Nothing Special   »   [go: up one dir, main page]

JP5967264B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5967264B2
JP5967264B2 JP2015104286A JP2015104286A JP5967264B2 JP 5967264 B2 JP5967264 B2 JP 5967264B2 JP 2015104286 A JP2015104286 A JP 2015104286A JP 2015104286 A JP2015104286 A JP 2015104286A JP 5967264 B2 JP5967264 B2 JP 5967264B2
Authority
JP
Japan
Prior art keywords
nickel
composite hydroxide
cobalt composite
reaction solution
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015104286A
Other languages
Japanese (ja)
Other versions
JP2015173122A (en
Inventor
加瀬 克也
克也 加瀬
康孝 鎌田
康孝 鎌田
笹岡 英雄
英雄 笹岡
知倫 二瓶
知倫 二瓶
巧也 山内
巧也 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015104286A priority Critical patent/JP5967264B2/en
Publication of JP2015173122A publication Critical patent/JP2015173122A/en
Application granted granted Critical
Publication of JP5967264B2 publication Critical patent/JP5967264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、非水系電解質二次電池の正極活物質の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

従来、携帯電話やノート型パーソナルコンピュータなどの携帯機器の普及に伴い、高いエネルギー密度を有する小型、軽量な二次電池が必要とされている。このような用途に好適な二次電池としては、リチウムイオン二次電池があり、研究開発が盛んに行なわれている。   2. Description of the Related Art Conventionally, with the widespread use of portable devices such as mobile phones and notebook personal computers, small and lightweight secondary batteries having high energy density are required. As a secondary battery suitable for such an application, there is a lithium ion secondary battery, and research and development are actively performed.

また、自動車の分野でも、資源、環境問題から電気自動車に対する要望が高まり、電気自動車用やハイブリット自動車用の電源として、小型、軽量で放電容量が大きく、サイクル特性が良好なリチウムイオン二次電池が求められている。特に、自動車用の電源においては、出力特性が重要であり、出力特性が良好なリチウムイオン二次電池が求められている。   In the field of automobiles, demand for electric vehicles has increased due to resource and environmental issues. As a power source for electric vehicles and hybrid vehicles, lithium ion secondary batteries with small size, light weight, large discharge capacity, and good cycle characteristics are available. It has been demanded. Particularly in a power source for automobiles, output characteristics are important, and a lithium ion secondary battery with good output characteristics is required.

リチウム含有複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。そして、この種のリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行なわれてきており、すでに様々な成果が得られている。 A lithium ion secondary battery using a lithium-containing composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode active material can obtain a high voltage of 4V, and therefore has a high energy density. The battery has been put into practical use. In addition, lithium ion secondary batteries using this type of lithium cobalt composite oxide have been developed to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.

しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の改良が望まれている。このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高いため、適用される用途がかなり限定されている。したがって、現在普及している携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。   However, since the lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, the cost of the active material and the battery is increased, and improvement of the active material is desired. Since the unit price per capacity of the battery using this lithium cobalt composite oxide is significantly higher than that of the nickel metal hydride battery, the application to which it is applied is considerably limited. Therefore, not only for small secondary batteries for portable devices that are now widely used, but also for large-sized secondary batteries for power storage and electric vehicles, the cost of the active material is reduced, and cheaper lithium ion secondary batteries are used. The expectation for enabling the production of batteries is great, and the realization of this can be said to have great industrial significance.

リチウムイオン二次電池用正極活物質の新たなる材料として、リチウムコバルト複合酸化物よりも安価な4V級正極活物質、すなわち、リチウムニッケルコバルト複合酸化物が注目されている。リチウムニッケルコバルト複合酸化物としては、例えばマンガンを含有し、ニッケル、コバルト及びマンガンの原子比が実質的に1:1:1であるLi[Ni1/3Co1/3Mn1/3]Oなる組成を有するリチウムニッケルコバルトマンガン複合酸化物等が挙げられる。リチウムニッケルコバルトマンガン複合酸化物は、安価であるばかりか、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物を正極活物質に用いたリチウムイオン二次電池よりも高い熱安定性を示すことから、開発が盛んに行なわれている。 As a new material for a positive electrode active material for a lithium ion secondary battery, a 4V class positive electrode active material that is cheaper than a lithium cobalt composite oxide, that is, a lithium nickel cobalt composite oxide has attracted attention. As the lithium nickel cobalt composite oxide, for example, Li [Ni 1/3 Co 1/3 Mn 1/3 ] O containing manganese and having an atomic ratio of nickel, cobalt and manganese of substantially 1: 1: 1. Lithium nickel cobalt manganese composite oxide etc. which have the composition of 2 are mentioned. Lithium nickel cobalt manganese composite oxide is not only inexpensive, but also has higher thermal stability than lithium ion secondary batteries using lithium cobalt composite oxide or lithium nickel composite oxide as the positive electrode active material. Is actively performed.

リチウムイオン二次電池が良好な電池特性を発揮するためには、正極活物質であるリチウムニッケルコバルト複合酸化物が適度な粒径と粒度分布を持ち、比表面積と粒子密度に影響する結晶性が適当な値であることが必要である。粒径及び粒度分布は、極板製造時のスラリー性状や塗工性、極板の密度に影響し、製造した二次電池の体積容量を決定する一因となるし、充放電時の各粒子の充放電深度のバラツキに影響するため重要である。また、結晶性は、一般に結晶子及び一次結晶粒子の大きさで表されるが、結晶子及び一次結晶粒子が小さいと二次粒子の比表面積は大きくなり粒子密度は小さくなり、結晶子及び一次結晶粒子が大きいと二次粒子の比表面積は小さくなり粒子密度は大きくなる。   In order for a lithium ion secondary battery to exhibit good battery characteristics, the lithium nickel cobalt composite oxide, which is a positive electrode active material, has an appropriate particle size and particle size distribution, and has a crystallinity that affects the specific surface area and particle density. It must be an appropriate value. The particle size and particle size distribution affect the slurry properties and coating properties during electrode plate manufacturing, and the density of the electrode plate, which contributes to determining the volume capacity of the manufactured secondary battery, and each particle during charge and discharge This is important because it affects variations in the depth of charge and discharge. The crystallinity is generally expressed by the size of the crystallite and the primary crystal particle. However, when the crystallite and the primary crystal particle are small, the specific surface area of the secondary particle is large and the particle density is small, and the crystallite and the primary crystal particle are small. When the crystal particles are large, the specific surface area of the secondary particles is small and the particle density is large.

ニッケルコバルト複合水酸化物の製造方法として一般的なのは、各金属塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液とを混合するとともに、pHが一定の範囲に保持されるように苛性アルカリ水溶液を連続的に供給して反応溶液とし、該反応溶液中でニッケルコバルト複合水酸化物粒子を連続的に晶析させる製造方法である。この製造方法では、反応を連続的に行わせることにより正規分布に近い粒度分布を持ったニッケルコバルト複合水酸化物を効率的に得ることができる。   A common method for producing nickel-cobalt composite hydroxide is to mix a mixed aqueous solution containing each metal salt with an aqueous solution containing an ammonium ion supplier and maintain a pH within a certain range. Is continuously supplied to form a reaction solution, and nickel cobalt composite hydroxide particles are continuously crystallized in the reaction solution. In this production method, nickel cobalt composite hydroxide having a particle size distribution close to a normal distribution can be efficiently obtained by continuously performing the reaction.

連続晶析でニッケルコバルト複合水酸化物を得る場合には、その粒径制御はpHの調整により行うことができる。連続晶析反応によるニッケルコバルト複合水酸化物の製造方法は、析出した核生成と、個々の粒子の成長反応が同時に進行する。   When nickel-cobalt composite hydroxide is obtained by continuous crystallization, the particle size can be controlled by adjusting pH. In the method for producing nickel cobalt composite hydroxide by continuous crystallization reaction, the precipitated nucleation and the growth reaction of individual particles proceed simultaneously.

具体的には、原料溶液の中和反応により生成した結晶は、単独での核発生を起こすものと、他で発生した核を粒子成長させるものに分けられる。核発生のみで粒子成長が起こらなければ、目的粒径の粒子は得られず、粒子成長が優勢になる程、大きな粒径の粒子が得られる。   Specifically, crystals produced by the neutralization reaction of the raw material solution can be classified into those that cause nucleation alone and those that cause particle growth of nuclei generated elsewhere. If particle growth does not occur only by nucleation, particles having a target particle size cannot be obtained, and particles having a larger particle size can be obtained as the particle growth becomes dominant.

また、粒子成長のみで核発生が起こらなければ連続的に一定の粒子を得ることができなくなる。連続的に粒子を製造する場合には、得られた粒子を連続的に取り出す必要があるので、反応系内の粒子数を一定に保ち連続的に反応を進ませるためには連続的な核発生が必要である。   Moreover, if nucleation does not occur only by particle growth, it is impossible to obtain a constant particle continuously. When producing particles continuously, it is necessary to take out the obtained particles continuously, so continuous nucleation is necessary to keep the number of particles in the reaction system constant and allow the reaction to proceed continuously. is necessary.

しかしながら、核発生が連続的に起こりなおかつ粒子成長が並行的に進んでいると、粒子成長の進み具合の異なる、即ち粒径の異なる粒子が得られることになる。そこで、pHを制御することで核生成と粒子成長の割合を制御することで目標とする粒径のニッケルコバルト複合水酸化物を得ることができる。一般に晶析反応時のpHが高いと核発生は粒子成長より優位になり、核発生数の増加により粒径は小さくなる。逆に晶析反応時のpHが低いと粒子成長が核発生より優位になり、粒径は大きくなる。   However, if nucleation occurs continuously and particle growth proceeds in parallel, particles with different particle growth progress, that is, particles having different particle sizes are obtained. Therefore, a nickel-cobalt composite hydroxide having a target particle size can be obtained by controlling the pH and controlling the ratio of nucleation and particle growth. In general, when the pH during the crystallization reaction is high, the nucleation is superior to the particle growth, and the particle size becomes smaller as the number of nucleation increases. Conversely, when the pH during the crystallization reaction is low, the particle growth becomes superior to the nucleation and the particle size becomes large.

一方で、晶析反応時の制御pHは、結晶子及び一次結晶粒子の大きさで表される粒子の結晶性に大きく影響する。制御pHが高い場合には、核発生数が多い、即ち微細な結晶子が生成しやすく、粒子成長に使われる結晶も微細なため、生成する二次粒子の結晶子及び一次結晶粒子は小さくなる。逆に、制御pHが低い場合には、粒子成長が優先的になるため、生成する二次粒子の結晶子及び一次結晶粒子は大きくなる。   On the other hand, the controlled pH during the crystallization reaction greatly affects the crystallinity of the particles represented by the size of the crystallites and primary crystal particles. When the control pH is high, the number of nuclei generated is large, that is, fine crystallites are easily generated, and the crystals used for particle growth are also fine, so that the secondary crystallites and primary crystal grains to be generated are small. . On the other hand, when the control pH is low, the particle growth is preferential, so that the generated crystallites and primary crystal particles of the secondary particles are large.

先に述べたように、結晶子及び一次結晶粒子の大きさは、ニッケルコバルト複合水酸化物の重要な物性である比表面積に影響する。結晶子及び一次結晶の大きさが大きければ比表面積は小さくなる。つまり、一般的に晶析反応時の制御pHが低いと、得られるニッケルコバルト複合水酸化物の粒度分布は大きくなる傾向があり且つ比表面積は小さくなる傾向がある。   As described above, the size of the crystallite and the primary crystal particle affects the specific surface area which is an important physical property of the nickel cobalt composite hydroxide. If the crystallite and primary crystal are large, the specific surface area is small. That is, generally, when the control pH during the crystallization reaction is low, the particle size distribution of the obtained nickel-cobalt composite hydroxide tends to increase and the specific surface area tends to decrease.

ニッケルコバルト複合水酸化物を製造するにあたり、目的とするニッケルコバルト複合水酸化物の組成、また晶析反応を行う装置、温度、攪拌方法などによりpHと粒度分布、比表面積の関係は様々な値を取る。このため、目的の粒度分布と比表面積を持つニッケルコバルト複合水酸化物を得るための晶析反応時の制御pHを一義的に定めることはできない。一般に平均粒径が20μmを越えるような粒度分布を持つニッケルコバルト複合水酸化物を得るためには晶析反応時の制御pHを低くする必要がある。   In producing nickel-cobalt composite hydroxide, the relationship between pH, particle size distribution, and specific surface area varies depending on the composition of the target nickel-cobalt composite hydroxide, the crystallization reaction apparatus, temperature, and stirring method. I take the. For this reason, the control pH at the time of the crystallization reaction for obtaining the nickel cobalt composite hydroxide having the target particle size distribution and specific surface area cannot be uniquely determined. In general, in order to obtain a nickel cobalt composite hydroxide having a particle size distribution with an average particle size exceeding 20 μm, it is necessary to lower the control pH during the crystallization reaction.

また、一般的にコバルト等の割合が高くなると、晶析反応中にコバルト等が酸化され溶解度が下がるため、同じ晶析反応時の制御pHでも粒径が小さくなりやすい。その場合は、目的とする粒度のニッケルコバルト複合水酸化物を得るために晶析反応時の制御pHを低くする必要がある。   In general, when the proportion of cobalt or the like is increased, cobalt and the like are oxidized during the crystallization reaction and the solubility is lowered. Therefore, the particle size is likely to be reduced even at the same control pH during the crystallization reaction. In that case, it is necessary to lower the control pH during the crystallization reaction in order to obtain a nickel-cobalt composite hydroxide having a target particle size.

ここで、晶析反応時の制御pHを低くした場合、反応溶液中の遷移金属−アンミン錯体の溶解度が大きくなり、固液分離工程での廃液中への遷移金属の流出が増加し、使用した原料からのニッケルコバルト複合水酸化物の収率、製品収率が低下してしまう。また、多量の遷移金属が溶解した排水は環境負荷が大きく、処理を行うためにはコストがかかってしまう。   Here, when the control pH during the crystallization reaction was lowered, the solubility of the transition metal-ammine complex in the reaction solution was increased, and the outflow of the transition metal into the waste liquid in the solid-liquid separation process was increased and used. The yield of nickel cobalt composite hydroxide from a raw material and a product yield will fall. In addition, wastewater in which a large amount of transition metal is dissolved has a large environmental load, and costs are required to perform the treatment.

特開2003−59490号公報JP 2003-59490 A

そこで、本発明は、遷移金属の流出を抑え、目標とする組成、粒度分布をもつ非水系電解質二次電池の正極活物質の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the positive electrode active material of the nonaqueous electrolyte secondary battery which suppresses the outflow of a transition metal and has a target composition and particle size distribution.

上述した目的を達成する本発明に係る水系電解質二次電池の正極活物質の製造方法は、下記(1)〜(4)を含む製造方法で得られた一般式:Ni1−x−y−zCoMn(OH)(0<x<1/2、0≦y<1/2、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるニッケルコバルト複合水酸化物であり、レーザー散乱粒度分布測定による平均粒径D50が4.0〜25.0μmであり、かつ窒素吸着BET法により測定される比表面積が1.0m/g以上、8.0m/g未満である非水系電解質二次電池の正極活物質の前駆体を、500〜1000℃の温度で熱処理した後、リチウム化合物と混合して800〜1000℃で焼成することを特徴とする。
(1)少なくともニッケル塩、コバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液とを混合するとともに、苛性アルカリ水溶液を連続的に供給して反応溶液とし、上記反応溶液のpHを液温25℃基準で10.0〜12.0の範囲に保持することで上記ニッケルコバルト複合水酸化物粒子を連続的に晶析させる晶析工程。
(2)上記晶析工程で連続的に排出される上記ニッケルコバルト複合水酸化物粒子を含む反応溶液に苛性アルカリ水溶液を連続的に供給し、上記反応溶液のpHが液温25℃基準で12.5以上となるように上昇させ、上記反応溶液中の遷移金属イオン濃度を低下させるpH調整工程。
(3)上記pH調整したニッケルコバルト複合水酸化物粒子を含む反応溶液を固液分離して、上記ニッケルコバルト複合水酸化物粒子を洗浄する固液分離工程。
(4)水洗した上記ニッケルコバルト複合水酸化物粒子を乾燥する乾燥工程。
The manufacturing method of the positive electrode active material of the aqueous electrolyte secondary battery according to the present invention that achieves the above-described object is a general formula obtained by a manufacturing method including the following (1) to (4): Ni 1-xy z Co x Mn y M z (OH) 2 (0 <x <1/2, 0 ≦ y <1/2, 0 ≦ z ≦ 0.1, M is Mg, Al, Ca, Ti, V, Cr And one or more elements selected from Zr, Nb, Mo, and W), and an average particle diameter D50 by laser scattering particle size distribution measurement is 4.0 to 25.0 μm. There, and nitrogen adsorption specific surface area measured by BET method is 1.0 m 2 / g or more, the precursor of the positive electrode active material of the nonaqueous electrolyte secondary battery is less than 8.0m 2 / g, 500~1000 ℃ after heat treatment at a temperature, to calcination at 800 to 1000 ° C. is mixed with a lithium compound It is characterized in.
(1) A mixed aqueous solution containing at least a nickel salt and a cobalt salt is mixed with an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution is continuously supplied to obtain a reaction solution. The pH of the reaction solution is adjusted to a liquid temperature. A crystallization step of continuously crystallizing the nickel cobalt composite hydroxide particles by maintaining the temperature within a range of 10.0 to 12.0 on a 25 ° C. basis.
(2) A caustic aqueous solution is continuously supplied to the reaction solution containing the nickel-cobalt composite hydroxide particles continuously discharged in the crystallization step, and the pH of the reaction solution is 12 on the basis of a liquid temperature of 25 ° C. PH adjustment step of raising the concentration to be 5 or more and lowering the transition metal ion concentration in the reaction solution.
(3) A solid-liquid separation step in which the reaction solution containing the nickel-cobalt composite hydroxide particles whose pH has been adjusted is subjected to solid-liquid separation to wash the nickel-cobalt composite hydroxide particles.
(4) A drying step of drying the nickel cobalt composite hydroxide particles washed with water.

本発明は、遷移金属の流出を抑えることができ、目標とする組成、粒度分布をもつ非水系電解質二次電池の正極活物質を高い収率で得ることができる。   INDUSTRIAL APPLICATION This invention can suppress the outflow of a transition metal, and can obtain the positive electrode active material of the nonaqueous electrolyte secondary battery which has a target composition and particle size distribution with a high yield.

以下に、本発明を適用した非水系電解質二次電池の正極活物質の製造方法について前駆体となるニッケルコバルト複合水酸化物の製造方法から詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明に係る実施の形態の説明は、以下の順序で行う。
1.ニッケルコバルト複合水酸化物
2.ニッケルコバルト複合水酸化物の製造方法
2−1.晶析工程
2−2.pH調整工程
2−3.固液分離工程
2−4.乾燥工程
Below, the manufacturing method of the nickel cobalt composite hydroxide used as a precursor is demonstrated in detail about the manufacturing method of the positive electrode active material of the non-aqueous electrolyte secondary battery to which this invention is applied. Note that the present invention is not limited to the following detailed description unless otherwise specified. The embodiment according to the present invention will be described in the following order.
1. 1. Nickel-cobalt composite hydroxide 2. Manufacturing method of nickel cobalt composite hydroxide 2-1. Crystallization step 2-2. pH adjustment step 2-3. Solid-liquid separation step 2-4. Drying process

<1.ニッケルコバルト複合水酸化物>
ニッケルコバルト複合水酸化物は、Ni1−x−y−zCoMn(OH)(0<x≦1/3、0≦y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表される。このニッケルコバルト複合水酸化物は、レーザー散乱粒度分布測定による平均粒径D50が4.0〜25.0μmであり、かつ窒素吸着BET法により測定される比表面積が1.0m/g以上、8.0m/g未満であることが好ましい。ニッケルコバルト複合水酸化物としては、高い熱安定性を示すニッケル、コバルト及びマンガンを含むニッケルコバルトマンガン複合水酸化物(0<y)が好ましい。
<1. Nickel-cobalt composite hydroxide>
The nickel-cobalt composite hydroxide is Ni 1-xyz Co x Mn y M z (OH) 2 (0 <x ≦ 1/3, 0 ≦ y ≦ 1/3, 0 ≦ z ≦ 0.1. , M is represented by one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W). This nickel-cobalt composite hydroxide has an average particle diameter D50 by laser scattering particle size distribution measurement of 4.0 to 25.0 μm, and a specific surface area measured by a nitrogen adsorption BET method of 1.0 m 2 / g or more, It is preferably less than 8.0 m 2 / g. As the nickel-cobalt composite hydroxide, nickel-cobalt-manganese composite hydroxide (0 <y) containing nickel, cobalt and manganese exhibiting high thermal stability is preferable.

ニッケルコバルト複合水酸化物の粒度分布、特にD50粒径で表される平均粒径が、4.0μmよりも小さくなると、比表面積が大きくなり十分な電池の安全性が得られず、ニッケルコバルト複合水酸化物のタップ密度、ひいては合成後に得られるリチウムニッケルコバルト複合酸化物のタップ密度が小さくなり、電池容量が小さくなる。   When the particle size distribution of nickel-cobalt composite hydroxide, especially the average particle size represented by the D50 particle size, is smaller than 4.0 μm, the specific surface area increases and sufficient battery safety cannot be obtained. The tap density of the hydroxide, and hence the tap density of the lithium nickel cobalt composite oxide obtained after synthesis, is reduced, and the battery capacity is reduced.

一方、D50粒径が25.0μmよりも大きくなると、電池製造時の極板製造時に極板表面の平滑性が悪化し、電池内部への充填性が悪化し、またリチウムイオン二次電池の出力特性が悪化する。したがって、D50粒径を4.0〜25.0μmとすることによって、電池の十分な安全性及び出力特性を得ることができ、電池製造時の工程負荷を減らすことができる。   On the other hand, when the D50 particle size is larger than 25.0 μm, the smoothness of the surface of the electrode plate deteriorates during the manufacture of the electrode plate during battery manufacture, the filling property into the battery deteriorates, and the output of the lithium ion secondary battery Characteristics deteriorate. Therefore, by setting the D50 particle size to 4.0 to 25.0 μm, sufficient safety and output characteristics of the battery can be obtained, and the process load at the time of manufacturing the battery can be reduced.

ニッケルコバルト複合水酸化物の比表面積が8.0m/gを超えると、最終的に得られる正極活物質の比表面積が大きくなり過ぎ、十分な安全性が得られない。また、比表面積が1.0m/g未満になると、正極活物質の比表面積が小さくなり過ぎ、電池に用いた場合に電解液との接触が不十分となり、出力が十分に得られない。したがって、比表面積を1.0〜8.0m/g未満とすることによって、電池の十分な安全性及び出力を得ることができる。 When the specific surface area of the nickel-cobalt composite hydroxide exceeds 8.0 m 2 / g, the specific surface area of the positive electrode active material finally obtained becomes too large, and sufficient safety cannot be obtained. On the other hand, when the specific surface area is less than 1.0 m 2 / g, the specific surface area of the positive electrode active material becomes too small, and when used in a battery, the contact with the electrolytic solution becomes insufficient, and a sufficient output cannot be obtained. Therefore, sufficient safety and output of the battery can be obtained by setting the specific surface area to 1.0 to less than 8.0 m 2 / g.

添加元素Mは、サイクル特性や出力特性などの電池特性を向上させるために添加するものである。添加元素Mの原子比zが0.1を超えると、酸化還元反応(Redox反応)に貢献する金属元素が減少し、電池容量が低下するため好ましくない。したがって、添加元素Mは、原子比zで0≦z≦0.1の範囲内となるように調整する。   The additive element M is added to improve battery characteristics such as cycle characteristics and output characteristics. If the atomic ratio z of the additive element M exceeds 0.1, the metal element contributing to the redox reaction (Redox reaction) decreases, and the battery capacity decreases, which is not preferable. Therefore, the additive element M is adjusted so that the atomic ratio z is in the range of 0 ≦ z ≦ 0.1.

添加元素Mをニッケルコバルト複合水酸化物の粒子に均一に分布させることで、粒子全体で電池特性を向上させる効果を得ることができる。このため、添加元素Mの添加量が少量であっても効果が得られるとともに容量の低下を抑制できる。さらに、より少ない添加量で効果を得るためには、ニッケルコバルト複合水酸化物の粒子内部より粒子表面における添加元素Mの濃度を高めることが好ましい。   By uniformly distributing the additive element M to the particles of the nickel-cobalt composite hydroxide, it is possible to obtain the effect of improving the battery characteristics over the entire particles. For this reason, even if the addition amount of the additive element M is small, an effect can be obtained and a decrease in capacity can be suppressed. Furthermore, in order to obtain the effect with a smaller addition amount, it is preferable to increase the concentration of the additive element M on the particle surface from the inside of the nickel cobalt composite hydroxide particle.

以上のようなニッケルコバルト複合水酸化物は、非水系電解質二次電池の正極活物質の前駆体として好適であり、レーザー散乱測定による平均粒径D50が4.0〜25.0μmであり、かつ窒素吸着BET法により測定される比表面積が1.0〜10.0m/gであることによって、優れた熱安定性を示し、高密度化と高い電池特性を有する正極活物質を製造することができる。 The nickel-cobalt composite hydroxide as described above is suitable as a precursor of the positive electrode active material of the non-aqueous electrolyte secondary battery, has an average particle diameter D50 by laser scattering measurement of 4.0 to 25.0 μm, and To produce a positive electrode active material that exhibits excellent thermal stability, high density, and high battery characteristics by having a specific surface area measured by a nitrogen adsorption BET method of 1.0 to 10.0 m 2 / g. Can do.

ニッケルコバルト複合水酸化物を用いて非水系電解質二次電池の正極活物質を製造する場合には、通常の正極活物質の製造方法により正極活物質とすることができる。例えば、ニッケルコバルト複合水酸化物をそのままの状態か、500〜1000℃以下の温度で熱処理した後、リチウム化合物を、好ましくは複合水酸化物の金属元素に対してリチウムを原子比で0.95〜1.5となるように混合して800〜1000℃で焼成すればよい。得られた正極活物質を用いた非水系電解質二次電池では、高容量でサイクル特性がよく安全性にも優れたものにできる。   When manufacturing the positive electrode active material of a non-aqueous electrolyte secondary battery using nickel cobalt composite hydroxide, it can be made into a positive electrode active material by the manufacturing method of a normal positive electrode active material. For example, after the nickel-cobalt composite hydroxide is left as it is or heat-treated at a temperature of 500 to 1000 ° C. or less, the lithium compound is preferably 0.95 by atomic ratio of lithium to the metal element of the composite hydroxide. What is necessary is just to mix and bak at 800-1000 degreeC so that it may become -1.5. The non-aqueous electrolyte secondary battery using the obtained positive electrode active material can have a high capacity, good cycle characteristics, and excellent safety.

<ニッケルコバルト複合水酸化物の製造方法>
以上のようなニッケルコバルト複合水酸化物の製造方法は、少なくともニッケル塩及びコバルト塩等を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液とを混合するとともに、pHが一定の範囲内に保持されるように苛性アルカリ水溶液を供給したものを反応溶液とし、反応溶液中でニッケルコバルト複合水酸化物粒子を晶析させる晶析工程を行う。
<Method for producing nickel-cobalt composite hydroxide>
The method for producing a nickel-cobalt composite hydroxide as described above mixes an aqueous solution containing at least a nickel salt and a cobalt salt with an aqueous solution containing an ammonium ion supplier, and the pH is maintained within a certain range. In this way, a crystallization step is performed in which a solution supplied with a caustic aqueous solution is used as a reaction solution, and nickel cobalt composite hydroxide particles are crystallized in the reaction solution.

そして、晶析工程が生成されたニッケルコバルト複合水酸化物粒子を含有する反応溶液に、苛性アルカリ水溶液を連続的に供給し、ニッケルコバルト複合水酸化物粒子を含有する反応溶液のpHが液温25℃基準で12.5以上となるように上昇させ、反応溶液中の遷移金属イオン濃度を低下させるpH調整工程を行う。   Then, a caustic aqueous solution is continuously supplied to the reaction solution containing the nickel cobalt composite hydroxide particles generated in the crystallization step, and the pH of the reaction solution containing the nickel cobalt composite hydroxide particles is set to the liquid temperature. A pH adjustment step is performed in which the temperature is raised to 12.5 or higher on a 25 ° C. basis to lower the transition metal ion concentration in the reaction solution.

pH調整工程後は、ニッケルコバルト複合水酸化物粒子を固液分離し、水洗する固液分離工程と、水洗したニッケルコバルト複合水酸化物粒子を乾燥させる乾燥工程とを行う。以下、各工程を詳細に説明する。   After the pH adjustment step, the nickel-cobalt composite hydroxide particles are subjected to solid-liquid separation and washed with water, and the drying step of drying the washed nickel-cobalt composite hydroxide particles. Hereinafter, each process will be described in detail.

(2−1.晶析工程)
晶析工程は、少なくともニッケル塩及びコバルト塩、更に必要に応じてマンガン塩、添加金属元素の塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を混合するとともに、反応溶液のpHを一定範囲内、好ましくはpHが液温25℃基準で10.0〜12.0の範囲に保持されるように苛性アルカリ水溶液を供給して反応溶液とし、反応溶液中でニッケルコバルト複合水酸化物粒子を晶析させる。
(2-1. Crystallization step)
In the crystallization step, a mixed aqueous solution containing at least a nickel salt and a cobalt salt, and optionally a manganese salt and a salt of an added metal element, and an aqueous solution containing an ammonium ion supplier are mixed, and the pH of the reaction solution is within a certain range. Among them, preferably, a caustic aqueous solution is supplied so that the pH is maintained in the range of 10.0 to 12.0 on the basis of a liquid temperature of 25 ° C. to obtain a reaction solution, and nickel cobalt composite hydroxide particles are formed in the reaction solution. Crystallize.

晶析工程では、反応溶液の温度を20〜70℃に保持することが好ましい。これにより、ニッケルコバルト複合水酸化物の結晶が成長する。反応溶液の温度が20℃未満では、反応溶液における塩の溶解度が低く塩濃度が低いため、ニッケルコバルト複合水酸化物の結晶が十分に成長しない。また、反応溶液の温度が70℃を超えると、結晶核の発生が多く微細な粒子が多くなるため、ニッケルコバルト複合水酸化物粒子が高密度とならない。したがって、結晶が十分に成長させ、粒子を高密度とするため、反応溶液の温度を20〜70℃とすることが好ましい。   In the crystallization step, the temperature of the reaction solution is preferably maintained at 20 to 70 ° C. Thereby, the crystal of nickel cobalt compound hydroxide grows. When the temperature of the reaction solution is less than 20 ° C., the solubility of the salt in the reaction solution is low and the salt concentration is low, so that the crystals of the nickel cobalt composite hydroxide do not grow sufficiently. On the other hand, when the temperature of the reaction solution exceeds 70 ° C., the generation of crystal nuclei is increased and the number of fine particles increases, so that the nickel cobalt composite hydroxide particles do not become high density. Therefore, it is preferable that the temperature of the reaction solution is 20 to 70 ° C. so that the crystals can grow sufficiently and the particles can have a high density.

また、晶析工程では、反応溶液のpHを液温25℃基準で10.0〜12.0の範囲に制御することが好ましい。pHが10.0未満では、ニッケルコバルト複合水酸化物粒子が粗大になり緻密な二次粒子を得ることが難しくなる。また、反応溶液のpHが低いと、反応溶液中の遷移金属−アンミン錯体の溶解度が大きくなりすぎ、固液分離工程でニッケルコバルト複合水酸化物と反応溶液を分離する際に反応容器中に残存する遷移金属量が増加し、原料の金属塩からのニッケルコバルト複合水酸化物の収率を悪化させると共に、廃棄する反応溶液から遷移金属分を分離回収するコストが大きくなる。   In the crystallization step, the pH of the reaction solution is preferably controlled in the range of 10.0 to 12.0 on the basis of the liquid temperature of 25 ° C. When the pH is less than 10.0, the nickel-cobalt composite hydroxide particles become coarse and it becomes difficult to obtain dense secondary particles. Also, if the pH of the reaction solution is low, the solubility of the transition metal-ammine complex in the reaction solution becomes too high, and remains in the reaction vessel when the nickel-cobalt composite hydroxide and the reaction solution are separated in the solid-liquid separation process. The amount of transition metal to increase increases the yield of nickel-cobalt composite hydroxide from the metal salt of the raw material, and the cost for separating and recovering the transition metal component from the reaction solution to be discarded increases.

一方、晶析工程における反応溶液のpHが12.0を超えると、ニッケルコバルト複合水酸化物の晶析速度が速くなり、微細な粒子が多くなってしまう。微細な粒子が多過ぎると、これらが正極活物質製造時に焼結して凝集粉を生ずるという問題がある。   On the other hand, when the pH of the reaction solution in the crystallization step exceeds 12.0, the crystallization rate of the nickel cobalt composite hydroxide increases, and fine particles increase. When there are too many fine particles, there exists a problem that these will sinter and produce agglomerated powder at the time of positive electrode active material manufacture.

したがって、遷移金属のロスが少なく、ニッケルコバルト複合水酸化物粒子が粗大にも微細にもならず、適度な大きさにし、凝集粉の発生を抑えるため、反応溶液のpHを液温25℃基準で10.0〜12.0の範囲にすることが好ましく、さらにはpH調整工程でpHを12.5以上に調整することで、反応溶液中の遷移金属−アンミン錯体の溶解度を小さくする。   Therefore, in order to reduce the loss of transition metal, the nickel cobalt composite hydroxide particles are not coarse or fine, have an appropriate size, and suppress the generation of agglomerated powder, the pH of the reaction solution is based on a liquid temperature of 25 ° C. It is preferable to make it into the range of 10.0-12.0, and also the solubility of the transition metal-ammine complex in a reaction solution is made small by adjusting pH to 12.5 or more by a pH adjustment process.

反応溶液のpHは、苛性アルカリ水溶液を供給することにより制御することができる。苛性アルカリ水溶液は、特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物を、直接、反応溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。苛性アルカリ水溶液の添加方法も特に限定されるものではなく、反応溶液を十分に攪拌しながら、定量ポンプなどの流量制御が可能なポンプで、pHが10.0〜12.0の範囲となるように添加すればよい。   The pH of the reaction solution can be controlled by supplying a caustic aqueous solution. The aqueous caustic solution is not particularly limited, and for example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used. The alkali metal hydroxide can be directly added to the reaction solution, but it is preferably added as an aqueous solution in view of easy pH control. The method of adding the caustic aqueous solution is not particularly limited, and the pH is in the range of 10.0 to 12.0 with a pump capable of controlling the flow rate such as a metering pump while sufficiently stirring the reaction solution. It may be added to.

更に、晶析工程では、共沈によるニッケルコバルト複合水酸化物粒子の生成を酸素含有量が少ない環境下で行うことが好ましい。不活性雰囲気あるいは還元剤の存在下で晶析を行った場合には、コバルト、マンガンが酸化しないものの、上述した反応溶液の温度及びpHの条件では反応溶液中におけるコバルト、マンガンの溶解度が大きくなり過ぎ、板状の一次粒子が発達し、球状の二次粒子が成長せず、高いタップ密度のニッケルコバルト複合水酸化物粒子が得られない場合がある。したがって、晶析工程は、不活性雰囲気あるいは還元剤の存在下ではなく、酸素含有量が少ない環境下で行うことが好ましい。   Furthermore, in the crystallization step, it is preferable that nickel cobalt composite hydroxide particles are produced by coprecipitation in an environment with a low oxygen content. When crystallization is performed in an inert atmosphere or in the presence of a reducing agent, cobalt and manganese are not oxidized, but the solubility of cobalt and manganese in the reaction solution increases under the above-mentioned temperature and pH conditions of the reaction solution. In some cases, plate-like primary particles develop, spherical secondary particles do not grow, and nickel-cobalt composite hydroxide particles having a high tap density cannot be obtained. Therefore, the crystallization step is preferably performed in an environment having a low oxygen content, not in an inert atmosphere or in the presence of a reducing agent.

上述した晶析工程では、微粉が少な過ぎたり多過ぎたりすることなく、高密度、好ましくはタップ密度が2.0g/cm以上、より好ましくはタップ密度が2.0〜3.0g/cmであるニッケルコバルト複合水酸化物粒子が得られる。タップ密度が3.0g/cmよりも大きいと、粒径が大きくなり過ぎて得られる正極活物質が電解液と接触する面積が低下するため、好ましい電池特性が得られにくくなることがある。したがって、タップ密度を2.0g/cm以上、好ましくはタップ密度を2.0〜3.0g/cm、さらに好ましくは2.0〜2.5g/cmとすることによって、高密度にでき、電池性能を向上させることができる。 In the crystallization process described above, the fine powder is not too little or too much, and the density is high, preferably the tap density is 2.0 g / cm 3 or more, more preferably the tap density is 2.0 to 3.0 g / cm. 3 nickel cobalt composite hydroxide particles are obtained. When the tap density is larger than 3.0 g / cm 3, the area where the positive electrode active material obtained when the particle size becomes too large is brought into contact with the electrolytic solution is lowered, so that preferable battery characteristics may not be obtained. Therefore, the tap density of 2.0 g / cm 3 or more, preferably a tap density of 2.0 to 3.0 g / cm 3, by further preferably 2.0~2.5g / cm 3, high density Battery performance can be improved.

得られるニッケルコバルト複合水酸化物は、上述したように一般式:Ni1−x−y−zCoMn(OH)(0<x≦1/3、0≦y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるものであり、供給する混合水溶液の原子比とほぼ一致する。したがって、混合水溶液の原子比を上記一般式の原子比に調整することで、ニッケル、コバルト、マンガン及び添加元素Mの原子比を上記一般式に示す範囲とすることができる。 As described above, the obtained nickel-cobalt composite hydroxide has a general formula: Ni 1-xyz Co x Mn y M z (OH) 2 (0 <x ≦ 1/3, 0 ≦ y ≦ 1 / 3, 0 ≦ z ≦ 0.1, M is represented by one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W), It almost coincides with the atomic ratio of the supplied mixed aqueous solution. Therefore, by adjusting the atomic ratio of the mixed aqueous solution to the atomic ratio of the above general formula, the atomic ratio of nickel, cobalt, manganese, and the additive element M can be in the range shown in the above general formula.

ニッケル、コバルト塩、及びマンガン塩を混合した混合水溶液における塩濃度は、各塩の合計で1mol/L〜2.6mol/Lとすることが好ましい。1mol/L未満であると、塩濃度が低く、ニッケルコバルト複合水酸化物の結晶が十分に成長しない。一方、2.6mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して配管を詰まらせるなどの危険がある上、結晶核の発生が多く微細な粒子が多くなってしまう。したがって、混合水溶液中における塩濃度は、ニッケルコバルト複合水酸化物の結晶を成長させ、再析出させず、微細粒子の発生を抑えるため、各塩の合計が1mol/L〜2.6mol/Lとなるようにすることが好ましい。但し、常温での飽和濃度は各遷移金属塩の割合によっても変わるため、一概に上限は2.6mol/Lと定めることはできない。   The salt concentration in the mixed aqueous solution in which nickel, cobalt salt, and manganese salt are mixed is preferably 1 mol / L to 2.6 mol / L in total for each salt. When the concentration is less than 1 mol / L, the salt concentration is low, and the nickel-cobalt composite hydroxide crystals do not grow sufficiently. On the other hand, if it exceeds 2.6 mol / L, the saturated concentration at room temperature is exceeded, so there is a risk that crystals will re-precipitate and clog the piping, and there will be many crystal nuclei and many fine particles. End up. Accordingly, the salt concentration in the mixed aqueous solution is such that the total of each salt is 1 mol / L to 2.6 mol / L in order to suppress the generation of fine particles without growing and reprecipitation of nickel cobalt composite hydroxide crystals. It is preferable to do so. However, since the saturation concentration at room temperature varies depending on the ratio of each transition metal salt, the upper limit cannot be generally determined to be 2.6 mol / L.

ここで使用可能なニッケル塩、コバルト塩及びマンガン塩は、特に限定されるものではないが、硫酸塩、硝酸塩または塩化物の少なくとも1種であることが好ましい。   The nickel salt, cobalt salt, and manganese salt that can be used here are not particularly limited, but are preferably at least one of sulfate, nitrate, and chloride.

アンモニウムイオン供給体は、特に限定されるものではないが、アンモニア、硫酸アンモニウム又は塩化アンモニウムの少なくとも1種であることが好ましい。   The ammonium ion supplier is not particularly limited, but is preferably at least one of ammonia, ammonium sulfate, or ammonium chloride.

アンモニウムイオン供給体の添加量は、反応溶液中のアンモニウムイオン濃度で5〜20g/Lの範囲とすることが好ましい。アンモニウムイオン濃度で5g/L未満では、反応溶液中のニッケル、コバルト及びマンガンの溶解度が低く、結晶成長が十分でないため、高密度のニッケルコバルト複合水酸化物が得られない。また、アンモニウムイオン濃度が20g/Lを超えると、晶析速度が低下して生産性が悪化するとともに、液中残留するニッケルなどの金属イオンが多くなり、コストが増加する。したがって、アンモニウムイオン供給体の添加量は、生産性が良く、高密度のニッケルコバルト複合水酸化物を得るために5〜20g/Lの範囲とすることが好ましい。   The addition amount of the ammonium ion supplier is preferably in the range of 5 to 20 g / L in terms of the ammonium ion concentration in the reaction solution. When the ammonium ion concentration is less than 5 g / L, the solubility of nickel, cobalt and manganese in the reaction solution is low, and the crystal growth is insufficient, so that a high-density nickel-cobalt composite hydroxide cannot be obtained. On the other hand, when the ammonium ion concentration exceeds 20 g / L, the crystallization rate is lowered and the productivity is deteriorated, and the metal ions such as nickel remaining in the liquid are increased, thereby increasing the cost. Therefore, the addition amount of the ammonium ion supplier is preferably in the range of 5 to 20 g / L in order to obtain good productivity and high density nickel cobalt composite hydroxide.

添加元素Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素であり、晶析工程中の混合水溶液に添加するか、個別に反応溶液に添加することで、ニッケルコバルト複合水酸化物を一般式の組成とすることができる。添加元素Mは、水溶性の化合物として添加することが好ましく、例えば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。   The additive element M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W, and is added to the mixed aqueous solution during the crystallization process or individually. By adding to the reaction solution, the nickel-cobalt composite hydroxide can have a general formula composition. The additive element M is preferably added as a water-soluble compound. For example, titanium sulfate, ammonium peroxotitanate, potassium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate Niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, and the like can be used.

添加元素Mをニッケルコバルト複合水酸化物粒子の内部に均一に分散させる場合には、混合水溶液に添加元素を含有する添加物を添加すればよく、ニッケルコバルト複合水酸化物粒子の内部に添加元素を均一に分散させた状態で共沈させることができる。   In the case where the additive element M is uniformly dispersed inside the nickel cobalt composite hydroxide particles, an additive containing the additive element may be added to the mixed aqueous solution, and the additive element is added inside the nickel cobalt composite hydroxide particles. Can be coprecipitated in a uniformly dispersed state.

また、ニッケルコバルト複合水酸化物粒子の内部に添加元素を添加するだけではなく表面を添加元素で被覆してもよく、その場合には、例えば添加元素を含んだ水溶液でニッケルコバルト複合水酸化物粒子をスラリー化し、所定のpHとなるように制御しつつ、1種以上の添加元素を含む水溶液を添加して、晶析反応により添加元素をニッケルコバルト複合水酸化物粒子表面に析出させれば、その表面を添加元素で均一に被覆することができる。この場合、添加元素を含んだ水溶液に替えて、添加元素のアルコキシド溶液を用いてもよい。   In addition to adding an additive element to the inside of the nickel cobalt composite hydroxide particles, the surface may be coated with the additive element. In this case, for example, the nickel cobalt composite hydroxide may be coated with an aqueous solution containing the additive element. If particles are slurried and controlled to have a predetermined pH, an aqueous solution containing one or more additive elements is added, and the additive elements are precipitated on the surface of nickel-cobalt composite hydroxide particles by a crystallization reaction. The surface can be uniformly coated with the additive element. In this case, an alkoxide solution of the additive element may be used instead of the aqueous solution containing the additive element.

他の方法としては、ニッケルコバルト複合水酸化物粒子に対して、添加元素を含んだ水溶液あるいはスラリーを吹き付けて乾燥させることによっても、ニッケルコバルト複合水酸化物粒子の表面を添加元素で被覆することができる。または、ニッケルコバルト複合水酸化物粒子と1種以上の添加元素を含む塩が懸濁したスラリーを噴霧乾燥させる、あるいはニッケルコバルト複合水酸化物粒子と前記1種以上の添加元素を含む塩を固相法で混合するなどの方法により被覆することができる。   Another method is to coat the surface of the nickel cobalt composite hydroxide particles with the additive element by spraying the nickel cobalt composite hydroxide particles with an aqueous solution or slurry containing the additive element and drying it. Can do. Alternatively, the slurry in which the nickel cobalt composite hydroxide particles and the salt containing one or more additional elements are suspended is spray-dried, or the nickel cobalt composite hydroxide particles and the salt containing the one or more additional elements are solidified. It can coat | cover by methods, such as mixing by a phase method.

なお、ニッケルコバルト複合水酸化物粒子の表面に添加元素を被覆する場合には、混合水溶液中に存在する添加元素イオンの原子数比を被覆する量だけ少なくしておくことで、得られる複合水酸化物粒子の金属イオンの原子数比と一致させることができる。また、ニッケルコバルト複合水酸化物粒子の表面に添加元素を被覆する工程は、ニッケルコバルト複合水酸化物を熱処理する場合においては熱処理後の粒子に対して行ってもよい。ニッケルコバルト複合水酸化物粒子の表面に添加元素を被覆することで、正極活物質の粒子内部より粒子表面における添加元素の濃度を高めることができる。   In addition, when the additive element is coated on the surface of the nickel cobalt composite hydroxide particles, the composite water obtained can be obtained by reducing the atomic ratio of the additive element ions present in the mixed aqueous solution by an amount that covers the additive element ion. The atomic ratio of the metal ions of the oxide particles can be matched. Further, the step of coating the surface of the nickel cobalt composite hydroxide particles with the additive element may be performed on the heat-treated particles when the nickel cobalt composite hydroxide is heat-treated. By coating the surface of the nickel cobalt composite hydroxide particles with the additive element, the concentration of the additive element on the particle surface can be increased from the inside of the positive electrode active material particle.

晶析工程における反応方式は、特に限定されるものではなく、バッチ方式を採ってもよいが、混合水溶液、アンモニウムイオン供給体を含む水溶液及び苛性アルカリ水溶液をそれぞれ連続的に供給して、反応槽からニッケルコバルト複合水酸化物粒子を含む反応溶液を連続的にオーバーフローさせてニッケルコバルト複合水酸化物粒子を回収する連続方式を採ることが、生産性、安定性の面から好ましい。   The reaction method in the crystallization step is not particularly limited, and a batch method may be adopted. However, a mixed aqueous solution, an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution are continuously supplied to the reaction tank. From the viewpoint of productivity and stability, it is preferable to continuously overflow the reaction solution containing nickel-cobalt composite hydroxide particles to recover the nickel-cobalt composite hydroxide particles.

連続方式の場合には、温度を一定に保持しながら、混合水溶液とアンモニウムイオン供給体を反応槽に一定量供給するとともに、苛性アルカリ水溶液を添加してpHを制御し、反応槽内が定常状態になった後、オーバーフローパイプより生成粒子を連続的に採取することが好ましい。また、混合水溶液と苛性アルカリ水溶液を予め混合してから反応槽に供給することも可能であるが、苛性アルカリ水溶液との混合時に混合水溶液中にニッケルコバルト複合水酸化物が生成することを防止するため、混合水溶液と苛性アルカリ水溶液は、個別に反応槽に供給することが好ましい。また、ニッケルやコバルトなどの金属塩は、必ずしも混合水溶液として反応槽に供給しなくてもよく、例えば、混合すると反応して化合物が生成される金属塩を用いる場合、全金属塩水溶液の合計の濃度が1mol/L〜2.6mol/Lの範囲となるように、個別に金属塩水溶液を調製して、個々の金属塩の水溶液として所定の割合で同時に反応槽内に供給してもよい。   In the case of a continuous system, while keeping the temperature constant, while supplying a constant amount of the mixed aqueous solution and ammonium ion supplier to the reaction tank, the pH is controlled by adding a caustic aqueous solution, and the reaction tank is in a steady state. Then, it is preferable to continuously collect the generated particles from the overflow pipe. It is also possible to supply the reaction tank after mixing the mixed aqueous solution and the caustic aqueous solution in advance, but it prevents the formation of nickel-cobalt composite hydroxide in the mixed aqueous solution when mixed with the caustic aqueous solution. Therefore, the mixed aqueous solution and the caustic aqueous solution are preferably supplied to the reaction tank separately. In addition, the metal salt such as nickel or cobalt does not necessarily have to be supplied to the reaction vessel as a mixed aqueous solution. For example, when using a metal salt that reacts when mixed to produce a compound, Metal salt aqueous solutions may be individually prepared so that the concentration is in the range of 1 mol / L to 2.6 mol / L, and the aqueous solutions of the individual metal salts may be simultaneously supplied into the reaction tank at a predetermined ratio.

いずれの反応方式を用いる場合においても、晶析中は均一な反応を維持するために、十分に攪拌することが好ましい。しかしながら、過度に撹拌すると、雰囲気中の酸素を多量に巻き込み、水溶液中の塩が酸化し過ぎることがあるので、反応を十分均一に維持できる程度に撹拌することが好ましい。また、晶析工程に用いる水は、不純物混入防止のため、純水などの可能な限り不純物含有量が少ない水を用いることが好ましい。酸化を抑制するため、混合水溶液は、例えば、反応溶液中に供給口となる注入ノズルを差込み、混合水溶液が反応溶液中に直接供給されるようにすることが好ましい。   Regardless of which reaction method is used, it is preferable to sufficiently stir in order to maintain a uniform reaction during crystallization. However, excessive stirring may involve a large amount of oxygen in the atmosphere and the salt in the aqueous solution may be excessively oxidized, so stirring is preferably performed to such an extent that the reaction can be maintained sufficiently uniformly. The water used in the crystallization process is preferably water having as little impurity content as possible, such as pure water, in order to prevent contamination with impurities. In order to suppress oxidation, the mixed aqueous solution is preferably inserted, for example, into an injection nozzle serving as a supply port in the reaction solution so that the mixed aqueous solution is directly supplied into the reaction solution.

(1−2)pH調整工程
次に、晶析によって得られたニッケルコバルト複合水酸化物粒子を含有する反応溶液のpHを12.5以上に調整するpH調整工程を行う。pH調整工程では、晶析工程における反応溶液のpHよりもpHが高くなるように調整し、反応溶液中の遷移金属イオンの溶解度を低くする。このpH調整工程を設けることによって、晶析工程において所望の粒径となるように反応溶液のpHを調整でき、その後のpH調整工程で反応溶液のpHを高くすることによって遷移金属イオンの溶解度を低下させ、反応溶液に含まれる遷移金属成分を少なくし、後の固液分離工程で遷移金属が流出することを防止できる。
(1-2) pH adjustment step Next, a pH adjustment step of adjusting the pH of the reaction solution containing the nickel cobalt composite hydroxide particles obtained by crystallization to 12.5 or more is performed. In the pH adjustment step, the pH is adjusted to be higher than the pH of the reaction solution in the crystallization step, and the solubility of transition metal ions in the reaction solution is lowered. By providing this pH adjustment step, the pH of the reaction solution can be adjusted so as to have a desired particle size in the crystallization step, and the solubility of transition metal ions can be increased by increasing the pH of the reaction solution in the subsequent pH adjustment step. The transition metal component contained in the reaction solution can be reduced and the transition metal can be prevented from flowing out in the subsequent solid-liquid separation step.

pH調整工程では、例えば、晶析装置の晶析反応槽からニッケルコバルト複合水酸化物粒子を含む反応溶液のスラリーをpH調整装置のpH調整槽に連続的に供給する。pH調整装置は、晶析装置の晶析反応槽から連続的に反応溶液がpH調整槽に供給されるように接続されている。なお、これは連続方式の場合であるが、バッチ方式として、晶析装置とpH調整装置として同一の反応槽を用い、晶析後に反応槽内のpHをpH調整工程のpHに調整することもできる。   In the pH adjusting step, for example, a slurry of a reaction solution containing nickel cobalt composite hydroxide particles is continuously supplied from the crystallization reaction tank of the crystallization apparatus to the pH adjustment tank of the pH adjustment apparatus. The pH adjuster is connected so that the reaction solution is continuously supplied from the crystallization reaction tank of the crystallizer to the pH adjuster. In addition, although this is a case of a continuous system, as a batch system, the same reaction tank is used as a crystallization apparatus and a pH adjustment apparatus, and the pH in the reaction tank may be adjusted to the pH of the pH adjustment step after crystallization. it can.

pH調整工程では、pH調整槽内に供給された反応溶液に苛性アルカリ水溶液を連続的に供給することによって反応溶液のpHを制御する。苛性アルカリ水溶液は、特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物を、直接、反応溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。苛性アルカリ水溶液の添加方法も特に限定されるものではなく、反応溶液を十分に攪拌しながら、定量ポンプなどの流量制御が可能なポンプで、目的とするpHの範囲となるように添加すればよい。   In the pH adjustment step, the pH of the reaction solution is controlled by continuously supplying a caustic aqueous solution to the reaction solution supplied into the pH adjustment tank. The aqueous caustic solution is not particularly limited, and for example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used. The alkali metal hydroxide can be directly added to the reaction solution, but it is preferably added as an aqueous solution in view of easy pH control. There is no particular limitation on the method of adding the caustic aqueous solution, and the reaction solution may be added so as to be within the target pH range with a pump capable of controlling the flow rate such as a metering pump while sufficiently stirring the reaction solution. .

具体的に、pH調整工程では、ニッケル等の遷移金属の流出を抑えるために、反応溶液のpHを液温25℃基準で12.5以上とする。pHを12.5以上とすることで、反応溶液中の遷移金属イオンの溶解度は数ppm以下となり、固液分離時の反応溶液に遷移金属成分が含有されて流出することをほぼなくすことができる。この時、晶析反応時に添加したアンモニウムイオン供給体により生成する遷移金属−アンミン錯体濃度は、pHが高いほど小さくなり、アンモニウムイオン供給体濃度が低いほど小さくなる。よって、アンモニウムイオン供給体濃度が高いほど、pH調整工程における反応溶液のpHを高くする必要がある。また、必要以上にpHを高くすることは、使用する苛性アルカリ量を不必要に増加させるため、コスト的に望ましくない。したがって、pH調整工程において、反応溶液のpHの上限を13.0とすることが好ましい。   Specifically, in the pH adjustment step, the pH of the reaction solution is set to 12.5 or more on the basis of the liquid temperature of 25 ° C. in order to suppress the outflow of transition metals such as nickel. By setting the pH to 12.5 or more, the solubility of transition metal ions in the reaction solution becomes several ppm or less, and the transition metal component is contained in the reaction solution at the time of solid-liquid separation and can be almost eliminated. . At this time, the concentration of the transition metal-ammine complex generated by the ammonium ion supplier added during the crystallization reaction decreases as the pH increases, and decreases as the ammonium ion supplier concentration decreases. Therefore, the higher the ammonium ion supplier concentration, the higher the pH of the reaction solution in the pH adjustment step. Further, raising the pH more than necessary undesirably increases the amount of caustic used, which is undesirable in terms of cost. Therefore, in the pH adjustment step, the upper limit of the pH of the reaction solution is preferably 13.0.

(1−3)固液分離工程
次に、晶析によって得られたニッケルコバルト複合水酸化物粒子を固液分離した後、水洗する固液分離工程を行う。この固液分離工程では、例えば、ニッケルコバルト複合水酸化物粒子を濾過した後、水洗し、濾過物を得る。なお、ニッケルコバルト複合水酸化物粒子を洗浄した後に濾過を行ってもよい。
(1-3) Solid-Liquid Separation Step Next, a solid-liquid separation step is performed in which the nickel cobalt composite hydroxide particles obtained by crystallization are subjected to solid-liquid separation and then washed with water. In this solid-liquid separation step, for example, nickel cobalt composite hydroxide particles are filtered and then washed with water to obtain a filtrate. In addition, you may filter after wash | cleaning nickel cobalt composite hydroxide particle.

固液分離の方法としては、通常用いられる方法でよく、例えば、遠心機、吸引濾過機等を用いることができる。また、水洗は、通常行なわれる方法でよく、ニッケルコバルト複合水酸化物粒子に含まれる余剰の塩基、アンモニアを除去できればよい。水洗で用いる水は、不純物の混入を防止するため、可能な限り不純物含有量が少ない水を用いることが好ましく、純水を用いることがより好ましい。   As a method of solid-liquid separation, a commonly used method may be used. For example, a centrifuge, a suction filter, or the like can be used. The washing with water may be performed by a normal method as long as it can remove excess base and ammonia contained in the nickel-cobalt composite hydroxide particles. The water used in the water washing is preferably water having as little impurity content as possible, and more preferably pure water, in order to prevent contamination of impurities.

(1−4)乾燥工程
次に、固液分離工程後のニッケルコバルト複合水酸化物粒子を乾燥させる乾燥工程を行う。乾燥工程では、乾燥温度を100〜230℃とし乾燥する。
(1-4) Drying process Next, the drying process which dries the nickel cobalt composite hydroxide particle after a solid-liquid separation process is performed. In the drying step, drying is performed at a drying temperature of 100 to 230 ° C.

乾燥温度が100℃未満であると、表面に微細な水酸化物粒子が新たに生成されるため、比表面積が8.0m/gを超えてしまい、ニッケルコバルト複合水酸化物に残存水分量が多くなってリチウムニッケルコバルト複合酸化物の合成反応時に未反応部分を生じるおそれがある。また、乾燥温度が230℃を超えると、ニッケルコバルト複合水酸化物の分解が進み、酸化物との混合物となってしまう。酸化物が混在すると、酸化物の混在量により質量あたりのニッケルなどの金属含有量が変動するため、正極活物質の製造工程においてリチウム化合物と正確に配合することが困難となり、得られる正極活物質の電池特性を十分なものとすることが困難となる。したがって、乾燥温度は、酸化物が混入せず、比表面積が8.0m/g以下となるように、100〜230℃とする必要がある。 When the drying temperature is less than 100 ° C., fine hydroxide particles are newly generated on the surface, so that the specific surface area exceeds 8.0 m 2 / g, and the residual moisture content in the nickel-cobalt composite hydroxide May increase, and an unreacted part may be generated during the synthesis reaction of the lithium nickel cobalt composite oxide. On the other hand, when the drying temperature exceeds 230 ° C., the decomposition of the nickel-cobalt composite hydroxide proceeds and a mixture with the oxide is formed. When an oxide is mixed, the metal content such as nickel per mass varies depending on the mixed amount of the oxide, so that it is difficult to accurately mix with a lithium compound in the manufacturing process of the positive electrode active material, and the resulting positive electrode active material It is difficult to achieve sufficient battery characteristics. Therefore, the drying temperature needs to be 100 to 230 ° C. so that the oxide is not mixed and the specific surface area is 8.0 m 2 / g or less.

乾燥装置は、上記乾燥条件を満たすことができれば通常用いられる乾燥装置でよく、静置式、流動式、気流式のいずれの乾燥装置も用いることができる。加熱方式については雰囲気中の炭素含有ガスが増加しない電気加熱方式が好ましい。   The drying apparatus may be a commonly used drying apparatus as long as the above drying conditions can be satisfied, and any of a stationary type, a fluid type, and an airflow type drying apparatus can be used. The heating method is preferably an electric heating method in which the carbon-containing gas in the atmosphere does not increase.

以上のように、ニッケルコバルト複合水酸化物の製造方法は、晶析工程において、反応溶液のpHが一定範囲に保持されるように苛性アルカリ水溶液を供給してニッケルコバルト複合水酸化物粒子を連続的に晶析させて、次に、pH調整工程において反応溶液に苛性アルカリ水溶液を添加して反応溶液のpHを晶析工程におけるpHよりも高い12.5以上に調整する。即ち、このニッケルコバルト複合水酸化物の製造方法では、晶析工程において反応溶液のpHを一定の範囲内で保持し、次のpH調整工程で反応溶液のpHを高くすることで、固液分離する前に反応溶液中の遷移金属イオン濃度を低下させ、固液分離の際に反応溶液に遷移金属成分が含有されて流出することを抑制するとともに、目的とするレーザー散乱粒度分布測定による平均粒径D50及び窒素吸着BET法により測定される比表面積のニッケルコバルト複合水酸化物を得ることができる。   As described above, in the method for producing nickel cobalt composite hydroxide, in the crystallization process, the aqueous solution of caustic alkali is supplied so that the pH of the reaction solution is maintained within a certain range, and the nickel cobalt composite hydroxide particles are continuously provided. Next, in the pH adjustment step, a caustic aqueous solution is added to the reaction solution to adjust the pH of the reaction solution to 12.5 or higher, which is higher than the pH in the crystallization step. That is, in this method for producing nickel-cobalt composite hydroxide, the pH of the reaction solution is maintained within a certain range in the crystallization step, and the pH of the reaction solution is increased in the next pH adjustment step, so that solid-liquid separation is achieved. The concentration of transition metal ions in the reaction solution is reduced before the separation, and the transition metal component is contained in the reaction solution during solid-liquid separation. A nickel cobalt composite hydroxide having a specific surface area measured by the diameter D50 and the nitrogen adsorption BET method can be obtained.

また、このニッケルコバルト複合水酸化物の製造方法では、晶析工程における反応溶液のpHを10.0〜12.0の範囲とすることによって、遷移金属の流出を抑制しつつ、レーザー散乱粒度分布測定による平均粒径D50が4.0〜25.0μmで、窒素吸着BET法により測定される比表面積が1.0〜8.0m/gであるニッケルコバルト複合水酸化物を得ることができる。このようなニッケルコバルト複合水酸化物は、優れた熱安定性を示し、高密度化と電池特性を向上させることができる正極活物質の製造を可能とするものである。 Further, in this method for producing nickel cobalt composite hydroxide, by adjusting the pH of the reaction solution in the crystallization step to a range of 10.0 to 12.0, while suppressing the outflow of transition metal, the laser scattering particle size distribution A nickel-cobalt composite hydroxide having an average particle diameter D50 of 4.0 to 25.0 μm and a specific surface area of 1.0 to 8.0 m 2 / g measured by a nitrogen adsorption BET method can be obtained. . Such a nickel-cobalt composite hydroxide exhibits excellent thermal stability, and enables production of a positive electrode active material capable of increasing density and improving battery characteristics.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例及び比較例で用いたニッケルコバルト水酸化物の評価方法は、以下の通りである。   Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples. In addition, the evaluation method of the nickel cobalt hydroxide used by the Example and the comparative example is as follows.

(1)金属成分の分析:
ICP(Inductively Coupled Plasma)発光分析装置(VARIAN社製、725ES)を用いて、ICP発光分析法により分析した。
(2)アンモニウムイオン濃度の分析:
JIS−K0102標準による蒸留法によって測定した。
(3)BET比表面積の測定:
比表面積測定装置(ユアサアイオニクス社製、マルチソープ16)を用いて、窒素吸着によるBET1点法により測定した。
(4)炭素含有量の測定:
炭素硫黄分析装置(LECO社製、CS−600)を用いて、高周波燃焼−赤外吸収法により測定した。
(5)平均粒径の測定及び粒度分布幅の評価:
レーザー回折式粒度分布計(日機装株式会社製、マイクロトラックHRA)を用いて、平均粒径の測定及び粒度分布幅の評価を行った。
(6)形態の観察評価:
走査型電子顕微鏡(日本電子株式会社製、JSM−6360LA、以下、SEMと記載)を用いて、形状と外観の観察評価を行った。
(1) Analysis of metal components:
Using an ICP (Inductively Coupled Plasma) emission spectrometer (725 ES, manufactured by VARIAN), analysis was performed by ICP emission analysis.
(2) Analysis of ammonium ion concentration:
It measured by the distillation method by JIS-K0102 standard.
(3) Measurement of BET specific surface area:
Using a specific surface area measuring apparatus (manufactured by Yuasa Ionics Co., Ltd., Multisoap 16), the measurement was performed by the BET one-point method by nitrogen adsorption.
(4) Measurement of carbon content:
It measured by the high frequency combustion-infrared absorption method using the carbon sulfur analyzer (the product made by LECO, CS-600).
(5) Measurement of average particle size and evaluation of particle size distribution width:
Using a laser diffraction particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac HRA), the average particle size was measured and the particle size distribution width was evaluated.
(6) Observation evaluation of form:
Using a scanning electron microscope (manufactured by JEOL Ltd., JSM-6360LA, hereinafter referred to as SEM), observation and evaluation of shape and appearance were performed.

[サンプル1]
サンプル1では、邪魔板を4枚取り付けた槽容積34Lのオーバーフロー式晶析反応槽に、工業用水32L、25質量%アンモニア水を1300mL投入して、恒温槽及び加温ジャケットにて50℃に加温し、24質量%苛性ソーダ溶液を添加して、反応槽内の反応溶液のpHを10.9〜11.1に調整した。このpHは、50℃におけるpHであるため、pH管理を正確に行うため、反応溶液を採取し25℃に冷却してpHを測定し、25℃でのpHが11.7〜11.9になるように、50℃でのpHを調整した。
[Sample 1]
In Sample 1, 32 L of industrial water and 1300 mL of 25% by mass ammonia water were put into a 34 L overflow crystallization reaction tank equipped with four baffle plates, and heated to 50 ° C. with a thermostatic bath and a heating jacket. The mixture was warmed and a 24 mass% sodium hydroxide solution was added to adjust the pH of the reaction solution in the reaction vessel to 10.9 to 11.1. Since this pH is a pH at 50 ° C., in order to accurately control the pH, the reaction solution is collected, cooled to 25 ° C., and the pH is measured. Thus, the pH at 50 ° C. was adjusted.

次に、50℃に保持した反応溶液を攪拌しつつ、定量ポンプを用いて、ニッケル濃度0.8mol/L、コバルト濃度0.8mol/L、マンガン濃度0.8mol/Lの硫酸ニッケルと硫酸コバルトと硫酸マンガンの混合水溶液(金属元素モル比で、Ni:Co:Mn=1:1:1、以下、混合水溶液と記載する。)を30ml/分で、併せて25質量%アンモニア水を2.5ml/分で連続的に供給するとともに、24質量%苛性ソーダ溶液を添加して、25℃でのpHが11.7〜11.9、アンモニウムイオン濃度を5〜15g/Lとなるように制御して、晶析反応を行った。   Next, while stirring the reaction solution maintained at 50 ° C., using a metering pump, nickel sulfate and cobalt sulfate having a nickel concentration of 0.8 mol / L, a cobalt concentration of 0.8 mol / L, and a manganese concentration of 0.8 mol / L. And a mixed aqueous solution of manganese sulfate (in terms of metal element molar ratio, Ni: Co: Mn = 1: 1: 1, hereinafter referred to as a mixed aqueous solution) at 30 ml / min. While continuously supplying at 5 ml / min, a 24% by weight caustic soda solution was added to control the pH at 25 ° C. to be 11.7 to 11.9 and the ammonium ion concentration to be 5 to 15 g / L. The crystallization reaction was performed.

この際の攪拌は、直径10cmの6枚羽根タービン翼を用いて、1200rpmの回転速度で水平に回転させることにより行った。また、混合水溶液の反応系内への供給方法としては、反応溶液中に供給口となる注入ノズルを差込み、混合水溶液が反応溶液中に直接供給されるようにして行った。   Stirring at this time was performed by rotating horizontally at a rotational speed of 1200 rpm using a 6-blade turbine blade having a diameter of 10 cm. As a method of supplying the mixed aqueous solution into the reaction system, an injection nozzle serving as a supply port was inserted into the reaction solution so that the mixed aqueous solution was directly supplied into the reaction solution.

晶析反応によって生成したニッケルコバルト複合水酸化物粒子は、オーバーフローにて連続的に吐出口より排出され、pH調整槽へと導入される。pH調整槽では、24質量%苛性ソーダ溶液を添加して、25℃でのpHが12.7〜12.9となるように制御してpH調整を行った。pH調整槽からニッケルコバルト複合水酸化物粒子は、オーバーフローにて連続的に、吐出口より排出された。晶析反応が安定した反応開始から48〜72時間にかけてpH調整槽より取り出されたニッケルコバルト複合水酸化物粒子をブフナー漏斗及び吸引瓶を用いて固液分離した後、水洗し濾過物を得た。固液分離された反応溶液中のニッケル、コバルト、マンガン濃度を、測定したところ、全て10ppm以下であった。また濾過物の水分率を120℃で24時間の乾燥減量法にて測定したところ、16.8質量%であった。   The nickel-cobalt composite hydroxide particles produced by the crystallization reaction are continuously discharged from the discharge port by overflow and introduced into the pH adjustment tank. In the pH adjustment tank, the pH was adjusted by adding a 24 mass% sodium hydroxide solution and controlling the pH at 25 ° C. to be 12.7 to 12.9. Nickel-cobalt composite hydroxide particles were continuously discharged from the discharge port through the overflow from the pH adjustment tank. Nickel-cobalt composite hydroxide particles taken out from the pH adjustment tank over 48 to 72 hours after the start of the reaction when the crystallization reaction was stabilized were subjected to solid-liquid separation using a Buchner funnel and a suction bottle, and then washed with water to obtain a filtrate. . The nickel, cobalt, and manganese concentrations in the reaction solution separated into solid and liquid were measured and found to be 10 ppm or less. Moreover, it was 16.8 mass% when the moisture content of the filtrate was measured by the loss on drying method for 24 hours at 120 degreeC.

この濾過物をバットに移して乾燥温度110℃に保持した大気乾燥機にセットした。乾燥温度に到達するまでの時間を含めて1時間の乾燥を行い、得られた乾燥物を回収した。   This filtrate was transferred to a vat and set in an air dryer maintained at a drying temperature of 110 ° C. Drying was performed for 1 hour including the time to reach the drying temperature, and the resulting dried product was recovered.

得られたニッケルコバルト複合水酸化物のニッケルの含有量は19.1質量%、コバルトの含有量は19.1質量%、マンガンの含有量は17.9質量%で、各元素比は33.4:33:2:33.4でほぼ原料水溶液の組成比に等しかった。また、比表面積は7.1m/g、平均粒径D50は、14.6μmであり、粒子をSEMにて観察したところ、略球状の粒子であり、該断面も同様に観察したところ、緻密な結晶からなる粒子であることが確認された。晶析反応時の晶析反応槽のpH、pH調整時の調整槽のpH、固液分離後の反応溶液中のニッケル濃度を表1に示し、ニッケルコバルト複合水酸化物のD50粒径、比表面積、ニッケル、コバルト、マンガンの元素比を表2に示す。 In the obtained nickel-cobalt composite hydroxide, the nickel content was 19.1% by mass, the cobalt content was 19.1% by mass, the manganese content was 17.9% by mass, and each element ratio was 33. 4: 33: 2: 33.4, which was almost equal to the composition ratio of the raw material aqueous solution. The specific surface area was 7.1 m 2 / g and the average particle diameter D50 was 14.6 μm. When the particles were observed with an SEM, they were substantially spherical particles. It was confirmed that the particles were composed of simple crystals. The pH of the crystallization reaction tank during the crystallization reaction, the pH of the adjustment tank during the pH adjustment, and the nickel concentration in the reaction solution after the solid-liquid separation are shown in Table 1, and the D50 particle size and ratio of the nickel cobalt composite hydroxide Table 2 shows element ratios of the surface area, nickel, cobalt, and manganese.

[サンプル2〜10]
サンプル2〜5では、サンプル1と同様の方法にて、表1に示すように晶析反応槽のpH、pH調整槽のpHを変更した。各々の固液分離後の反応溶液中のニッケル濃度は表1に示すとおり、及び得られたニッケルコバルト複合水酸化物のD50粒径、比表面積、ニッケル、コバルト、マンガンの元素比は表2に示すとおりであった。
[Samples 2 to 10]
In Samples 2 to 5, the pH of the crystallization reaction tank and the pH adjustment tank were changed as shown in Table 1 in the same manner as in Sample 1. The nickel concentration in the reaction solution after each solid-liquid separation is as shown in Table 1, and the D50 particle size, specific surface area, nickel, cobalt, and manganese element ratios of the obtained nickel cobalt composite hydroxide are shown in Table 2. It was as shown.

サンプル6、8、10においては、pH調整工程を行わず、晶析装置からオーバーフローで得られたニッケルコバルト複合水酸化物粒子に対してそのまま固液分離工程以降の処理を行いニッケルコバルト複合水酸化物を得た。   In Samples 6, 8, and 10, the pH adjustment step is not performed, and the nickel cobalt composite hydroxide particles obtained by overflow from the crystallizer are directly subjected to the treatment after the solid-liquid separation step to obtain the nickel cobalt composite hydroxide. I got a thing.

Figure 0005967264
Figure 0005967264

Figure 0005967264
Figure 0005967264

表1及び表2に示す結果から、晶析工程において反応溶液のpHを一定範囲に保持し、次にpH調整工程において反応溶液のpHを12.5以上に調整したサンプル1〜5では、固液分離後の反応溶液中のニッケルの濃度が10ppm未満であり、ニッケルの流出を抑えることができ、ニッケル、コバルト、マンガンの元素比が混合水溶液の元素比、即ち目的とする元素比とほぼ一致した。また、サンプル1〜5は、晶析工程の次に行うpH調整工程で反応溶液のpHを12.5以上とすることで、目的の粒度分布及び比表面積をもつニッケルコバルト複合水酸化物が得られた。   From the results shown in Table 1 and Table 2, in Samples 1 to 5 in which the pH of the reaction solution was maintained in a certain range in the crystallization step, and then the pH of the reaction solution was adjusted to 12.5 or more in the pH adjustment step, The concentration of nickel in the reaction solution after liquid separation is less than 10 ppm, so that the outflow of nickel can be suppressed, and the element ratio of nickel, cobalt, and manganese is almost the same as the element ratio of the mixed aqueous solution, that is, the target element ratio. did. Samples 1 to 5 were obtained by adjusting the pH of the reaction solution to 12.5 or higher in the pH adjustment step performed after the crystallization step, thereby obtaining a nickel-cobalt composite hydroxide having the desired particle size distribution and specific surface area. It was.

サンプル1〜5の中でもサンプル1〜4は、晶析工程においてpH10.0〜12.0の範囲に調整されていることによって、固液分離後の反応溶液中のニッケル濃度が10ppm未満であり、且つニッケルコバルト複合水酸化物のD50粒径が4.0〜25μmの範囲内であり、比表面積が1.0〜8.0m/gの範囲となった。 Among samples 1 to 5, samples 1 to 4 are adjusted to a pH of 10.0 to 12.0 in the crystallization step, so that the nickel concentration in the reaction solution after solid-liquid separation is less than 10 ppm, The D50 particle size of the nickel cobalt composite hydroxide was in the range of 4.0 to 25 μm, and the specific surface area was in the range of 1.0 to 8.0 m 2 / g.

サンプル5は、晶析工程における反応溶液のpHが12.3であり、12.0よりもやや大きいため、ニッケルコバルト複合水酸化物の晶析速度が少し速くなり、微細な粒子が多くなり、サンプル1〜4と比べて比表面積が大きくなった。   In sample 5, the pH of the reaction solution in the crystallization process is 12.3, which is slightly higher than 12.0. Therefore, the crystallization speed of the nickel cobalt composite hydroxide is slightly increased, and the number of fine particles is increased. The specific surface area was larger than those of Samples 1 to 4.

pH調整工程おいて反応溶液のpHが12.5より低い、またはpH調整を行っていないサンプル6〜9では、固液分離後の反応溶液中のニッケル濃度が非常に高くなり、ニッケルのロスが大きいことがわかる。また得られたニッケルコバルト複合水酸化物中のニッケル、コバルト、マンガンの元素比が混合水溶液の元素比、即ち目的とする元素比から大きく異なった。また、これらの中でもサンプル8及び9は、晶析工程における反応溶液のpHが10.0よりも低く、ニッケルコバルト複合水酸化物粒子が粗大となった。   In the samples 6 to 9 in which the pH of the reaction solution is lower than 12.5 or not adjusted in the pH adjustment step, the nickel concentration in the reaction solution after solid-liquid separation becomes very high, and nickel loss occurs. You can see that it ’s big. Further, the elemental ratio of nickel, cobalt, and manganese in the obtained nickel-cobalt composite hydroxide was greatly different from the elemental ratio of the mixed aqueous solution, that is, the intended elemental ratio. Among these, in Samples 8 and 9, the pH of the reaction solution in the crystallization step was lower than 10.0, and the nickel cobalt composite hydroxide particles became coarse.

また、サンプル10は、晶析工程における反応溶液のpHが12.8であるため、反応溶液中のニッケル濃度が低くかったものの、ニッケルコバルト複合水酸化物粒子が粗大となり、比表面積も大きくなった。   In addition, since the pH of the reaction solution in the crystallization step of Sample 10 was 12.8, the nickel concentration in the reaction solution was low, but the nickel-cobalt composite hydroxide particles became coarse and the specific surface area also increased. It was.

以上の結果から、ニッケルコバルト複合水酸化物の製造にあたり、反応溶液のpHを一定の範囲にして晶析工程を行い、次にニッケル等の遷移金属の溶解度が低くなるように反応溶液中のpHを12.5以上に調整するpH調整工程を行うことで、固液分離後の反応溶液中のニッケル濃度を低くでき、ニッケルのロスを少なくしてニッケルコバルト複合水酸化物の収率を高くできることがわかる。更に、晶析工程における反応溶液のpHを10.0〜12.0とすることによって、ニッケルコバルト複合水酸化物のD50粒径及び比表面積を目的の範囲できることがわかる。   From the above results, in the production of nickel-cobalt composite hydroxide, the crystallization step is performed with the pH of the reaction solution in a certain range, and then the pH in the reaction solution is set so that the solubility of transition metals such as nickel becomes low. By adjusting the pH to 12.5 or more, the nickel concentration in the reaction solution after solid-liquid separation can be lowered, the loss of nickel can be reduced, and the yield of nickel cobalt composite hydroxide can be increased. I understand. Furthermore, it turns out that the D50 particle size and specific surface area of a nickel cobalt composite hydroxide can be made into the target range by making pH of the reaction solution in a crystallization process into 10.0-12.0.

Claims (4)

下記(1)〜(4)を含む製造方法で得られた一般式:Ni1−x−y−zCoMn(OH)(0<x<1/2、0≦y<1/2、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるニッケルコバルト複合水酸化物であり、レーザー散乱粒度分布測定による平均粒径D50が4.0〜25.0μmであり、かつ窒素吸着BET法により測定される比表面積が1.0m/g以上、8.0m/g未満である非水系電解質二次電池の正極活物質の前駆体を、500〜1000℃の温度で熱処理した後、リチウム化合物と混合して800〜1000℃で焼成することを特徴とする非水系電解質二次電池の正極活物質の製造方法。
(1)少なくともニッケル塩、コバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液とを混合するとともに、苛性アルカリ水溶液を連続的に供給して反応溶液とし、上記反応溶液のpHを液温25℃基準で10.0〜12.0の範囲に保持することで上記ニッケルコバルト複合水酸化物粒子を連続的に晶析させる晶析工程。
(2)上記晶析工程で連続的に排出される上記ニッケルコバルト複合水酸化物粒子を含む反応溶液に苛性アルカリ水溶液を連続的に供給し、上記反応溶液のpHが液温25℃基準で12.5以上となるように上昇させ、上記反応溶液中の遷移金属イオン濃度を低下させるpH調整工程。
(3)上記pH調整したニッケルコバルト複合水酸化物粒子を含む反応溶液を固液分離して、上記ニッケルコバルト複合水酸化物粒子を洗浄する固液分離工程。
(4)水洗した上記ニッケルコバルト複合水酸化物粒子を乾燥する乾燥工程。
Following (1) to (4) formulas obtained by the manufacturing method comprising: Ni 1-x-y- z Co x Mn y M z (OH) 2 (0 <x <1 / 2,0 ≦ y < 1/2, 0 ≦ z ≦ 0.1, where M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W) 7. It is a composite hydroxide, the average particle diameter D50 by laser scattering particle size distribution measurement is 4.0-25.0 micrometers, and the specific surface area measured by nitrogen adsorption BET method is 1.0 m < 2 > / g or more. A precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery that is less than 0 m 2 / g is heat-treated at a temperature of 500 to 1000 ° C., then mixed with a lithium compound and fired at 800 to 1000 ° C. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
(1) A mixed aqueous solution containing at least a nickel salt and a cobalt salt is mixed with an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution is continuously supplied to obtain a reaction solution. The pH of the reaction solution is adjusted to a liquid temperature. A crystallization step of continuously crystallizing the nickel cobalt composite hydroxide particles by maintaining the temperature within a range of 10.0 to 12.0 on a 25 ° C. basis.
(2) A caustic aqueous solution is continuously supplied to the reaction solution containing the nickel-cobalt composite hydroxide particles continuously discharged in the crystallization step, and the pH of the reaction solution is 12 on the basis of a liquid temperature of 25 ° C. PH adjustment step of raising the concentration to be 5 or more and lowering the transition metal ion concentration in the reaction solution.
(3) A solid-liquid separation step in which the reaction solution containing the nickel-cobalt composite hydroxide particles whose pH has been adjusted is subjected to solid-liquid separation to wash the nickel-cobalt composite hydroxide particles.
(4) A drying step of drying the nickel cobalt composite hydroxide particles washed with water.
上記リチウム化合物を、上記ニッケルコバルト複合水酸化物の金属元素に対してリチウムが原子比で0.95〜1.5となるように混合することを特徴とする請求項1に記載の非水系電解質二次電池の正極活物質の製造方法。 2. The non-aqueous electrolyte according to claim 1, wherein the lithium compound is mixed so that lithium is in an atomic ratio of 0.95 to 1.5 with respect to the metal element of the nickel-cobalt composite hydroxide. The manufacturing method of the positive electrode active material of a secondary battery. 上記晶析工程における反応溶液の温度を20〜70℃、アンモニウムイオン濃度を5〜20g/Lの範囲に保持することを特徴とする請求項1又は請求項2に記載の非水系電解質二次電池の正極活物質の製造方法。 The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the temperature of the reaction solution in the crystallization step is maintained in the range of 20 to 70 ° C and the ammonium ion concentration in the range of 5 to 20 g / L. Of manufacturing positive electrode active material. 上記pH調整工程では、pH調整後の上記反応溶液中の遷移金属イオン濃度を100ppm以下とすることを特徴とする請求項1乃至請求項のいずれか1項記載の非水系電解質二次電池の正極活物質の製造方法。 In the pH adjustment step, the non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, characterized in that the transition metal ion concentration in the reaction solution after pH adjustment and 100ppm or less A method for producing a positive electrode active material.
JP2015104286A 2015-05-22 2015-05-22 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Active JP5967264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015104286A JP5967264B2 (en) 2015-05-22 2015-05-22 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015104286A JP5967264B2 (en) 2015-05-22 2015-05-22 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012120158A Division JP5754416B2 (en) 2012-05-25 2012-05-25 Method for producing nickel cobalt composite hydroxide

Publications (2)

Publication Number Publication Date
JP2015173122A JP2015173122A (en) 2015-10-01
JP5967264B2 true JP5967264B2 (en) 2016-08-10

Family

ID=54260304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015104286A Active JP5967264B2 (en) 2015-05-22 2015-05-22 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5967264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809287A (en) * 2020-06-15 2021-12-17 天津国安盟固利新材料科技股份有限公司 Washing-free coating method for high-nickel anode material
KR20220022336A (en) * 2020-08-18 2022-02-25 에스케이온 주식회사 Precursor for cathode active material, cathode active material, lithium secondary battery and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694567B1 (en) * 2003-04-17 2007-03-13 세이미 케미칼 가부시끼가이샤 Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
KR101306532B1 (en) * 2005-08-12 2013-09-09 토다 고교 유럽 게엠베하 Inorganic Compounds
JP5464348B2 (en) * 2010-02-26 2014-04-09 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide

Also Published As

Publication number Publication date
JP2015173122A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5754416B2 (en) Method for producing nickel cobalt composite hydroxide
JP5365711B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6186919B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6044463B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP5614334B2 (en) Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
KR101665270B1 (en) Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
JP6583359B2 (en) Nickel cobalt manganese composite hydroxide
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP5967264B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5799849B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP7371354B2 (en) Method for producing nickel composite hydroxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5967264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150