JP5975340B2 - drill - Google Patents
drill Download PDFInfo
- Publication number
- JP5975340B2 JP5975340B2 JP2012235474A JP2012235474A JP5975340B2 JP 5975340 B2 JP5975340 B2 JP 5975340B2 JP 2012235474 A JP2012235474 A JP 2012235474A JP 2012235474 A JP2012235474 A JP 2012235474A JP 5975340 B2 JP5975340 B2 JP 5975340B2
- Authority
- JP
- Japan
- Prior art keywords
- drill
- cutting edge
- angle
- margin
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 claims description 53
- 238000012545 processing Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 11
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 9
- 229910001069 Ti alloy Inorganic materials 0.000 description 9
- 239000011151 fibre-reinforced plastic Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000032798 delamination Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000005555 metalworking Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Drilling Tools (AREA)
Description
この発明は、チタン合金やアルミ合金等の軽金属や、FRP(繊維強化プラスチックス)と軽金属の重ね板を加工するのに特に適したドリルに関する。 The present invention relates to a drill particularly suitable for processing a light metal such as a titanium alloy or an aluminum alloy, or a laminated plate of FRP (fiber reinforced plastics) and a light metal.
近年、自動車関係を主とする機械加工において、FRP(繊維強化プラスチックス)やチタン合金やアルミニウムなどの軽金属が多用されている。 In recent years, light metals such as FRP (fiber reinforced plastics), titanium alloys, and aluminum are frequently used in machining mainly for automobiles.
また、FRPの一面に金属を重ねたもの(以下では単に重ね板と言う)が用いられることもある。その重ね板は、例えば、飛行機の胴体や翼などを構成する場合、ボルトやリベットなどの締結材を通す穴をあける必要がある。 In addition, there may be used an FRP in which a metal is overlapped on one side (hereinafter simply referred to as a stacked plate). For example, when forming the fuselage or wing of an airplane, it is necessary to make a hole through which a fastening material such as a bolt or a rivet passes.
その穴あけのための工具として、例えば、下記特許文献1のようなドリルを使用することが考えられる。 As a tool for the drilling, for example, it is conceivable to use a drill as shown in Patent Document 1 below.
特許文献1に記載されたドリルは、切り屑排出溝のねじれ角を40°以上としている。このような構造とすることで、切れ刃のくさび角を小さくすることができ、切れ味を向上させている。 In the drill described in Patent Document 1, the twist angle of the chip discharge groove is set to 40 ° or more. By setting it as such a structure, the wedge angle of a cutting blade can be made small and the sharpness is improved.
特許文献1のドリルは、切れ味が向上するがくさび角が小さくなるため、切れ刃の強度が低下し、チタン合金加工時に損傷し易いという問題がある。また、特許文献1のドリルでFRPとチタン合金の重ね板加工をするときには、ダイヤモンド被覆を施したドリルは使えないため、摩耗進行がより顕著になる。 The drill of Patent Document 1 has a problem that the sharpness is improved but the wedge angle is reduced, so that the strength of the cutting edge is reduced and the titanium alloy is easily damaged during processing. In addition, when the FRP and titanium alloy laminated plate is processed with the drill of Patent Document 1, since the drill with diamond coating cannot be used, the progress of wear becomes more remarkable.
切れ刃の欠け対策として、いわゆるネガランドの付与やホーニングによる刃先強化処理が知られている。ところが、これ等の方法では、切れ味が鈍るため、チタン合金加工時の切り屑排出性の悪化、アルミ合金加工時の溶着、FRP加工時の穴入口・出口部におけるデラミネーション(層間剥離)の発生などの問題が起こり易い。 As countermeasures against chipping of cutting edges, so-called negative lands are imparted and cutting edge strengthening processing by honing is known. However, with these methods, since the sharpness is dull, the chip discharge performance deteriorates during titanium alloy processing, welding during aluminum alloy processing, and delamination (delamination) at the hole entrance and exit during FRP processing occur. Such problems are likely to occur.
そこで、この発明は、FRPやチタン合金、アルミ合金等の軽金属材料を加工するドリルについて、切れ刃の欠けを減少させると同時に、十分な切り屑排出性能を備えることを課題としている。 In view of this, the present invention has an object to provide a chip for processing light metal materials such as FRP, titanium alloy, and aluminum alloy while reducing chipping of the cutting edge and at the same time providing sufficient chip discharging performance.
上記の課題を解決するため、この発明においては、ドリル本体の軸方向端面視において回転中心から径方向外端まで直線的に延びる切れ刃とねじれ溝を備えたドリルであって、前記切れ刃に連なるすくい面に、回転軸に対して傾斜して切れ刃の軸方向すくい角を負の角度にするシンニング面を形成し、そのシンニング面を、前記切れ刃の径方向内端から径方向外端に至る間の全領域に存在させ、前記ねじれ溝のねじれ角を30°以上とした。
なお、回転中心部は、チゼル幅が0.5mm以下のチゼル刃を有していてもよい。
In order to solve the above problems, in the present invention, a drill having a cutting edge and a twisted groove that extend linearly from the center of rotation to a radially outer end in the axial end view of the drill body, A thinning surface is formed on the continuous rake face so as to be inclined with respect to the rotation axis so that the axial rake angle of the cutting edge is a negative angle, and the thinning face extends from the radially inner end to the radially outer end of the cutting edge. The twist angle of the twist groove was 30 ° or more.
The rotation center portion may have a chisel blade having a chisel width of 0.5 mm or less.
このドリルは、前記シンニング面の回転軸に対する傾き角(=切れ刃の軸方向すくい角)θを、0°<θ<25°、より良くは5°<θ<10°に設定するとよい。 In this drill, the inclination angle (= the rake angle in the axial direction of the cutting edge) θ of the thinning surface with respect to the rotation axis is preferably set to 0 ° <θ <25 °, more preferably 5 ° <θ <10 °.
また、ランド部の外周に、前記ねじれ溝に隣接する主マージンとその主マージンよりもドリル回転方向後方に配置される副マージンを形成し、両マージン間に形成されるクリアランス(両マージン間に形成されるぬすみ)の大きさ(径方向寸法)を0.3mm〜1.0mmに設定することが望ましい。 In addition, a main margin adjacent to the torsion groove and a sub margin arranged behind the main margin in the drill rotation direction are formed on the outer periphery of the land portion, and a clearance formed between both margins (formed between both margins). It is desirable to set the size (diameter direction dimension) of 0.3 mm to 1.0 mm.
また、前記ねじれ溝のねじれ角は、30°以上としている。ねじれ角の上限値は、強度を考慮して設定すればよいが、一般的な加工では45°以下とするのが好ましい。 The twist angle of the twist groove is 30 ° or more. The upper limit value of the twist angle may be set in consideration of the strength, but is preferably 45 ° or less in general processing.
この発明のドリルは、切れ刃を回転中心から径方向外端まで直線的に延びる形状にし、なおかつ、その切れ刃の全域を、シンニング面の設置によって負のすくい角を持つ刃にしたことで、デラミネーションの抑制と切れ刃の耐久性向上を両立させることができる。 In the drill of this invention, the cutting edge is shaped to extend linearly from the rotation center to the radially outer end, and the entire area of the cutting edge is changed to a blade having a negative rake angle by installing a thinning surface. It is possible to achieve both suppression of delamination and improved durability of the cutting edge.
また、切れ刃の全域のすくい角を、切れ刃に沿ったすくい面にシンニング面を設けて負の角度(ネガティブ)となしたことで、切れ刃の耐欠損性が改善されて切れ刃の欠けが抑制される。 In addition, the rake angle of the entire cutting edge is set to a negative angle by providing a thinning surface on the rake face along the cutting edge, so that the chipping resistance of the cutting edge is improved and the chipping of the cutting edge is improved. Is suppressed.
さらに、シンニング面の設置によって切れ刃の耐欠損性を高める構造によれば、切れ味の鈍化がネガランドやホーニング処理で刃先を強化したドリルほどきつくならない。これに加えて、切れ刃を回転中心から径方向外端まで直線的に延びる形状にしたことでリーディングエッジが鋭角になり、CFRP(炭素繊維強化プラスチックス)の加工でも炭素繊維が切断され易くなってデラミネーションの抑制機能も確保される。 Furthermore, according to the structure which improves the chipping resistance of the cutting edge by setting the thinning surface, the sharpening of the sharpness is not as strong as the drill whose edge is strengthened by negative land or honing treatment. In addition to this, the cutting edge has a shape that extends linearly from the center of rotation to the radially outer end, leading to an acute angle at the leading edge, which makes it easier to cut carbon fiber even when processing CFRP (carbon fiber reinforced plastics). Therefore, the delamination suppression function is also secured.
以下、添付図面の図1〜図6に基づいて、この発明のドリルの実施の形態を説明する。図1〜図3に示したドリル1は、ソリッドタイプであって超硬合金や高速度鋼などで形成された本体部の先端に中心対称形状の2枚の切れ刃2,2を設けている。また、切屑排出用の2条のねじれ溝3、3と、主マージン4,4及び副マージン5,5を設けている。 Embodiments of the drill according to the present invention will be described below with reference to FIGS. The drill 1 shown in FIGS. 1 to 3 is a solid type, and is provided with two cutting edges 2 and 2 having a centrally symmetrical shape at the tip of a main body formed of cemented carbide or high speed steel. . Further, two twisted grooves 3 and 3 for chip discharge, main margins 4 and 4 and sub margins 5 and 5 are provided.
切れ刃2,2は、図2に示すように、ドリルの軸方向端面視(正面図)において回転中心から径方向外端まで直線的に延びる刃になっている。図7のような一般的な刃型では、リーディングエッジ8の部分で、切れ刃2と被切削材との接触角βが大幅に鈍角(β>90°)となるのに対し、直線の切れ刃では図2に示すように、切れ刃2と被切削材との接触角βを90度とすることができ、繊維が切れ易くなる。 As shown in FIG. 2, the cutting blades 2 and 2 are blades extending linearly from the center of rotation to the radially outer end in the axial end view of the drill (front view). In the general blade type as shown in FIG. 7, the contact angle β between the cutting edge 2 and the workpiece is greatly obtuse (β> 90 °) at the leading edge 8, whereas the straight edge is cut. In the blade, as shown in FIG. 2, the contact angle β between the cutting edge 2 and the material to be cut can be set to 90 degrees, and the fiber is easily cut.
このように、接触角βを90°近傍に保つことができれば、発明の効果が得られるので、切れ刃2が微小の芯上がり量を有していてもよい。より具体的には、切れ刃2が、回転中心部にチゼルエッジを有していてもよく、このチゼルエッジの幅は、接触角βとの関係から0.5mm以下とするのが好ましい。 As described above, if the contact angle β can be maintained in the vicinity of 90 °, the effect of the invention can be obtained, so that the cutting edge 2 may have a small amount of centering. More specifically, the cutting edge 2 may have a chisel edge at the center of rotation, and the width of the chisel edge is preferably 0.5 mm or less in relation to the contact angle β.
そのチゼルエッジの幅が0.5mm以下であれば、芯上がり量Yも小さくて図6(b)に示す芯上がり角度αが小さく抑えられるため、切れ刃外端の被削材に対する接触角が小さく保たれ、そのために、デラミネーションの抑制効果も期待通りに発揮される。そのことを実験で確認した。 If the width of the chisel edge is 0.5 mm or less, the centering amount Y is small and the centering angle α shown in FIG. 6B can be kept small, so that the contact angle of the outer edge of the cutting edge with the work material is small. Therefore, the delamination suppressing effect is exhibited as expected. This was confirmed by experiments.
切れ刃2に沿ったすくい面6には、シンニング面7を設けている。そのシンニング面7は、図3に示すように、ドリルの回転軸(中心の軸線)CLに対して面の軸方向後部が離反する方向に傾いた面にして切れ刃の回転中心にある内端から径方向外端に至る領域に設けており、これにより、切れ刃2の全域に負のすくい角が付与される。 A thinning surface 7 is provided on the rake face 6 along the cutting edge 2. As shown in FIG. 3, the thinning surface 7 is a surface inclined in a direction in which the axial rear portion of the surface is separated from the rotation axis (center axis) CL of the drill, and is an inner end at the rotation center of the cutting edge. Is provided in a region extending from the outer end in the radial direction to a negative rake angle over the entire cutting edge 2.
シンニング面7の回転軸CLに対する傾き角θは、0°<θ<25°、より好ましくは5°〜10°の範囲に設定するとよい。その傾き角θが0°或いはそれ以下では刃先の強化効果が不足し、また、25°を超えると切れ味の低下によってデラミネーションの抑制が不十分になる。 The inclination angle θ of the thinning surface 7 with respect to the rotation axis CL may be set to a range of 0 ° <θ <25 °, more preferably 5 ° to 10 °. When the inclination angle θ is 0 ° or less, the reinforcing effect of the cutting edge is insufficient, and when it exceeds 25 °, the delamination is not sufficiently suppressed due to the decrease in sharpness.
また、シンニング面7の切れ刃の径方向外端部における回転軸方向の寸法(図1のW)は、0.2mm〜1.0mmとするのが好ましい。刃先の強化効果を得るためには、この幅Wを0.2mm以上の大きさとするのが好ましいが、その幅Wが大きいと、ねじれ角やシンニング面の傾き角が大きいマージン付ドリルの場合、図1(b)に示すように、切刃近傍のドリル回転方向マージン幅W2´が小さくなってしまう。マージン幅が小さくなる領域が大きいと、マージンのガイド効果が低下してしまうので、Wは1.0mm以下とするのがより好ましい。 Moreover, it is preferable that the dimension (W of FIG. 1) of the rotating shaft direction in the radial direction outer end part of the cutting edge of the thinning surface 7 shall be 0.2 mm-1.0 mm. In order to obtain the effect of strengthening the cutting edge, it is preferable to set the width W to a size of 0.2 mm or more. However, if the width W is large, in the case of a drill with a margin where the torsion angle and the inclination angle of the thinning surface are large, As shown in FIG. 1B, the drill rotation direction margin width W2 ′ near the cutting edge becomes small. If the area where the margin width is reduced is large, the margin guiding effect is lowered, and therefore W is more preferably set to 1.0 mm or less.
先端の前逃げ面9の逃げ角γ(図3参照)は、15°に設定している。逃げ角γは、この範囲に限定されるものではないが、この逃げ角が大き過ぎるとシンニング面7による刃先強化の効果が薄れて欠け発生の可能性が高まる。一方、その逃げ角が小さすぎると、被削材の弾性変形により前逃げ面9が擦れる可能性が高まり、加工時のスラスト増加による欠けの発生につながる。 The clearance angle γ (see FIG. 3) of the front front clearance surface 9 is set to 15 °. The clearance angle γ is not limited to this range, but if the clearance angle is too large, the effect of cutting edge reinforcement by the thinning surface 7 is diminished and the possibility of chipping increases. On the other hand, if the clearance angle is too small, there is a high possibility that the front clearance surface 9 is rubbed due to elastic deformation of the work material, leading to chipping due to increased thrust during processing.
主マージン4は、図2に示すように、ランド部10の回転方向先端、即ち、リーディングエッジ8に沿った位置に設けている。その主マージン4から所定量回転方向後方に移動した位置のランド部外周に副マージン5を設けていわゆるダブルマージンの設計にしており、副マージンの設置によるガイド性の向上により被削材に喰いつくときの挙動の乱れが抑制される。 As shown in FIG. 2, the main margin 4 is provided at the tip of the land portion 10 in the rotation direction, that is, at a position along the leading edge 8. A so-called double margin is designed by providing a submargin 5 on the outer periphery of the land portion at a position moved rearward in the rotational direction by a predetermined amount from the main margin 4, and it bites the work material by improving the guideability by installing the submargin. Disturbance of behavior is suppressed.
なお、下穴を有する加工の場合、下穴の軸中心と、工具の軸中心が同一軸上で無い場合があるため、切削中の挙動が乱れることがある。このため、FRPの加工では、粉化するなどした切り屑やチタン合金の切り屑がランド部外周の隙間(加工穴の内周面との間に形成される隙間)に入り込み易い。 In the case of machining having a pilot hole, since the axis center of the pilot hole and the axis center of the tool may not be on the same axis, the behavior during cutting may be disturbed. For this reason, in the processing of FRP, powdered chips and titanium alloy chips are likely to enter the gap on the outer periphery of the land portion (the gap formed between the inner peripheral surface of the processed hole).
この隙間への切り屑詰まりを軽減するため、下穴の無い穴加工に利用される通常の金属加工用ドリルのマージン高さに比べ、比較的高く設計する。図4において主マージン4と副マージン5間に形成されるクリアランス(両マージン間に形成されるぬすみ)gの大きさを0.3mm〜1.0mmに設定して図4のようなマージン形状にすることが有効なことを見出した。主マージン4と副マージン5の幅は、0.4mm〜1.2mm程度がガイド性能を維持しながら被削材との接触面積を小さく抑えられて好ましかった。また、副マージン5の位置は、主マージン4から40°〜60°回転方向後方側に設けるのが好ましかった。 In order to reduce the clogging of chips in the gap, the design is made relatively higher than the margin height of a normal metal working drill used for drilling without a pilot hole. In FIG. 4, the size of the clearance g formed between the main margin 4 and the sub margin 5 (the dullness formed between the two margins) g is set to 0.3 mm to 1.0 mm to obtain a margin shape as shown in FIG. I found it effective. The width of the main margin 4 and the sub margin 5 is preferably about 0.4 mm to 1.2 mm because the contact area with the work material can be kept small while maintaining the guide performance. Further, the position of the sub margin 5 is preferably provided on the rear side in the rotation direction of 40 ° to 60 ° from the main margin 4.
ドリルの先端角は、137°〜143°に設定しており、一般的な金属加工用のドリルの先端角(135°が一般的)よりも若干大きい。この範囲の先端角を選択し、さらに、ダブルマージンの設計にすることで、下穴があけられた重ね板を加工するときの下穴に対する喰いつきの挙動を安定させることができる。 The tip angle of the drill is set to 137 ° to 143 °, which is slightly larger than the tip angle of a general metal working drill (135 ° is commonly used). By selecting a tip angle within this range and further designing a double margin, it is possible to stabilize the biting behavior with respect to the pilot hole when processing a laminated plate with a pilot hole.
また、ねじれ溝3のねじれ角は、30°〜45°に設定している。このように、ねじれ角を大きくすることで、切り屑排出性を向上させることができる。これにより、切り屑詰まりによるドリル折損や、穴壁面のライフルマーク(擦過痕)を低減することができる。 The twist angle of the twist groove 3 is set to 30 ° to 45 °. Thus, chip discharge | emission property can be improved by enlarging a twist angle | corner. Thereby, drill breakage due to clogging of chips and rifle marks (scratch marks) on the hole wall surface can be reduced.
図2の11は、必要に応じて設けられるオイルホールである。 Reference numeral 11 in FIG. 2 denotes an oil hole provided as necessary.
−実施例1−
この発明のドリルの性能を評価するために、下記のドリルを使用して下記被削材の切削試験を行った。
・使用ドリルA(発明品):ダブルマージン付きドリル。直径φ6.35mm、切れ刃エッジに微小ホーニングを施したストレート刃型、シンニング面有り。シンニング面の傾斜角θ=5°、ねじれ溝のねじれ角=35°、先端角=140°、コーティングなし。
・使用ドリルB(比較品):切れ刃エッジに微小ホーニングを形成した円弧状刃型、ねじれ角=25°、その他の仕様はドリルAと同一。
被削材:厚みt1=10.0mmのCFRPと、Ti−6Al−4Vの組成の厚みt2=12.0mmのチタン合金から成る重ね板(図8参照)。
切削条件:切削速度 Vc=17.6m/min(n=400rpm)
送り量 f=0.05mm/rev(Vf=20mm/min)
切削形式:オイルホールを通してのクーラント供給
Example 1
In order to evaluate the performance of the drill of the present invention, the following drill was used to perform the following cutting test on the work material.
・ Used drill A (Invention): Drill with double margin. Diameter 6.35mm, straight blade type with fine honing on the cutting edge, with thinning surface. Thinning surface tilt angle θ = 5 °, twist groove twist angle = 35 °, tip angle = 140 °, no coating.
・ Used drill B (comparative product): Arc-shaped blade shape with minute honing formed on the cutting edge, helix angle = 25 °, other specifications are the same as drill A.
Work material: Laminated plate made of CFRP having a thickness of t1 = 10.0 mm and a titanium alloy having a composition of Ti-6Al-4V and having a thickness of t2 = 12.0 mm (see FIG. 8).
Cutting conditions: Cutting speed Vc = 17.6 m / min (n = 400 rpm)
Feed amount f = 0.05mm / rev (Vf = 20mm / min)
Cutting type: Coolant supply through oil hole
ドリルは、先端側外周を治具でガイドして被削材に切り込ませた。その結果、比較品は、3穴加工後に切り屑詰まりが発生し、8穴加工段階で溶着による切れ刃欠損が生じた。これに対し、発明品は、30穴加工時点でも切れ刃は健全であった。この加工で生じたチタン合金の切り屑の形状を図9に比較して示す。図9(a)は、発明品による切り屑であって細かく分断されている。図9(b)は、比較品による切り屑であり、分断状態が良くない。 The drill was cut into the work material by guiding the outer periphery on the tip side with a jig. As a result, in the comparative product, chip clogging occurred after the 3-hole machining, and a cutting edge defect due to welding occurred at the 8-hole machining stage. On the other hand, the cutting edge of the inventive product was sound even at the time of processing 30 holes. The shape of the titanium alloy chips produced by this processing is shown in comparison with FIG. Fig.9 (a) is the chip by invention, and is finely divided | segmented. FIG.9 (b) is the chip by a comparative product, and a divided state is not good.
−実施例2−
リーディングエッジが鋭角になる実施例1のドリルA(発明品)と、リーディングエッジが鈍角になるドリルB(比較品)を使用して、実施例1で挙げた重ね板の穴加時の加工穴形状の観察を行った。切削条件は実施例1と同一である。
その結果、比較品による加工では、11穴加工後にデラミネーションが発生したが、発明品による加工では20穴加工後でもデラミネーションは起こらなかった。発明品による20穴加工後の穴形状を図10(a)に、比較品による11穴加工後の穴形状を図10(b)にそれぞれ示す。発明品によって加工された穴は、高品質で精度にも優れる。
-Example 2-
Using drill A (invention product) of Example 1 with a leading edge at an acute angle and drill B (Comparative product) with an obtuse angle at the leading edge, the drilled holes when adding the holes in the laminated plate mentioned in Example 1 The shape was observed. The cutting conditions are the same as in Example 1.
As a result, in the processing with the comparative product, delamination occurred after processing 11 holes, but in the processing with the invention product, delamination did not occur even after processing 20 holes. FIG. 10 (a) shows the hole shape after processing 20 holes with the inventive product, and FIG. 10 (b) shows the hole shape after 11 holes processed with the comparative product. The holes machined by the invention are high quality and excellent in accuracy.
1 ドリル
2 切れ刃
3 ねじれ溝
4 主マージン
5 副マージン
6 すくい面
7 シンニング面
8 リーディングエッジ
9 前逃げ面
10 ランド部
11 オイルホール
g クリアランス
CL 回転軸
θ シンニング面の傾き角
α 芯上がり角度
β 被削材との接触角
γ 逃げ角
H マージンの高さ
W シンニング面の切れ刃外端部における回転軸方向の幅寸法
W2 ドリル回転方向マージン幅
W2’ 切れ刃近傍のドリル回転方向マージン幅
DESCRIPTION OF SYMBOLS 1 Drill 2 Cutting edge 3 Torsion groove 4 Main margin 5 Sub margin 6 Rake surface 7 Thinning surface 8 Leading edge 9 Front relief surface 10 Land part 11 Oil hole g Clearance CL Rotating axis θ Thinning surface inclination angle α Centering angle β Covered Contact angle with cutting material γ Escape angle H Margin height W Width dimension in the rotation axis direction at the outer edge of the cutting edge of the thinning surface W2 Drill rotation direction margin width W2 ′ Drill rotation direction margin width near the cutting edge
Claims (4)
前記切れ刃(2)に連なるすくい面(6)に、回転軸(CL)に対して傾斜して切れ刃の軸方向すくい角を負の角度にするシンニング面(7)を形成し、そのシンニング面(7)を、前記切れ刃(2)の径方向内端から径方向外端に至る間の全領域に存在させ、前記ねじれ溝(3)のねじれ角を30°以上とし、前記シンニング面(7)の前記切れ刃(2)の径方向外端部における回転軸方向の幅(W)を0.2mm〜1.0mmとしたドリル。 A drill comprising a cutting edge (2) and a twisted groove (3) extending linearly from the center of rotation to the radially outer end in the axial end view of the drill body (1),
A thinning surface (7) is formed on the rake face (6) connected to the cutting edge (2) so as to be inclined with respect to the rotation axis (CL) so that the axial rake angle of the cutting edge is a negative angle. The surface (7) is present in the entire region from the radially inner end to the radially outer end of the cutting edge (2), the twist angle of the twist groove (3) is 30 ° or more, and the thinning A drill in which the width (W) in the rotational axis direction at the radially outer end of the cutting edge (2) of the surface (7) is 0.2 mm to 1.0 mm .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012235474A JP5975340B2 (en) | 2012-10-25 | 2012-10-25 | drill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012235474A JP5975340B2 (en) | 2012-10-25 | 2012-10-25 | drill |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014083646A JP2014083646A (en) | 2014-05-12 |
JP5975340B2 true JP5975340B2 (en) | 2016-08-23 |
Family
ID=50787220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012235474A Active JP5975340B2 (en) | 2012-10-25 | 2012-10-25 | drill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5975340B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101983487B1 (en) | 2015-03-30 | 2019-05-28 | 미츠비시 히타치 쓰루 가부시키가이샤 | Drill |
JP6711830B2 (en) * | 2015-07-29 | 2020-06-17 | 京セラ株式会社 | Drill and method of manufacturing cut product using the same |
US20200331078A1 (en) | 2019-04-18 | 2020-10-22 | Makino Inc. | Method for Machining Titanium Alloys Using Polycrystalline Diamond |
EP4046732A4 (en) * | 2019-10-15 | 2022-11-02 | Sumitomo Electric Hardmetal Corp. | Drill |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741456B2 (en) * | 1987-10-13 | 1995-05-10 | 株式会社不二越 | Drill |
JP3909783B2 (en) * | 1997-09-22 | 2007-04-25 | 株式会社タンガロイ | Gun drill with diamond sintered body |
JP3029033B1 (en) * | 1998-12-25 | 2000-04-04 | 株式会社ミヤナガ | Drill bit |
US20010031181A1 (en) * | 1999-12-22 | 2001-10-18 | Shallenberger Fred T. | Indexable drill and cutting inserts therefor |
JP3639227B2 (en) * | 2001-07-12 | 2005-04-20 | 三菱マテリアル神戸ツールズ株式会社 | Drilling tools for brittle materials |
US20030185640A1 (en) * | 2002-03-27 | 2003-10-02 | Eiji Ito | Multiple rake drill bits |
JP2004268165A (en) * | 2003-03-05 | 2004-09-30 | Honda Motor Co Ltd | Deep hole machining drill |
JP2009018360A (en) * | 2007-07-10 | 2009-01-29 | Sumitomo Electric Hardmetal Corp | Drill for metal working |
JP2009142963A (en) * | 2007-12-17 | 2009-07-02 | Omi Kogyo Co Ltd | Twist drill |
DE102009025223A1 (en) * | 2009-06-08 | 2010-12-09 | MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG | drill |
-
2012
- 2012-10-25 JP JP2012235474A patent/JP5975340B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014083646A (en) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5519723B2 (en) | Replaceable tip drill | |
JP5013435B2 (en) | Ball end mill | |
JP6421792B2 (en) | Drill and drill head | |
JP5945283B2 (en) | drill | |
JP2009039811A (en) | Drilling tools and drilling methods for fiber reinforced composites | |
JP6501374B1 (en) | drill | |
JP2009172708A (en) | Drilling tools and drilling methods for fiber reinforced composites | |
EP2913131A1 (en) | Small-diameter drill | |
JP6268716B2 (en) | drill | |
JP2008000836A (en) | Drill | |
JP5975340B2 (en) | drill | |
JP2012223882A (en) | Drilling tool and drilling method of fiber-reinforced composite material | |
WO2010086988A1 (en) | Double angle drill | |
JP2008264979A (en) | Rotary cutting tool for drilling | |
JP6378493B2 (en) | drill | |
JP2019171493A (en) | Drill | |
WO2016047803A1 (en) | Drill and drill head | |
JP2008142834A (en) | Drill | |
JP5750149B2 (en) | Replaceable tip drill | |
JP5846683B2 (en) | Drill for processing FRP and metal | |
JP5013434B2 (en) | Ball end mill | |
JP2009039810A (en) | Drilling method for fiber reinforced composites | |
JP5444265B2 (en) | Cutting tools | |
JP2010260115A (en) | Drilling tool for fiber reinforced composite materials | |
JP2010058179A (en) | Cutting tool and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20150622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160601 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5975340 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |