JP5987484B2 - Gas diffusion electrode substrate and method for producing the same - Google Patents
Gas diffusion electrode substrate and method for producing the same Download PDFInfo
- Publication number
- JP5987484B2 JP5987484B2 JP2012129846A JP2012129846A JP5987484B2 JP 5987484 B2 JP5987484 B2 JP 5987484B2 JP 2012129846 A JP2012129846 A JP 2012129846A JP 2012129846 A JP2012129846 A JP 2012129846A JP 5987484 B2 JP5987484 B2 JP 5987484B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode substrate
- carbon fiber
- reference example
- base material
- paper body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Carbon And Carbon Compounds (AREA)
- Paper (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、燃料電池、特に固体高分子型燃料電池のガス拡散層に好適に用いられるガス拡散電極基材に関する。より詳しくは、高排水性と低水蒸気拡散性とを両立し、低温から高温の広い温度範囲にわたって高い発電性能を発現可能であり、さらには、機械特性、導電性、熱伝導性が優れるガス拡散電極基材に関する。 The present invention relates to a gas diffusion electrode substrate suitably used for a gas diffusion layer of a fuel cell, particularly a polymer electrolyte fuel cell. More specifically, gas diffusion that achieves both high drainage and low water vapor diffusivity, can exhibit high power generation performance over a wide temperature range from low temperature to high temperature, and has excellent mechanical properties, electrical conductivity, and thermal conductivity. The present invention relates to an electrode substrate.
炭素繊維を含むガス拡散電極基材(以降、電極基材と記載)は、導電性、熱伝導性に優れ、なおかつ、機械特性に優れることから、燃料電池のガス拡散層に広く用いられている。しかしながら、固体高分子型燃料電池を70℃未満の比較的低い温度で作動させる場合、高電流密度領域において反応により発生する水が電極基材に充満し、燃料ガスの供給が不足する結果、発電性能が低下する問題(フラッディング)が知られている。一方、80℃以上の比較的高い温度で作動させる場合、水蒸気拡散により電解質膜が乾燥し、プロトン伝導性が低下する結果、発電性能が低下する問題(ドライアップ)が知られている。 A gas diffusion electrode base material (hereinafter referred to as an electrode base material) containing carbon fibers is widely used in a gas diffusion layer of a fuel cell because it is excellent in conductivity and thermal conductivity and excellent in mechanical properties. . However, when the polymer electrolyte fuel cell is operated at a relatively low temperature of less than 70 ° C., water generated by the reaction fills the electrode substrate in a high current density region, resulting in insufficient supply of fuel gas. There is a known problem (flooding) that the performance decreases. On the other hand, when operating at a relatively high temperature of 80 ° C. or higher, there is a known problem (dry-up) in which power generation performance decreases as a result of drying of the electrolyte membrane due to water vapor diffusion and decreasing proton conductivity.
フラッディング、ドライアップを解消するために、細孔構造を制御する検討が行われている。 In order to eliminate flooding and dry-up, studies are underway to control the pore structure.
特許文献1では、炭素質粉末を含み、密度、細孔径が特定範囲内である電極基材が開示されている。この方法では密度を0.25〜0.55g/cm3、細孔径を25〜55μmの範囲内とすることにより、フラッディング、ドライアップが比較的小さい状態に適正化される。しかしながら、密度、細孔径をかかる範囲に制御するだけでは、ドライアップ、フラッディングの抑制は不十分であり、発電性能が依然として不十分であった。 Patent Document 1 discloses an electrode base material containing carbonaceous powder and having a density and pore diameter within a specific range. In this method, by setting the density to be in the range of 0.25 to 0.55 g / cm 3 and the pore diameter in the range of 25 to 55 μm, the flooding and dry-up are optimized to be relatively small. However, by controlling the density and pore diameter within such ranges, the suppression of dry-up and flooding is insufficient, and the power generation performance is still insufficient.
特許文献2〜5では、電極基材の厚さ方向に貫通孔を形成する方法が開示されている。この方法では貫通孔が排水パスとしてはたらくことにより、フラッディングが改善される。しかしながら、貫通孔を通して水蒸気が拡散し、高温でのドライアップが顕著となるため、発電性能が依然として不十分であった。また、貫通孔形成により電極基材の曲げ弾性率、曲げ強度等の機械特性が損なわれるという問題が残されていた。 Patent Documents 2 to 5 disclose a method of forming a through hole in the thickness direction of an electrode base material. In this method, flooding is improved by the through hole acting as a drainage path. However, since water vapor diffuses through the through holes and dry-up at a high temperature becomes remarkable, the power generation performance is still insufficient. Moreover, the problem that mechanical properties, such as a bending elastic modulus and bending strength of an electrode base material, are impaired by through-hole formation remained.
特許文献6では、有機繊維のフィブリル状物を、炭素繊維とともに抄紙した後、樹脂組成物を含浸し、炭素化して電極基材を製造する方法が開示されている。この方法ではフィブリル状物のまわりに付着した樹脂組成物が網状の炭化物として残り、直径10μm程度の小さな細孔と直径30μm程度の大きな細孔が形成される。大きな細孔により排水が促進されるため、フラッディングが改善される。しかしながら、ドライアップの抑制は不十分であり、発電性能が依然として不十分であった。また、抄紙の際に有機繊維のフィブリル状物の拡がり具合を制御するのが困難であり、同一の電極基材を再現性良く製造するのが難しい。また、炭素繊維と、有機繊維のフィブリル状物の比重差が大きく、抄紙の際に厚さ方向に不均一になりやすいという問題が残されていた。 Patent Document 6 discloses a method in which an organic fiber fibrillar material is made together with carbon fiber and then impregnated with a resin composition and carbonized to produce an electrode substrate. In this method, the resin composition attached around the fibril-like substance remains as a net-like carbide, and small pores having a diameter of about 10 μm and large pores having a diameter of about 30 μm are formed. Flooding is improved because drainage is facilitated by large pores. However, the suppression of dry-up is insufficient, and the power generation performance is still insufficient. Moreover, it is difficult to control the extent of organic fiber fibrils during papermaking, and it is difficult to produce the same electrode substrate with good reproducibility. Moreover, the specific gravity difference between the carbon fiber and the organic fiber fibril is large, and the problem remains that the paper tends to be non-uniform in the thickness direction during papermaking.
特許文献7では、細孔モード径の異なる複数種の予備含浸体を積層、一体化した後、焼成して製造した電極基材が開示されている。この方法では細孔モード径の小さな方から大きな方へ排水が促進されるため、フラッディングが改善される。しかしながら、ドライアップの抑制は不十分であり、発電性能が依然として不十分であった。また、電極基材を製造する工程において、表裏で硬化収縮差、熱収縮差が発生し、電極基材が反りやすいという問題が残されていた。 Patent Document 7 discloses an electrode base material produced by laminating and integrating a plurality of types of pre-impregnated bodies having different pore mode diameters and then firing them. In this method, since drainage is promoted from the smaller pore mode diameter to the larger pore mode, flooding is improved. However, the suppression of dry-up is insufficient, and the power generation performance is still insufficient. Further, in the process of manufacturing the electrode base material, there is a problem that a difference in curing shrinkage and a heat shrinkage difference occur between the front and back surfaces, and the electrode base material is likely to warp.
一方、電極基材の性能を向上するために、炭素繊維の形状、特性を制御する検討が行われている。 On the other hand, in order to improve the performance of the electrode base material, studies have been conducted to control the shape and characteristics of carbon fibers.
特許文献8では、1800〜2400℃の温度範囲で焼成した炭素繊維を用いた電極基材が開示されている。しかしながら、この方法では電極基材の導電性、熱伝導性が向上するものの、フラッディング、ドライアップを抑制することはできなかった。 In patent document 8, the electrode base material using the carbon fiber baked in the temperature range of 1800-2400 degreeC is disclosed. However, although this method improves the conductivity and thermal conductivity of the electrode substrate, flooding and dry-up cannot be suppressed.
特許文献9では、直径4〜9μmの炭素繊維と、直径の異なる炭素繊維との2種類以上の炭素繊維を含む電極基材が開示されている。この方法では電極基材の導電性、熱伝導性が向上する。また、密度を変化させずに、細孔径を大きくできるとある。この結果、フラッディングは改善される傾向にあるが、その効果は不十分であった。 Patent Document 9 discloses an electrode base material including two or more types of carbon fibers, that is, carbon fibers having a diameter of 4 to 9 μm and carbon fibers having different diameters. This method improves the conductivity and thermal conductivity of the electrode substrate. In addition, the pore diameter can be increased without changing the density. As a result, flooding tended to be improved, but the effect was insufficient.
本発明の目的は、かかる従来技術の背景に鑑み、高排水性、低水蒸気拡散性を両立し、低温から高温の広い温度範囲にわたって高い発電性能が発現可能であり、さらには、機械特性、導電性、熱伝導性が優れる燃料電池ガス拡散電極基材を提供することにある。 In view of the background of such conventional technology, the object of the present invention is to achieve both high drainage and low water vapor diffusibility, and can exhibit high power generation performance over a wide temperature range from low temperature to high temperature. An object of the present invention is to provide a fuel cell gas diffusion electrode base material having excellent properties and thermal conductivity.
本発明のガス拡散電極基材は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、次の[A]および[B]の炭素繊維を炭化物で結着したガス拡散電極基材であって、密度が0.2〜0.4g/cm3の範囲内であり、細孔径が40〜70μmの範囲内であることを特徴とするガス拡散電極基材である。
[A]単繊維の平均直径が3μm以上8μm以下であり、平均長さが4〜20mmの炭素繊維
[B]単繊維の平均直径が8μmを越え30μm以下であり、平均長さが0.5〜4mmの炭素繊維
また、本発明のガス拡散電極基材の製造方法は、前記課題を解決するために、次のような手段を採用するものである。すなわち、前記炭素繊維[A]と前記炭素繊維[B]を抄紙してなる抄紙体に、炭素繊維100質量部に対し樹脂成分を50〜200質量部含浸して予備含浸体を形成した後、該予備含浸体を炭素化することを特徴とする前記ガス拡散電極基材の製造方法である。
The gas diffusion electrode substrate of the present invention employs the following means in order to solve such problems. That is, a gas diffusion electrode substrate obtained by binding carbon fibers of the following [A] and [B] with a carbide, having a density in the range of 0.2 to 0.4 g / cm 3 and a pore diameter of A gas diffusion electrode substrate characterized by being in the range of 40 to 70 μm.
[A] Carbon fiber having an average diameter of a single fiber of 3 μm to 8 μm and an average length of 4 to 20 mm [B] The average diameter of the single fiber is more than 8 μm and 30 μm or less, and the average length is 0.5 ~ 4 mm carbon fiber also of method for producing a gas diffusion electrode substrate of the present invention, in order to solve the above problems, and adopts the following means. That is, after forming a pre-impregnated body by impregnating 50 to 200 parts by mass of a resin component with respect to 100 parts by mass of carbon fiber in a papermaking body obtained by papermaking the carbon fiber [A] and the carbon fiber [B]. The pre-impregnated body is carbonized. The method for producing a gas diffusion electrode substrate.
本発明の好ましい様態は、前記炭素繊維[B]の平均長さが0.5〜4mmであることである。また、本発明の他の好ましい様態は、前記電極基材の厚さが150〜250μmの範囲内であることであり、前記電極基材の炭素繊維目付が20〜40g/m2の範囲内であることであり、前記電極基材が炭素質粉末を含むことであり、前記抄紙体に、炭素繊維100質量部に対しパルプを10〜100質量部含むことである。 The preferable aspect of this invention is that the average length of the said carbon fiber [B] is 0.5-4 mm. Moreover, the other preferable aspect of this invention is that the thickness of the said electrode base material is in the range of 150-250 micrometers, and the carbon fiber fabric weight of the said electrode base material is in the range of 20-40 g / m < 2 >. That is, the electrode base material contains carbonaceous powder, and the papermaking body contains 10 to 100 parts by mass of pulp with respect to 100 parts by mass of carbon fibers.
本発明により、高排水性、低水蒸気拡散性を両立し、低温から高温の広い温度範囲にわたって高い発電性能が発現可能であり、さらには、機械特性、導電性、熱伝導性が優れる電極基材を得ることができる。 According to the present invention, an electrode base material that achieves both high drainage and low water vapor diffusibility, can exhibit high power generation performance over a wide temperature range from low temperature to high temperature, and is excellent in mechanical properties, electrical conductivity, and thermal conductivity. Can be obtained.
本発明者らは、高排水性と低水蒸気拡散性とを両立し、低温から高温の広い温度範囲にわたって発電性能が優れる電極基材を求めて鋭意検討した結果、従来用いられている炭素繊維に加えて、かかる炭素繊維よりも単繊維直径が大きい炭素繊維を含んだ電極基材において、密度と細孔径とが特定の範囲内にある場合、この課題を解決することを見出したものである。 As a result of earnest investigation for an electrode base material that achieves both high drainage and low water vapor diffusibility and has excellent power generation performance over a wide temperature range from low temperature to high temperature, In addition, the present inventors have found that this problem can be solved when the density and pore diameter are within a specific range in an electrode base material including carbon fibers having a single fiber diameter larger than that of the carbon fibers.
本発明の電極基材は、炭素繊維を炭化物で結着してなる。かかる電極基材は、通常、後述するように、炭素繊維のシートに樹脂を含浸し炭素化することにより得られる。 The electrode substrate of the present invention is formed by binding carbon fibers with carbides. Such an electrode substrate is usually obtained by impregnating a carbon fiber sheet with a resin and carbonizing the sheet, as will be described later.
本発明における炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維が挙げられる。なかでも、機械強度に優れることから、PAN系、ピッチ系炭素繊維が好ましく用いられる。 Examples of the carbon fiber in the present invention include polyacrylonitrile (PAN) -based, pitch-based, and rayon-based carbon fibers. Of these, PAN-based and pitch-based carbon fibers are preferably used because of their excellent mechanical strength.
本発明において、単繊維の平均直径が3μm以上8μm以下であり、平均長さが4〜20mmの炭素繊維[A]と、単繊維の平均直径が8μmを越え30μm以下であり、平均長さが0.5〜4mmの炭素繊維[B]の両方を含むことが必要である。炭素繊維[A]に、炭素繊維[A]よりも太径の炭素繊維[B]を加えることにより、同一の密度を維持するのに必要な炭素繊維の本数が低減する結果、密度を維持しつつ、細孔径を大きくすることができる。水蒸気拡散性は空隙率に依存することが知られており、空隙率は密度の逆数に比例することから、密度を維持することにより、水蒸気拡散性が維持されると考えられる。一方、排水性は、疎水性である炭素繊維からなる細孔に液水を押し込むのに必要な圧力を指標として用いた場合、細孔径に依存することが知られており、細孔径を大きくすることにより、排水性が向上すると考えられる。この結果、低温から高温の広い温度範囲にわたって発電性能が優れる電極基材を得ることができる。 In the present invention, the average diameter of single fibers is 3 μm or more and 8 μm or less, the carbon fiber [A] having an average length of 4 to 20 mm, and the average diameter of single fibers is more than 8 μm and not more than 30 μm, and the average length is It is necessary to include both 0.5 to 4 mm carbon fiber [B]. By adding carbon fiber [B] having a diameter larger than that of carbon fiber [A] to carbon fiber [A], the number of carbon fibers necessary to maintain the same density is reduced. As a result, the density is maintained. Meanwhile, the pore diameter can be increased. It is known that the water vapor diffusibility depends on the porosity, and the porosity is proportional to the reciprocal of the density. Therefore, it is considered that the water vapor diffusibility is maintained by maintaining the density. On the other hand, drainage is known to depend on the pore size when the pressure required to push liquid water into pores made of hydrophobic carbon fibers is used as an index, and the pore size is increased. This is thought to improve drainage. As a result, an electrode base material having excellent power generation performance over a wide temperature range from low temperature to high temperature can be obtained.
本発明において、炭素繊維[A]における単繊維の平均直径は、高排水性と低水蒸気拡散を両立するという観点で、3μm以上8μm以下の範囲内であることが必要であり、5μm以上8μm以下の範囲内であることが好ましい。平均直径が3μm未満であると、細孔径が小さくなり排水性が低下し、フラッディングを抑制することができない。一方、平均直径が8μmより大きいと、水蒸気拡散性が大きくなり、ドライアップを抑制することができない。 In the present invention, the average diameter of the single fiber in the carbon fiber [A] is required to be in the range of 3 μm or more and 8 μm or less from the viewpoint of achieving both high drainage and low water vapor diffusion, and is 5 μm or more and 8 μm or less. It is preferable to be within the range. When the average diameter is less than 3 μm, the pore diameter becomes small, the drainage performance is lowered, and flooding cannot be suppressed. On the other hand, when the average diameter is larger than 8 μm, the water vapor diffusibility increases and the dry-up cannot be suppressed.
本発明において、炭素繊維[B]における単繊維の平均直径は、高排水性と低水蒸気拡散を両立するという観点で、8μmを超え30μm以下の範囲内であることが必要であり、10μmを超え25μm以下の範囲内であることが好ましく、12μmを超え20μm以下の範囲内であることがより好ましい。平均直径が8μm以下であると、細孔径が小さくなり排水性が低下し、フラッディングを抑制することができない。一方、平均直径が30μmより大きいと、水蒸気拡散性が大きくなり、ドライアップを抑制することができない。 In the present invention, the average diameter of the single fiber in the carbon fiber [B] is required to be in the range of more than 8 μm and 30 μm or less in view of achieving both high drainage and low water vapor diffusion, and more than 10 μm. It is preferably within a range of 25 μm or less, and more preferably within a range of more than 12 μm and 20 μm or less. When the average diameter is 8 μm or less, the pore diameter becomes small, the drainage performance decreases, and flooding cannot be suppressed. On the other hand, when the average diameter is larger than 30 μm, the water vapor diffusibility increases, and the dry-up cannot be suppressed.
ここで、炭素繊維における単繊維の平均直径は、走査型電子顕微鏡等の顕微鏡で、炭素繊維を1000倍以上に拡大して写真撮影を行い、無作為に異なる30本の単繊維を選び、その直径を計測し、その平均値を求めたものである。走査型電子顕微鏡としては、(株)日立製作所製S−4800、あるいはその同等品を用いることができる。 Here, the average diameter of the single fiber in the carbon fiber is taken with a microscope such as a scanning electron microscope, the carbon fiber is magnified 1000 times or more, and 30 different single fibers are randomly selected. The diameter was measured and the average value was obtained. As a scanning electron microscope, S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used.
本発明において、炭素繊維[A]の平均長さは、電極基材が機械特性、導電性、熱伝導性の優れたものとなるという観点で、4mm以上であることが必要である。一般的に単繊維の平均直径が小さい炭素繊維[A]は繊維径に対する表面欠陥が少ないため炭素繊維[B]よりも強度が大きく、炭素繊維[A]は抄紙体の強度に与える影響が大きく、炭素繊維[A]を4mm以下にすると、抄紙体の強度が著しく不足し、抄紙体を得られなくなる。一方、平均長さが20mmより大きいと、抄紙の際の炭素繊維の分散性が低下し、均質な電極基材が得られにくい。かかる平均長さを有する炭素繊維は、連続した炭素繊維を所望の長さにカットする方法等により得られる。 In the present invention, the average length of the carbon fiber [A] needs to be 4 mm or more from the viewpoint that the electrode base material has excellent mechanical properties, electrical conductivity, and thermal conductivity. Generally, carbon fibers [A] having a small average diameter of single fibers have a larger strength than carbon fibers [B] because there are few surface defects with respect to the fiber diameter, and carbon fibers [A] have a large influence on the strength of papermaking bodies. When the carbon fiber [A] is 4 mm or less, the strength of the papermaking body is remarkably insufficient and the papermaking body cannot be obtained. On the other hand, if the average length is greater than 20 mm, the dispersibility of the carbon fibers during papermaking decreases, and it is difficult to obtain a homogeneous electrode substrate. Carbon fibers having such an average length can be obtained by a method of cutting continuous carbon fibers into a desired length.
本発明において、炭素繊維[B]の平均長さは、抄紙性の観点で、0.5mm以上であることが必要である。平均長さが0.5mm未満であると、抄紙時に炭素繊維[B]が抄紙体をすり抜け、炭素繊維[B]の配合量を調整することが困難となる。一方、平均長さが20mmより大きいと、抄紙の際の炭素繊維の分散性が低下し、均質な電極基材が得られにくくなる。炭素繊維[A]と炭素繊維[B]の平均長さの好ましい組み合わせは、機械特性、導電性、熱伝導性の観点からは、平均長さが長くなるにつれて抄紙体の強度が大きくなるため、炭素繊維[A]の平均長さが4〜20mm、炭素繊維[B]の平均長さが0.5〜4mm、好ましくは0.5mm以上4mm未満の組み合わせであることが好ましいが、炭素繊維の抄紙性の観点からは、炭素繊維[B]の平均長さが長くなるにつれて、炭素繊維[A]と炭素繊維[B]の絡みつきによる分散性の低下が起こるため、炭素繊維[A]の平均長さが4〜20mm、炭素繊維[B]の平均長さが0.5〜4mmの組み合わせであることが好ましい。 In the present invention, the average length of the carbon fibers [B] needs to be 0.5 mm or more from the viewpoint of papermaking properties. When the average length is less than 0.5 mm, the carbon fibers [B] pass through the paper body during paper making, and it becomes difficult to adjust the blending amount of the carbon fibers [B]. On the other hand, if the average length is larger than 20 mm, the dispersibility of the carbon fibers during papermaking is lowered, and it becomes difficult to obtain a homogeneous electrode substrate. The preferred combination of the average length of the carbon fiber [A] and the carbon fiber [B] is that, from the viewpoint of mechanical properties, conductivity, and thermal conductivity, the strength of the paper body increases as the average length increases. The carbon fiber [A] has an average length of 4 to 20 mm, and the carbon fiber [B] has an average length of 0.5 to 4 mm, preferably 0.5 mm or more and less than 4 mm. From the viewpoint of papermaking properties, as the average length of the carbon fiber [B] increases, the dispersibility decreases due to the entanglement between the carbon fiber [A] and the carbon fiber [B]. It is preferable that the length is 4 to 20 mm and the average length of the carbon fiber [B] is 0.5 to 4 mm.
かかる平均長さを有する炭素繊維[B]は、連続した炭素繊維を所望の長さにカットする方法や炭素繊維[B]を水に分散させ、ミキサーやスラッシュファイナーを用いて攪拌して短繊維化する方法等により得られる。 The carbon fiber [B] having such an average length is obtained by dispersing continuous carbon fiber into a desired length or by dispersing the carbon fiber [B] in water and stirring the mixture using a mixer or a slashfiner. It is obtained by a method of
抄紙体にパルプを含ませる場合、パルプを分散させた水に炭素繊維[B]を投入して攪拌を行い、炭素繊維[B]を分散させながら短繊維化することで、パルプが炭素繊維[B]どうしの絡まりの緩衝材として働き、分散性が向上するため好ましい。 When pulp is included in the paper body, the carbon fiber [B] is added to the water in which the pulp is dispersed and stirred, and the fiber is shortened while dispersing the carbon fiber [B]. B] It is preferable because it works as a buffer material for entanglement and improves dispersibility.
ここで、炭素繊維の平均長さは、走査型電子顕微鏡等の顕微鏡で、炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に異なる30本の単繊維を選び、その長さを計測し、その平均値を求めたものである。走査型電子顕微鏡としては、(株)日立製作所製S−4800、あるいはその同等品を用いることができる。なお、炭素繊維における単繊維の平均直径や平均長さは、通常、原料となる炭素繊維についてその炭素繊維を直接観察して測定されるが、電極基材を観察して測定しても良い。 Here, the average length of the carbon fiber is a length such as a scanning electron microscope or the like. Is measured and the average value is obtained. As a scanning electron microscope, S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used. In addition, although the average diameter and average length of the single fiber in carbon fiber are normally measured by observing the carbon fiber directly about the carbon fiber used as a raw material, you may observe and measure an electrode base material.
また、炭素繊維[A]および炭素繊維[B]を抄紙した際の分散性は、直径7.5cmの円状に切り取った抄紙体の表面を光学顕微鏡で5倍以上に拡大して観察し、幅0.5mm以上の炭素繊維[A]および炭素繊維[B]の凝集物からなる結束の数をカウントして評価を行った。結束は燃料電池の耐久性低下の原因となり得るため、少ないことが好ましい。 In addition, the dispersibility when paper making the carbon fiber [A] and the carbon fiber [B] is observed by enlarging the surface of the paper body cut into a circular shape having a diameter of 7.5 cm with an optical microscope to 5 times or more, Evaluation was performed by counting the number of bundles composed of aggregates of carbon fiber [A] and carbon fiber [B] having a width of 0.5 mm or more. Since bundling can cause a decrease in the durability of the fuel cell, it is preferable that the binding be small.
本発明において、炭素繊維[A]100質量部に対する炭素繊維[B]の配合比が、20〜200質量部であることが好ましく、30〜150質量部であることがより好ましく、さらには40〜120質量部であることが好ましい。かかる配合比が20質量部以上であると、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。一方、かかる配合比が200質量部以下であると、電極基材の平滑性が高くなり、セパレータとの間の電気抵抗が低減され、発電性能が向上する。さらには電極基材の柔軟性が高くなり、取り扱い性が向上する。 In this invention, it is preferable that the compounding ratio of carbon fiber [B] with respect to 100 mass parts of carbon fiber [A] is 20-200 mass parts, It is more preferable that it is 30-150 mass parts, Furthermore, 40- It is preferably 120 parts by mass. When the blending ratio is 20 parts by mass or more, drainage performance is improved, flooding is improved, and power generation performance at low temperatures is improved. On the other hand, when the blending ratio is 200 parts by mass or less, the smoothness of the electrode base material is increased, the electric resistance between the separator and the power generation performance is improved. Furthermore, the flexibility of the electrode substrate is increased, and the handleability is improved.
本発明において、電極基材の密度が0.2〜0.4g/cm3の範囲内であることが必要であり、0.22〜0.35g/cm3の範囲内であることが好ましく、0.24〜0.3g/cm3の範囲内であることがより好ましい。密度が0.2g/cm3未満であると、水蒸気拡散性が大きく、ドライアップを抑制することができない。また、機械特性が不足し、電解質膜、触媒層を十分に支えることができない。加えて、導電性が不足し、高温、低温のいずれにおいても発電性能が低下する。一方、密度が0.4g/cm3より大きいと、排水性が低下し、フラッディングを抑制することができない。かかる密度を有する電極基材は、後述する製法において、予備含浸体における炭素繊維目付、炭素繊維に対する樹脂成分の配合量、および、電極基材の厚さを制御することにより得られる。なかでも、予備含浸体における炭素繊維目付、炭素繊維に対する樹脂成分の配合量を制御することが有効である。ここで、予備含浸体の炭素繊維目付を小さくすることにより低密度の基材が得られ、炭素繊維目付を大きくすることにより高密度の基材が得られる。また、炭素繊維に対する樹脂成分の配合量を小さくすることにより低密度の基材が得られ、樹脂成分の配合量を大きくすることにより高密度の基材が得られる。また、電極基材の厚さを大きくすることにより低密度の基材が得られ、厚さを小さくすることにより高密度の基材が得られる。 In the present invention, the density of the electrode base material needs to be in the range of 0.2 to 0.4 g / cm 3 , and preferably in the range of 0.22 to 0.35 g / cm 3 , More preferably, it is in the range of 0.24 to 0.3 g / cm 3 . When the density is less than 0.2 g / cm 3 , the water vapor diffusibility is large, and dry-up cannot be suppressed. Further, the mechanical properties are insufficient, and the electrolyte membrane and the catalyst layer cannot be sufficiently supported. In addition, the electrical conductivity is insufficient, and the power generation performance decreases at both high and low temperatures. On the other hand, if the density is larger than 0.4 g / cm 3 , the drainage performance is lowered and flooding cannot be suppressed. The electrode base material having such a density can be obtained by controlling the carbon fiber basis weight in the pre-impregnated body, the blending amount of the resin component with respect to the carbon fiber, and the thickness of the electrode base material in the production method described later. Among these, it is effective to control the carbon fiber basis weight in the pre-impregnated body and the blending amount of the resin component with respect to the carbon fiber. Here, a low-density substrate is obtained by reducing the carbon fiber basis weight of the pre-impregnated body, and a high-density substrate is obtained by increasing the carbon fiber basis weight. Moreover, a low density base material is obtained by reducing the compounding quantity of the resin component with respect to carbon fiber, and a high density base material is obtained by increasing the compounding quantity of the resin component. Moreover, a low density base material is obtained by increasing the thickness of the electrode base material, and a high density base material is obtained by reducing the thickness.
ここで、電極基材の密度は、電子天秤を用いて秤量した電極基材の目付(単位面積当たりの質量)を、面圧0.15MPaで加圧した際の電極基材の厚みで除して求めることができる。 Here, the density of the electrode base material is obtained by dividing the basis weight (mass per unit area) of the electrode base material weighed using an electronic balance by the thickness of the electrode base material when pressed with a surface pressure of 0.15 MPa. Can be obtained.
本発明において、電極基材の細孔径が40〜70μmの範囲内であることが必要であり、45〜75μmの範囲内であることが好ましく、50〜70μmの範囲内であることがより好ましい。細孔径が40μm未満であると、排水性が不足し、フラッディングを抑制することができない。細孔径が70μmより大きいと、導電性が不足し、高温、低温のいずれにおいても発電性能が低下する。従来、ドライアップ抑制のために、電極基材の密度を0.2g/cm3以上とすると、細孔径は小さくなる傾向にあり、細孔径を40μm以上とすることが困難であった。本発明者等は、電極基材の密度が0.2〜0.4g/cm3の範囲内である場合において、単繊維の平均直径が3μm以上8μm以下である炭素繊維と、単繊維の平均直径が8μmを越える炭素繊維の両方を含むことにより、細孔径を40μm以上とし、フラッディング抑制と、ドライアップ抑制とを両立できることを見出した。ここで、炭素繊維[B]の平均直径を大きくすることにより細孔径が大きな基材が得られ、炭素繊維[B]の平均直径を小さくすることにより細孔径が小さな基材が得られる。また、炭素繊維[A]100質量部に対する炭素繊維[B]の配合比を大きくすることにより細孔径が大きな基材が得られ、炭素繊維[B]の配合比を小さくすることにより細孔径が小さな基材が得られる。 In the present invention, the pore diameter of the electrode substrate is required to be in the range of 40 to 70 μm, preferably in the range of 45 to 75 μm, and more preferably in the range of 50 to 70 μm. . When the pore diameter is less than 40 μm, drainage is insufficient and flooding cannot be suppressed. When the pore diameter is larger than 70 μm, the electrical conductivity is insufficient, and the power generation performance decreases at both high and low temperatures. Conventionally, when the density of the electrode substrate is 0.2 g / cm 3 or more in order to suppress dry-up, the pore diameter tends to be small, and it is difficult to make the pore diameter 40 μm or more. In the case where the density of the electrode base material is in the range of 0.2 to 0.4 g / cm 3 , the present inventors have an average diameter of the single fibers of 3 μm or more and 8 μm or less, and an average of the single fibers. It has been found that by including both carbon fibers having a diameter exceeding 8 μm, the pore diameter is set to 40 μm or more, and both flooding suppression and dry-up suppression can be achieved. Here, a substrate having a large pore diameter is obtained by increasing the average diameter of the carbon fibers [B], and a substrate having a small pore diameter is obtained by reducing the average diameter of the carbon fibers [B]. Moreover, a base material with a large pore diameter is obtained by increasing the compounding ratio of the carbon fiber [B] to 100 parts by mass of the carbon fiber [A], and a pore diameter is decreased by decreasing the compounding ratio of the carbon fiber [B]. A small substrate is obtained.
ここで、電極基材の細孔径は、水銀圧入法により、測定圧力6kPa〜414MPa(細孔径30nm〜400μm)の範囲で測定して得られる細孔径分布のピーク径を求めたものである。なお、複数のピークが現れる場合は、最も高いピークのピーク径を採用する。測定装置としては、島津製作所社製オートポア9520、あるいはその同等品を用いることができる。 Here, the pore diameter of the electrode substrate is obtained by determining the peak diameter of the pore diameter distribution obtained by measuring in the measurement pressure range of 6 kPa to 414 MPa (pore diameter 30 nm to 400 μm) by mercury porosimetry. When a plurality of peaks appear, the peak diameter of the highest peak is adopted. As a measuring device, Autopore 9520 manufactured by Shimadzu Corporation or an equivalent product thereof can be used.
本発明において、電極基材の厚さが150〜220μmの範囲内であることが好ましく、160〜200μmの範囲内であることがより好ましい。厚さが150μm以上であると、機械特性が優れ、電解質膜、触媒層を強固に支えることができるため好ましい。厚さが220μm以下であると、排水のためのパスが短くなり、フラッディングが改善され、低温での発電性能が向上する。 In this invention, it is preferable that the thickness of an electrode base material exists in the range of 150-220 micrometers, and it is more preferable that it exists in the range of 160-200 micrometers. A thickness of 150 μm or more is preferable because the mechanical properties are excellent and the electrolyte membrane and the catalyst layer can be firmly supported. When the thickness is 220 μm or less, the path for drainage is shortened, flooding is improved, and power generation performance at low temperatures is improved.
ここで、電極基材の厚さは、面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めることができる。 Here, the thickness of the electrode base material can be determined using a micrometer in a state where the surface pressure is 0.15 MPa.
本発明において、電極基材における炭素繊維の目付が20〜40g/m2の範囲内にあることが好ましく、25〜35g/m2の範囲内にあることがより好ましい。炭素繊維の目付が20g/m2以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。40g/m2以下であると、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。 In the present invention, it is preferred that the basis weight of the carbon fibers in the electrode substrate is in the range of 20 to 40 g / m 2, and more preferably in the range of 25 to 35 g / m 2. It is preferable that the basis weight of the carbon fiber is 20 g / m 2 or more because the electrode base material is excellent in mechanical properties, electrical conductivity, and thermal conductivity. When it is 40 g / m 2 or less, drainage performance is improved, flooding is improved, and power generation performance at low temperatures is improved.
ここで、電極基材における炭素繊維目付けは、10cm四方に切り取った抄紙体を、窒素雰囲気下、温度450℃の電気炉内に15分間保持し、有機物を除去して得た残瑳の重量を、抄紙体の面積(0.1m2)で除して求めることができる。 Here, the basis weight of the carbon fiber in the electrode base material is the weight of the residue obtained by removing the organic matter by holding the paper body cut to 10 cm square in an electric furnace at a temperature of 450 ° C. for 15 minutes in a nitrogen atmosphere. , Divided by the area of the paper body (0.1 m 2 ).
本発明において、前記炭素繊維[A]と前記炭素繊維[B]とを含むだけでは、低温から高温の広い温度範囲にわたって発電性能が十分に優れる電極基材を得ることはできず、電極基材において、密度、および細孔径が特定範囲であることが必要である。 In the present invention, it is not possible to obtain an electrode base material with sufficiently excellent power generation performance over a wide temperature range from low temperature to high temperature only by including the carbon fiber [A] and the carbon fiber [B]. In this case, the density and the pore diameter must be in a specific range.
次に、本発明の電極基材を得る方法について説明する。本発明の電極基材は、前記炭素繊維[A]と前記炭素繊維[B]を抄紙してなる抄紙体に、炭素繊維100質量部に対して樹脂成分を50〜200質量部含浸して予備含浸体を形成した後、該予備含浸体を炭素化することにより得られる。以下、各工程にさらに説明を加える。 Next, a method for obtaining the electrode substrate of the present invention will be described. The electrode base material of the present invention is preliminarily prepared by impregnating 50 to 200 parts by mass of a resin component with respect to 100 parts by mass of carbon fiber in a paper body obtained by papermaking the carbon fiber [A] and the carbon fiber [B]. After the impregnated body is formed, the pre-impregnated body is obtained by carbonization. Hereinafter, further description will be added to each step.
<抄紙体、および抄紙体の製造方法>
本発明において、炭素繊維を含む抄紙体を得るためには、炭素繊維を液中に分散させて製造する湿式抄紙法や、空気中に分散させて製造する乾式抄糸法等が用いられる。なかでも、生産性が優れることから、湿式抄紙法が好ましく用いられる。特に、前記炭素繊維[A]と前記炭素繊維[B]を抄紙する前に、前記炭素繊維[B]の水分散液を攪拌し、前記炭素繊維[B]を短繊維化する工程を採用するのが好ましい。かかる工程を採用すれば、炭素繊維[B]の平均長さを前記した範囲内にすることも容易である。
<Paper making body and method for producing paper making body>
In the present invention, in order to obtain a papermaking body containing carbon fibers, a wet papermaking method in which carbon fibers are dispersed in a liquid and a dry yarn making method in which carbon fibers are dispersed in air are used. Of these, the wet papermaking method is preferably used because of its excellent productivity. In particular, before making the carbon fiber [A] and the carbon fiber [B], a step of stirring the aqueous dispersion of the carbon fiber [B] to shorten the carbon fiber [B] is employed. Is preferred. If this process is adopted, it is easy to set the average length of the carbon fiber [B] within the above-described range.
本発明において、電極基材の排水性を向上し、水蒸気拡散性を抑制する目的で、炭素繊維に有機繊維を混合して抄紙しても良い。有機繊維としては、ポリエチレン繊維、ビニロン繊維、ポリアセタール繊維、ポリエステル繊維、ポリアミド繊維、レーヨン繊維、アセテート繊維、セルロース繊維等を用いることができる。 In the present invention, for the purpose of improving drainage of the electrode base material and suppressing water vapor diffusibility, paper may be made by mixing carbon fibers with organic fibers. As the organic fiber, polyethylene fiber, vinylon fiber, polyacetal fiber, polyester fiber, polyamide fiber, rayon fiber, acetate fiber, cellulose fiber and the like can be used.
本発明において、電極基材の排水性を向上し、水蒸気拡散性を抑制する目的で、炭素繊維にフィブリル状の有機繊維を混合して抄紙することが好ましい。フィブリル状の有機繊維を混抄することにより、フィブリル状物のまわりに付着した樹脂成分が網状の炭化物として残り、フィブリル状の有機繊維由来の小さな細孔と炭素繊維由来の大きな細孔が形成されると考えられる。本発明の基材においては、特に水蒸気拡散性が抑制される結果、高温での発電性能が向上する。フィブリル状の有機繊維としては、針葉樹、広葉樹等の木材由来のパルプ、わら、ケナフ等の非木材由来のパルプ、ポリエチレン等の合成繊維由来のパルプのような各種のパルプが挙げられる。 In the present invention, for the purpose of improving the drainage of the electrode substrate and suppressing the water vapor diffusibility, it is preferable to make paper by mixing carbon fibers with fibril-like organic fibers. By mixing the fibrillar organic fibers, the resin component adhering around the fibrillar materials remains as a net-like carbide, and small pores derived from the fibrillar organic fibers and large pores derived from the carbon fibers are formed. it is conceivable that. In the base material of the present invention, in particular, water vapor diffusibility is suppressed, so that power generation performance at high temperatures is improved. Examples of the fibril-like organic fiber include various pulps such as pulp derived from wood such as conifers and hardwoods, pulp derived from non-wood such as straw and kenaf, and pulp derived from synthetic fibers such as polyethylene.
抄紙体にパルプを含ませる場合、抄紙体におけるパルプの配合量は、炭素繊維100質量部に対しパルプを20〜80質量部とするのが好ましく、30〜70質量部とするのがより好ましく、さらには40〜60質量部とするのが好ましい。パルプの配合量が20質量部以上であると、水蒸気拡散性が小さく、ドライアップが改善され、高温性能が向上する。一方、樹脂成分の配合量が100質量部以下であると、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。 When pulp is included in the paper body, the pulp content in the paper body is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, with respect to 100 parts by weight of carbon fiber. Furthermore, it is preferable to set it as 40-60 mass parts. When the blending amount of the pulp is 20 parts by mass or more, water vapor diffusibility is small, dry-up is improved, and high-temperature performance is improved. On the other hand, when the compounding amount of the resin component is 100 parts by mass or less, drainage is improved, flooding is improved, and power generation performance at low temperature is improved.
また、本発明において、抄紙体の形態保持性、ハンドリング性を向上する目的で、バインダーとして有機高分子を含むことができる。ここで、有機高分子としては、ポリビニルアルコール、ポリ酢酸ビニル、ポリアクリロニトリル、セルロース等を用いることができる。 In the present invention, an organic polymer can be included as a binder for the purpose of improving the form retainability and handling of the papermaking body. Here, as the organic polymer, polyvinyl alcohol, polyvinyl acetate, polyacrylonitrile, cellulose or the like can be used.
本発明における抄紙体は、面内の導電性、熱伝導性を等方的に保つという目的で、炭素繊維が二次元平面内にランダムに分散したシート状であることが好ましい。 The paper body in the present invention is preferably in the form of a sheet in which carbon fibers are randomly dispersed in a two-dimensional plane for the purpose of maintaining in-plane conductivity and thermal conductivity isotropic.
<抄紙体への樹脂成分の含浸>
本発明において、炭素繊維を含む抄紙体に樹脂成分を含浸する方法として、樹脂成分を含む溶液中に抄紙体を浸漬する方法、樹脂成分を含む溶液を抄紙体に塗布する方法、樹脂成分からなるフィルムを抄紙体に重ねて転写する方法等が用いられる。なかでも、生産性が優れることから、樹脂成分を含む溶液中に抄紙体を浸漬する方法が好ましく用いられる。
<Impregnation of resin component into paper body>
In the present invention, as a method of impregnating the paper component containing carbon fiber with the resin component, a method of immersing the paper component in a solution containing a resin component, a method of applying a solution containing a resin component to a paper component, and a resin component For example, a method of transferring a film on a paper body is used. Especially, since productivity is excellent, the method of immersing a papermaking body in the solution containing a resin component is used preferably.
本発明に用いる樹脂成分は、焼成時に炭化して導電性の炭化物となるものが好ましい。樹脂成分には溶媒や界面活性剤等の添加物等を必要に応じて添加しても良い。 The resin component used in the present invention is preferably one that is carbonized during firing to become a conductive carbide. You may add additives, such as a solvent and surfactant, to a resin component as needed.
本発明において用いる樹脂成分は、その炭化収率が40質量%以上であることが好ましい。炭化収率が40質量%以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。 The resin component used in the present invention preferably has a carbonization yield of 40% by mass or more. When the carbonization yield is 40% by mass or more, the electrode base material is preferable because it has excellent mechanical properties, electrical conductivity, and thermal conductivity.
本発明において、樹脂成分としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂等の熱硬化性樹脂等が挙げられる。なかでも、炭化収率が高いことから、フェノール樹脂が好ましく用いられる。 In the present invention, examples of the resin component include thermosetting resins such as phenol resins, epoxy resins, melamine resins, and furan resins. Of these, a phenol resin is preferably used because of its high carbonization yield.
本発明では、前記抄紙体に、炭素繊維100質量部に対し樹脂成分を50〜200質量部配合することが必要であり、60〜150質量部含浸することが好ましく、さらには70〜100質量部配合することが好ましい。樹脂成分の配合量が50質量部以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。一方、樹脂成分の配合量が200質量部以下であると、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。 In this invention, it is necessary to mix | blend 50-200 mass parts of resin components with respect to 100 mass parts of carbon fibers, and it is preferable to impregnate 60-150 mass parts, and also 70-100 mass parts to the said papermaking body. It is preferable to mix. When the blending amount of the resin component is 50 parts by mass or more, the electrode base material is preferable because it has excellent mechanical properties, electrical conductivity, and thermal conductivity. On the other hand, when the compounding amount of the resin component is 200 parts by mass or less, drainage is improved, flooding is improved, and power generation performance at low temperature is improved.
本発明において、電極基材の機械特性、導電性、熱伝導性を向上するという観点で、樹脂成分には炭素質粉末を添加することが好ましい。ここで、炭素質粉末としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のミルドファイバー、黒鉛等を用いることができる。なかでも、機械特性、導電性、熱伝導性を向上し、樹脂成分の配合量を低減させられることから、黒鉛を用いることが好ましい。樹脂成分の配合量を低減することにより、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。黒鉛の種類としては、鱗片状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛、球状黒鉛等が挙げられる。なかでも、機械特性、導電性、熱伝導性の向上効果が高いことから、鱗片状の黒鉛を用いることが好ましい。 In the present invention, it is preferable to add carbonaceous powder to the resin component from the viewpoint of improving the mechanical properties, conductivity, and thermal conductivity of the electrode substrate. Here, as the carbonaceous powder, carbon black, carbon nanotube, carbon nanofiber, milled fiber of carbon fiber, graphite or the like can be used. Among these, it is preferable to use graphite because the mechanical properties, conductivity, and thermal conductivity are improved and the amount of the resin component is reduced. By reducing the amount of the resin component, drainage is improved, flooding is improved, and power generation performance at low temperatures is improved. Examples of the graphite include flaky graphite, earthy graphite, artificial graphite, expanded graphite, and spherical graphite. Of these, scale-like graphite is preferably used because of its high effect of improving mechanical properties, conductivity, and thermal conductivity.
樹脂成分への炭素質粉末の添加量は、樹脂成分100質量部に対して炭素質粉末5〜20質量部であることが好ましく、5〜15質量部であることがより好ましく、5〜12質量部であることがさらに好ましい。炭素質粉末の添加量が5質量部以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。一方、炭素質粉末の添加量が20質量部以下であると、電極基材の柔軟性が高くなり、製造性の優れたものとなり好ましい。 The amount of carbonaceous powder added to the resin component is preferably 5 to 20 parts by mass, more preferably 5 to 15 parts by mass, and 5 to 12 parts by mass with respect to 100 parts by mass of the resin component. More preferably, it is a part. It is preferable for the amount of carbonaceous powder added to be 5 parts by mass or more because the electrode base material has excellent mechanical properties, electrical conductivity, and thermal conductivity. On the other hand, when the addition amount of the carbonaceous powder is 20 parts by mass or less, the flexibility of the electrode base material is increased, and the productivity is excellent, which is preferable.
本発明では、抄紙体へ樹脂成分を含浸するに際して、樹脂成分をそのまま使用することもできるし、必要に応じて、抄紙体への含浸性を高める目的で、各種溶媒と混合して樹脂組成物となして使用することもできる。ここで、溶媒としては、メタノール、エタノール、イソプロピルアルコール等を用いることができる。 In the present invention, when the resin component is impregnated into the paper body, the resin component can be used as it is, or, if necessary, mixed with various solvents for the purpose of improving the impregnation property into the paper body. It can also be used. Here, methanol, ethanol, isopropyl alcohol, or the like can be used as the solvent.
樹脂成分は、25℃、0.1MPaの状態で液状であることが好ましい。また、樹脂成分に溶媒を添加して樹脂組成物となし、その樹脂組成物が、25℃、0.1MPaの状態で液状であるようにしてもよい。樹脂成分(溶媒を用いた場合には樹脂組成物)が液状であると抄紙体への含浸性が優れ、電極基材が機械特性、導電性、熱伝導性に優れたものとなり好ましい。 The resin component is preferably liquid at 25 ° C. and 0.1 MPa. Alternatively, a solvent may be added to the resin component to form a resin composition, and the resin composition may be liquid at 25 ° C. and 0.1 MPa. It is preferable that the resin component (resin composition in the case of using a solvent) is in a liquid state because the paper body has excellent impregnation properties and the electrode base material has excellent mechanical properties, electrical conductivity, and thermal conductivity.
<予備含浸体の張り合わせ、熱処理>
本発明においては、抄紙体に樹脂成分を含浸した予備含浸体を形成した後、炭素化を行うに先立って、電極基材を所定の厚みにする目的で、予備含浸体の複数枚を張り合わせたり、樹脂成分を増粘、部分的に架橋する目的で、予備含浸体を熱処理したりすることができる。
<Lamination and heat treatment of pre-impregnated body>
In the present invention, after forming a pre-impregnated body impregnated with a resin component on a paper body, prior to carbonization, a plurality of pre-impregnated bodies may be bonded together for the purpose of making the electrode substrate a predetermined thickness. The pre-impregnated body can be heat-treated for the purpose of thickening and partially crosslinking the resin component.
予備含浸体の複数枚を張り合わせる場合、同一の性状を有する予備含浸体の複数枚を張り合わせることもできるし、異なる性状を有する予備含浸体の複数枚を張り合わせることもできる。具体的には、樹脂成分に炭素質粉末などを添加し含浸して得られる予備含浸体と、樹脂成分に炭素質粉末などを添加しないで含浸して得られる予備含浸体を張り合わせることができる。また、炭素繊維の平均直径、平均長さ、抄紙体の炭素繊維目付や有機繊維の配合量、樹脂成分の含浸量や炭素質粉末の配合量等が異なる複数の予備含浸体を張り合わせることもできる。 When a plurality of pre-impregnated bodies are laminated, a plurality of pre-impregnated bodies having the same properties can be laminated, or a plurality of pre-impregnated bodies having different properties can be laminated. Specifically, a pre-impregnated body obtained by adding and impregnating carbonaceous powder to the resin component and a pre-impregnated body obtained by impregnating the resin component without adding carbonaceous powder can be bonded together. . In addition, a plurality of pre-impregnated bodies having different average diameters and average lengths of carbon fibers, carbon fiber basis weight of the papermaking body, blending amount of organic fibers, impregnation amount of resin component, blending amount of carbonaceous powder, and the like may be bonded together. it can.
本発明において、予備含浸体を張り合わせた後の基材における炭素繊維の目付が20〜40g/m2の範囲内にあることが好ましく、25〜35g/m2の範囲内にあることがより好ましい。炭素繊維の目付が20g/m2以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。40g/m2以下であると、排水性が向上し、フラッディングが改善され、低温での発電性能が向上する。 In the present invention, it is preferred that the basis weight of the carbon fibers in the substrate after bonding the pre-impregnated material is in the range of 20 to 40 g / m 2, and more preferably in the range of 25 to 35 g / m 2 . It is preferable that the basis weight of the carbon fiber is 20 g / m 2 or more because the electrode base material is excellent in mechanical properties, electrical conductivity, and thermal conductivity. When it is 40 g / m 2 or less, drainage performance is improved, flooding is improved, and power generation performance at low temperatures is improved.
また、本発明において、樹脂成分や樹脂組成物を増粘、部分的に架橋する目的で、予備含浸体を熱処理する方法としては、熱風を吹き付ける方法、プレス装置等の熱板にはさんで加熱する方法、連続ベルトにはさんで加熱する方法等を用いることができる。 In the present invention, for the purpose of heat-treating the pre-impregnated body for the purpose of thickening and partially cross-linking the resin component or the resin composition, a method of spraying hot air, heating between hot plates of a press device, etc. The method of heating, the method of heating between continuous belts, etc. can be used.
<炭素化>
本発明において、予備含浸体を、必要に応じて張り合わせ、熱処理を行った後、炭素化する。炭素化は、通常、不活性雰囲気下での焼成による。かかる焼成は、バッチ式の加熱炉を用いることもできるし、連続式の加熱炉を用いることもできる。また、不活性雰囲気は、炉内に窒素ガス、アルゴンガス等の不活性ガスを流すことにより得ることができる。
<Carbonization>
In the present invention, the pre-impregnated body is bonded together as necessary, heat treated, and then carbonized. Carbonization is usually by firing in an inert atmosphere. For this firing, a batch type heating furnace can be used, or a continuous type heating furnace can be used. The inert atmosphere can be obtained by flowing an inert gas such as nitrogen gas or argon gas in the furnace.
本発明において、焼成の最高温度が1500〜3000℃の範囲内であることが好ましく、1700〜3000℃の範囲内であることがより好ましく、さらには、1900〜3000℃の範囲内であることが好ましい。最高温度が1500℃以上であると、樹脂成分の炭素化が進み、電極基材が導電性、熱伝導性の優れたものとなり好ましい。一方、最高温度が3000℃以下であると、加熱炉の運転コストが低くなるために好ましい。 In the present invention, the maximum temperature of firing is preferably in the range of 1500 to 3000 ° C, more preferably in the range of 1700 to 3000 ° C, and further in the range of 1900 to 3000 ° C. preferable. When the maximum temperature is 1500 ° C. or higher, the carbonization of the resin component proceeds, and the electrode base material is preferably excellent in conductivity and thermal conductivity. On the other hand, the maximum temperature of 3000 ° C. or lower is preferable because the operating cost of the heating furnace is reduced.
本発明において、焼成にあたっては、昇温速度が80〜5000℃/分の範囲内であることが好ましい。昇温速度が80℃以上であると、生産性が優れるために好ましい。一方、5000℃以下であると、樹脂成分の炭素化が緩やかに進み緻密な構造が形成されるため、電極基材が導電性、熱伝導性の優れたものとなり好ましい。 In the present invention, the firing rate is preferably in the range of 80 to 5000 ° C./min for firing. A temperature increase rate of 80 ° C. or higher is preferable because productivity is excellent. On the other hand, when the temperature is 5000 ° C. or lower, the carbonization of the resin component gradually proceeds and a dense structure is formed. Therefore, the electrode base material is preferably excellent in conductivity and thermal conductivity.
<後加工>
電極基材には、排水性を向上する目的で、撥水加工が施されていることが好ましい。撥水加工は、炭素化後の電極基材に疎水性樹脂を塗布、熱処理することにより行うことができる。かかる疎水性樹脂としては、ポリクロロトリフルオロエチレン樹脂(PCTFE)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリフッ化ビニリデン樹脂(PVDF)、テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体(FEP)、テトラフルオロエチレンとパーフルオロプロピルビニルエーテルの共重合体(PFA)、テトラフルオロエチレンとエチレンの共重合体(ETFE)等のフッ素樹脂が挙げられる。かかる疎水性樹脂の塗布量は、電極基材100質量部に対して1〜50質量部であることが好ましく、3〜40質量部であることがより好ましい。疎水性樹脂の塗布量が1質量部以上であると、電極基材が排水性に優れたものとなり好ましい。一方、50質量部以下であると、電極基材が導電性の優れたものとなり好ましい。
<Post-processing>
The electrode substrate is preferably subjected to water repellent treatment for the purpose of improving drainage. The water repellent finish can be performed by applying a hydrophobic resin to the electrode substrate after carbonization and heat-treating it. Examples of the hydrophobic resin include polychlorotrifluoroethylene resin (PCTFE), polytetrafluoroethylene resin (PTFE), polyvinylidene fluoride resin (PVDF), a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP), tetra Examples thereof include fluororesins such as a copolymer of fluoroethylene and perfluoropropyl vinyl ether (PFA) and a copolymer of tetrafluoroethylene and ethylene (ETFE). The application amount of the hydrophobic resin is preferably 1 to 50 parts by mass, and more preferably 3 to 40 parts by mass with respect to 100 parts by mass of the electrode substrate. When the application amount of the hydrophobic resin is 1 part by mass or more, the electrode substrate is preferable because it has excellent drainage. On the other hand, when the amount is 50 parts by mass or less, the electrode base material is preferably excellent in conductivity.
本発明において、撥水加工を施した電極基材の少なくとも片面に、導電性を有する微小多孔層、いわゆる、マイクロポーラス・レイヤーを形成することが好ましい。微小多孔層を設けると、撥水加工した電極基材の表面凹凸が覆われ平滑となるため、膜−電極接合体を構成し、燃料電池を構成した際に、触媒層との間の電気抵抗を低減することができる。また、固体高分子電解質膜の損傷もより確実に防止することができる。微小多孔層は、撥水加工した電極基材の表面に、上述した撥水加工で用いた疎水性樹脂と、上述した炭素フィラーとの混合物を塗布することによって形成することができる。炭素フィラーとしてはカーボンブラックを用いるのが好ましい。本発明では、微小多孔層において、炭素フィラー100質量部に対して、疎水性樹脂を1〜70質量部配合することが好ましく、5〜60質量部配合することがより好ましい。疎水性樹脂の配合量が1質量部以上であると、微小多孔層が機械強度の優れたものとなり好ましい。一方、70質量部以下であると、微小多孔層が導電性、熱伝導性の優れたものとなり好ましい。 In the present invention, it is preferable to form a microporous layer having conductivity, a so-called microporous layer, on at least one surface of the electrode substrate that has been subjected to water repellent finishing. When the microporous layer is provided, the surface unevenness of the water-repellent electrode base material is covered and smoothed. Therefore, when the membrane-electrode assembly is configured and the fuel cell is configured, the electric resistance between the catalyst layer and the electrode layer Can be reduced. In addition, damage to the solid polymer electrolyte membrane can be prevented more reliably. The microporous layer can be formed by applying a mixture of the hydrophobic resin used in the above-described water-repellent processing and the above-mentioned carbon filler to the surface of the water-repellent electrode base material. Carbon black is preferably used as the carbon filler. In this invention, it is preferable to mix | blend 1-70 mass parts of hydrophobic resin with respect to 100 mass parts of carbon fillers in a microporous layer, and it is more preferable to mix | blend 5-60 mass parts. When the blending amount of the hydrophobic resin is 1 part by mass or more, the microporous layer is preferable because it has excellent mechanical strength. On the other hand, when the amount is 70 parts by mass or less, the microporous layer is preferable because it has excellent conductivity and thermal conductivity.
本発明の電極基材を、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することで膜−電極接合体が構成される。なお、微小多孔層を備えた撥水加工した電極基材を用いる場合は、微小多孔層が触媒層と接するように、膜−電極接合体を構成することが好ましい。かかる膜−電極接合体の両側にガスケットを介してセパレータで挟んだものを複数個積層することによって固体高分子型燃料電池を構成することができる。触媒層は、固体高分子電解質と触媒担持炭素を含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いるのが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性、耐熱性の高い、パーフルオロスルホン酸系の高分子材料を用いるのが好ましい。かかる燃料電池ユニットや燃料電池の構成自体は、よく知られているところである。 A membrane-electrode assembly is constructed by bonding the electrode substrate of the present invention to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both sides. In addition, when using the water-repellent processed electrode base material provided with the microporous layer, it is preferable to configure the membrane-electrode assembly so that the microporous layer is in contact with the catalyst layer. A polymer electrolyte fuel cell can be constructed by laminating a plurality of such membrane-electrode assemblies sandwiched between separators via gaskets. The catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. As the catalyst, platinum is usually used. In a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side, it is preferable to use platinum and ruthenium as the catalyst on the anode side. As the solid polymer electrolyte, it is preferable to use a perfluorosulfonic acid polymer material having high proton conductivity, oxidation resistance, and heat resistance. Such a fuel cell unit and the configuration of the fuel cell itself are well known.
以下、実施例によって本発明を具体的に説明する。電極基材の測定方法、燃料電池の電池性能評価方法、材料を次に示した。 Hereinafter, the present invention will be described specifically by way of examples. The electrode substrate measurement method, fuel cell performance evaluation method, and materials are shown below.
<電極基材の厚さ測定>
電極基材の厚さは、電極基材を面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めた。
<Measurement of electrode substrate thickness>
The thickness of the electrode substrate was determined using a micrometer in a state where the electrode substrate was pressurized at a surface pressure of 0.15 MPa.
<電極基材における炭素繊維目付測定>
電極基材における炭素繊維目付けは、10cm四方に切り取った抄紙体を、窒素雰囲気下、温度450℃の電気炉内に15分間保持し、有機物を除去して得た残瑳の重量を、抄紙体の面積(0.1m2)で除して求めた。
<Measurement of carbon fiber basis weight in electrode substrate>
The basis weight of the carbon fiber in the electrode substrate is that the paper body cut out in a 10 cm square is held in an electric furnace at a temperature of 450 ° C. for 15 minutes in a nitrogen atmosphere, and the weight of the residue obtained by removing the organic matter is determined as the paper body. Divided by the area (0.1 m 2 ).
<電極基材の密度測定>
電極基材の密度は、測定すべき電極基材について、その目付を、面圧0.15MPaで加圧した際の厚みで除して求めたものである。
<Density measurement of electrode substrate>
The density of the electrode base material is obtained by dividing the basis weight of the electrode base material to be measured by the thickness when pressed with a surface pressure of 0.15 MPa.
<電極基材の細孔径測定>
電極基材の細孔径は、水銀圧入法により、測定圧力6kPa〜414MPa(細孔径30nm〜400μm)の範囲で測定して得られる細孔径分布のピーク径を求めたものである。複数のピークが現れる場合は、最も高いピークのピーク径を採用した。測定装置としては、島津製作所社製オートポア9520を用いた。
<Measurement of pore diameter of electrode substrate>
The pore diameter of the electrode base material is obtained by determining the peak diameter of the pore diameter distribution obtained by measuring in the measurement pressure range of 6 kPa to 414 MPa (pore diameter 30 nm to 400 μm) by mercury porosimetry. When multiple peaks appeared, the peak diameter of the highest peak was adopted. As a measuring device, Autopore 9520 manufactured by Shimadzu Corporation was used.
<固体高分子型燃料電池の発電性能評価>
白金担持炭素(田中貴金属工業(株)製、白金担持量:50質量%)1.00g、精製水 1.00g、“Nafion”(登録商標)溶液(Aldrich社製 “Nafion”(登録商標)5.0質量%)8.00g、イソプロピルアルコール(ナカライテスク社製)18.00gを順に加えることにより、触媒液を作成した。
<Evaluation of power generation performance of polymer electrolyte fuel cells>
1.00 g of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum support: 50% by mass), 1.00 g of purified water, “Nafion” (registered trademark) solution (“Nafion” (registered trademark) 5 manufactured by Aldrich) (0.0 mass%) 8.00 g and isopropyl alcohol (manufactured by Nacalai Tesque) 18.00 g were sequentially added to prepare a catalyst solution.
次に7cm×7cmにカットした “ナフロン”(登録商標)PTFEテープ“TOMBO”(登録商標)No.9001(ニチアス(株)製)に、触媒液をスプレーで塗布し、室温で乾燥させ、白金量が0.3mg/cm2の触媒層付きPTFEシートを作製した。続いて、10cm×10cmにカットした固体高分子電解質膜“Nafion”(登録商標)NR−211(DuPont社製)を2枚の触媒層付きPTFEシートで挟み、平板プレスで5MPaに加圧しながら130℃で5分間プレスし、固体高分子電解質膜に触媒層を転写した。プレス後、PTFEシートを剥がし、触媒層付き固体高分子電解質膜を作製した。 Next, “Naflon” (registered trademark) PTFE tape “TOMBO” (registered trademark) No. 7 cut to 7 cm × 7 cm. A catalyst solution was applied to 9001 (manufactured by NICHIAS Corporation) by spraying and dried at room temperature to prepare a PTFE sheet with a catalyst layer having a platinum amount of 0.3 mg / cm 2 . Subsequently, a solid polymer electrolyte membrane “Nafion” (registered trademark) NR-211 (manufactured by DuPont) cut to 10 cm × 10 cm is sandwiched between two PTFE sheets with a catalyst layer, and pressed to 5 MPa with a flat plate press. Pressing at 5 ° C. for 5 minutes transferred the catalyst layer to the solid polymer electrolyte membrane. After pressing, the PTFE sheet was peeled off to produce a solid polymer electrolyte membrane with a catalyst layer.
次に、触媒層付き固体高分子電解質膜を、7cm×7cmにカットした2枚の微小多孔層を備えた電極基材で挟み、平板プレスで3MPaに加圧しながら130℃で5分間プレスし、膜−電極接合体を作製した。なお、微小多孔層を備えた電極基材は、微小多孔層を有する面が触媒層側と接するように配置した。 Next, the solid polymer electrolyte membrane with a catalyst layer is sandwiched between electrode substrates having two microporous layers cut into 7 cm × 7 cm, and pressed at 130 ° C. for 5 minutes while being pressed to 3 MPa with a flat plate press, A membrane-electrode assembly was produced. In addition, the electrode base material provided with the microporous layer was arrange | positioned so that the surface which has a microporous layer may contact the catalyst layer side.
得られた膜−電極接合体を、溝幅1.5mm、溝深さ1.0mm、リブ幅1.1mmの一本流路のサーペンタイン型のセパレータとともに燃料電池評価用単セルに組み込み、かかる単セルを用いて発電性能評価を行った。まず、運転温度を65℃に保持し、電流密度を2.0A/cm3にセットした場合の、出力電圧を測定し、低温性能の指標として用いた。次に、電流密度を1.2A/cm3にセットし、運転温度を80℃から、5分保持、5分かけて2℃上昇を繰り返しながら出力電圧を測定し、発電可能な限界温度を求め、高温性能の指標として用いた。
ここで、アノード側には210kPaに加圧した水素を、カソード側には140kPaに加圧した空気を供給し、運転温度65℃で評価を行った。なお、水素、空気はともに70℃に設定した加湿ポットにより加湿を行った。また、水素、空気中の酸素の利用率はそれぞれ80%、67%とした。
The obtained membrane-electrode assembly was incorporated into a single cell for fuel cell evaluation together with a serpentine-type separator having a single flow path having a groove width of 1.5 mm, a groove depth of 1.0 mm, and a rib width of 1.1 mm. Was used to evaluate the power generation performance. First, the output voltage was measured when the operating temperature was held at 65 ° C. and the current density was set at 2.0 A / cm 3, and used as an indicator of low temperature performance. Next, the current density is set to 1.2 A / cm 3 , the operating temperature is maintained from 80 ° C. for 5 minutes, the output voltage is measured while repeatedly raising 2 ° C. over 5 minutes, and the limit temperature at which power generation is possible is determined Used as an index of high temperature performance.
Here, hydrogen pressurized to 210 kPa was supplied to the anode side, and air pressurized to 140 kPa was supplied to the cathode side, and the evaluation was performed at an operating temperature of 65 ° C. Both hydrogen and air were humidified using a humidification pot set at 70 ° C. The utilization rates of hydrogen and oxygen in the air were 80% and 67%, respectively.
<抄紙体の破断加重の測定>
幅50mmの抄紙体を、スパン長250mmでオートグラフに取り付けた引張試験治具で把持し、速度2〜4mm/分で破断するまで引張り、最大荷重を測定した。破断加重が低いと抄紙体や予備含浸体が破断し、得ることが困難となるため、100N以上であることが好ましく、120N以上であることがより好ましい。連続した長尺のシートの場合、長手方向の破断加重が上記値を満たしていればよい。
<Measurement of breaking load of paper body>
A paper body having a width of 50 mm was gripped by a tensile test jig attached to an autograph with a span length of 250 mm, pulled at a speed of 2 to 4 mm / min until breaking, and the maximum load was measured. When the breaking load is low, the papermaking body or the pre-impregnated body is broken and difficult to obtain. Therefore, it is preferably 100N or more, and more preferably 120N or more. In the case of a continuous long sheet, the breaking load in the longitudinal direction only needs to satisfy the above value.
<材料>
炭素繊維[A]
A−1:PAN系炭素繊維 “トレカ”(登録商標)T300−3K
東レ(株)製、単繊維の平均直径:7μm、平均長さ:12mm(カット品)
他の細繊度炭素繊維
A−2:PAN系炭素繊維 “トレカ”(登録商標)T300−3K
東レ(株)製、単繊維の平均直径:7μm、平均長さ:1.0mm(カット品)
炭素繊維[B]
B−1:ピッチ系炭素繊維“ドナカーボ・チョップ”(登録商標)S332
大阪ガスケミカル(株)製、単繊維の平均直径:18μm、平均長さ:5.5mm
B−2:ピッチ系炭素繊維“ドナカーボ”(登録商標)S232
大阪ガスケミカル(株)製、単繊維の平均直径:13μm、平均長さ:5.5mm
B−3:ピッチ系炭素繊維“ドナカーボ”(登録商標)S234
大阪ガスケミカル(株)製、単繊維の平均直径:10μm、平均長さ:10mm
B−4:ピッチ系炭素繊維“ドナカーボ”(登録商標)S331
大阪ガスケミカル(株)製、単繊維の平均直径:18μm、平均長さ:3.3mm
B−5:ピッチ系炭素繊維“ドナカーボ”(登録商標)S331
大阪ガスケミカル(株)製、単繊維の平均直径:18μm、平均長さ:1.0mm
[B]材料(B−4)を水に分散させ、ミキサーで15分間攪拌することで作製した。
他の太繊度炭素繊維
B−6:ピッチ系炭素繊維“ドナカーボ”(登録商標)S331
大阪ガスケミカル(株)製、単繊維の平均直径:18μm、平均長さ:0.4mm
[B]材料(B−4)を水に分散させ、ミキサーで30分間攪拌することで作製した。
パルプ[C]
広葉樹晒クラフトパルプ“LBKP”クラフトマーケットパルプ(ハードウッド)
アラバマリバーパルプ社製、平均長さ:0.8mm
バインダー[D]
PVA(ポリビニルアルコール)
熱硬化性樹脂[E]
E−1:レゾール型フェノール樹脂 KP−743K
荒川化学工業(株)製
E−2:ノボラック型フェノール樹脂“タマノル”(登録商標)759
荒川化学工業(株)製
炭素質粉末[F]
F−1:鱗片状黒鉛 BF−5A
(株)中越黒鉛工業所製、平均粒径:5μm
F−2:カーボンブラック“デンカブラック”(登録商標)
電気化学工業(株)製
溶媒[G]
メタノール
ナカライテスク(株)製
疎水性樹脂[H]
PTFE樹脂 “ポリフロン”(登録商標)PTFEディスパージョンD−1E
ダイキン工業(株)製
界面活性剤[I]
界面活性剤“TRITON”(登録商標)X−100
ナカライテスク(株)製
(参考例1)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
前記の[A]材料(A−1)と[B]材料(B−1)を重量比70:30で混合し、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、前記の[D]材料10質量%水溶液を塗布、乾燥させ、炭素繊維の抄紙体を作製した。ポリビニルアルコールの塗布量は、抄紙体100質量部に対して、25質量部であった。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ20個であった。抄紙体の破断加重を測定したところ180Nであり、抄紙体の破断加重は極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
抄紙体中の炭素繊維100質重部に対し、前記の[E]材料と[F]材料を用い、構成配合比(E−1)/(E−2)/(F−1)=45/45/10となるよう[G]材料で濃度を調整し、超音波分散装置を用いて1分間攪拌を行い、均一に分散した樹脂組成物を得た。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
9cm×12.5cmにカットした抄紙体をアルミバットに満たした混合樹脂組成物に浸漬し、抄紙体に混合樹脂組成物を含浸させた後、100℃で3分間加熱して乾燥させ、予備含浸体を作製した。次に、予備含浸体を2枚積層し、平板プレスで加圧しながら、180℃で6分間熱処理を行った。なお、加圧の際に平板プレスにスペーサーを配置して、熱処理後の予備含浸体の厚さが200μmになるように上下プレス面板の間隔を調整した。
・第IVの工程:電極基材の作製工程
予備含浸体を熱処理した基材を、加熱炉において、窒素ガス雰囲気化で焼成を行い炭素化し、電極基材を得た。ここで、焼成条件は以下の通りとした。
(イ)室温から昇温速度500℃/分で2400℃まで昇温
(ロ)2400℃で5分間保持
(ハ)2400℃から室温まで放冷
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
電極基材を[H]材料の2.5%水溶液に浸漬した後、100℃で3分間加熱して乾燥させ、撥水処理電極基材を作製した。次に、撥水処理電極基材にコーターを用いて厚さ50μmのカーボン塗液層を形成した。ここで用いたカーボン塗液は、[F]材料の(F―2)、[H]材料、[I]材料、精製水を用い、配合比を7.7質量部/2.5質量部/1.8質量部/88質量部となるように調整したものを用いた。カーボン塗液層を形成した撥水電極基材を100℃で10分乾燥させた後に、380℃で10分間加熱して、微小多孔層を形成した撥水電極基材を作製した。
<Material>
Carbon fiber [A]
A-1: PAN-based carbon fiber “Torayca” (registered trademark) T300-3K
Toray Industries, Inc., average diameter of single fiber: 7μm, average length: 12mm (cut product)
Other fine carbon fiber A-2: PAN-based carbon fiber “Torayca” (registered trademark) T300-3K
Toray Industries, Ltd., average diameter of single fiber: 7μm, average length: 1.0mm (cut product)
Carbon fiber [B]
B-1: Pitch-based carbon fiber “Donna Carbo Chop” (registered trademark) S332
Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 18 μm, average length: 5.5 mm
B-2: Pitch-based carbon fiber “Donna Carbo” (registered trademark) S232
Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 13 μm, average length: 5.5 mm
B-3: Pitch-based carbon fiber “Donna Carbo” (registered trademark) S234
Made by Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 10 μm, average length: 10 mm
B-4: Pitch-based carbon fiber “Donna Carbo” (registered trademark) S331
Made by Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 18 μm, average length: 3.3 mm
B-5: Pitch-based carbon fiber “Donna Carbo” (registered trademark) S331
Made by Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 18 μm, average length: 1.0 mm
[B] The material (B-4) was dispersed in water and stirred for 15 minutes with a mixer.
Other high-definition carbon fiber B-6: Pitch-based carbon fiber “Donna Carbon” (registered trademark) S331
Made by Osaka Gas Chemical Co., Ltd., average diameter of single fiber: 18 μm, average length: 0.4 mm
[B] The material (B-4) was dispersed in water and stirred for 30 minutes with a mixer.
Pulp [C]
Hardwood bleached kraft pulp "LBKP" craft market pulp (Hardwood)
Made by Alabama River Pulp, average length: 0.8mm
Binder [D]
PVA (polyvinyl alcohol)
Thermosetting resin [E]
E-1: Resol type phenol resin KP-743K
E-2 manufactured by Arakawa Chemical Industries, Ltd .: Novolac-type phenolic resin “Tamanor” (registered trademark) 759
Arakawa Chemical Industries, Ltd. carbonaceous powder [F]
F-1: Scaly graphite BF-5A
Made by Chuetsu Graphite Industries Co., Ltd., average particle size: 5 μm
F-2: Carbon black “Denka Black” (registered trademark)
Electrochemical Industry Co., Ltd. Solvent [G]
Methanol Nacalai Tesque Co., Ltd. hydrophobic resin [H]
PTFE resin “Polyfluorocarbon” (registered trademark) PTFE dispersion D-1E
Surfactant [I] manufactured by Daikin Industries, Ltd.
Surfactant “TRITON” (registered trademark) X-100
Made by Nacalai Tesque ( Reference Example 1 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Process for producing paper body The above-mentioned [A] material (A-1) and [B] material (B-1) are mixed at a weight ratio of 70:30 and dispersed in water to obtain a wet papermaking method. The paper was made continuously. Further, a 10% by mass aqueous solution of the above [D] material was applied and dried to prepare a carbon fiber papermaking body. The coating amount of polyvinyl alcohol was 25 parts by mass with respect to 100 parts by mass of the paper body. The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted to be 20. When the breaking load of the paper body was measured, it was 180 N, and the breaking load of the paper body was very good.
-Step II: Step of adjusting the mixed resin composition Using the above-mentioned [E] material and [F] material with respect to 100 parts by weight of carbon fiber in the paper body, the composition ratio (E-1) / ( E-2) / (F-1) = Adjust the concentration with the material [G] so as to be 45/45/10, and stir for 1 minute using an ultrasonic dispersion device to obtain a uniformly dispersed resin composition. Obtained.
-Step III: Preparation, pasting and heat treatment of pre-impregnated body A paper body cut to 9 cm x 12.5 cm is immersed in a mixed resin composition filled with aluminum bat, and the paper body is impregnated with the mixed resin composition Then, it was heated at 100 ° C. for 3 minutes and dried to prepare a pre-impregnated body. Next, two pre-impregnated bodies were laminated and heat-treated at 180 ° C. for 6 minutes while being pressed with a flat plate press. In addition, a spacer was disposed on the flat plate press during the pressurization, and the interval between the upper and lower press face plates was adjusted so that the thickness of the pre-impregnated body after the heat treatment was 200 μm.
-IV process: Electrode base material preparation process The base material which heat-processed the pre-impregnation body was baked and carbonized by nitrogen gas atmosphere in the heating furnace, and the electrode base material was obtained. Here, the firing conditions were as follows.
(B) Temperature rise from room temperature to 2400 ° C. at a rate of temperature rise of 500 ° C./min (b) Hold at 2400 ° C. for 5 minutes (c) Allow to cool from 2400 ° C. to room temperature Step V: Water repellent electrode substrate Production and Step of Forming Microporous Layer The electrode substrate was immersed in a 2.5% aqueous solution of [H] material, and then heated and dried at 100 ° C. for 3 minutes to produce a water repellent electrode substrate. Next, a carbon coating solution layer having a thickness of 50 μm was formed on the water repellent electrode substrate using a coater. The carbon coating liquid used here was (F-2) of the [F] material, [H] material, [I] material, and purified water, and the blending ratio was 7.7 parts by mass / 2.5 parts by mass / What was adjusted so that it might become 1.8 mass parts / 88 mass parts was used. The water-repellent electrode substrate on which the carbon coating layer was formed was dried at 100 ° C. for 10 minutes and then heated at 380 ° C. for 10 minutes to produce a water-repellent electrode substrate on which a microporous layer was formed.
続いて、得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.25g/cm3、細孔径が51μmであり、この特性の電極基材の発電性能の結果が出力電圧0.45V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度88℃(加湿温度70℃、電流密度1.2A/cm2)であった。表1に記載のように、参考例1は低温性能、高温性能ともに良好であった。 Subsequently, as a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.25 g. / Cm 3 , the pore diameter is 51 μm, and the result of the power generation performance of the electrode base material with this characteristic is an output voltage of 0.45 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit The temperature was 88 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 1, Reference Example 1 was good in both low temperature performance and high temperature performance.
(参考例2、3)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−1)の重量比を表1に示すとおり50:50(参考例2)、30:70(参考例3)で混合すること以外は参考例1と同様の方法で抄紙体を得た。
抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ参考例2の抄紙体では25個、参考例3の抄紙体では15個であった。抄紙体の破断加重を測定したところ参考例2の抄紙体では140Nで良好であったが、参考例3の抄紙体では105Nであり比較的良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同等とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference examples 2 and 3)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
[A] material in Reference Example 1 Step (A-1) and [B] material (B-1) a weight ratio of as shown in Table 1 50:50 (Example 2), 30: 70 (Reference Example 3 The papermaking body was obtained in the same manner as in Reference Example 1 except that the mixture was mixed in step 1 ).
The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted. As a result, the number of paper bodies of Reference Example 2 was 25 and the number of paper bodies of Reference Example 3 was 15. When the breaking load of the paper body was measured, the paper body of Reference Example 2 was good at 140 N, but the paper body of Reference Example 3 was relatively good at 105 N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
It was the same as Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.24および0.25g/cm3、細孔径が58および63μmであり、この特性の電極基材の発電性能の結果が出力電圧0.47および0.48V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度が90および86℃(加湿温度70℃、電流密度1.2A/cm2)であった。表1に記載のように、参考例2は低温性能が良好で、高温性能が極めて良好であり、参考例3は低温性能が極めて良好で、高温性能が比較的良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode base material on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode base material was 30 g / m 2 , the density was 0.24, and. 25 g / cm 3 , pore diameters of 58 and 63 μm, and the results of power generation performance of the electrode base material having this characteristic are output voltages of 0.47 and 0.48 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2. 0 A / cm 3 ) and the limiting temperatures were 90 and 86 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 1, Reference Example 2 had good low temperature performance and extremely high temperature performance, and Reference Example 3 had very good low temperature performance and relatively good high temperature performance.
(参考例4、5)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で、[A]材料(A−1)と[B]材料(B−2)、[A]材料(A−1)と[B]材料(B−3)を重量比70:30で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ参考例4の抄紙体では20個、参考例5の抄紙体では25個であった。抄紙体の破断加重を測定したところ参考例4の抄紙体では190Nで極めて良好であり、参考例5の抄紙体では210Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Examples 4 and 5)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
In the step of Reference Example 1, the weight ratio of [A] material (A-1) and [B] material (B-2), [A] material (A-1) and [B] material (B-3) was 70. : A papermaking body was obtained in the same manner as in Reference Example 1 except that mixing was performed at 30. The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted. As a result, it was 20 for the paper body of Reference Example 4 and 25 for the paper body of Reference Example 5 . When the breaking load of the paper body was measured, the paper body of Reference Example 4 was very good at 190N, and the paper body of Reference Example 5 was very good at 210N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.25g/cm3、細孔径が47および44μmであり、この特性の電極基材の発電性能の結果が出力電圧0.44および0.43V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度88℃(加湿温度70℃、電流密度1.2A/cm2)であった。表1に記載のように、参考例4は低温性能、高温性能ともに良好であり、参考例5は低温性能が比較的良好で、高温性能が良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate with a microporous layer formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.25 g / cm 3. The pore diameter was 47 and 44 μm, and the results of the power generation performance of the electrode base material having this characteristic were output voltages of 0.44 and 0.43 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3). ), The limiting temperature was 88 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 1, Reference Example 4 was good in both low temperature performance and high temperature performance, and Reference Example 5 was relatively good in low temperature performance and good in high temperature performance.
(参考例6)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例2と同様とした。
・第IIの工程:混合樹脂組成物調整の工程
参考例1の工程で、構成配合比(E−1)/(E−2)/(F−1)=90/90/10とすること以外は参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Example 6 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The same as Reference Example 2 .
-Step II: Step of adjusting the mixed resin composition
In the process of Reference Example 1 , it was the same as Reference Example 1 except that the composition ratio (E-1) / (E-2) / (F-1) = 90/90/10.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが180μm、電極基材の炭素繊維目付が30g/m2、密度が0.36g/cm3、細孔径が49μmであり、この特性の電極基材の発電性能の結果が出力電圧0.42V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度90℃(加湿温度70℃、電流密度1.2A/cm2)であった。表1に記載のように、参考例6は低温性能が比較的良好で、高温性能が極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 180 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.36 g / cm 3. The pore diameter is 49 μm, and the result of the power generation performance of the electrode base material having this characteristic is an output voltage of 0.42 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 90 ° C. (Humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 1, Reference Example 6 had relatively good low temperature performance and very good high temperature performance.
(参考例7〜9)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例2と同様とした。参考例9は電極基材の炭素繊維目付を多くしたため、抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ30個であった。抄紙体の破断加重を測定したところ参考例9の抄紙体では195Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1の工程で、熱処理後の予備含浸体の厚さが150〜250μmになるように上下プレス面板の間隔を調整こと以外は参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Examples 7-9 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The same as Reference Example 2 . In Reference Example 9, since the carbon fiber basis weight of the electrode base material was increased, the surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was 30. When the breaking load of the paper body was measured, the paper body of Reference Example 9 was very good at 195N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
In the step of Reference Example 1, the procedure was the same as Reference Example 1 except that the distance between the upper and lower press face plates was adjusted so that the thickness of the pre-impregnated body after heat treatment was 150 to 250 μm.
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが140〜230μm、電極基材の炭素繊維目付が30〜42g/m2、密度が0.21〜0.36g/cm3、細孔径が45〜61μmの範囲のものが得られ、これらの特性の電極基材の発電性能の結果が出力電圧0.42〜0.46V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度84〜90℃(加湿温度70℃、電流密度1.2A/cm2)の範囲であった。表2に記載のように、参考例7は低温性能、高温性能ともに良好であり、参考例8は低温性能が良好であり高温性能が比較的良好であり、参考例9は低温性能が比較的良好で高温性能が極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 140 to 230 μm, the carbon fiber basis weight of the electrode substrate was 30 to 42 g / m 2 , and the density was 0.1. 21 to 0.36 g / cm 3 and a pore diameter in the range of 45 to 61 μm are obtained, and the results of power generation performance of the electrode base material having these characteristics are output voltages of 0.42 to 0.46 V (operation temperature 65 ° C. , Humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 84 to 90 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Reference Example 7 has good low temperature performance and high temperature performance, Reference Example 8 has good low temperature performance and relatively good high temperature performance, and Reference Example 9 has relatively low temperature performance. Good and high temperature performance was very good.
(参考例10)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例2と同様とした。
・第IIの工程:混合樹脂組成物調整の工程
参考例1の工程で、構成配合比(E−1)/(E−2)/(F−1)=45/45/0とすること以外は参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Example 10 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The same as Reference Example 2 .
-Step II: Step of adjusting the mixed resin composition
In the step of Reference Example 1, the procedure was the same as Reference Example 1 except that the composition ratio (E-1) / (E-2) / (F-1) = 45/45/0.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.23g/cm3、細孔径が56μmであり、この特性の電極基材の発電性能の結果が出力電圧0.42V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度84℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、参考例10は低温性能が比較的良好で、高温性能が比較的良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.23 g / cm 3. The pore diameter is 56 μm, and the results of power generation performance of the electrode base material having this characteristic are output voltage 0.42 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 84 ° C. (Humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Reference Example 10 had relatively low temperature performance and relatively high temperature performance.
(参考例11)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例2と同様とした。
・第IIの工程:混合樹脂組成物調整の工程
参考例1の工程で、構成配合比(E−1)/(E−2)/(F−2)=45/45/10とすること以外は参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Example 11 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The same as Reference Example 2 .
-Step II: Step of adjusting the mixed resin composition
In the step of Reference Example 1, the procedure was the same as Reference Example 1 except that the composition ratio (E-1) / (E-2) / (F-2) = 45/45/10.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.25g/cm3、細孔径が54μmであり、この特性の電極基材の発電性能の結果が出力電圧0.44V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度86℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、参考例11は低温性能が良好で、高温性能が比較的良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate with a microporous layer formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.25 g / cm 3. The pore diameter is 54 μm, and the results of power generation performance of the electrode base material having this characteristic are output voltage 0.44 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 86 ° C. (Humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Reference Example 11 had good low temperature performance and relatively high temperature performance.
(参考例12)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−1)と[C]材料の重量比を表2に示すとおり50:50:50で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ10個であった。抄紙体の破断加重を測定したところ参考例12の抄紙体では170Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Example 12 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
Except mixing the weight ratio of [A] material (A-1), [B] material (B-1), and [C] material by 50:50:50 in the process of the reference example 1 as shown in Table 2. A paper body was obtained in the same manner as in Reference Example 1 . The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted to be 10. When the breaking load of the paper body was measured, the paper body of Reference Example 12 was extremely good at 170 N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.37g/cm3、細孔径が56μmであり、この特性の電極基材の発電性能の結果が出力電圧0.47V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度がいずれも92℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、参考例12は低温性能、高温性能ともに極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.37 g / cm 3. The pore diameter is 56 μm, and the result of the power generation performance of the electrode base material having this characteristic is that the output voltage is 0.47 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), and the limit temperature is any Was 92 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Reference Example 12 was very good in both low temperature performance and high temperature performance.
(参考例13、14)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−1)と[C]材料の重量比を表2に示すとおり50:50:50(参考例13)、50:50:90(参考例14)で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ参考例13の抄紙体では10個、参考例14の抄紙体では9個であった。抄紙体の破断加重を測定したところ参考例13の抄紙体では170Nで極めて良好であり、参考例14の抄紙体では190Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例6と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Reference Examples 13 and 14 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
As shown in Table 2, the weight ratio of [A] material (A-1), [B] material (B-1), and [C] material in the process of Reference Example 1 was 50:50:50 ( Reference Example 13 ), A paper body was obtained in the same manner as in Reference Example 1 except that mixing was performed at 50:50:90 ( Reference Example 14 ). The surface of the paper body was observed with a microscope, 10 pieces in the paper body of Reference Example 1 3 was counted unity contained within a circle of diameter 7.5 cm, the paper body of Reference Example 14 was nine. When the breaking load of the paper body was measured, the paper body of Reference Example 13 was very good at 170 N, and the paper body of Reference Example 14 was very good at 190 N.
-Step II: Step of adjusting the mixed resin composition
The same as Reference Example 6 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.37および0.39g/cm3、細孔径が47および42μmであり、この特性の電極基材の発電性能の結果が出力電圧0.43および0.42V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度がいずれも92℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、参考例13、14は低温性能が比較的良好で、高温性能が極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode base material on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode base material was 30 g / m 2 , the density was 0.37 and 0.00. 39 g / cm 3 , pore diameters of 47 and 42 μm, and the results of power generation performance of the electrode base material having this characteristic are output voltages of 0.43 and 0.42 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2. 0 A / cm 3 ) and the limiting temperatures were both 92 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Reference Examples 13 and 14 had relatively good low-temperature performance and very good high-temperature performance.
(実施例1)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−4)と[C]材料の重量比を表2に示すとおり50:50:50で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ2個であり、表面の状態は極めて良好であった。抄紙体の破断加重を測定したところ実施例1の抄紙体では165Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Example 1 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
Except mixing the weight ratio of [A] material (A-1), [B] material (B-4), and [C] material by 50:50:50 in the process of the reference example 1 as shown in Table 2. A paper body was obtained in the same manner as in Reference Example 1 . When the surface of the paper body was observed with a microscope and the bundles contained in a circle having a diameter of 7.5 cm were counted, the number was 2 and the surface condition was very good. When the breaking load of the paper body was measured, the paper body of Example 1 was very good at 165N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.37g/cm3、細孔径が56μmであり、この特性の電極基材の発電性能の結果が出力電圧0.47V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度が92℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、実施例1は低温性能、高温性能ともに極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.37 g / cm 3. The pore diameter is 56 μm, and the result of power generation performance of the electrode base material having this characteristic is that the output voltage is 0.47 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), and the limit temperature is 92 The temperature was 70 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Example 1 was very good in both low temperature performance and high temperature performance.
(実施例2)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−5)と[C]材料の重量比を表2に示すとおり50:50:50で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ0個であり、表面の状態は極めて良好であった。抄紙体の破断加重を測定したところ実施例2の抄紙体では160Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Example 2 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
Except mixing the weight ratio of [A] material (A-1), [B] material (B-5), and [C] material by 50:50:50 in the process of the reference example 1 as shown in Table 2. A paper body was obtained in the same manner as in Reference Example 1 . When the surface of the paper body was observed with a microscope and the number of bundles contained in a circle having a diameter of 7.5 cm was counted, it was 0, and the surface condition was extremely good. When the breaking load of the paper body was measured, the paper body of Example 2 was very good at 160 N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.37g/cm3、細孔径が56μmであり、この特性の電極基材の発電性能の結果が出力電圧0.47V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度が92℃(加湿温度70℃、電流密度1.2A/cm2)であった。表2に記載のように、実施例2は低温性能、高温性能ともに極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.37 g / cm 3. The pore diameter is 56 μm, and the result of power generation performance of the electrode base material having this characteristic is that the output voltage is 0.47 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), and the limit temperature is 92 The temperature was 70 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 2, Example 2 was extremely good in both low temperature performance and high temperature performance.
(実施例3、4)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)と[B]材料(B−4)、[A]材料(A−1)と[B]材料(B−5)を表3に示すとおり50:50で混合すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ、実施例3の抄紙体では12個、実施例4の抄紙体では11個であった。抄紙体の破断加重を測定したところ実施例3の抄紙体では135Nで良好であり、実施例4の抄紙体では130Nで良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
( Examples 3 and 4 )
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
Table 3 shows [A] material (A-1) and [B] material (B-4), and [A] material (A-1) and [B] material (B-5) in the process of Reference Example 1. A paper body was obtained in the same manner as in Reference Example 1 except that the mixing was performed at 50:50. When the surface of the paper body was observed with a microscope and the number of bundles contained in a circle having a diameter of 7.5 cm was counted, it was 12 for the paper body of Example 3 and 11 for the paper body of Example 4 . When the breaking load of the paper body was measured, the paper body of Example 3 was good at 135N, and the paper body of Example 4 was good at 130N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.24g/cm3、細孔径が58μmであり、この特性の電極基材の発電性能の結果がともに出力電圧0.47V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度がともに90℃(加湿温度70℃、電流密度1.2A/cm2)であった。表3に記載のように、低温性能が良好で、高温性能が極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.24 g / cm 3. The pore diameter is 58 μm, and the results of the power generation performance of the electrode base material with this characteristic are both output voltage 0.47 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), and the limit temperature is Both were 90 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 3, the low temperature performance was good and the high temperature performance was very good.
(比較例1)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[A]材料(A−1)を表3に示すとおり100%で抄紙すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ6個であった。抄紙体の破断加重を測定したところ比較例1の抄紙体では225Nで極めて良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例10と同等とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同等とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
(Comparative Example 1)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The [A] material in Reference Example 1 Step a (A-1) except that the paper with 100% as shown in Table 3 to obtain a paper body in the same manner as in Reference Example 1. The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted. When the breaking load of the paper body was measured, the paper body of Comparative Example 1 was very good at 225N.
-Step II: Step of adjusting the mixed resin composition
It was equivalent to Reference Example 10 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
It was the same as Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.23g/cm3、細孔径が39μmであり、この特性の電極基材の発電性能の結果が出力電圧0.38V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度84℃(加湿温度70℃、電流密度1.2A/cm2)であることが分った。結果を表4に記載した。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.23 g / cm 3. The pore diameter is 39 μm, and the result of the power generation performance of the electrode base material having this characteristic is an output voltage of 0.38 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 84 ° C. It was found that the humidification temperature was 70 ° C. and the current density was 1.2 A / cm 2 . The results are shown in Table 4.
(比較例2)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
比較例1と同様とした。
・第IIの工程:混合樹脂組成物調整の工程
参考例1の工程で、構成配合比(E−1)/(E−2)/(F−1)=90/90/0とすること以外は参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同等とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
(Comparative Example 2)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
Step I: Process for producing paper body The same as Comparative Example 1.
-Step II: Step of adjusting the mixed resin composition
In the step of Reference Example 1, the procedure was the same as Reference Example 1 except that the composition ratio (E-1) / (E-2) / (F-1) = 90/90/0.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
It was the same as Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.38g/cm3、細孔径が32μmであり、この特性の電極基材の発電性能の結果が出力電圧0.32V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度88℃(加湿温度70℃、電流密度1.2A/cm2)であった。表4に記載のように、比較例2は高温性能が良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.38 g / cm 3. The pore diameter is 32 μm, and the result of the power generation performance of the electrode base material having this characteristic is an output voltage of 0.32 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), limit temperature 88 ° C. (Humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 4, Comparative Example 2 had good high temperature performance.
(比較例3)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[B]材料(B−1)を表3に示すとおり100%で抄紙すること以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ6個であった。抄紙体の破断加重を測定したところ比較例3の抄紙体では60Nで極めて低い値となった。
・第IIの工程:混合樹脂組成物調整の工程
比較例1と同等とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同等とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.26g/cm3、細孔径が68μmであり、この特性の電極基材は基材割れを起こし、出力電圧、限界温度データは取れなかった。表4に記載した。
(Comparative Example 3)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
A paper body was obtained in the same manner as in Reference Example 1 except that [B] material (B-1) was made at 100% as shown in Table 3 in the step of Reference Example 1 . The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted. When the breaking load of the paper body was measured, the paper body of Comparative Example 3 had an extremely low value of 60N.
Step II: Mixed resin composition preparation step The same as Comparative Example 1.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
It was the same as Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
As a result of evaluating the characteristics using the obtained water-repellent electrode substrate with a microporous layer formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , and the density was 0.26 g / cm 3. The pore diameter was 68 μm, and the electrode base material having this characteristic caused base material cracking, and the output voltage and limit temperature data could not be obtained. It described in Table 4.
(比較例4、5)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1と同様とした。
・第IIの工程:混合樹脂組成物調整の工程
参考例1の工程で、構成配合比(E−1)/(E−2)/(F−1)=20/20/10および140/140/10とすること以外は参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
(Comparative Examples 4 and 5)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
The same as in Reference Example 1 .
-Step II: Step of adjusting the mixed resin composition
In the step of Reference Example 1 , the same as in Reference Example 1 except that the composition ratio (E-1) / (E-2) / (F-1) = 20/20/10 and 140/140/10 did.
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、厚さが170μm、電極基材の炭素繊維目付が30g/m2、密度が0.18および0.42g/cm3、細孔径が46および28μmであり、この特性の電極基材の発電性能の結果が出力電圧0.38Vおよび発電不可(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度82および90℃(加湿温度70℃、電流密度1.2A/cm2)であった。表4に記載のように、比較例5は高温性能が極めて良好であった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate with a microporous layer formed, the thickness was 170 μm, the carbon fiber basis weight of the electrode substrate was 30 g / m 2 , the density was 0.18 and 0.00. 42 g / cm 3 , pore diameters of 46 and 28 μm, and the results of power generation performance of the electrode base material with this characteristic were an output voltage of 0.38 V and power generation impossible (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A) / Cm 3 ), limit temperature 82 and 90 ° C. (humidification temperature 70 ° C., current density 1.2 A / cm 2 ). As shown in Table 4, Comparative Example 5 had very high temperature performance.
(比較例6)
次の第Iの工程から第Vの工程を経て、微小多孔層を形成した撥水電極基材を作製した。
・第Iの工程:抄紙体作製の工程
参考例1の工程で[B]材料(B−1)に代えてB−6を用いた以外は参考例1と同様の方法で抄紙体を得た。抄紙体の表面を顕微鏡で観察し、直径7.5cmの円内に含まれる結束をカウントしたところ10個であった。抄紙体の破断加重を測定したところ比較例6の抄紙体では150Nで良好であった。
・第IIの工程:混合樹脂組成物調整の工程
参考例1と同様とした。
・第IIIの工程:予備含浸体の作製、張り合わせ、熱処理の工程
参考例1と同様とした。
・第IVの工程:電極基材の作製工程
参考例1と同様とした。
・第Vの工程:撥水処理電極基材の作製、微小多孔層の形成の工程
参考例1と同様とした。
(Comparative Example 6)
A water-repellent electrode base material having a microporous layer was produced through the following steps I to V.
-Step I: Paper body production process
A paper body was obtained in the same manner as in Reference Example 1 except that B-6 was used instead of [B] material (B-1) in the step of Reference Example 1 . The surface of the paper body was observed with a microscope, and the number of bundles contained in a circle having a diameter of 7.5 cm was counted to be 10. When the breaking load of the paper body was measured, the paper body of Comparative Example 6 was good at 150 N.
-Step II: Step of adjusting the mixed resin composition
The same as in Reference Example 1 .
Step III: Preparation of pre-impregnated body, bonding, and heat treatment process
The same as in Reference Example 1 .
-Step IV: Electrode substrate production process
The same as in Reference Example 1 .
-Step V: Production of water repellent electrode substrate, formation of microporous layer
The same as in Reference Example 1 .
得られた、微小多孔層を形成した撥水電極基材を用いて特性を評価した結果、[B]材料(B−6)の平均長さが短すぎるため、抄紙時に[B]材料(B−6)が抄紙体から水とともに抜け、厚さが120μm、電極基材の炭素繊維目付が21g/m2、密度が0.23g/cm3、細孔径が39μmとなった。この特性の電極基材の発電性能の結果は出力電圧0.36V(運転温度65℃、加湿温度70℃、電流密度2.0A/cm3)、限界温度が82℃(加湿温度70℃、電流密度1.2A/cm2)であることが分かった。 As a result of evaluating the characteristics using the obtained water-repellent electrode substrate on which a microporous layer was formed, the average length of the [B] material (B-6) was too short, so that the [B] material (B -6) was removed from the paper body together with water, the thickness was 120 μm, the carbon fiber basis weight of the electrode substrate was 21 g / m 2 , the density was 0.23 g / cm 3 , and the pore diameter was 39 μm. As a result of the power generation performance of the electrode base material having this characteristic, the output voltage is 0.36 V (operation temperature 65 ° C., humidification temperature 70 ° C., current density 2.0 A / cm 3 ), the limit temperature is 82 ° C. (humidification temperature 70 ° C., current The density was found to be 1.2 A / cm 2 ).
(比較例7)
・第Iの工程:抄紙体作製の工程
参考例2の工程で[A]材料(A−1)に代えてA−2を用い、[B]材料(B−1)に代えてB−6を用いた以外は参考例2と同様の方法で抄紙を行った。A−2とB−6の繊維長がともに短いため、抄紙工程で基材が破れ、抄紙体を得ることができなかった。
(Comparative Example 7)
-Step I: Paper body production process
Using A-2 instead of [A] material (A-1) in Reference Example 2 Step, [B] material except for using B-6 in place of (B-1) is the same as in Reference Example 2 Paper was made by the method. Since both the fiber lengths of A-2 and B-6 were short, the base material was broken in the papermaking process, and a papermaking body could not be obtained.
Claims (7)
[A]単繊維の平均直径が3μm以上8μm以下であり、平均長さが4〜20mmの炭素繊維
[B]単繊維の平均直径が8μmを越え30μm以下であり、平均長さが0.5〜4mmの炭素繊維 A gas diffusion electrode base material obtained by binding carbon fibers of the following [A] and [B] with carbides, having a density in the range of 0.2 to 0.4 g / cm 3 and a pore diameter of 40 to A gas diffusion electrode substrate characterized by being in the range of 70 μm.
[A] Carbon fiber having an average diameter of a single fiber of 3 μm to 8 μm and an average length of 4 to 20 mm [B] The average diameter of the single fiber is more than 8 μm and 30 μm or less, and the average length is 0.5 carbon fiber of ~ 4 mm
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012129846A JP5987484B2 (en) | 2011-06-09 | 2012-06-07 | Gas diffusion electrode substrate and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011129178 | 2011-06-09 | ||
JP2011129178 | 2011-06-09 | ||
JP2012129846A JP5987484B2 (en) | 2011-06-09 | 2012-06-07 | Gas diffusion electrode substrate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013016476A JP2013016476A (en) | 2013-01-24 |
JP5987484B2 true JP5987484B2 (en) | 2016-09-07 |
Family
ID=47688933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012129846A Active JP5987484B2 (en) | 2011-06-09 | 2012-06-07 | Gas diffusion electrode substrate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5987484B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014069124A1 (en) * | 2012-11-02 | 2014-05-08 | 旭有機材工業株式会社 | Resin composition, as well as carbon fiber-reinforced composite material precursor, carbon fiber-reinforced material, and carbon fiber-reinforced carbon material obtained using said resin composition |
WO2015182366A1 (en) * | 2014-05-29 | 2015-12-03 | 住友ベークライト株式会社 | Resin sheet, article and method for producing resin sheet |
CN109478654A (en) | 2016-07-22 | 2019-03-15 | 三菱化学株式会社 | Porous substrate, porous electrode, carbon fiber paper, the manufacturing method of carbon fiber paper, the manufacturing method of porous substrate |
JP6855843B2 (en) * | 2017-03-01 | 2021-04-07 | 三菱ケミカル株式会社 | Electrodes for redox flow batteries and their manufacturing methods, and redox flow batteries |
JPWO2019049934A1 (en) * | 2017-09-07 | 2020-10-15 | 東洋紡株式会社 | Gas diffusion layer base material for fuel cells, gas diffusion layer for fuel cells, fuel cells |
JP7211701B2 (en) * | 2017-12-13 | 2023-01-24 | 三菱製紙株式会社 | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin |
WO2020184665A1 (en) * | 2019-03-13 | 2020-09-17 | 東洋紡株式会社 | Carbon electrode material and redox battery |
JP7388361B2 (en) * | 2019-03-13 | 2023-11-29 | 東洋紡エムシー株式会社 | Carbon electrode materials and redox batteries |
JPWO2020184664A1 (en) * | 2019-03-13 | 2020-09-17 | ||
CN112663189A (en) * | 2020-12-08 | 2021-04-16 | 中国科学院山西煤炭化学研究所 | Mixed yarn and manufacturing method thereof, carbon paper and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6210866A (en) * | 1985-07-08 | 1987-01-19 | Toshiba Corp | Electrode substrate for fuel cell |
JPS63222080A (en) * | 1987-03-10 | 1988-09-14 | 東レ株式会社 | Manufacture of carbon fiber porous body |
JP3521619B2 (en) * | 1996-06-07 | 2004-04-19 | 東レ株式会社 | Carbon fiber paper and porous carbon plate |
GB0027119D0 (en) * | 2000-11-07 | 2000-12-20 | Johnson Matthey Plc | Gas diffusion substrate |
JP2008311180A (en) * | 2007-06-18 | 2008-12-25 | Mitsubishi Rayon Co Ltd | Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly |
JP5464136B2 (en) * | 2009-12-17 | 2014-04-09 | 東レ株式会社 | Method for producing gas diffusion electrode substrate |
-
2012
- 2012-06-07 JP JP2012129846A patent/JP5987484B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013016476A (en) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5987484B2 (en) | Gas diffusion electrode substrate and method for producing the same | |
JP5621949B1 (en) | Gas diffusion layer for fuel cell and manufacturing method thereof | |
JP5614462B2 (en) | Gas diffusion electrode base material for fuel cell, membrane electrode assembly, and fuel cell | |
JP6206186B2 (en) | Gas diffusion electrode base material for fuel cells | |
US10411269B2 (en) | Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell provided therewith | |
KR102082546B1 (en) | Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same | |
JP5753469B2 (en) | Conductive sheet and manufacturing method thereof | |
JP6489009B2 (en) | Gas diffusion electrode substrate | |
JP5988009B1 (en) | Porous carbon sheet and precursor fiber sheet thereof | |
JP6330282B2 (en) | Gas diffusion electrode substrate for fuel cell and manufacturing method thereof | |
JP6743805B2 (en) | Carbon sheet, gas diffusion electrode substrate, and fuel cell | |
JP6205718B2 (en) | Fuel cell gas diffusion layer, membrane electrode assembly, and fuel cell | |
JPWO2016152851A1 (en) | Porous carbon electrode substrate, method for producing the same, gas diffusion layer, and membrane-electrode assembly for fuel cell | |
JP5464136B2 (en) | Method for producing gas diffusion electrode substrate | |
US20230128336A1 (en) | Method for producing gas diffusion electrode substrate | |
CA2997688C (en) | Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell | |
WO2022210069A1 (en) | Electrode base material and method for producing same | |
JP6183065B2 (en) | Porous carbon electrode and manufacturing method thereof | |
JP5790186B2 (en) | Method for producing gas diffusion electrode substrate | |
JP2017139219A (en) | Carbon sheet, gas diffusion electrode base material, and fuel cell | |
JP2017182900A (en) | Carbon sheet, gas diffusion electrode base material, and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160725 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5987484 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |