Nothing Special   »   [go: up one dir, main page]

JP5969844B2 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP5969844B2
JP5969844B2 JP2012159541A JP2012159541A JP5969844B2 JP 5969844 B2 JP5969844 B2 JP 5969844B2 JP 2012159541 A JP2012159541 A JP 2012159541A JP 2012159541 A JP2012159541 A JP 2012159541A JP 5969844 B2 JP5969844 B2 JP 5969844B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
porous oxide
dye
transparent conductive
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012159541A
Other languages
Japanese (ja)
Other versions
JP2014022180A (en
Inventor
克佳 遠藤
克佳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012159541A priority Critical patent/JP5969844B2/en
Publication of JP2014022180A publication Critical patent/JP2014022180A/en
Application granted granted Critical
Publication of JP5969844B2 publication Critical patent/JP5969844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感太陽電池およびその製造方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for producing the same.

光電変換素子として、安価で、高い発電効率が得られることから色素増感太陽電池が注目されており、色素増感太陽電池に関して種々の開発が行われている。   As a photoelectric conversion element, a dye-sensitized solar cell has attracted attention because it is inexpensive and high power generation efficiency can be obtained, and various developments have been made regarding the dye-sensitized solar cell.

色素増感太陽電池は一般に、透明導電性基板と、透明導電性基板上に設けられる複数の多孔質酸化物半導体層と、多孔質酸化物半導体層に担持される光増感色素と、多孔質酸化物半導体層に対向する対極と、透明導電性基板と対極との間に設けられる電解質とを備えている。   A dye-sensitized solar cell generally includes a transparent conductive substrate, a plurality of porous oxide semiconductor layers provided on the transparent conductive substrate, a photosensitizing dye supported on the porous oxide semiconductor layer, and a porous material. A counter electrode facing the oxide semiconductor layer; and an electrolyte provided between the transparent conductive substrate and the counter electrode.

このように色素増感太陽電池は、多孔質酸化物半導体層に光増感色素を担持させているため、複数の多孔質酸化物半導体層に異なる色を付与することで、受光面に特定の文字、記号または図形のパターン等の意匠性を付与することが可能となる。   Thus, since the dye-sensitized solar cell carries the photosensitizing dye in the porous oxide semiconductor layer, a specific color is given to the light-receiving surface by giving different colors to the plurality of porous oxide semiconductor layers. It becomes possible to impart design properties such as a pattern of characters, symbols or figures.

このような意匠性を付与した色素増感太陽電池として、例えば複数の多孔質酸化物半導体層のそれぞれに、異なる種類の光増感色素を1種類ずつ担持させたものが知られている(例えば下記特許文献1参照)。   As a dye-sensitized solar cell imparted with such design properties, for example, a plurality of porous oxide semiconductor layers each having a different type of photosensitizing dye supported thereon are known (for example, See Patent Document 1 below).

特開2010−9769号公報JP 2010-9769 A

しかし、上記特許文献1に記載の色素増感太陽電池は以下の課題を有していた。   However, the dye-sensitized solar cell described in Patent Document 1 has the following problems.

すなわち、上記特許文献1記載の色素増感太陽電池は、優れた意匠性を付与することができる反面、光電変換特性が低下する場合があった。   In other words, the dye-sensitized solar cell described in Patent Document 1 can give excellent design properties, but there are cases where the photoelectric conversion characteristics deteriorate.

本発明は、上記事情に鑑みてなされたものであり、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できる色素増感太陽電池およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a dye-sensitized solar cell and a method for manufacturing the same that can sufficiently suppress a decrease in photoelectric conversion characteristics even when excellent designability is imparted. The purpose is to do.

本発明者は、上記課題を解決するため上記課題が生じる原因について検討した。特許文献1に記載の色素増感太陽電池においては、複数ある多孔質酸化物半導体層の各々に異なる光増感色素を1種類ずつ担持させている。しかし、これら光増感色素の中には、意匠性を付与することができるものの、色素増感太陽電池に十分な光電変換特性を付与できないものも存在する。このため、色素増感太陽電池の光電変換特性が全体として低下してしまうのではないかと本発明者は考えた。特に、色素増感太陽電池において、優れた意匠性を付与するために、1つの透明導電性基板上に設けられる多孔質酸化物半導体層の数が増加され、互いに異なる種類の光増感色素が担持されると、優れた光電変換特性を付与できる光増感色素の種類には限りがあることから、色素増感太陽電池の光電変換特性の全体としての低下を抑制することは困難となる。そこで、本発明者はさらに鋭意検討を重ねた結果、以下の発明により、上記課題を解決し得ることを見出した。   The present inventor has examined the cause of the above problem in order to solve the above problem. In the dye-sensitized solar cell described in Patent Document 1, a different photosensitizing dye is supported on each of a plurality of porous oxide semiconductor layers. However, among these photosensitizing dyes, there are those that can impart design properties but cannot impart sufficient photoelectric conversion characteristics to the dye-sensitized solar cell. For this reason, this inventor thought that the photoelectric conversion characteristic of a dye-sensitized solar cell might fall as a whole. In particular, in a dye-sensitized solar cell, in order to impart excellent design properties, the number of porous oxide semiconductor layers provided on one transparent conductive substrate is increased, and different types of photosensitizing dyes are used. When supported, since there are limits to the types of photosensitizing dyes that can impart excellent photoelectric conversion characteristics, it is difficult to suppress a decrease in the overall photoelectric conversion characteristics of the dye-sensitized solar cell. Therefore, as a result of further intensive studies, the present inventor has found that the above-described problems can be solved by the following invention.

すなわち、本発明は、透明導電性基板と、光増感色素が担持され、前記透明導電性基板上に互いに離間するように設けられる複数の多孔質酸化物半導体部と、前記多孔質酸化物半導体部に対向して設けられる対極と、前記透明導電性基板及び前記対極の間に配置される電解質と、前記透明導電性基板上に設けられ、前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部を個別に包囲する環状の接着剤とを備え、前記複数の多孔質酸化物半導体部に担持される前記光増感色素の種類の数が互いに異なり、前記光増感色素が、前記複数の多孔質酸化物半導体部に共通する共通光増感色素を含み、前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成されている、色素増感太陽電池である。
That is, the present invention provides a transparent conductive substrate, a plurality of porous oxide semiconductor portions that carry a photosensitizing dye and are provided on the transparent conductive substrate so as to be separated from each other, and the porous oxide semiconductor. A counter electrode provided opposite to the portion, an electrolyte disposed between the transparent conductive substrate and the counter electrode, and one provided among the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate. A ring-shaped adhesive that individually surrounds the remaining porous oxide semiconductor portions excluding the porous oxide semiconductor portion, and the type of the photosensitizing dye supported on the plurality of porous oxide semiconductor portions. The photosensitizing dyes include a common photosensitizing dye that is common to the plurality of porous oxide semiconductor portions, and the porous oxide semiconductor portion includes at least one porous oxide semiconductor layer. Consists of dye sensitization It is a solar cell.

この色素増感太陽電池によれば、光増感色素が、複数の多孔質酸化物半導体部に共通の光増感色素を含むので、この共通光増感色素として、優れた光電変換特性を色素増感太陽電池に付与し得るものを用いれば、色素増感太陽電池全体としての光電変換特性の低下を十分に抑制することができる。その上、複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるため、色素増感太陽電池に優れた意匠性をも付与することができる。すなわち、本発明の色素増感太陽電池によれば、優れた意匠性が付与される場合であっても、色素増感太陽電池全体としての光電変換特性の低下を十分に抑制することができる。   According to this dye-sensitized solar cell, since the photosensitizing dye contains a common photosensitizing dye in a plurality of porous oxide semiconductor parts, it has excellent photoelectric conversion characteristics as the common photosensitizing dye. If what can be imparted to the sensitized solar cell is used, it is possible to sufficiently suppress the deterioration of the photoelectric conversion characteristics of the dye-sensitized solar cell as a whole. In addition, since the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor portions is different from each other, it is possible to impart excellent design to the dye-sensitized solar cell. That is, according to the dye-sensitized solar cell of the present invention, it is possible to sufficiently suppress a decrease in photoelectric conversion characteristics of the entire dye-sensitized solar cell even when excellent designability is imparted.

上記色素増感太陽電池において、前記複数の多孔質酸化物半導体部のうち、複数種類の光増感色素が担持されている多孔質酸化物半導体部において、複数種類の前記光増感色素が互いに異なる吸収ピーク波長を有することが好ましい。   In the dye-sensitized solar cell, among the plurality of porous oxide semiconductor portions, in the porous oxide semiconductor portion in which a plurality of types of photosensitizing dyes are supported, a plurality of types of the photosensitizing dyes are mutually attached. It is preferable to have different absorption peak wavelengths.

この場合、複数種類の光増感色素が担持されている多孔質酸化物半導体部において、複数種類の光増感色素が互いに異なる吸収ピーク波長を有することで、その多孔質酸化物半導体部の色を調節することができる。加えて、光を十分に吸収できる波長領域が広範囲となるため、色素増感太陽電池全体として、より優れた光電変換特性を確保することができる。   In this case, in the porous oxide semiconductor portion in which a plurality of types of photosensitizing dyes are supported, the plurality of types of photosensitizing dyes have different absorption peak wavelengths, so that the color of the porous oxide semiconductor portion Can be adjusted. In addition, since the wavelength region in which light can be sufficiently absorbed is wide, more excellent photoelectric conversion characteristics can be ensured as the entire dye-sensitized solar cell.

上記色素増感太陽電池において、前記電解質が、IおよびI からなる酸化還元対を含み、前記電解質中のI の濃度が0.006M以下であることが好ましい。 In the dye-sensitized solar cell, the electrolyte is, I - and I 3 - comprises a redox couple consisting of, I 3 in the electrolyte - the concentration of preferably not more than 0.006M.

の濃度が上記範囲内にあると、屋内などの低照度環境下で光電変換特性をより向上させることができる。加えて、I 濃度が上記範囲内にあることで、電解質の色が十分に薄くなる。その結果、多孔質酸化物半導体部に担持された光増感色素による色が明確に視認できる。 When the concentration of I 3 is in the above range, photoelectric conversion characteristics can be further improved in a low illuminance environment such as indoors. In addition, I 3 - concentration that is within the above range, the color of the electrolyte is sufficiently thin. As a result, the color due to the photosensitizing dye supported on the porous oxide semiconductor portion can be clearly recognized.

上記色素増感太陽電池において、前記透明導電性基板上に設けられる前記複数の多孔質酸化物半導体部の前記透明導電性基板からの厚さが同一であることが好ましい。   In the dye-sensitized solar cell, the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate preferably have the same thickness from the transparent conductive substrate.

この場合、透明導電性基板上に設けられる複数の多孔質酸化物半導体部の各々を含む色素増感太陽電池セルにおいて、電圧を近い値にすることが可能となり、多孔質酸化物半導体部を含む色素増感太陽電池セルの各々の発電量も近くなるため、多孔質酸化物半導体部を含む色素増感太陽電池セルを直列や並列に接続しても、全体の電力特性が乱れることがなく、外部デバイスに電力を供給する際に、所望の電力を的確に供給することができる。   In this case, in the dye-sensitized solar cell including each of the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate, the voltage can be made close to the value, and the porous oxide semiconductor portion is included. Since the power generation amount of each of the dye-sensitized solar cells is also close, even if the dye-sensitized solar cells including the porous oxide semiconductor portion are connected in series or in parallel, the overall power characteristics are not disturbed, When power is supplied to the external device, desired power can be accurately supplied.

上記色素増感太陽電池において、前記透明導電性基板上に設けられる前記複数の多孔質酸化物半導体部のうちの少なくとも1つの多孔質酸化物半導体部には共吸着剤が吸着されていることが好ましい。   In the dye-sensitized solar cell, a coadsorbent is adsorbed on at least one porous oxide semiconductor portion of the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate. preferable.

この場合、共吸着剤は発色しないため、共吸着剤が複数の多孔質酸化物半導体部のうちの少なくとも1つの多孔質酸化物半導体部に吸着されると、その共吸着剤が吸着した多孔質酸化物半導体部における色を薄くすることができる。その結果、色素増感太陽電池全体として色の濃淡を実現することができる。   In this case, since the co-adsorbent does not develop color, if the co-adsorbent is adsorbed to at least one porous oxide semiconductor portion of the plurality of porous oxide semiconductor portions, the porous material to which the co-adsorbent is adsorbed The color in the oxide semiconductor portion can be reduced. As a result, it is possible to realize color shading as the entire dye-sensitized solar cell.

上記色素増感太陽電池は、前記透明導電性基板と前記対極とを連結する封止部を更に備え、前記封止部と前記透明導電性基板との間に、発色した無機封止部が設けられることが好ましい。   The dye-sensitized solar cell further includes a sealing portion that connects the transparent conductive substrate and the counter electrode, and a colored inorganic sealing portion is provided between the sealing portion and the transparent conductive substrate. It is preferred that

この場合、多孔質酸化物半導体部のみならず、無機封止部の位置においても、色が視認できるため、より優れた意匠性を付与することができる。   In this case, since the color can be visually recognized not only at the porous oxide semiconductor portion but also at the position of the inorganic sealing portion, more excellent design can be imparted.

また本発明は、透明導電性基板上に複数の多孔質酸化物半導体部を互いに離間するように形成する多孔質酸化物半導体部形成工程と、前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部をマスク部材にて覆い隠して第1構造体を得てから、前記第1構造体を、光増感色素を含む第1色素溶液中に浸漬させる第1浸漬工程と、前記マスク部材にて覆い隠された残りの多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部から前記マスク部材の少なくとも一部を剥がして第2構造体を得てから、前記第2構造体を、前記光増感色素と異なる種類の光増感色素を含む第2色素溶液中に浸漬させ、前記複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるようにする第2浸漬工程と、前記透明導電性基板と対極との間に電解質が配置されるように前記透明導電性基板と前記対極とを貼り合せる貼合せ工程とを含み、前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成され、前記マスク部材が、前記透明導電性基板上に、前記多孔質酸化物半導体部を個別に包囲するように貼り付けられる環状の接着剤と、前記接着剤とともに前記多孔質酸化物半導体部を覆い隠すカバー部材とを有する、色素増感太陽電池の製造方法である。あるいは本発明は、透明導電性基板上に複数の多孔質酸化物半導体部を互いに離間するように形成する多孔質酸化物半導体部形成工程と、前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部をマスク部材にて覆い隠して第1構造体を得てから、前記第1構造体を、光増感色素を含む第1色素溶液中に浸漬させる第1浸漬工程と、前記マスク部材にて覆い隠された残りの多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部から前記マスク部材の少なくとも一部を剥がして第2構造体を得てから、前記第2構造体を、前記光増感色素と異なる種類の光増感色素を含む第2色素溶液中に浸漬させる第2浸漬工程と、前記第2浸漬工程を繰り返すことによって、前記複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるようにする繰返工程と、前記透明導電性基板と対極との間に電解質が配置されるように前記透明導電性基板と前記対極とを貼り合せる貼合せ工程とを含み、前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成され、前記マスク部材が、前記透明導電性基板上に、前記多孔質酸化物半導体部を個別に包囲するように貼り付けられる環状の接着剤と、前記接着剤とともに前記多孔質酸化物半導体部を覆い隠すカバー部材とを有する、色素増感太陽電池の製造方法である。
The present invention also provides a porous oxide semiconductor part forming step of forming a plurality of porous oxide semiconductor parts on a transparent conductive substrate so as to be separated from each other , and one of the plurality of porous oxide semiconductor parts. The remaining porous oxide semiconductor portion excluding the porous oxide semiconductor portion is covered with a mask member to obtain a first structure, and then the first structure is converted into a first dye solution containing a photosensitizing dye. A first immersing step of immersing in the inside, and at least a part of the mask member is peeled off from one porous oxide semiconductor portion of the remaining porous oxide semiconductor portions covered with the mask member, After obtaining the structure, the second structure is immersed in a second dye solution containing a photosensitizing dye of a type different from the photosensitizing dye, and is supported on the plurality of porous oxide semiconductor portions. The number of different types of photosensitizing dyes 2 dipping step and a laminating step of laminating the transparent conductive substrate and the counter electrode so that an electrolyte is disposed between the transparent conductive substrate and the counter electrode, An annular adhesive composed of at least one porous oxide semiconductor layer, and the mask member is attached to the transparent conductive substrate so as to individually surround the porous oxide semiconductor portion; It is a manufacturing method of a dye-sensitized solar cell which has a cover member which covers the porous oxide semiconductor part with the adhesive . Alternatively, the present invention provides a porous oxide semiconductor portion forming step of forming a plurality of porous oxide semiconductor portions on a transparent conductive substrate so as to be separated from each other , and one of the plurality of porous oxide semiconductor portions. The remaining porous oxide semiconductor portion excluding the porous oxide semiconductor portion is covered with a mask member to obtain a first structure, and then the first structure is converted into a first dye solution containing a photosensitizing dye. A first immersing step of immersing in the inside, and at least a part of the mask member is peeled off from one porous oxide semiconductor portion of the remaining porous oxide semiconductor portions covered with the mask member, After obtaining the structure, the second immersing step of immersing the second structure in a second dye solution containing a photosensitizing dye of a type different from the photosensitizing dye, and the second immersing process are repeated. The plurality of porous oxide semiconductors A repeating step of making the number of types of photosensitizing dyes carried on the part different from each other, and the transparent conductive substrate and the counter electrode so that an electrolyte is disposed between the transparent conductive substrate and the counter electrode The porous oxide semiconductor part is composed of at least one porous oxide semiconductor layer, and the mask member is formed on the transparent conductive substrate with the porous oxidation substrate. It is a manufacturing method of a dye-sensitized solar cell which has the cyclic | annular adhesive agent affixed so that a physical semiconductor part may be enclosed individually, and the cover member which covers the said porous oxide semiconductor part with the said adhesive agent .

これらの色素増感太陽電池の製造方法によれば、得られる色素増感太陽電池において、複数の多孔質酸化物半導体部に共通の光増感色素が担持されるので、この光増感色素として、優れた光電変換特性を色素増感太陽電池に付与し得るものを用いれば、色素増感太陽電池全体としての光電変換特性の低下を十分に抑制することができる。その上、複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるため、色素増感太陽電池に優れた意匠性をも付与することができる。すなわち、本発明の色素増感太陽電池の製造方法によれば、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できる色素増感太陽電池を製造することが可能となる。また、通常、光増感色素の適正な浸漬時間は、光増感色素の種類によって異なるが、上記製造方法によれば、それぞれの光増感色素の浸漬時間を自由に制御することができるため、光増感色素ごとに適正な浸漬時間を確保することができる。   According to the method for producing these dye-sensitized solar cells, in the obtained dye-sensitized solar cell, a common photosensitizing dye is supported on a plurality of porous oxide semiconductor parts. If a material capable of imparting excellent photoelectric conversion characteristics to the dye-sensitized solar cell is used, the deterioration of the photoelectric conversion characteristics of the entire dye-sensitized solar cell can be sufficiently suppressed. In addition, since the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor portions is different from each other, it is possible to impart excellent design to the dye-sensitized solar cell. That is, according to the method for producing a dye-sensitized solar cell of the present invention, it is possible to produce a dye-sensitized solar cell that can sufficiently suppress a decrease in photoelectric conversion characteristics even when excellent designability is imparted. Is possible. In addition, the appropriate immersion time of the photosensitizing dye usually varies depending on the type of the photosensitizing dye, but according to the above production method, the immersion time of each photosensitizing dye can be freely controlled. An appropriate immersion time can be ensured for each photosensitizing dye.

また、上記色素増感太陽電池の製造方法によれば、マスク部材が、環状の接着剤と、接着剤とともに多孔質酸化物半導体部を覆い隠すカバー部材とを有するように構成されることで、カバー部材と接着剤との密着性を高めることができるため、第1浸漬工程や第2浸漬工程においては、マスク部材の内側に第1色素溶液や第2色素溶液が侵入することが十分に抑制される。一方、マスク部材を剥がす際には、カバー部材を剥がすだけで多孔質酸化物半導体部を容易に露出させることができる。 Further, according to the method for producing the dye-sensitized solar cell, the mask member is configured to have an annular adhesive and a cover member that covers the porous oxide semiconductor portion together with the adhesive, Since the adhesion between the cover member and the adhesive can be improved, the first dye solution and the second dye solution are sufficiently suppressed from entering the mask member in the first immersion process and the second immersion process. Is done. On the other hand, when removing the mask member, the porous oxide semiconductor portion can be easily exposed by simply removing the cover member.

なお、本発明において、光増感色素の吸収ピーク波長とは、光増感色素が複数本の吸収ピークを有する場合には、それらの吸収ピークの波長のうち最も長波長側の吸収ピークの波長を言うものとする。   In the present invention, when the photosensitizing dye has a plurality of absorption peaks, the absorption peak wavelength of the photosensitizing dye is the wavelength of the absorption peak on the longest wavelength side among the absorption peak wavelengths. Shall be said.

また本発明において、「前記複数の多孔質酸化物半導体部の前記透明導電性基板からの厚さが同一」とは、比較対象となる多孔質酸化物半導体部のうち最も大きい厚さを有する多孔質酸化物半導体部の厚さを基準値とし、多孔質酸化物半導体部の透明導電性基板からの厚さがこの基準値に対して10%以内の範囲に入ることを言うものとする。   In the present invention, “the thickness of the plurality of porous oxide semiconductor portions from the transparent conductive substrate is the same” means that the porous oxide semiconductor portion having the largest thickness among the porous oxide semiconductor portions to be compared is used. The thickness of the porous oxide semiconductor portion is taken as a reference value, and the thickness of the porous oxide semiconductor portion from the transparent conductive substrate falls within the range of 10% with respect to this reference value.

さらに本発明において、多孔質酸化物半導体部の厚さとは、多孔質酸化物半導体部が複数の多孔質酸化物半導体層で構成される場合には、複数の多孔質酸化物半導体層のうち最も大きい厚さを有する多孔質酸化物半導体層の厚さを言うものとする。   Furthermore, in the present invention, the thickness of the porous oxide semiconductor portion is the most of the plurality of porous oxide semiconductor layers when the porous oxide semiconductor portion is composed of a plurality of porous oxide semiconductor layers. The thickness of the porous oxide semiconductor layer having a large thickness shall be said.

本発明によれば、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できる色素増感太陽電池およびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the outstanding design property is provided, the dye-sensitized solar cell which can fully suppress the fall of a photoelectric conversion characteristic, and its manufacturing method are provided.

本発明に係る色素増感太陽電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the dye-sensitized solar cell which concerns on this invention. (a)および(b)は、図1の透明導電性基板上に複数の多孔質酸化物半導体部を形成する一連の工程を示す断面図である。(A) And (b) is sectional drawing which shows a series of processes which form a some porous oxide semiconductor part on the transparent conductive substrate of FIG. (a)〜(d)は、図2の複数の多孔質酸化物半導体部に光増感色素を担持させる一連の工程を示す断面図である。(A)-(d) is sectional drawing which shows a series of processes which carry | support a photosensitizing dye to the several porous oxide semiconductor part of FIG. (a)は、図3(d)の透明導電性基板上に封止部形成材料を圧着する封止部形成材料圧着工程を示す断面図、(b)は、(a)の複数の多孔質酸化物半導体部上に電解質を配置する電解質配置工程を示す断面図である。(A) is sectional drawing which shows the sealing part formation material crimping | compression-bonding process which crimps | bonds a sealing part formation material on the transparent conductive substrate of FIG.3 (d), (b) is several porous of (a). It is sectional drawing which shows the electrolyte arrangement | positioning process which arrange | positions electrolyte on an oxide semiconductor part. 本発明に係る色素増感太陽電池の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the dye-sensitized solar cell which concerns on this invention. 本発明に係る色素増感太陽電池のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the dye-sensitized solar cell which concerns on this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、全図中、同一又は同等の構成要素については同一の符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings, the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.

<第1実施形態>
まず本発明の色素増感太陽電池の第1実施形態について図1を参照しながら説明する。図1は本発明に係る色素増感太陽電池の第1実施形態を示す断面図である。
<First Embodiment>
First, a first embodiment of the dye-sensitized solar cell of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a first embodiment of a dye-sensitized solar cell according to the present invention.

図1に示すように、色素増感太陽電池100は、透明導電性基板10と、透明導電性基板10上に設けられる2つの多孔質酸化物半導体部20a,20bと、多孔質酸化物半導体部20a,20bに対向して設けられる対極30と、透明導電性基板10と対極30とを連結する環状の封止部40と、多孔質酸化物半導体部20a,20b及び対極30の間に配置される電解質50とを備えている。   As shown in FIG. 1, a dye-sensitized solar cell 100 includes a transparent conductive substrate 10, two porous oxide semiconductor portions 20a and 20b provided on the transparent conductive substrate 10, and a porous oxide semiconductor portion. 20a, 20b is disposed between the counter electrode 30 provided opposite to the counter electrode 30, the annular sealing portion 40 connecting the transparent conductive substrate 10 and the counter electrode 30, and the porous oxide semiconductor portions 20a, 20b and the counter electrode 30. The electrolyte 50 is provided.

透明導電性基板10は、透明基板11と透明基板11上に設けられる透明導電膜12とで構成されている。多孔質酸化物半導体部20a,20bには、共通の光増感色素が担持されており、多孔質酸化物半導体部20aには共通の光増感色素とは異なる種類の光増感色素がさらに担持されている。さらに多孔質酸化物半導体部20bは、透明導電性基板10の上に固定される環状の接着剤60によって包囲されている。   The transparent conductive substrate 10 includes a transparent substrate 11 and a transparent conductive film 12 provided on the transparent substrate 11. The porous oxide semiconductor parts 20a and 20b carry a common photosensitizing dye, and the porous oxide semiconductor part 20a further includes a photosensitizing dye of a type different from the common photosensitizing dye. It is supported. Further, the porous oxide semiconductor portion 20 b is surrounded by an annular adhesive 60 fixed on the transparent conductive substrate 10.

また対極30は、対極基板31と、対極基板31の多孔質酸化物半導体部20a,20b側に設けられて触媒反応を促進する触媒層32とを備えている。   The counter electrode 30 includes a counter electrode substrate 31 and a catalyst layer 32 that is provided on the counter electrode substrate 31 on the porous oxide semiconductor portions 20a and 20b side and promotes a catalytic reaction.

この色素増感太陽電池100によれば、多孔質酸化物半導体部20a,20bに共通の光増感色素が担持されるので、この光増感色素として、優れた光電変換特性を色素増感太陽電池100に付与し得るものを用いれば、色素増感太陽電池100全体としての光電変換特性の低下を十分に抑制することができる。その上、多孔質酸化物半導体部20a,20bに担持される光増感色素の種類の数が互いに異なるため、色素増感太陽電池100に優れた意匠性をも付与することができる。すなわち、色素増感太陽電池100によれば、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できる。   According to the dye-sensitized solar cell 100, since the common photosensitizing dye is supported on the porous oxide semiconductor portions 20a and 20b, the photoelectrically sensitive dye has excellent photoelectric conversion characteristics as the photosensitizing dye. If what can be imparted to the battery 100 is used, the deterioration of the photoelectric conversion characteristics of the dye-sensitized solar cell 100 as a whole can be sufficiently suppressed. In addition, since the number of types of photosensitizing dyes carried on the porous oxide semiconductor portions 20a and 20b is different from each other, it is possible to impart excellent design to the dye-sensitized solar cell 100. That is, according to the dye-sensitized solar cell 100, even if it is a case where the outstanding design property is provided, the fall of a photoelectric conversion characteristic can fully be suppressed.

次に、透明導電性基板10、多孔質酸化物半導体部20a,20b、光増感色素、対極30、封止部40および電解質50について詳細に説明する。   Next, the transparent conductive substrate 10, the porous oxide semiconductor portions 20a and 20b, the photosensitizing dye, the counter electrode 30, the sealing portion 40, and the electrolyte 50 will be described in detail.

(透明導電性基板)
透明導電性基板10は、上述したように、透明基板11とその上に設けられる透明導電膜12とで構成される。
(Transparent conductive substrate)
As described above, the transparent conductive substrate 10 includes the transparent substrate 11 and the transparent conductive film 12 provided thereon.

透明基板11は、光透過性の材料からなる基板により構成される。このような材料としては、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)などが挙げられ、通常、光電変換素子の透明基材として用いられる材料であればいかなるものでも用いることができる。透明基板11は、これらの中から電解質50への耐性などを考慮して適宜選択される。また、透明基板11は、光透過性に優れる基材であることが好ましく、光透過率が90%以上の基材であることがより好ましい。   The transparent substrate 11 is composed of a substrate made of a light transmissive material. Examples of such materials include glass, polyethylene terephthalate (PET), polycarbonate (PC), polyethersulfone (PES), polyethylene naphthalate (PEN), and are usually used as a transparent substrate for photoelectric conversion elements. Any material can be used. The transparent substrate 11 is appropriately selected from these in consideration of resistance to the electrolyte 50 and the like. Further, the transparent substrate 11 is preferably a base material excellent in light transmittance, and more preferably a base material having a light transmittance of 90% or more.

透明導電膜12は、透明導電性基板10の透明性を著しく損なわない構造とするために、導電性金属酸化物からなる薄膜であることが好ましい。このような導電性金属酸化物としては、例えば、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが挙げられる。また、透明導電膜12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜12が単層で構成される場合、透明導電膜12としては、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましく、また、高い耐熱性及び耐薬品性を有する観点から、FTOがより好ましい。透明導電膜12の厚さは例えば0.01〜2μmの範囲にすればよい。 The transparent conductive film 12 is preferably a thin film made of a conductive metal oxide so that the transparency of the transparent conductive substrate 10 is not significantly impaired. Examples of such conductive metal oxides include indium tin oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Further, the transparent conductive film 12 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 12 is composed of a single layer, the transparent conductive film 12 is preferably ITO or FTO from the viewpoint of easy film formation and low manufacturing cost, and high heat resistance and chemical resistance. From the viewpoint of having FTO, FTO is more preferable. The thickness of the transparent conductive film 12 may be in the range of 0.01 to 2 μm, for example.

(多孔質酸化物半導体部)
多孔質酸化物半導体部20a,20bはそれぞれ、1つの多孔質酸化物半導体層で構成されてもよく、互いに離間する複数の多孔質酸化物半導体層で構成されてもよい。多孔質酸化物半導体層を形成する酸化物半導体は、特に限定されず、通常、光電変換素子用の多孔質酸化物半導体層を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような酸化物半導体としては、例えば、酸化チタン(TiO)、シリカ(SiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)が挙げられる。これらは単独で又は2種以上を組み合わせて使用することができる。
(Porous oxide semiconductor part)
Each of the porous oxide semiconductor portions 20a and 20b may be composed of one porous oxide semiconductor layer, or may be composed of a plurality of porous oxide semiconductor layers separated from each other. The oxide semiconductor that forms the porous oxide semiconductor layer is not particularly limited, and any oxide semiconductor can be used as long as it is usually used to form a porous oxide semiconductor layer for a photoelectric conversion element. it can. Examples of such an oxide semiconductor include titanium oxide (TiO 2 ), silica (SiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O). 5 ), strontium titanate (SrTiO 3 ) indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho 2 O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), and aluminum oxide (Al 2 O 3 ). These can be used alone or in combination of two or more.

これら酸化物半導体の粒子の平均粒径は1〜1000nmであることが、光増感色素で覆われた酸化物半導体の表面積が大きくなり、より多くの電子を生成することができることから好ましい。また、多孔質酸化物半導体層は、粒度分布の異なる酸化物半導体粒子を積層させて構成されることが好ましい。この場合、多孔質酸化物半導体層内で繰り返し光の反射を起こさせることが可能となり、多孔質酸化物半導体層の外部へ逃がす入射光を少なくして、効率よく光を電子に変換することができる。   The average particle size of these oxide semiconductor particles is preferably 1 to 1000 nm because the surface area of the oxide semiconductor covered with the photosensitizing dye is increased and more electrons can be generated. The porous oxide semiconductor layer is preferably configured by stacking oxide semiconductor particles having different particle size distributions. In this case, light can be repeatedly reflected in the porous oxide semiconductor layer, and incident light that escapes to the outside of the porous oxide semiconductor layer can be reduced and light can be efficiently converted into electrons. it can.

多孔質酸化物半導体層の厚さは例えば0.5〜50μmとすればよい。なお、多孔質酸化物半導体層は、異なる材料からなる複数の酸化物半導体の積層体で構成することもできる。   The thickness of the porous oxide semiconductor layer may be, for example, 0.5 to 50 μm. Note that the porous oxide semiconductor layer can also be formed of a stack of a plurality of oxide semiconductors made of different materials.

(光増感色素)
多孔質酸化物半導体部20a,20bに共通に担持される光増感色素(以下、「共通光増感色素」と呼ぶ)としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などが挙げられ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。具体的には、N3、N719、N749、D131、D149、Z907などを使用することができる。中でも、低照度においては、色素増感太陽電池100に優れた光電変換特性を付与し得ることから、N719やZ907などが好ましく用いられる。
(Photosensitizing dye)
As a photosensitizing dye supported in common on the porous oxide semiconductor portions 20a and 20b (hereinafter referred to as “common photosensitizing dye”), a ruthenium complex containing a bipyridine structure, a terpyridine structure, or the like as a ligand, Examples thereof include metal-containing complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine. Among these, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation. Specifically, N3, N719, N749, D131, D149, Z907, and the like can be used. Among them, N719, Z907, and the like are preferably used at low illuminance because they can impart excellent photoelectric conversion characteristics to the dye-sensitized solar cell 100.

多孔質酸化物半導体部20aに担持される共通光増感色素以外の光増感色素は、共通光増感色素と異なる種類のものであればよいが、共通光増感色素とは異なる吸収ピーク波長を有するものであることが好ましい。この場合、2種類の光増感色素が担持されている多孔質酸化物半導体部20aにおいて、2種類の光増感色素が互いに異なる吸収ピーク波長を有することで、その多孔質酸化物半導体部20aの色を調節することができる。加えて、光を十分に吸収できる波長領域が広範囲となるため、色素増感太陽電池100全体として、より優れた光電変換特性を確保することができる。   The photosensitizing dye other than the common photosensitizing dye supported on the porous oxide semiconductor portion 20a may be of a different type from the common photosensitizing dye, but has an absorption peak different from that of the common photosensitizing dye. It is preferable that it has a wavelength. In this case, in the porous oxide semiconductor portion 20a carrying two types of photosensitizing dyes, the two types of photosensitizing dyes have absorption peak wavelengths different from each other, so that the porous oxide semiconductor portion 20a. The color of can be adjusted. In addition, since the wavelength region capable of sufficiently absorbing light is wide, more excellent photoelectric conversion characteristics can be ensured as the entire dye-sensitized solar cell 100.

(対極)
対極基板31としては、例えばチタン、ニッケル、白金、モリブデン、タングステン、SUS等の耐食性の金属材料や、上述した透明基板11にITO、FTO等の導電性酸化物からなる膜を形成したもので構成される。対極基板31の厚さは、色素増感型太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005〜0.1mmとすればよい。
(Counter electrode)
The counter electrode substrate 31 is composed of, for example, a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, or SUS, or a film formed of a conductive oxide such as ITO or FTO on the transparent substrate 11 described above. Is done. The thickness of the counter electrode substrate 31 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be, for example, 0.005 to 0.1 mm.

触媒層32は、白金、炭素系材料又は導電性高分子などから構成される。   The catalyst layer 32 is made of platinum, a carbon-based material, a conductive polymer, or the like.

対極30の厚さは例えば0.005〜0.5mmの範囲内であればよい。   The thickness of the counter electrode 30 should just be in the range of 0.005-0.5 mm, for example.

(封止部)
封止部40を構成する材料としては、例えばアイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体などの変性ポリオレフィン、紫外線硬化樹脂、及び、ビニルアルコール重合体が挙げられる。なお、封止部40は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。
(Sealing part)
As a material constituting the sealing portion 40, for example, an ionomer, an ethylene-vinyl acetate anhydride copolymer, an ethylene-methacrylic acid copolymer, a modified polyolefin such as an ethylene-vinyl alcohol copolymer, an ultraviolet curable resin, and A vinyl alcohol polymer is mentioned. In addition, the sealing part 40 may be comprised only with resin, and may be comprised with resin and an inorganic filler.

(電解質)
電解質50は、例えばIおよびI などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、バレロニトリル、ピバロニトリル、グルタロニトリル、メタクリロニトリル、イソブチロニトリル、フェニルアセトニトリル、アクリロニトリル、スクシノニトリル、オキサロニトリル、ペンタニトリル、アジポニトリルなどを用いることができる。
(Electrolytes)
The electrolyte 50 includes a redox couple such as I and I 3 and an organic solvent. As an organic solvent, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, valeronitrile, pivalonitrile, glutaronitrile, methacrylonitrile, isobutyronitrile, Phenylacetonitrile, acrylonitrile, succinonitrile, oxalonitrile, pentanitrile, adiponitrile and the like can be used.

酸化還元対としては、例えばIおよびI のほか、臭素および臭化物イオン、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。 The redox pair, such as I - and I 3 - In addition to, bromine and bromide ion, zinc complex, an iron complex, and redox pairs such as cobalt complexes.

酸化還元対として、IおよびI が用いられる場合、I の濃度は、0より多く、0.006M以下であることが好ましい。 When I and I 3 are used as the redox pair, the concentration of I 3 is preferably more than 0 and 0.006M or less.

の濃度が上記範囲内にあると、屋内などの低照度環境下で光電変換特性をより向上させることができる。加えて、I 濃度が上記範囲内にあることで、電解質50の色が薄くなる。その結果、多孔質酸化物半導体部20a,20bに担持された光増感色素による色が明確に視認できる。 When the concentration of I 3 is in the above range, photoelectric conversion characteristics can be further improved in a low illuminance environment such as indoors. In addition, I 3 - concentration that is within the above range, the color of the electrolyte 50 is reduced. As a result, the color due to the photosensitizing dye carried on the porous oxide semiconductor portions 20a and 20b can be clearly seen.

の濃度は、より好ましくは0.002M以下であり、さらに好ましくは6×10−6M以下である。I の濃度を6×10−6M以下とするためには、I の供給源であるIを添加しなければよい。Iを添加しなくてもIさえあれば、I の濃度を6×10−6M以下にすることができる。この理由は定かではないが、Iがなんらかの反応をしてI を生成しているものと考えられる。 The concentration of I 3 is more preferably 0.002M or less, and further preferably 6 × 10 −6 M or less. In order to make the concentration of I 3 less than or equal to 6 × 10 −6 M, it is only necessary to add I 2 which is a source of I 3 . Even if I 2 is not added, the concentration of I 3 can be reduced to 6 × 10 −6 M or less as long as I is present. The reason for this is not clear, but it is considered that I reacts to produce I 3 by some reaction.

また電解質50は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1−ヘキシル−3−メチルイミダゾリウムヨーダイド、1−エチル−3−プロピルイミダゾリウムヨーダイド、ジメチルイミダゾリウムアイオダイド、エチルメチルイミダゾリウムアイオダイド、ジメチルプロピルイミダゾリウムアイオダイド、ブチルメチルイミダゾリウムアイオダイド、又は、メチルプロピルイミダゾリウムアイオダイドが好適に用いられる。   The electrolyte 50 may be an ionic liquid instead of the organic solvent. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. Examples of such room temperature molten salts include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, dimethylimidazolium iodide, ethylmethylimidazolium iodide, and dimethylpropyl. Imidazolium iodide, butylmethylimidazolium iodide, or methylpropyl imidazolium iodide is preferably used.

また、電解質50は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。   The electrolyte 50 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.

また電解質50には添加剤を加えることができる。添加剤としては、LiI、I、4−t−ブチルピリジン、グアニジウムチオシアネート、1−メチルベンゾイミダゾール、1-ブチルベンゾイミダゾールなどが挙げられる。 An additive can be added to the electrolyte 50. As the additive, LiI, I 2, 4- t- butylpyridine, guanidinium thiocyanate, 1-methylbenzimidazole, 1-butyl-benzimidazole and the like.

さらに電解質50としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。 Furthermore, as the electrolyte 50, a nanocomposite gel electrolyte which is a pseudo-solid electrolyte obtained by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes with the above electrolyte may be used, and polyvinylidene fluoride may be used. Alternatively, an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.

次に、上述した色素増感太陽電池100の製造方法について図2〜図4を参照しながら説明する。図2の(a)および(b)は、図1の透明導電性基板上に複数の多孔質酸化物半導体部を形成する一連の工程を示す断面図、図3の(a)〜(d)は、図2の複数の多孔質酸化物半導体部に光増感色素を担持させる一連の工程を示す断面図、図4の(a)は、図3(d)の透明導電性基板上に封止部形成材料を圧着する封止部形成材料圧着工程を示す断面図、図4の(b)は、図4の(a)の複数の多孔質酸化物半導体部上に電解質を配置する電解質配置工程を示す断面図である。   Next, the manufacturing method of the dye-sensitized solar cell 100 described above will be described with reference to FIGS. 2A and 2B are cross-sectional views showing a series of steps for forming a plurality of porous oxide semiconductor portions on the transparent conductive substrate of FIG. 1, and FIGS. 3A to 3D. FIG. 4 is a cross-sectional view showing a series of steps for supporting a photosensitizing dye on a plurality of porous oxide semiconductor portions in FIG. 2, and FIG. 4 (a) is sealed on the transparent conductive substrate in FIG. 3 (d). FIG. 4B is a cross-sectional view showing a sealing portion forming material pressure bonding step for pressure bonding a stopper portion forming material. FIG. 4B is an electrolyte arrangement in which an electrolyte is arranged on a plurality of porous oxide semiconductor portions in FIG. It is sectional drawing which shows a process.

まず透明導電性基板10を準備する。透明導電性基板10は、図2の(a)に示すように、透明基板11の上に、透明導電膜12を形成することによって得ることができる。透明導電膜12の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法及びCVD法などが用いられる。   First, the transparent conductive substrate 10 is prepared. The transparent conductive substrate 10 can be obtained by forming a transparent conductive film 12 on a transparent substrate 11 as shown in FIG. As a method for forming the transparent conductive film 12, a sputtering method, a vapor deposition method, a spray pyrolysis method, a CVD method, or the like is used.

[多孔質酸化物半導体部形成工程]
次に、透明導電性基板10の透明導電膜12上の互いに離間する2つの領域に、多孔質酸化物半導体層形成用ペーストを印刷する。多孔質酸化物半導体層形成用ペーストは、酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。多孔質酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。
[Porous oxide semiconductor part forming step]
Next, a paste for forming a porous oxide semiconductor layer is printed in two regions on the transparent conductive film 12 of the transparent conductive substrate 10 that are separated from each other. The paste for forming a porous oxide semiconductor layer contains a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles. As a printing method of the paste for forming the porous oxide semiconductor layer, for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.

次に、多孔質酸化物半導体層形成用ペーストを焼成して透明導電膜12上に多孔質酸化物半導体部20a,20bを形成する(図2の(b)参照)。焼成温度は酸化物半導体粒子により異なるが、通常は140〜600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1〜5時間である。   Next, the porous oxide semiconductor layer forming paste is fired to form the porous oxide semiconductor portions 20a and 20b on the transparent conductive film 12 (see FIG. 2B). The firing temperature varies depending on the oxide semiconductor particles, but is usually 140 to 600 ° C., and the firing time also varies depending on the oxide semiconductor particles, but is usually 1 to 5 hours.

[光増感色素担持工程]
次に、図3の(a)に示すように、多孔質酸化物半導体部20bをマスク部材80で覆い隠す。マスク部材80は、例えば透明導電性基板10上に環状の接着剤60を接着させ、続いて、この接着剤60の開口をカバー部材70で覆うことにより形成することができる。こうして第1構造体90が得られる。
[Photosensitizing dye supporting step]
Next, as shown in FIG. 3A, the porous oxide semiconductor portion 20 b is covered with a mask member 80. The mask member 80 can be formed, for example, by adhering an annular adhesive 60 on the transparent conductive substrate 10 and then covering the opening of the adhesive 60 with the cover member 70. Thus, the first structure 90 is obtained.

ここで、接着剤60としては、例えば封止部40を構成する材料と同様のものを用いることが好ましい。これらは、有機溶媒に対して高い封止能を有するため、色素溶液に含まれる有機溶媒がマスク部材80の内側に侵入することを十分に抑制することができる。   Here, as the adhesive 60, for example, it is preferable to use the same material as that constituting the sealing portion 40. Since these have high sealing ability with respect to the organic solvent, the organic solvent contained in the dye solution can be sufficiently suppressed from entering the mask member 80.

カバー部材70を構成する材料としては、有機溶媒に対して高い封止能を有する材料が好ましい。このような材料としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂や、チタンなどの金属などを用いることができる。   As a material constituting the cover member 70, a material having a high sealing ability with respect to an organic solvent is preferable. As such a material, for example, a polyester resin such as polyethylene terephthalate or polybutylene terephthalate, or a metal such as titanium can be used.

次に、図3の(b)に示すように、第1構造体90の多孔質酸化物半導体部20aに、共通光増感色素とは異なる種類の光増感色素を担持させる。このためには、第1構造体90を、光増感色素を含有する第1色素溶液の中に浸漬させ、光増感色素を多孔質酸化物半導体部20aに吸着させる(第1浸漬工程)。   Next, as shown in FIG. 3B, the porous oxide semiconductor portion 20a of the first structure 90 is loaded with a photosensitizing dye of a type different from the common photosensitizing dye. For this purpose, the first structure 90 is immersed in a first dye solution containing a photosensitizing dye, and the photosensitizing dye is adsorbed on the porous oxide semiconductor portion 20a (first immersion step). .

次に、図3の(c)に示すように、マスク部材80の一部であるカバー部材70を接着剤60から剥離して、光増感色素が担持されていない多孔質酸化物半導体部20bを露出させる。こうして第2構造体110が得られる。   Next, as shown in FIG. 3C, the cover member 70, which is a part of the mask member 80, is peeled from the adhesive 60, and the porous oxide semiconductor portion 20b on which no photosensitizing dye is supported. To expose. In this way, the second structure 110 is obtained.

続いて、図3の(d)に示すように、第2構造体110の多孔質酸化物半導体部20a、20bに、共通光増感色素を担持させる(第2浸漬工程)。このためには、第2構造体110を、光増感色素を含有する第2色素溶液の中に浸漬させ、光増感色素を多孔質酸化物半導体部20a、20bに吸着させる。   Subsequently, as shown in FIG. 3D, the common photosensitizing dye is supported on the porous oxide semiconductor portions 20a and 20b of the second structure 110 (second immersion step). For this purpose, the second structure 110 is immersed in a second dye solution containing a photosensitizing dye, and the photosensitizing dye is adsorbed on the porous oxide semiconductor portions 20a and 20b.

こうして多孔質酸化物半導体部20aには、2種類の光増感色素が担持され、多孔質酸化物半導体部20bには1種類の光増感色素のみが担持される。すなわち、多孔質酸化物半導体部20a,20bでは、光増感色素の種類の数が互いに異なり、多孔質酸化物半導体部20a,20bには共通の光増感色素が担持されることになる。   Thus, two types of photosensitizing dyes are supported on the porous oxide semiconductor portion 20a, and only one type of photosensitizing dye is supported on the porous oxide semiconductor portion 20b. That is, in the porous oxide semiconductor parts 20a and 20b, the number of types of photosensitizing dyes is different from each other, and a common photosensitizing dye is supported on the porous oxide semiconductor parts 20a and 20b.

[封止部形成材料圧着工程]
そして、図4の(a)に示すように、例えば透明導電性基板10の上に、例えば環状の封止部形成材料40Aを配置する。このとき、封止部形成材料40Aの内側に多孔質酸化物半導体部20a,20bが配置されるようにする。その後、封止部形成材料40Aを透明導電性基板10に溶融圧着させる。
[Sealing part forming material crimping process]
4A, for example, an annular sealing portion forming material 40A is disposed on the transparent conductive substrate 10, for example. At this time, the porous oxide semiconductor portions 20a and 20b are arranged inside the sealing portion forming material 40A. Thereafter, the sealing portion forming material 40 </ b> A is melt bonded to the transparent conductive substrate 10.

[電解質配置工程]
次に、図4の(b)に示すように、例えば透明導電性基板10上であって封止部形成材料40Aの内側に電解質50を配置する。電解質50は、透明導電性基板10上であって環状の封止部形成材料40Aの内側に注入したり、印刷したりすることによって配置することができる。
[Electrolyte placement process]
Next, as shown in FIG. 4B, for example, the electrolyte 50 is disposed on the transparent conductive substrate 10 and inside the sealing portion forming material 40A. The electrolyte 50 can be disposed on the transparent conductive substrate 10 by being injected or printed inside the annular sealing portion forming material 40A.

[貼合せ工程]
次いで、多孔質酸化物半導体部20a,20bに対し、対極30を対向させて重ね合わせる。そして、封止部形成材料40Aを加熱溶融させながら加圧する。こうして、透明導電性基板10と対極30との間に電解質50が配置されるように透明導電性基板10と対極30とを貼り合せて色素増感太陽電池100の製造が完了する(図1参照)。このとき、封止部形成材料40Aは封止部40となる。
[Lamination process]
Next, the counter electrode 30 is opposed to and superimposed on the porous oxide semiconductor portions 20a and 20b. Then, the sealing portion forming material 40A is pressurized while being heated and melted. Thus, the production of the dye-sensitized solar cell 100 is completed by bonding the transparent conductive substrate 10 and the counter electrode 30 so that the electrolyte 50 is disposed between the transparent conductive substrate 10 and the counter electrode 30 (see FIG. 1). ). At this time, the sealing portion forming material 40 </ b> A becomes the sealing portion 40.

上記のようにして色素増感太陽電池100を製造すると、得られる色素増感太陽電池100において、多孔質酸化物半導体部20a,20bに共通の光増感色素が担持されるので、この光増感色素として、優れた光電変換特性を色素増感太陽電池100に付与し得るものを用いれば、色素増感太陽電池100全体としての光電変換特性の低下を十分に抑制することができる。その上、複数の多孔質酸化物半導体部20a,20bに担持される光増感色素の種類の数が互いに異なるため、色素増感太陽電池100に優れた意匠性をも付与することができる。すなわち、上述した色素増感太陽電池100の製造方法によれば、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できる色素増感太陽電池100を製造することが可能となる。また、通常、光増感色素の適正な浸漬時間は、光増感色素の種類によって異なるが、上記製造方法によれば、それぞれの光増感色素の浸漬時間を自由に制御することができるため、光増感色素ごとに適正な浸漬時間を確保することもできる。また上記製造方法によれば、マスク部材80が、環状の接着剤60と、接着剤60とともに多孔質酸化物半導体部20bを覆い隠すカバー部材70とを有するように構成されることで、カバー部材70と接着剤60との密着性を高めることができるため、マスク部材80の内側に第1色素溶液や第2色素溶液が侵入することが十分に抑制される。一方、マスク部材80を剥がす際には、カバー部材70を剥がすだけで多孔質酸化物半導体部20bを容易に露出させることができる。   When the dye-sensitized solar cell 100 is manufactured as described above, in the obtained dye-sensitized solar cell 100, a common photosensitizing dye is supported on the porous oxide semiconductor portions 20a and 20b. If what can give the outstanding photoelectric conversion characteristic to the dye-sensitized solar cell 100 is used as a dye-sensitized dye, the fall of the photoelectric conversion characteristic as the dye-sensitized solar cell 100 whole can fully be suppressed. Moreover, since the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor portions 20a and 20b is different from each other, it is possible to impart excellent design to the dye-sensitized solar cell 100. That is, according to the manufacturing method of the dye-sensitized solar cell 100 described above, the dye-sensitized solar cell 100 that can sufficiently suppress the decrease in photoelectric conversion characteristics is manufactured even when excellent designability is imparted. It becomes possible. In addition, the appropriate immersion time of the photosensitizing dye usually varies depending on the type of the photosensitizing dye, but according to the above production method, the immersion time of each photosensitizing dye can be freely controlled. It is also possible to ensure an appropriate immersion time for each photosensitizing dye. Moreover, according to the said manufacturing method, the mask member 80 is comprised so that it may have the cyclic | annular adhesive 60 and the cover member 70 which covers the porous oxide semiconductor part 20b with the adhesive 60, A cover member Since the adhesion between the adhesive 70 and the adhesive 60 can be increased, the first dye solution and the second dye solution are sufficiently prevented from entering the inside of the mask member 80. On the other hand, when removing the mask member 80, the porous oxide semiconductor portion 20b can be easily exposed by simply removing the cover member 70.

本発明は上記実施形態に限定されない。例えば上記実施形態では、封止部40が透明導電性基板10に直接接着されているが、図5に示す色素増感太陽電池200のように、封止部40は、発色した無機封止部290を介して透明導電性基板10に接着されていてもよい。この場合、多孔質酸化物半導体部20a,20bのみならず、無機封止部290の位置においても、色が視認できるため、より優れた意匠性を色素増感太陽電池200に付与することができる。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the sealing portion 40 is directly bonded to the transparent conductive substrate 10. However, as in the dye-sensitized solar cell 200 illustrated in FIG. 5, the sealing portion 40 is a colored inorganic sealing portion. It may be bonded to the transparent conductive substrate 10 via 290. In this case, since the color can be visually recognized not only at the porous oxide semiconductor portions 20a and 20b but also at the position of the inorganic sealing portion 290, more excellent design can be imparted to the dye-sensitized solar cell 200. .

また上記実施形態では、透明導電性基板10上に1つの色素増感太陽電池セルのみが形成されているが、透明導電性基板10上には、図6に示す色素増感太陽電池300のように、複数の色素増感太陽電池セル25a,25bが設けられていてもよい。この場合、色素増感太陽電池セル25aは、透明導電膜12aと、透明導電膜12a上に設けられる多孔質酸化物半導体部20aと、多孔質酸化物半導体部20aに対向して設けられる対極30aと、透明導電性基板10と対極30aとを連結する環状の封止部40と、透明導電膜12aおよび対極30aの間に設けられる電解質50とによって構成される。同様に、色素増感太陽電池セル25bは、透明導電膜12bと、透明導電膜12b上に設けられる多孔質酸化物半導体部20bと、多孔質酸化物半導体部20bに対向して設けられる対極30bと、透明導電性基板10と対極30bとを連結する環状の封止部40と、透明導電膜12bおよび対極30bの間に設けられる電解質50とによって構成される。ここで、色素増感太陽電池セル25a,25bの多孔質酸化物半導体部20a,20bの厚さは同一でも異なっていてもよいが、同一であることが好ましい。この場合、色素増感太陽電池セル25a,25bにおける電圧を近くすることが可能となり、色素増感太陽電池セル25a,25bの各々の発電量も近くなるため、色素増感太陽電池セル25a,25bを直列や並列に接続しても、全体の電力特性が乱れることがなく、色素増感太陽電池300から外部デバイスに電力を供給する際に、所望の電力を的確に供給することができる。   Moreover, in the said embodiment, although only one dye-sensitized solar cell is formed on the transparent conductive substrate 10, like the dye-sensitized solar cell 300 shown in FIG. In addition, a plurality of dye-sensitized solar cells 25a and 25b may be provided. In this case, the dye-sensitized solar cell 25a includes a transparent conductive film 12a, a porous oxide semiconductor part 20a provided on the transparent conductive film 12a, and a counter electrode 30a provided to face the porous oxide semiconductor part 20a. And the annular sealing part 40 which connects the transparent conductive substrate 10 and the counter electrode 30a, and the electrolyte 50 provided between the transparent conductive film 12a and the counter electrode 30a. Similarly, the dye-sensitized solar cell 25b includes a transparent conductive film 12b, a porous oxide semiconductor part 20b provided on the transparent conductive film 12b, and a counter electrode 30b provided to face the porous oxide semiconductor part 20b. And the annular sealing part 40 which connects the transparent conductive substrate 10 and the counter electrode 30b, and the electrolyte 50 provided between the transparent conductive film 12b and the counter electrode 30b. Here, the thicknesses of the porous oxide semiconductor portions 20a and 20b of the dye-sensitized solar cells 25a and 25b may be the same or different, but are preferably the same. In this case, the voltage in the dye-sensitized solar cells 25a and 25b can be made close, and the power generation amount of each of the dye-sensitized solar cells 25a and 25b is also close, so the dye-sensitized solar cells 25a and 25b are close. Even when connected in series or in parallel, the overall power characteristics are not disturbed, and when supplying power from the dye-sensitized solar cell 300 to an external device, desired power can be supplied accurately.

なお、多孔質酸化物半導体部20a,20bの厚さは、2種類の色素が担持されている多孔質酸化物半導体部20aの厚さを、1種類の色素しか担持されていない多孔質酸化物半導体部20bの厚さより低くしてもよい。   The thicknesses of the porous oxide semiconductor portions 20a and 20b are the same as the thickness of the porous oxide semiconductor portion 20a in which two types of dyes are supported, but the porous oxide in which only one type of dye is supported. You may make it lower than the thickness of the semiconductor part 20b.

また上記実施形態では、透明導電性基板10上に2つの多孔質酸化物半導体部20a,20bが設けられている場合を例にして説明したが、多孔質酸化物半導体部は、透明導電性基板10上に3つ以上設けられていてもよい。   Moreover, although the said embodiment demonstrated as an example the case where the two porous oxide semiconductor parts 20a and 20b were provided on the transparent conductive substrate 10, a porous oxide semiconductor part is a transparent conductive substrate. Three or more may be provided on 10.

この場合、色素増感太陽電池を製造するには、第2浸漬工程と、透明導電性基板10と対極30との間に電解質50が配置されるように透明導電性基板10と対極30とを貼り合せる貼合せ工程との間に、第2浸漬工程を繰り返すことによって、複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるようにする繰返工程をさらに行えばよい。   In this case, in order to manufacture a dye-sensitized solar cell, the transparent conductive substrate 10 and the counter electrode 30 are disposed so that the electrolyte 50 is disposed between the second immersion step and the transparent conductive substrate 10 and the counter electrode 30. Further repeating the second dipping step between the bonding steps to be bonded so that the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor parts is different from each other. Just do it.

さらに上記実施形態では、多孔質酸化物半導体部20a,20bのいずれにも共吸着剤が吸着されていないが、多孔質酸化物半導体部20a,20bの少なくとも一方に共吸着剤が吸着されてもよい。   Further, in the above embodiment, the co-adsorbent is not adsorbed on any of the porous oxide semiconductor portions 20a and 20b, but even if the co-adsorbent is adsorbed on at least one of the porous oxide semiconductor portions 20a and 20b. Good.

この場合、共吸着剤は発色しないため、共吸着剤が多孔質酸化物半導体部20a,20bのうちの少なくとも1つの多孔質酸化物半導体部に吸着されると、その共吸着剤が吸着した多孔質酸化物半導体部における色を薄くすることができる。その結果、色素増感太陽電池全体として色の濃淡を実現することができる。   In this case, since the co-adsorbent does not develop color, if the co-adsorbent is adsorbed to at least one porous oxide semiconductor portion of the porous oxide semiconductor portions 20a and 20b, the porous adsorbed by the co-adsorbent The color in the oxide semiconductor portion can be reduced. As a result, it is possible to realize color shading as the entire dye-sensitized solar cell.

共吸着剤は、光増感色素同士の会合を抑制できるものであればよく、特に限定されない。例えば共吸着剤としては、デオキシコール酸、ケノデオキシコール酸、コール酸、ヒオデオキシコール酸、これらの塩などを用いることができる。   The coadsorbent is not particularly limited as long as it can suppress the association between the photosensitizing dyes. For example, as a coadsorbent, deoxycholic acid, chenodeoxycholic acid, cholic acid, hyodeoxycholic acid, salts thereof, and the like can be used.

さらに、上記実施形態では、多孔質酸化物半導体部20a,20bに光増感色素が担持された後に、透明導電性基板10に環状の封止部形成材料40Aが溶融圧着されているが、多孔質酸化物半導体部20a,20bに光増感色素が担持される前に、透明導電性基板10に環状の封止部形成材料40Aが溶融圧着されてもよい。   Furthermore, in the above-described embodiment, the photosensitizing dye is supported on the porous oxide semiconductor portions 20a and 20b, and then the annular sealing portion forming material 40A is melt-pressed on the transparent conductive substrate 10. Before the photosensitizing dye is carried on the oxide semiconductor portions 20a and 20b, the annular sealing portion forming material 40A may be melt-bonded to the transparent conductive substrate 10.

以下、本発明の内容を、実施例及び比較例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
はじめに、透明導電性基板として、酸化スズ被覆ガラスシートであるTEC15ガラス(商品名、ピルキントン社製)を準備した。TECガラスの寸法は、100mm×100mm×2.2mmとした。そして、この透明導電性基板の表面のうちの互いに離間する2つの領域にそれぞれ、スクリーン印刷法によって酸化チタンペーストとしての21NR(商品名、日揮触媒化成社製)を塗布した。そして、この酸化チタンペーストを塗布した透明導電性基板を熱風循環タイプのオーブンに入れて500℃で1時間焼成し、透明導電性基板上に、厚さが12μmの1つの多孔質酸化物半導体層からなる第1多孔質酸化物半導体部と、厚さが12μmの1つの多孔質酸化物半導体層からなる第2多孔質酸化物半導体層とを得た。
Example 1
First, TEC15 glass (trade name, manufactured by Pilkington), which is a tin oxide-coated glass sheet, was prepared as a transparent conductive substrate. The dimensions of the TEC glass were 100 mm × 100 mm × 2.2 mm. Then, 21NR (trade name, manufactured by JGC Catalysts & Chemicals Co., Ltd.) as a titanium oxide paste was applied to each of two regions of the surface of the transparent conductive substrate separated from each other by a screen printing method. Then, the transparent conductive substrate coated with the titanium oxide paste is put in a hot air circulation type oven and baked at 500 ° C. for 1 hour, and one porous oxide semiconductor layer having a thickness of 12 μm is formed on the transparent conductive substrate. The 1st porous oxide semiconductor part which consists of 1 and the 2nd porous oxide semiconductor layer which consists of one porous oxide semiconductor layer whose thickness is 12 micrometers were obtained.

次に、透明導電性基板上に、第2多孔質酸化物半導体部を包囲するように環状の接着剤としてのバイネル4164(商品名、デュポン社製)を溶融圧着させた。接着剤は、厚さが40μm、幅が500μmとなるようにした。そして、環状の接着剤の開口を、厚さが75μmのポリエチレンテレフタレートからなるカバー部材で覆い隠した。こうしてマスク部材を形成した。   Next, on the transparent conductive substrate, Binnel 4164 (trade name, manufactured by DuPont) as an annular adhesive was melt-pressed so as to surround the second porous oxide semiconductor portion. The adhesive had a thickness of 40 μm and a width of 500 μm. Then, the opening of the annular adhesive was covered with a cover member made of polyethylene terephthalate having a thickness of 75 μm. Thus, a mask member was formed.

次に、エチレン−メタクリル酸共重合体であるニュクレル(三井・デュポンポリケミカル社製、融点:98℃)からなる19.5cm×17.5cm×100μmのシートの中央に18.5cm×16.5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。そして、この樹脂シートを、透明導電性基板の上に配置した。このとき、樹脂シートの内側に第1多孔質酸化物半導体部および第2多孔質酸化物半導体部が配置されるようにした。続いて、この樹脂シートを180℃で5分間加熱し溶融させることによって透明導電性基板に接着して封止部形成材料を固定した。こうして第1構造体を得た。   Next, 18.5 cm × 16.5 cm in the center of a sheet of 19.5 cm × 17.5 cm × 100 μm made of Nucrel (Mitsui DuPont Polychemical Co., Ltd., melting point: 98 ° C.) which is an ethylene-methacrylic acid copolymer. A square annular resin sheet having an opening of × 100 μm was prepared. And this resin sheet was arrange | positioned on the transparent conductive substrate. At this time, the first porous oxide semiconductor portion and the second porous oxide semiconductor portion were arranged inside the resin sheet. Subsequently, the resin sheet was heated and melted at 180 ° C. for 5 minutes to adhere to the transparent conductive substrate and fix the sealing portion forming material. Thus, the first structure was obtained.

次に、第1構造体を、光増感色素であるD131色素(吸収ピーク波長:420nm)を1−プロパノール中に0.05mMの濃度となるように溶解させてなる第1色素溶液中に48時間浸漬して、マスク部材で覆い隠されていない第1多孔質酸化物半導体部にD131色素を担持させた。   Next, the first structure is dissolved in a first dye solution in which D131 dye (absorption peak wavelength: 420 nm) as a photosensitizing dye is dissolved in 1-propanol to a concentration of 0.05 mM. The D131 dye was supported on the first porous oxide semiconductor portion that was immersed for a period of time and not covered with the mask member.

続いて、マスク部材の一部であるカバー部材を接着剤から剥がし、第2構造体を得た。   Subsequently, the cover member which is a part of the mask member was peeled off from the adhesive to obtain a second structure.

そして、第2構造体を、共通光増感色素であるN719色素(吸収ピーク波長:550nm)をアセトニトリルおよびt−ブタノールの1:1の体積比の混合溶媒中に0.2mMの濃度となるように溶解させてなる第2色素溶液中に24時間浸漬して、第1および第2多孔質酸化物半導体部にN719色素を担持させた。   Then, the second structure is made to have a concentration of 0.2 mM in a mixed solvent of 1: 1 volume ratio of acetonitrile and t-butanol with N719 dye (absorption peak wavelength: 550 nm) which is a common photosensitizing dye. The N719 dye was supported on the first and second porous oxide semiconductor parts by immersing in a second dye solution dissolved in 24 hours.

次に、封止部形成材料の内側に、メトキシプロピオニトリルからなる揮発性溶媒を主溶媒とし、ヘキシルメチルイミダゾリウムアイオダイド(HMImI)を0.6mM、N−メチルベンズイミダゾール(NMBI)を0.2mM、3−メトキシプロピオニトリル(MPN)を0.2mM含む電解質を注入した。このとき、電解質中のI の濃度は、6×10−8Mであった。 Next, inside the sealing portion forming material, a volatile solvent composed of methoxypropionitrile is used as a main solvent, hexylmethylimidazolium iodide (HMImI) is 0.6 mM, and N-methylbenzimidazole (NMBI) is 0. An electrolyte containing 0.2 mM 0.2 mM 3-methoxypropionitrile (MPN) was injected. At this time, the concentration of I 3 in the electrolyte was 6 × 10 −8 M.

一方、9cm×9cm×0.04mmのチタンからなる対極基板を準備した。そして、対極基板上に、スパッタリング法により、厚さ10nmの白金触媒層を形成した。こうして対極を2枚得た。   On the other hand, a counter electrode substrate made of titanium of 9 cm × 9 cm × 0.04 mm was prepared. Then, a platinum catalyst layer having a thickness of 10 nm was formed on the counter electrode substrate by sputtering. In this way, two counter electrodes were obtained.

次に、2枚の対極をそれぞれ、第1および第2多孔質酸化物半導体部の各々に対向させ、大気圧下で、透明導電性基板上の封止部形成材料と対極とを重ね合わせた。そして、800Paの減圧下で、プレス機を用いて、封止部形成材料を、対極を介して5MPaで加圧しながら148℃で加熱して溶融させ、封止部を得た。こうして色素増感太陽電池を得た。   Next, the two counter electrodes were respectively opposed to the first and second porous oxide semiconductor portions, and the sealing portion forming material on the transparent conductive substrate and the counter electrode were superposed under atmospheric pressure. . Then, under a reduced pressure of 800 Pa, using a press machine, the sealing portion forming material was heated and melted at 148 ° C. while being pressurized at 5 MPa through the counter electrode to obtain a sealing portion. Thus, a dye-sensitized solar cell was obtained.

(実施例2)
第1色素溶液として、D149色素(吸収ピーク波長:530nm)を、アセトニトリルとt−ブタノールの1:1混合溶媒中に0.05mMとなるように溶解させたものを用い、第2色素溶液として、Z907色素(吸収ピーク波長:530nm)をアセトニトリルとt−ブタノールの1:1混合溶媒中に0.2mMの濃度となるように溶解させたものを用いたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 2)
As the first dye solution, a D149 dye (absorption peak wavelength: 530 nm) dissolved in a 1: 1 mixed solvent of acetonitrile and t-butanol so as to be 0.05 mM is used as the second dye solution. The dye was the same as in Example 1 except that a Z907 dye (absorption peak wavelength: 530 nm) was dissolved in a 1: 1 mixed solvent of acetonitrile and t-butanol to a concentration of 0.2 mM. A sensitized solar cell was produced.

(実施例3)
電解質中のI の濃度を6×10−8Mから0.002Mに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 3)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the concentration of I 3 in the electrolyte was changed from 6 × 10 −8 M to 0.002 M.

(実施例4)
第2多孔質酸化物半導体部を構成する多孔質酸化物半導体層の厚さを12μmから9μmに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
Example 4
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the thickness of the porous oxide semiconductor layer constituting the second porous oxide semiconductor portion was changed from 12 μm to 9 μm.

(実施例5)
第2色素溶液中の混合溶媒に溶解させる物質を、共通光増感色素であるN719色素のみから、共通光増感色素であるN719色素、および、共吸着剤である2−ヘキサデシルマロン酸(HDMA)に変更し、第2色素溶液中のHDMAの濃度を3mMとしたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 5)
Substances to be dissolved in the mixed solvent in the second dye solution are changed from only N719 dye, which is a common photosensitizing dye, to N719 dye, which is a common photosensitizing dye, and 2-hexadecylmalonic acid, which is a coadsorbent ( The dye-sensitized solar cell was produced in the same manner as in Example 1 except that the concentration of HDMA in the second dye solution was changed to 3 mM.

(実施例6)
透明導電性基板の上の表面のうちの互いに離間する2つの領域に酸化チタンペーストを塗布する際に、接着剤を溶融圧着させる予定の領域に、Cu−Cr−Mn系の黒色顔料を含む黒色の低融点ガラスフリットを含有するガラスペーストを塗布し、酸化チタンペーストおよびガラスペーストを塗布した透明導電性基板を熱風循環タイプのオーブンに入れて500℃で1時間焼成して厚さ15μmの黒色の無機封止部を形成し、その上に接着剤を溶融圧着させたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 6)
Black containing Cu-Cr-Mn-based black pigment in the region where the adhesive is to be melt-pressed when the titanium oxide paste is applied to two regions of the surface on the transparent conductive substrate that are spaced apart from each other A glass paste containing a low melting point glass frit was applied, and the transparent conductive substrate coated with the titanium oxide paste and the glass paste was placed in a hot air circulation type oven and baked at 500 ° C. for 1 hour to obtain a black film having a thickness of 15 μm. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the inorganic sealing portion was formed and the adhesive was melt-pressed thereon.

(比較例1)
第1および第2多孔酸化物半導体部を形成した後、第1および第2多孔酸化物半導体部への光増感色素の担持を以下のようにして行うことにより、第1多孔質酸化物半導体部にD131色素1種類を担持させ、第2多孔質酸化物半導体部にN719色素を担持させたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
すなわち、まず第1および第2収容空間を有する容器であって、第1および第2収容空間が仕切壁で仕切られている容器を用意した。次に、容器の第1および第2収容空間の各々に、D131色素を含む第1色素溶液と、N719色素を含む第2色素溶液をそれぞれ注入した。続いて、容器を、透明導電性基板に対向させて密着させた。このとき、第1多孔酸化物半導体部が第1収容空間に収容され、第2多孔質酸化物半導体部が第2収容空間に収容されるようにした。そして、第1多孔酸化物半導体部を第1色素溶液に浸漬させ、第1多孔酸化物半導体部にD131色素を担持させるとともに、第2多孔酸化物半導体部を第2色素溶液に浸漬させ、第2多孔酸化物半導体部にN719色素を担持させた。
(Comparative Example 1)
After the first and second porous oxide semiconductor portions are formed, the first and second porous oxide semiconductor portions are loaded with the photosensitizing dye as follows, whereby the first porous oxide semiconductor is formed. A dye-sensitized solar cell was produced in the same manner as in Example 1, except that one part of D131 dye was supported on the part and N719 dye was supported on the second porous oxide semiconductor part.
That is, first, a container having first and second accommodation spaces, in which the first and second accommodation spaces are partitioned by a partition wall, was prepared. Next, a first dye solution containing D131 dye and a second dye solution containing N719 dye were injected into each of the first and second accommodation spaces of the container. Subsequently, the container was brought into close contact with the transparent conductive substrate. At this time, the first porous oxide semiconductor portion was accommodated in the first accommodating space, and the second porous oxide semiconductor portion was accommodated in the second accommodating space. Then, the first porous oxide semiconductor part is immersed in the first dye solution, the D131 dye is supported on the first porous oxide semiconductor part, and the second porous oxide semiconductor part is immersed in the second dye solution, N719 dye was supported on the two porous oxide semiconductor part.

(光電変換特性の評価)
実施例1〜6及び比較例1の色素増感太陽電池について、白色LED光源を用い、200ルクスの照度下、出力を測定した。結果を表1に示す。

Figure 0005969844
(Evaluation of photoelectric conversion characteristics)
About the dye-sensitized solar cell of Examples 1-6 and the comparative example 1, the output was measured under the illumination intensity of 200 lux using the white LED light source. The results are shown in Table 1.
Figure 0005969844

表1に示す結果より、実施例1〜6は、比較例1に比べて、出力が十分に高いことが分かった。また実施例1〜6及び比較例1はいずれも、優れた意匠性を有していた。   From the results shown in Table 1, it was found that the outputs of Examples 1 to 6 were sufficiently higher than those of Comparative Example 1. Moreover, all of Examples 1-6 and Comparative Example 1 had excellent design properties.

このことから、本発明の色素増感太陽電池によれば、優れた意匠性が付与される場合であっても、光電変換特性の低下を十分に抑制できることが確認された。   From this, according to the dye-sensitized solar cell of this invention, even if it was a case where the outstanding designability was provided, it was confirmed that the fall of a photoelectric conversion characteristic can fully be suppressed.

10…透明導電性基板
20a,20b…多孔質酸化物半導体部
30,30a,30b…対極(電極)
31…透明導電膜
40…封止部
50…電解質
60…接着剤
70…カバー部材
80…マスク部材
90…第1構造体
100,200,300…色素増感太陽電池
110…第2構造体
290…無機封止部
DESCRIPTION OF SYMBOLS 10 ... Transparent conductive board | substrate 20a, 20b ... Porous oxide semiconductor part 30, 30a, 30b ... Counter electrode (electrode)
31 ... Transparent conductive film 40 ... Sealing portion 50 ... Electrolyte 60 ... Adhesive 70 ... Cover member 80 ... Mask member 90 ... First structure 100, 200, 300 ... Dye-sensitized solar cell 110 ... Second structure 290 ... Inorganic sealing part

Claims (8)

透明導電性基板と、
光増感色素が担持され、前記透明導電性基板上に互いに離間するように設けられる複数の多孔質酸化物半導体部と、
前記多孔質酸化物半導体部に対向して設けられる対極と、
前記透明導電性基板及び前記対極の間に配置される電解質と
前記透明導電性基板上に設けられ、前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部を個別に包囲する環状の接着剤とを備え、
前記複数の多孔質酸化物半導体部に担持される前記光増感色素の種類の数が互いに異なり、
前記光増感色素が、前記複数の多孔質酸化物半導体部に共通する共通光増感色素を含み、前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成されている、色素増感太陽電池。
A transparent conductive substrate;
A plurality of porous oxide semiconductor portions that carry a photosensitizing dye and are provided on the transparent conductive substrate so as to be separated from each other ;
A counter electrode provided opposite to the porous oxide semiconductor portion;
An electrolyte disposed between the transparent conductive substrate and the counter electrode ;
An annular adhesive provided on the transparent conductive substrate and individually surrounding the remaining porous oxide semiconductor portions excluding one porous oxide semiconductor portion among the plurality of porous oxide semiconductor portions ; Prepared,
The number of types of the photosensitizing dyes carried on the plurality of porous oxide semiconductor parts is different from each other,
The photosensitizing dye includes a common photosensitizing dye common to the plurality of porous oxide semiconductor portions, and the porous oxide semiconductor portion is composed of at least one porous oxide semiconductor layer. , Dye-sensitized solar cells.
前記複数の多孔質酸化物半導体部のうち、複数種類の光増感色素が担持されている多孔質酸化物半導体部において、複数種類の前記光増感色素が互いに異なる吸収ピーク波長を有する、請求項1に記載の色素増感太陽電池。   Among the plurality of porous oxide semiconductor portions, in the porous oxide semiconductor portion on which a plurality of types of photosensitizing dyes are supported, the plurality of types of photosensitizing dyes have different absorption peak wavelengths. Item 2. The dye-sensitized solar cell according to Item 1. 前記電解質が、IおよびI からなる酸化還元対を含み、前記電解質中のI の濃度が0.006M以下である、請求項1又は2に記載の色素増感太陽電池。 The electrolyte is, I - and I 3 - comprises a redox couple consisting of the I 3 in the electrolyte - the concentration of at most 0.006M, dye-sensitized solar cell according to claim 1 or 2. 前記透明導電性基板上に設けられる前記複数の多孔質酸化物半導体部の前記透明導電性基板からの厚さが同一である、請求項1〜3のいずれか一項に記載の色素増感太陽電池。   The dye-sensitized sun according to any one of claims 1 to 3, wherein the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate have the same thickness from the transparent conductive substrate. battery. 前記透明導電性基板上に設けられる前記複数の多孔質酸化物半導体部のうちの少なくとも1つの多孔質酸化物半導体部には共吸着剤が吸着されている、請求項1〜4のいずれか一項に記載の色素増感太陽電池。   5. The coadsorbent is adsorbed on at least one porous oxide semiconductor portion of the plurality of porous oxide semiconductor portions provided on the transparent conductive substrate. The dye-sensitized solar cell according to Item. 前記透明導電性基板と前記対極とを連結する封止部を更に備え、前記封止部と前記透明導電性基板との間に、発色した無機封止部が設けられている、請求項1〜5のいずれか一項に記載の色素増感太陽電池。   A sealing part that connects the transparent conductive substrate and the counter electrode is further provided, and a colored inorganic sealing part is provided between the sealing part and the transparent conductive substrate. The dye-sensitized solar cell according to any one of 5. 透明導電性基板上に複数の多孔質酸化物半導体部を互いに離間するように形成する多孔質酸化物半導体部形成工程と、
前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部をマスク部材にて覆い隠して第1構造体を得てから、前記第1構造体を、光増感色素を含む第1色素溶液中に浸漬させる第1浸漬工程と、
前記マスク部材にて覆い隠された残りの多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部から前記マスク部材の少なくとも一部を剥がして第2構造体を得てから、前記第2構造体を、前記光増感色素と異なる種類の光増感色素を含む第2色素溶液中に浸漬させ、前記複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるようにする第2浸漬工程と、
前記透明導電性基板と対極との間に電解質が配置されるように前記透明導電性基板と前記対極とを貼り合せる貼合せ工程とを含み、
前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成され、
前記マスク部材が、
前記透明導電性基板上に、前記多孔質酸化物半導体部を個別に包囲するように貼り付けられる環状の接着剤と、
前記接着剤とともに前記多孔質酸化物半導体部を覆い隠すカバー部材とを有する、色素増感太陽電池の製造方法。
A porous oxide semiconductor part forming step of forming a plurality of porous oxide semiconductor parts on a transparent conductive substrate so as to be separated from each other ;
A first structure is obtained by covering a remaining porous oxide semiconductor portion excluding one porous oxide semiconductor portion among the plurality of porous oxide semiconductor portions with a mask member, and then obtaining the first structure. A first immersing step of immersing the body in a first dye solution containing a photosensitizing dye;
After removing at least a part of the mask member from one porous oxide semiconductor portion of the remaining porous oxide semiconductor portions covered with the mask member, the second structure is obtained. The structure is immersed in a second dye solution containing a photosensitizing dye of a different type from the photosensitizing dye, and the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor parts is A second dipping step to make them different from each other;
A bonding step of bonding the transparent conductive substrate and the counter electrode so that an electrolyte is disposed between the transparent conductive substrate and the counter electrode,
The porous oxide semiconductor portion is composed of at least one porous oxide semiconductor layer ;
The mask member is
On the transparent conductive substrate, an annular adhesive attached so as to individually surround the porous oxide semiconductor part, and
The manufacturing method of a dye-sensitized solar cell which has a cover member which covers the said porous oxide semiconductor part with the said adhesive agent .
透明導電性基板上に複数の多孔質酸化物半導体部を互いに離間するように形成する多孔質酸化物半導体部形成工程と、
前記複数の多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部を除く残りの多孔質酸化物半導体部をマスク部材にて覆い隠して第1構造体を得てから、前記第1構造体を、光増感色素を含む第1色素溶液中に浸漬させる第1浸漬工程と、
前記マスク部材にて覆い隠された残りの多孔質酸化物半導体部のうち1つの多孔質酸化物半導体部から前記マスク部材の少なくとも一部を剥がして第2構造体を得てから、前記第2構造体を、前記光増感色素と異なる種類の光増感色素を含む第2色素溶液中に浸漬させる第2浸漬工程と、
前記第2浸漬工程を繰り返すことによって、前記複数の多孔質酸化物半導体部に担持される光増感色素の種類の数が互いに異なるようにする繰返工程と、
前記透明導電性基板と対極との間に電解質が配置されるように前記透明導電性基板と前記対極とを貼り合せる貼合せ工程とを含み、
前記多孔質酸化物半導体部が、少なくとも1つの多孔質酸化物半導体層で構成され、
前記マスク部材が、
前記透明導電性基板上に、前記多孔質酸化物半導体部を個別に包囲するように貼り付けられる環状の接着剤と、
前記接着剤とともに前記多孔質酸化物半導体部を覆い隠すカバー部材とを有する、色素増感太陽電池の製造方法。
A porous oxide semiconductor part forming step of forming a plurality of porous oxide semiconductor parts on a transparent conductive substrate so as to be separated from each other ;
A first structure is obtained by covering a remaining porous oxide semiconductor portion excluding one porous oxide semiconductor portion among the plurality of porous oxide semiconductor portions with a mask member, and then obtaining the first structure. A first immersing step of immersing the body in a first dye solution containing a photosensitizing dye;
After removing at least a part of the mask member from one porous oxide semiconductor portion of the remaining porous oxide semiconductor portions covered with the mask member, the second structure is obtained. A second immersing step of immersing the structure in a second dye solution containing a photosensitizing dye of a type different from the photosensitizing dye;
Repeating the second immersion step so that the number of types of photosensitizing dyes carried on the plurality of porous oxide semiconductor parts is different from each other;
A bonding step of bonding the transparent conductive substrate and the counter electrode so that an electrolyte is disposed between the transparent conductive substrate and the counter electrode,
The porous oxide semiconductor portion is composed of at least one porous oxide semiconductor layer ;
The mask member is
On the transparent conductive substrate, an annular adhesive attached so as to individually surround the porous oxide semiconductor part, and
The manufacturing method of a dye-sensitized solar cell which has a cover member which covers the said porous oxide semiconductor part with the said adhesive agent .
JP2012159541A 2012-07-18 2012-07-18 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5969844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159541A JP5969844B2 (en) 2012-07-18 2012-07-18 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159541A JP5969844B2 (en) 2012-07-18 2012-07-18 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014022180A JP2014022180A (en) 2014-02-03
JP5969844B2 true JP5969844B2 (en) 2016-08-17

Family

ID=50196846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159541A Expired - Fee Related JP5969844B2 (en) 2012-07-18 2012-07-18 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5969844B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863858B2 (en) * 2016-08-30 2021-04-21 株式会社フジクラ Photoelectric conversion element
JP2020177564A (en) * 2019-04-22 2020-10-29 株式会社ジャパンディスプレイ Input device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268892A (en) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd Photoelectric transducer and photo-cell
JP3966638B2 (en) * 1999-03-19 2007-08-29 株式会社東芝 Multicolor dye-sensitized transparent semiconductor electrode member and production method thereof, multicolor dye-sensitized solar cell, and display element
WO2004055934A1 (en) * 2002-12-16 2004-07-01 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Photoelectrochemical solar cell
JP2005251736A (en) * 2004-02-02 2005-09-15 Hitachi Maxell Ltd Photoelectric conversion element, photocell using it and case of electronic equipment
JP2006111783A (en) * 2004-10-15 2006-04-27 Seimi Chem Co Ltd New amino group-containing heterocyclic derivative and sensitizing dye for photoelectric conversion containing the heterocyclic derivative
JP2006221965A (en) * 2005-02-10 2006-08-24 Sekisui Jushi Co Ltd Display device with solar cell
JP2006339086A (en) * 2005-06-06 2006-12-14 Sekisui Jushi Co Ltd Dye-sensitized solar cell
GB2432718A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Multicolour metal oxide electrochemical cell
JP2010009769A (en) * 2008-06-24 2010-01-14 Sony Corp Method for manufacturing photoelectric conversion element
JP2010113905A (en) * 2008-11-05 2010-05-20 Sony Corp Dye-sensitized solar cell and process for producing the same
JP5230481B2 (en) * 2009-02-24 2013-07-10 株式会社フジクラ Photoelectric conversion element
JP4504456B1 (en) * 2009-07-28 2010-07-14 株式会社フジクラ Method for producing dye-sensitized solar cell
JP2012094321A (en) * 2010-10-26 2012-05-17 Nippon Steel Chem Co Ltd Dye-sensitized solar cell anode electrode manufacturing method
JP2014013715A (en) * 2012-07-05 2014-01-23 Nissha Printing Co Ltd Method for manufacturing dye-sensitized solar cell and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2014022180A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
WO2012118050A1 (en) Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
JP6333343B2 (en) Photoelectric conversion element
JP5969844B2 (en) Dye-sensitized solar cell and method for producing the same
JP5465446B2 (en) Photoelectric conversion element
JP2007073198A (en) Dye-sensitized solar battery
US10395847B2 (en) Photoelectric conversion element
JP5680996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP6263242B1 (en) Photoelectric conversion element
US10008336B2 (en) Dye-sensitized solar cell element
JP6598710B2 (en) Input device
JP2016058445A (en) Photovoltaic power generation panel
JP6120926B2 (en) Dye-sensitized photoelectric conversion element
US20150122322A1 (en) Wet-type solar cell and wet-type solar cell module
JP2008041258A (en) Substrate for action electrode, and photoelectric conversion element
JP6215651B2 (en) Electrode and dye-sensitized solar cell having the same
US20180358185A1 (en) Electrolyte of dye-sensitized photoelectric conversion element for low illuminance and dye-sensitized photoelectric conversion element for low illuminance using the same
JP6048047B2 (en) Dye-sensitized solar cell and photoelectrode for dye-sensitized solar cell
JP6718322B2 (en) Photoelectric conversion element
JP7014656B2 (en) Photoelectric conversion element
JP6539146B2 (en) Photoelectric conversion element
JP6584883B2 (en) Electrolyte for dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element using the same
JP5380617B1 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell
JP6541487B2 (en) Photoelectric conversion element
US20180025850A1 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5969844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees