させることで得ることができる。そのため、前述の効果の他に、駆動回路200から調光素子100を透過状態や遮光状態にする際の電圧印加の極性を考慮せずに利用可能な調光装置を提供できる。第2凹凸形状22を第1凹凸形状12と同じように、図7、図8、図9のような形状にしても良い。 In the present embodiment, the transmission state is obtained by AC driving from the driving circuit 200. On the other hand, the light shielding state can be obtained by causing the light control particles 31 to migrate to either the first uneven shape 12 or the second uneven shape 22 by direct current drive. Therefore, in addition to the effects described above, it is possible to provide a dimming device that can be used without considering the polarity of voltage application when the dimming element 100 is switched from the drive circuit 200 to the transmission state or the light shielding state. Similarly to the first uneven shape 12, the second uneven shape 22 may be formed as shown in FIGS.
また、本実施例の調光装置では、駆動回路200により遮光状態にするために直流電圧を印加する際に第1凹凸形状12側に調光粒子31を移動させる場合と、第2凹凸形状22側に調光粒子31を移動させる場合を交互にすることも可能なので、懸濁液32中に含まれる正負の不純物イオン等が、第1電極11や第2電極21に偏るのを防ぎ、電極間の電圧降下を防ぐことができる。また、一方向に電圧を印加し続けることに起因した、電気化学反応などによる電極の溶出や電極のマイグレーションなど不具合の要因を低減する効果がある。 Further, in the light control device according to the present embodiment, the light control particles 31 are moved to the first concavo-convex shape 12 side when the DC voltage is applied to make the drive circuit 200 shield the light, and the second concavo-convex shape 22 is used. Since it is also possible to alternate the case where the light control particles 31 are moved to the side, the positive and negative impurity ions contained in the suspension 32 are prevented from being biased to the first electrode 11 and the second electrode 21, and the electrode It is possible to prevent a voltage drop between them. In addition, there is an effect of reducing the causes of defects such as electrode elution due to electrochemical reaction and electrode migration caused by continuing to apply a voltage in one direction.
さらに、図18の一実施形態の調光装置の概略図に示すように、第2凹凸形状22の一部を平坦にしておくことで、第2凹凸形状22側へ調光粒子31を移動させた際の平坦部では調光粒子31は第2電極21に対して垂直に配向し部分的に透過状態になり、第2凹凸形状22の凹部では調光粒子31は倒れて部分的に遮光状態となるため、全体として透過状態と遮光状態の中間状態をとることができる。すなわち、前述の効果の他に、直流電圧により調光素子を遮光状態と中間状態に駆動可能な調光装置を提供できる。また、本実施例の様に第2凹凸形状22に平坦部を設ける以外にもテーパー部の角度や形状により、中間状態となるように調整することも可能である。上記の効果を得るために第1凹凸形状12の一部を平坦にしてもよく、第1凹凸形状12の一部および第2凹凸形状22の一部の両方とも一部を平坦にしてもよい。 Furthermore, as shown in the schematic diagram of the light control device of one embodiment of FIG. 18, the light control particles 31 are moved to the second uneven shape 22 side by keeping a part of the second uneven shape 22 flat. In the flat portion, the light control particles 31 are oriented perpendicularly to the second electrode 21 and are partially transmissive, and in the recesses of the second concavo-convex shape 22, the light control particles 31 are tilted and partially light shielded. Therefore, the intermediate state between the transmission state and the light shielding state can be taken as a whole. That is, in addition to the effects described above, it is possible to provide a light control device that can drive the light control element to a light shielding state and an intermediate state with a DC voltage. In addition to providing a flat portion on the second uneven shape 22 as in the present embodiment, it is also possible to adjust the taper portion to an intermediate state according to the angle and shape of the tapered portion. In order to obtain the above effect, a part of the first uneven shape 12 may be flattened, and a part of both the first uneven shape 12 and the second uneven shape 22 may be flattened. .
10 第1基板
11 第1電極
11a 第1電極接続部
12 第1凹凸形状
20 第2基板
21 第2電極
21a 第2電極接続部
22 第2凹凸形状
30 分散媒
31 調光粒子
32 懸濁液
33 隔壁
100 調光素子
120 テーパー部
200 駆動回路
1000 調光装置
DESCRIPTION OF SYMBOLS 10 1st board | substrate 11 1st electrode 11a 1st electrode connection part 12 1st uneven | corrugated shape 20 2nd board | substrate 21 2nd electrode 21a 2nd electrode connection part 22 2nd uneven | corrugated shape 30 Dispersion medium 31 Light control particle 32 Suspension 33 Partition 100 Light control element 120 Taper part 200 Drive circuit 1000 Light control device
Claims (19)
前記第1基板上であり、前記第1基板および前記第2基板の間に形成された第1電極と、
前記第2基板上であり、前記第1基板および前記第2基板の間に形成された第2電極と、
前記第1電極および前記第2電極の間に形成された懸濁液と、
前記第1基板および前記懸濁液の間に形成された第1凹凸形状と、を備え、
前記懸濁液は、調光粒子および分散媒を含み、
前記第1電極および前記第2電極に電圧が印加されることにより前記調光粒子が制御され、
前記第1凹凸形状はテーパー形状を有し、
前記調光粒子は棒状であり、
前記調光粒子のアスペクト比は5以上30以下であり、
前記第1凹凸形状に達した前記調光粒子は、前記第1凹凸形状の斜面で倒れ、前記第1凹凸形状上でランダム状態となる調光素子。 A first substrate and a second substrate;
A first electrode on the first substrate and formed between the first substrate and the second substrate;
A second electrode on the second substrate and formed between the first substrate and the second substrate;
A suspension formed between the first electrode and the second electrode;
A first concavo-convex shape formed between the first substrate and the suspension,
The suspension includes light control particles and a dispersion medium,
The dimming particles are controlled by applying a voltage to the first electrode and the second electrode,
The first uneven shape have a tapered shape,
The light control particles are rod-shaped,
The aspect ratio of the light control particles is 5 or more and 30 or less,
The light modulating element that reaches the first uneven shape falls on the slope of the first uneven shape, and becomes a random state on the first uneven shape .
前記第1基板と前記第2基板の間に隔壁が形成され、
前記懸濁液が前記隔壁により小分けにされている調光素子。 In claim 1,
A partition is formed between the first substrate and the second substrate,
A light control element in which the suspension is subdivided by the partition walls.
前記懸濁液と前記第2基板との間に第2凹凸形状が形成され、
前記第2凹凸形状はテーパー形状を有する調光素子。 In any one of Claims 1 thru | or 2.
A second uneven shape is formed between the suspension and the second substrate,
The dimming element in which the second concavo-convex shape has a tapered shape.
前記第1凹凸形状は樹脂材料で形成されている調光素子。 In any one of Claims 1 thru | or 2 .
The first uneven shape is a light control element formed of a resin material.
前記第1凹凸形状または前記第2凹凸形状は樹脂材料で形成されている調光素子。The light control element in which said 1st uneven | corrugated shape or said 2nd uneven | corrugated shape is formed with the resin material.
前記第1基板の面内法線方向から観察した際に、前記第2凹凸形状の凸部位置と前記第1凹凸形状の凸部位置がずれている箇所がある調光素子。 In claim 3 or 5 ,
A dimming element having a portion where a position of the convex portion of the second concavo-convex shape is shifted from a position of the convex portion of the first concavo-convex shape when observed from an in-plane normal direction of the first substrate.
前記第1凹凸形状の屈折率と前記分散媒の屈折率の屈折率差が0.2より小さい調光素子。 In claim 1 ,
A light control device , wherein a refractive index difference between the refractive index of the first uneven shape and the refractive index of the dispersion medium is smaller than 0.2 .
前記隔壁の屈折率と前記分散媒の屈折率の屈折率差が0.2より小さい調光素子。 In claim 2 ,
A light control device , wherein a refractive index difference between the refractive index of the partition wall and the refractive index of the dispersion medium is smaller than 0.2 .
前記第2凹凸形状の屈折率と前記分散媒の屈折率の屈折率差が0.2より小さい調光素子。 In claim 3 ,
A dimming element in which a difference in refractive index between the refractive index of the second uneven shape and the refractive index of the dispersion medium is smaller than 0.2 .
前記第1凹凸形状の凸部が黒色で着色されている、または前記調光素子の遮光時の色の補色に着色されている調光素子。 In claim 1 ,
The light control element in which the convex part of said 1st uneven | corrugated shape is colored with black, or is colored with the complementary color of the color at the time of light shielding of the said light control element.
前記隔壁の頂上部分が黒色で着色されている、または前記調光素子の遮光時の色の補色に着色されている調光素子。 In claim 2 ,
The light control element with which the top part of the said partition is colored with black, or is colored with the complementary color of the color at the time of the light-shielding of the said light control element.
前記第2凹凸形状の凸部が黒色で着色されている、または前記調光素子の遮光時の色の補色に着色されている調光素子。 In claim 3 ,
The light control element with which the convex part of said 2nd uneven | corrugated shape is colored with black, or is colored with the complementary color of the color at the time of light shielding of the said light control element.
前記第1凹凸形状の材質と前記隔壁の材質が同じである調光素子。 In claim 2 ,
The light control element in which the material of said 1st uneven | corrugated shape and the material of the said partition are the same.
前記第2電極は前記第2基板上に櫛歯状に形成されている調光素子。 In claim 1,
The light control element, wherein the second electrode is formed in a comb shape on the second substrate.
前記第1凹凸形状は複数形成され、
複数の前記第1凹凸形状は前記第1電極上に積層されており、
前記第1基板の面内法線方向から観察した際に、複数の前記第1凹凸形状のそれぞれの凸部位置がずれている箇所がある調光素子。 In any one of Claims 1 thru | or 14 .
A plurality of the first uneven shapes are formed,
The plurality of first concavo-convex shapes are stacked on the first electrode,
The light control element in which there are locations where the positions of the convex portions of the plurality of first concavo-convex shapes are shifted when observed from the in-plane normal direction of the first substrate.
前記調光素子を駆動する駆動回路を備えた調光装置。 A dimming element according to any one of claims 1 to 15 ,
A light control device comprising a drive circuit for driving the light control element.
前記第1基板上であり、前記第1基板および前記第2基板の間に形成された第1電極と、
前記第2基板上であり、前記第1基板および前記第2基板の間に形成された第2電極と、
前記第1電極および前記第2電極の間に形成された懸濁液と、
前記第1基板および前記懸濁液の間に形成された第1凹凸形状と、を備えた調光素子の駆動方法であって、
前記懸濁液は、調光粒子および分散媒を含み、
前記第1電極および前記第2電極に電圧が印加されることにより前記調光粒子が制御され、
前記第1凹凸形状はテーパー形状を有し、
前記調光粒子は棒状であり、
前記調光粒子のアスペクト比は5以上30以下であり、
前記第1電極と前記第2電極との間に直流電圧を印加して前記調光素子を遮光状態とし、
前記第1凹凸形状に達した前記調光粒子は、前記第1凹凸形状の斜面で倒れ、前記第1凹凸形状上でランダム状態となる調光素子の駆動方法。 A first substrate and a second substrate;
A first electrode on the first substrate and formed between the first substrate and the second substrate;
A second electrode on the second substrate and formed between the first substrate and the second substrate;
A suspension formed between the first electrode and the second electrode;
A first light source and convex shape formed between the first substrate and the suspension;
The suspension includes light control particles and a dispersion medium,
The dimming particles are controlled by applying a voltage to the first electrode and the second electrode,
The first uneven shape has a tapered shape,
The light control particles are rod-shaped,
The aspect ratio of the light control particles is 5 or more and 30 or less,
Applying a DC voltage between the first electrode and the second electrode to place the light control element in a light-shielding state ;
The method of driving a light control element , wherein the light control particles that have reached the first uneven shape fall on the slope of the first uneven shape and are in a random state on the first uneven shape .
前記第1基板上であり、前記第1基板および前記第2基板の間に形成された第1電極と、
前記第2基板上であり、前記第1基板および前記第2基板の間に形成された第2電極と、
前記第1電極および前記第2電極の間に形成された懸濁液と、
前記第1基板および前記懸濁液の間に形成された第1凹凸形状と、を備えた調光素子の駆動方法であって、
前記懸濁液は、調光粒子および分散媒を含み、
前記第1電極および前記第2電極に電圧が印加されることにより前記調光粒子が制御され、
前記第1凹凸形状はテーパー形状を有し、
前記第1電極と前記第2電極との間に直流電圧を印加して前記調光素子を遮光状態とし、
前記第1電極と前記第2電極との間に前記直流電圧印加とは逆極性の直流電圧を印加して、または前記第1電極と前記第2電極との間に交流電圧を印加して前記調光素子を透過状態にする調光素子の駆動方法。 A first substrate and a second substrate;
A first electrode on the first substrate and formed between the first substrate and the second substrate;
A second electrode on the second substrate and formed between the first substrate and the second substrate;
A suspension formed between the first electrode and the second electrode;
A first light source and convex shape formed between the first substrate and the suspension;
The suspension includes light control particles and a dispersion medium,
The dimming particles are controlled by applying a voltage to the first electrode and the second electrode,
The first uneven shape has a tapered shape,
Applying a DC voltage between the first electrode and the second electrode to place the light control element in a light-shielding state ;
Applying a DC voltage having a polarity opposite to that of the DC voltage application between the first electrode and the second electrode, or applying an AC voltage between the first electrode and the second electrode, A method of driving a light control element that makes the light control element in a transmissive state .
前記第1基板上であり、前記第1基板および前記第2基板の間に形成された第1電極と、
前記第2基板上であり、前記第1基板および前記第2基板の間に形成された第2電極と、
前記第1電極および前記第2電極の間に形成された懸濁液と、
前記第1基板および前記懸濁液の間に形成された第1凹凸形状と、前記懸濁液と前記第2基板との間に形成された第2凹凸形状を備えた調光素子の駆動方法であって、
前記懸濁液は、調光粒子および分散媒を含み、
前記第1電極および前記第2電極に電圧が印加されることにより前記調光粒子が制御され、
前記第1凹凸形状はテーパー形状を有し、
前記第2凹凸形状はテーパー形状を有し、
前記第2凹凸形状は一部が平坦であり、
前記第1電極と前記第2電極との間に直流電圧を印加して前記調光素子を遮光状態とし、
前記第1電極と前記第2電極との間に前記直流電圧印加とは逆極性の直流電圧を印加して前記調光素子を透過状態と遮光状態との中間状態にする調光素子の駆動方法。
調光素子の駆動方法。 A first substrate and a second substrate;
A first electrode on the first substrate and formed between the first substrate and the second substrate;
A second electrode on the second substrate and formed between the first substrate and the second substrate;
A suspension formed between the first electrode and the second electrode;
A method for driving a light control device comprising a first uneven shape formed between the first substrate and the suspension, and a second uneven shape formed between the suspension and the second substrate. Because
The suspension includes light control particles and a dispersion medium,
The dimming particles are controlled by applying a voltage to the first electrode and the second electrode,
The first uneven shape has a tapered shape,
The second uneven shape has a tapered shape,
The second uneven shape is partly flat,
Applying a DC voltage between the first electrode and the second electrode to place the light control element in a light-shielding state ;
A method of driving a light control element, wherein a direct current voltage having a polarity opposite to the direct current voltage application is applied between the first electrode and the second electrode to place the light control element in an intermediate state between a transmission state and a light shielding state. .
A method of driving the light control element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175569A JP5900233B2 (en) | 2012-08-08 | 2012-08-08 | Light control element, light control device, and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175569A JP5900233B2 (en) | 2012-08-08 | 2012-08-08 | Light control element, light control device, and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014035385A JP2014035385A (en) | 2014-02-24 |
JP5900233B2 true JP5900233B2 (en) | 2016-04-06 |
Family
ID=50284412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012175569A Expired - Fee Related JP5900233B2 (en) | 2012-08-08 | 2012-08-08 | Light control element, light control device, and driving method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5900233B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020160096A (en) * | 2017-07-27 | 2020-10-01 | パナソニックIpマネジメント株式会社 | Optical device |
KR102184389B1 (en) | 2017-11-03 | 2020-11-30 | 주식회사 엘지화학 | Transmittance controllable device |
WO2019163377A1 (en) * | 2018-02-21 | 2019-08-29 | パナソニックIpマネジメント株式会社 | Light distribution control device |
WO2019167542A1 (en) * | 2018-02-27 | 2019-09-06 | パナソニックIpマネジメント株式会社 | Light distribution control device |
KR102179729B1 (en) * | 2018-03-27 | 2020-11-17 | 주식회사 엘지화학 | Black partition wall pattern film and method for manufacturing thereof |
WO2019187753A1 (en) * | 2018-03-28 | 2019-10-03 | パナソニックIpマネジメント株式会社 | Optical device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0213228U (en) * | 1988-07-08 | 1990-01-26 | ||
JPH0342129U (en) * | 1989-09-01 | 1991-04-22 | ||
JP3168031B2 (en) * | 1990-11-16 | 2001-05-21 | トヨタ自動車株式会社 | Heat-resistant herapatite and method for producing the same |
JP2006195379A (en) * | 2005-01-17 | 2006-07-27 | Canon Inc | Charged migration particles, electrophoretic dispersion liquid and electrophoresis display |
US7193769B2 (en) * | 2005-05-13 | 2007-03-20 | Xerox Corporation | Two particle electophoretic systems, electronic displays including two particle electophoretic systems, and methods for producing the two particle electophoretic systems |
JP2007286190A (en) * | 2006-04-13 | 2007-11-01 | Funai Electric Advanced Applied Technology Research Institute Inc | Electrophoresis type reflective display apparatus |
JP2009294275A (en) * | 2008-06-03 | 2009-12-17 | Brother Ind Ltd | Charged particle movement-type display panel, method for producing charged particle movement-type display panel, and charged particle movement-type display device |
US8503063B2 (en) * | 2008-12-30 | 2013-08-06 | Sipix Imaging, Inc. | Multicolor display architecture using enhanced dark state |
TWI484275B (en) * | 2010-05-21 | 2015-05-11 | E Ink Corp | Electro-optic display, method for driving the same and microcavity electrophoretic display |
JP5423603B2 (en) * | 2010-07-26 | 2014-02-19 | 日立化成株式会社 | Suspended particle device and driving method thereof |
-
2012
- 2012-08-08 JP JP2012175569A patent/JP5900233B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014035385A (en) | 2014-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5900233B2 (en) | Light control element, light control device, and driving method thereof | |
JP5516319B2 (en) | Illumination device and display device | |
CN109946868A (en) | Radiation direction control device and display device | |
JP5556762B2 (en) | Suspended particle device, light control device using suspended particle device, and driving method thereof | |
US9291812B2 (en) | Light-modulating panel and light modulator | |
JP6671057B2 (en) | Optical device | |
TW201305671A (en) | Transflective displays | |
US20130201549A1 (en) | Suspended particle device, light control device using the same, and driving method | |
JP5423603B2 (en) | Suspended particle device and driving method thereof | |
JP5298212B2 (en) | Display device | |
JP2013213953A (en) | Dimmer device | |
CN104965372A (en) | PDLC based light guide device and photo-electronic device | |
WO2018150673A1 (en) | Optical device | |
JP5862136B2 (en) | Electrophoretic display device | |
WO2014061492A1 (en) | Optical device and display device provided with same | |
KR20190003053A (en) | Substrate | |
CN109557698B (en) | Light filtering structure, pixel structure, display panel, driving method of display panel and display device | |
JP2020016860A (en) | Light distribution control device and manufacturing method therefor | |
JP6045441B2 (en) | Toning device and toning element | |
WO2022186392A1 (en) | Light modulating sheet and light modulating device | |
KR101140006B1 (en) | Electronic Paper Display Device | |
JP6628167B2 (en) | Optical device | |
WO2019163474A1 (en) | Light distribution control device | |
WO2019188191A1 (en) | Light distribution control device | |
KR20240152750A (en) | Smart window comprising three-dimensional structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160222 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5900233 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |