JP5949113B2 - Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same - Google Patents
Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same Download PDFInfo
- Publication number
- JP5949113B2 JP5949113B2 JP2012105733A JP2012105733A JP5949113B2 JP 5949113 B2 JP5949113 B2 JP 5949113B2 JP 2012105733 A JP2012105733 A JP 2012105733A JP 2012105733 A JP2012105733 A JP 2012105733A JP 5949113 B2 JP5949113 B2 JP 5949113B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- crack propagation
- brittle crack
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 84
- 239000010959 steel Substances 0.000 title claims description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000005096 rolling process Methods 0.000 claims description 58
- 239000000463 material Substances 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 22
- 230000009467 reduction Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 230000001186 cumulative effect Effects 0.000 claims description 10
- 239000000314 lubricant Substances 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 235000019587 texture Nutrition 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000001953 recrystallisation Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000010953 base metal Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法に関し、特に、船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に好適なものに関する。 TECHNICAL FIELD The present invention relates to a high-strength steel plate excellent in brittle crack propagation stopping characteristics and a method for producing the same, and more particularly to a material suitable for large structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures. .
船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きいため、安全性の向上が常に求められ、使用される鋼材に対しては、使用温度における靭性や、脆性き裂伝播停止特性が要求されている。 For large structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures, accidents associated with brittle fractures have a significant impact on the economy and the environment. Steel materials are required to have toughness at operating temperatures and brittle crack propagation stopping characteristics.
コンテナ船やバルクキャリアーなどの船舶はその構造上、船体外板に高強度の厚肉材を使用するが、最近は船体の大型化に伴い一層の高強度厚肉化が進展し、一般に、鋼板の脆性き裂伝播停止特性は高強度あるいは厚肉材ほど劣化する傾向があるため、脆性き裂伝播停止特性への要求も一段と高度化している。 Ships such as container ships and bulk carriers use high-strength thick materials for the hull outer plates due to their structure. Recently, as the size of the hulls has increased, higher strength and thicker materials have been developed. Since the brittle crack propagation stopping property of steel tends to deteriorate with higher strength or thicker material, the demand for brittle crack propagation stopping property is further advanced.
鋼材の脆性き裂伝播停止特性を向上させる手段として、従来からNi含有量を増加させる方法が知られており、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。 As a means of improving the brittle crack propagation stopping characteristics of steel materials, a method of increasing the Ni content has been conventionally known. In a LNG storage tank, 9% Ni steel is used on a commercial scale. Has been.
しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。 However, since the increase in the amount of Ni necessitates a significant increase in cost, it is difficult to apply to applications other than the LNG storage tank.
一方、LNGのような極低温にまで至らない、船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP法により細粒化を図り、低温靭性を向上させて、優れた脆性き裂伝播停止特性を付与することができる。 On the other hand, for thin steel materials with a plate thickness of less than 50 mm used for ships and line pipes that do not reach extremely low temperatures such as LNG, fine graining is attempted by the TMCP method to achieve low temperature toughness. It can be improved to give excellent brittle crack propagation stopping properties.
また、合金コストを上昇させることなく、脆性き裂伝播停止特性を向上させるため表層部の組織を超微細化した鋼材が特許文献1で提案されている。 Further, Patent Document 1 proposes a steel material in which the structure of the surface layer portion is made ultrafine in order to improve brittle crack propagation stopping characteristics without increasing the alloy cost.
特許文献1記載の脆性き裂伝播停止特性に優れた鋼材は、脆性き裂が伝播する際、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性き裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性き裂が有する伝播エネルギーを吸収させることを特徴とする。 In steel materials having excellent brittle crack propagation stopping characteristics described in Patent Document 1, when brittle cracks propagate, shear lip (plastic deformation region) generated in the steel surface layer is effective in improving brittle crack propagation stopping characteristics. In particular, it is characterized in that the propagation energy of the brittle crack propagating is absorbed by refining the crystal grains of the shear lip portion.
製造方法として、熱間圧延後の制御冷却により表層部分をAr3変態点以下に冷却し、その後制御冷却を停止して表層部分を変態点以上に復熱させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ又は加工再結晶させて、表層部分に超微細なフェライト組織又はベイナイト組織を生成させることが記載されている。 As a production method, the process of cooling the surface layer part to the Ar 3 transformation point or less by controlled cooling after hot rolling, and then repeating the process of stopping the control cooling and returning the surface layer part to the transformation point or more is repeated once or more, During this time, it is described that by rolling down the steel material, it is repeatedly transformed or processed and recrystallized to form an ultrafine ferrite structure or bainite structure in the surface layer portion.
さらに、特許文献2では、フェライト−パーライトを主体のミクロ組織とする鋼材において脆性き裂伝播停止特性を向上させるためには、鋼材の両表面部は円相当粒径:5μm以下、アスペクト比:2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成し、フェライト粒径のバラツキを抑えることが重要で、バラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率を12%以下とし局所的な再結晶現象を抑制することが記載されている。 Furthermore, in Patent Document 2, in order to improve the brittle crack propagation stopping characteristics in a steel material mainly composed of ferrite-pearlite, both surface portions of the steel material have a circle-equivalent particle diameter of 5 μm or less and an aspect ratio of 2 It is important that the ferrite structure with the above ferrite grains is composed of a layer having 50% or more and to suppress the variation in the ferrite particle size. As a method to suppress the variation, the maximum rolling reduction per pass during finish rolling is 12% or less. And suppressing local recrystallization phenomenon.
しかし、特許文献1、2に記載の脆性き裂伝播停止特性に優れた鋼材は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得るもので、実生産規模では制御が容易でなく、特に板厚が50mmを超える厚肉材では圧延、冷却設備への負荷が大きいプロセスである。 However, the steel materials excellent in brittle crack propagation stopping characteristics described in Patent Documents 1 and 2 are obtained by recooling only the steel material surface layer portion and then reworking and processing during recuperation to obtain a specific structure. However, control is not easy on the actual production scale, and in particular, a thick material with a plate thickness exceeding 50 mm is a process with a heavy load on the rolling and cooling equipment.
一方、特許文献3には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレインに着目し、脆性き裂伝播停止特性を向上させる、TMCPの延長上にある技術が記載されている。 On the other hand, Patent Document 3 describes a technology on the extension of TMCP that focuses on subgrains formed in ferrite crystal grains as well as refinement of ferrite crystal grains and improves brittle crack propagation stopping characteristics. Has been.
具体的には、板厚30〜40mmにおいて、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、によって脆性き裂伝播停止特性を向上させる。 Specifically, in a plate thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer, (a) rolling conditions for securing fine ferrite crystal grains, (b) steel plate Rolling conditions for generating a fine ferrite structure in a portion of 5% or more of the thickness, (c) A texture is developed in the fine ferrite, and dislocations introduced by processing (rolling) are rearranged by thermal energy to form subgrains. The brittle crack propagation stopping characteristics are improved by rolling conditions and (d) cooling conditions that suppress the coarsening of the formed fine ferrite crystal grains and fine subgrain grains.
また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性き裂伝播停止特性を向上させる方法も知られている。鋼材の破壊面上にセパレーションを板面と平行な方向に生ぜしめ、脆性き裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める。 In addition, in controlled rolling, a method of improving the brittle crack propagation stopping property by developing a texture by reducing the transformed ferrite is also known. Separation occurs on the fracture surface of the steel material in a direction parallel to the plate surface, and the stress at the brittle crack tip is relaxed, thereby increasing the resistance to brittle fracture.
例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊特性を向上させることが記載されている。 For example, in Patent Document 4, the resistance to brittle fracture is improved by controlling the (110) plane X-ray intensity ratio to 2 or more and controlling coarse grains having an equivalent circle diameter of 20 μm or more to 10% or less by controlled rolling. Is described.
特許文献5には継手部の脆性き裂伝播停止性能の優れた溶接構造用鋼として、板厚内部の圧延面における(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示され、当該集合組織発達による応力負荷方向とき裂伝播方向の角度のずれにより脆性き裂伝播停止特性に優れることが記載されている。 Patent Document 5 is characterized in that as a welded structural steel excellent in brittle crack propagation stopping performance of a joint part, the X-ray plane strength ratio of the (100) plane in the rolled surface inside the plate thickness is 1.5 or more. A steel sheet is disclosed, and it is described that it has excellent brittle crack propagation stopping characteristics due to a shift in angle in the stress load direction and crack propagation direction due to the texture development.
ところで、最近の6、000TEUを超える大型コンテナ船では板厚50mmを超える厚鋼板が使用されるが、非特許文献1は、板厚65mmの鋼板の脆性き裂伝播停止特性を評価し、母材の大型脆性き裂伝播停止試験で脆性き裂が停止しない結果を報告している。 By the way, in recent large container ships exceeding 6,000 TEU, thick steel plates having a thickness of more than 50 mm are used. However, Non-Patent Document 1 evaluates the brittle crack propagation stopping characteristics of a steel plate having a thickness of 65 mm, and a base material. In the large brittle crack propagation stop test, the result that the brittle crack does not stop is reported.
また、供試材のESSO試験では使用温度−10℃におけるKcaの値が3000N/mm3/2に満たない結果が示され、50mmを超える板厚の鋼板を適用した船体構造の場合、安全性確保が課題となることが示唆されている。 In addition, in the ESSO test of the test material, the Kca value at a use temperature of −10 ° C. showed a result of less than 3000 N / mm 3/2 . It has been suggested that securing is an issue.
上述した特許文献1〜5に記載の脆性き裂伝播停止特性に優れる鋼板は、製造条件や開示されている実験データから板厚50mm程度が主な対象で、50mmを超える厚肉材へ適用した場合、所定の特性が得られるか不明で、船体構造で必要な板厚方向のき裂伝播に対しての特性については全く検証されていない。 The steel sheets having excellent brittle crack propagation stopping characteristics described in Patent Documents 1 to 5 described above are mainly targeted for a thickness of about 50 mm from manufacturing conditions and disclosed experimental data, and applied to thick materials exceeding 50 mm. In this case, it is unclear whether the predetermined characteristics can be obtained, and the characteristics with respect to crack propagation in the plate thickness direction necessary for the hull structure have not been verified at all.
そこで本発明は、圧延条件を最適化し、板厚方向での集合組織を制御する工業的に極めて簡易なプロセスで安定して製造し得る脆性き裂伝播停止特性に優れる高強度厚鋼板およびその製造方法を提供することを目的とする。 Accordingly, the present invention provides a high-strength thick steel plate having excellent brittle crack propagation stopping characteristics that can be stably produced by an industrially simple process that optimizes rolling conditions and controls the texture in the thickness direction, and the production thereof. It aims to provide a method.
本発明者らは、上記課題の達成に向けて鋭意研究を重ね、厚肉鋼板でも優れたき裂伝播停止特性を有する高強度厚鋼板および当該鋼板を安定して得る製造方法について以下の知見を得た。
1.脆性き裂伝播停止特性の向上に有効な{100}<011>方位は圧延時にロールと圧延材間で発生するせん断歪の影響を受けて{110}<001>方位へ変化する。
2.せん断歪は、板厚が小さい場合には表層付近に発生するが、板厚が大きい場合には板厚1/4付近が最も高い値を示す。
3.その結果、厚肉材に未再結晶γ域圧延を施した場合、板厚1/4部{100}<011>方位強度が低下し、{100}<011>方位の発達は板厚中央部付近だけに限られ、脆性き裂伝播停止性能が低下する。
4.ロールと鋼板との間に発生するせん断歪は、圧延時に潤滑剤を用いることで低減可能であり、それに伴い厚肉材においても板厚1/4部{100}<011>方位強度を高めることが可能となり、更に母材靭性を向上させることで優れた脆性き裂伝播停止性能が達成される。
The inventors of the present invention have earnestly studied to achieve the above-mentioned problems, and obtained the following knowledge about a high-strength thick steel plate having excellent crack propagation stopping characteristics even with a thick steel plate and a production method for stably obtaining the steel plate. It was.
1. The {100} <011> orientation effective for improving the brittle crack propagation stop property changes to the {110} <001> orientation under the influence of shear strain generated between the roll and the rolled material during rolling.
2. The shear strain occurs near the surface layer when the plate thickness is small, but shows the highest value near the plate thickness ¼ when the plate thickness is large.
3. As a result, when the non-recrystallized γ-region rolling is applied to the thick material, the thickness of the {4} part {100} <011> orientation decreases, and the {100} <011> orientation develops in the central part of the thickness. The brittle crack propagation stopping performance is reduced only in the vicinity.
4). The shear strain generated between the roll and the steel plate can be reduced by using a lubricant during rolling, and as a result, the thickness of the ¼ part {100} <011> azimuth strength is increased even in a thick material. In addition, by improving the base metal toughness, excellent brittle crack propagation stopping performance is achieved.
本発明は得られた知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.板厚中央部における圧延面での{100}<011>方位強度が2.0以上、かつ板厚1/4部における圧延面での{100}<011>方位強度が1.2以上の集合組織を有し、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下であることを特徴とする脆性き裂伝播停止特性に優れた構造用高強度厚鋼板。
2.鋼組成が、質量%で、C:0.03〜0.20%、Si:0.03〜0.50%、Mn:0.5〜2.2%、A1:0.005〜0.08%、P:0.03%以下、S:0.010%以下、N:0.0075%以下、Ti:0.005〜0.03%、Nb:0.005〜0.05%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする1に記載の脆性き裂伝播停止特性に優れた構造用高強度厚鋼板。
3.鋼組成が、更に、質量%で、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.10%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下のいずれか1種、または2種以上を含有することを特徴とする2に記載の脆性き裂伝播停止特性に優れた構造用高強度厚鋼板。
4.900〜1200℃の温度に加熱した2または3に記載の組成を有する鋼素材を、板厚中央部が再結晶γ域となる温度域で累積圧下率30%以上、板厚中央部が未再結晶γ域となる温度域において累積圧下率50%以上の圧延を潤滑剤を用いて行い、その後2℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性き裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。
5.前記加速冷却後、Ac1点以下で焼戻しを行うことを特徴とする4に記載の脆性き裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention,
1. Aggregation of {100} <011> orientation strength at the rolling surface at the center of the plate thickness of 2.0 or more and {100} <011> orientation strength at the rolling surface at the plate thickness of 1/4 portion of 1.2 or more A structural high-strength thick steel plate excellent in brittle crack propagation stopping characteristics, characterized by having a texture and a Charpy fracture surface transition temperature at ¼ part of the plate thickness of −40 ° C. or lower.
2. Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.50%, Mn: 0.5-2.2%, A1: 0.005-0.08 %, P: 0.03% or less, S: 0.010% or less, N: 0.0075% or less, Ti: 0.005 to 0.03%, Nb: 0.005 to 0.05% 1. The structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to 1, wherein the balance is Fe and inevitable impurities.
3. The steel composition is further mass%, Cu: 0.01 to 0.5%, Ni: 0.01 to 1.0%, Cr: 0.01 to 0.5%, Mo: 0.01 to 0 0.5%, V: 0.001 to 0.10%, B: 0.003% or less, Ca: 0.005% or less, REM: 0.01% or less, or two or more 2. A structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics as described in 2 above.
4. A steel material having the composition according to 2 or 3 heated to a temperature of 900 to 1200 ° C., a cumulative reduction ratio of 30% or more in a temperature range where the central portion of the plate thickness becomes a recrystallization γ region, Rolling with a cumulative reduction ratio of 50% or more in a temperature range that is an unrecrystallized γ region is performed using a lubricant, and then cooled to 600 ° C. or less at a cooling rate of 2 ° C./s or more. A method for manufacturing structural high-strength thick steel plates with excellent crack propagation stopping characteristics.
5. 5. The method for producing a structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to 4, wherein tempering is performed at an Ac1 point or less after the accelerated cooling.
本発明によれば、板厚方向に集合組織が適切に制御され、脆性き裂伝播停止特性に優れる、高強度厚肉鋼板が得られ、板厚50mm以上、より好ましくは板厚55mm以上の鋼板に適用することが有効である。そして、例えば、造船分野では大型のコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングや甲板部材へ適用することにより船舶の安全性向上に寄与するなど、産業上極めて有用である。 According to the present invention, a high-strength thick steel plate having a texture controlled appropriately in the plate thickness direction and excellent in brittle crack propagation stopping characteristics is obtained, and a steel plate having a plate thickness of 50 mm or more, more preferably 55 mm or more. It is effective to apply to. For example, in the shipbuilding field, it is extremely useful in the industry, for example, by contributing to improved safety of ships by applying it to hatch side combing and deck members in the structure of large decks of bulk container ships and bulk carriers.
本発明では、1.板厚内部(板厚中央部および板厚1/4部)の集合組織、2.靭性、および3.製造条件を規定する。板厚中央部は板厚の1/2位置、板厚1/4部は板厚の1/4位置または板厚の3/4位置を指す。
1.板厚内部の集合組織
本発明は板厚方向の広い領域で、き裂伝播停止特性の向上に有効な{100}<011>方位を発達させた集合組織を得ることを主眼とし、板厚中央部における圧延面での{100}<011>方位強度と、かつ板厚1/4部における圧延面での{100}<011>方位強度を所望する脆性き裂伝播停止特性に応じて適宜規定する。{100}<011>方位を発達させると、き裂の屈曲すなわち応力付加方向からき裂が逸れることによるき裂先端の応力拡大係数が低下する効果や、微細なセパレーションの発生により脆性き裂先端の応力緩和の効果により脆性き裂伝播停止性能が向上する。
In the present invention, 1. Texture inside the plate thickness (plate thickness central part and plate thickness ¼ part); 2. toughness, and Define manufacturing conditions. The center portion of the plate thickness indicates a 1/2 position of the plate thickness, and the 1/4 thickness portion indicates a 1/4 position of the plate thickness or a 3/4 position of the plate thickness.
1. BACKGROUND OF THE INVENTION The present invention mainly aims at obtaining a texture with a developed {100} <011> orientation effective in improving crack propagation stopping characteristics in a wide region in the thickness direction. The {100} <011> orientation strength at the rolling surface in the part and the {100} <011> orientation strength at the rolling surface at the ¼ part thickness are appropriately defined according to the desired brittle crack propagation stop characteristics. To do. When the {100} <011> orientation is developed, the effect of reducing the stress intensity factor at the crack tip due to crack bending, that is, the crack escaping from the direction of stress application, and the occurrence of a fine separation, The effect of stress relaxation improves brittle crack propagation stopping performance.
最近のコンテナ船やバルクキャリアーなど船体外板に用いられるようになった板厚50mm以上の厚肉材で、構造安全性を確保する上で目標とされるKca(−10℃)≧6000N/mm3/2の脆性き裂伝播停止性能を得る場合、板厚中央部における圧延面での{100}<011>方位強度を2.0以上、かつ板厚1/4部における圧延面での{100}<011>方位強度を1.2以上とする。 Kca (-10 ° C) ≧ 6000N / mm, which is a target for securing structural safety, with thick material of 50mm or more thickness that has been used for hull outer plates such as recent container ships and bulk carriers. When a brittle crack propagation stopping performance of 3/2 is obtained, the {100} <011> orientation strength at the rolled surface in the center portion of the plate thickness is 2.0 or more, and the rolled surface at the 1/4 portion of the plate thickness is { 100} <011> The azimuth strength is 1.2 or more.
ここで、方位強度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて(200)、(110)および(211)正極点図を求め、得られた正極点図から3次元結晶方位密度関数を計算することにより求めた。
2.母材靭性
母材靭性が、良好な特性を有することがき裂の進展を抑制するための前提となるので、本発明に係る鋼板では板厚1/4部におけるシャルピー破面遷移温度も所望する脆性き裂伝播停止特性に応じて適宜規定する。
Here, the azimuth intensity is obtained by using an X-ray diffractometer (manufactured by Rigaku Corporation) and obtaining (200), (110) and (211) positive electrode dot diagrams using a Mo ray source. The three-dimensional crystal orientation density function was calculated from the figure.
2. Base material toughness Since the base material toughness is a premise for suppressing the growth of cracks since it has good characteristics, the steel sheet according to the present invention also has a desired brittleness at the Charpy fracture surface transition temperature at 1/4 thickness. It is specified appropriately according to the crack propagation stop characteristics.
板厚50mm以上の厚肉材で、構造安全性を確保する上で目標とされるKca(−10℃)≧6000N/mm3/2の脆性き裂伝播停止性能を得る場合、板厚1/4部におけるシャルピー破面遷移温度は−40℃以下と規定する。 When a brittle crack propagation stopping performance of Kca (−10 ° C.) ≧ 6000 N / mm 3/2 which is a target for ensuring structural safety is obtained with a thick material having a thickness of 50 mm or more, the thickness 1 / The Charpy fracture surface transition temperature at 4 parts is defined as -40 ° C or lower.
上述した特徴を備えた集合組織は、鋼の化学成分と製造条件を適切に選択した場合に得られる。
3.鋼の化学成分
説明において%は質量%とする。
The texture having the above-described features can be obtained when the chemical components and production conditions of steel are appropriately selected.
3. In the description of the chemical composition of steel,% is mass%.
C:0.03〜0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03〜0.20%の範囲に規定した。なお、好ましくは0.05〜0.15%である。
C: 0.03-0.20%
C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.03% or more in order to ensure a desired strength, but if it exceeds 0.20%, the weldability deteriorates. As well as adversely affecting toughness. For this reason, C was specified in the range of 0.03 to 0.20%. In addition, Preferably it is 0.05 to 0.15%.
Si:0.03〜0.50%
Siは脱酸元素として、また、鋼の強化元素として有効であるが、0.03%未満の含有量ではその効果がない。一方、0.50%を超えると鋼の表面性状を損なうばかりか靭性が極端に劣化する。従ってその添加量を0.03%以上、0.50%以下とする。
Si: 0.03-0.50%
Si is effective as a deoxidizing element and as a strengthening element for steel, but if its content is less than 0.03%, it has no effect. On the other hand, if it exceeds 0.50%, the surface properties of the steel are not only impaired, but the toughness is extremely deteriorated. Therefore, the addition amount is set to 0.03% or more and 0.50% or less.
Mn:0.5〜2.2%
Mnは、強化元素として添加する。0.5%より少ないとその効果が十分でなく、2.2%を超えると溶接性が劣化し、鋼材コストも上昇するため、0.5%以上、2.2%以下とする。
Mn: 0.5 to 2.2%
Mn is added as a strengthening element. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.2%, the weldability deteriorates and the steel material cost also rises, so the content is made 0.5% to 2.2%.
Al:0.005〜0.08%
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とするが、0.08%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005〜0.08%の範囲に規定した。なお、好ましくは、0.02〜0.04%である。
Al: 0.005 to 0.08%
Al acts as a deoxidizer, and for this purpose, it needs to contain 0.005% or more. However, if it contains more than 0.08%, it reduces the toughness and, when welded, weld metal Reduce the toughness of the part. For this reason, Al was specified in the range of 0.005 to 0.08%. In addition, Preferably, it is 0.02 to 0.04%.
P、S
P、Sは、鋼中の不可避不純物であるが、Pは0.03%を超え、Sは0.010%を超えると靭性が劣化するため、それぞれ、0.03%以下、0.010%以下とすることが望ましく、より望ましくはそれぞれ、0.02%以下、0.005%以下とする。
P, S
P and S are unavoidable impurities in the steel, but P exceeds 0.03%, and if S exceeds 0.010%, the toughness deteriorates. Therefore, 0.03% or less and 0.010%, respectively. Desirably, the content is preferably 0.02% or less and 0.005% or less, respectively.
N:0.0075%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.0075%を超えると靭性が劣化するため、0.0075%以下とする。
N: 0.0075% or less N combines with Al in the steel, adjusts the crystal grain size at the time of rolling, and strengthens the steel. However, if it exceeds 0.0075%, the toughness deteriorates. 0075% or less.
Ti:0.005〜0.03%
Tiは微量の添加により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.005%以上の添加によって得られるが、0.03%を超える含有は、母材および溶接熱影響部の靭性を低下させるので、添加する場合は、0.005〜0.03%の範囲にするのが好ましい。
Ti: 0.005 to 0.03%
Ti has the effect of forming nitrides, carbides, or carbonitrides by adding a small amount, and refining crystal grains to improve the base material toughness. The effect is obtained by addition of 0.005% or more. However, if the content exceeds 0.03%, the toughness of the base metal and the weld heat-affected zone is lowered. % Is preferable.
Nb:0.005〜0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶域を拡大させる効果をもち、フェライトの細粒化に寄与するので、靭性の改善にも有効である。その効果を得るためには0.005%以上の添加が必要であるが0.05%を超えて添加すると、粗大なNbCが析出し、逆に、靭性の低下を招くので添加する場合は、その上限は0.05%とするのが好ましい。
Nb: 0.005 to 0.05%
Nb precipitates as NbC during ferrite transformation or reheating, and contributes to increasing the strength. In addition, it has the effect of expanding the non-recrystallized region in rolling in the austenite region, and contributes to the refinement of ferrite, so it is also effective in improving toughness. In order to obtain the effect, addition of 0.005% or more is necessary, but when adding over 0.05%, coarse NbC precipitates, and conversely, the toughness is reduced. The upper limit is preferably 0.05%.
以上が本発明の基本成分組成で残部がFeおよび不可避的不純物であるが、更に特性を向上させるため、Cu、Ni、Cr、Mo、V、B、Ca、REMの一種または二種以上を含有することが可能である。 The above is the basic component composition of the present invention, and the balance is Fe and inevitable impurities. However, in order to further improve the characteristics, one or more of Cu, Ni, Cr, Mo, V, B, Ca, and REM are contained. Is possible.
Cu、Ni、Cr、Mo
Cu、Ni、Cr、Moはいずれも鋼の焼入れ性を高める元素である。圧延後の強度アップに直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために添加することができるが、過度の添加は靭性や溶接性を劣化させるため、添加する場合にはそれぞれ上限を0.5%、1.0%、0.5%、0.5%とすることが好ましい。逆に添加量が0.01%未満であるとその効果が現れないため、添加する場合は0.01%以上とすることが好ましい。
Cu, Ni, Cr, Mo
Cu, Ni, Cr, and Mo are all elements that enhance the hardenability of steel. While contributing directly to strength improvement after rolling, it can be added to improve functions such as toughness, high-temperature strength, or weather resistance, but excessive addition degrades toughness and weldability, so when adding The upper limit is preferably 0.5%, 1.0%, 0.5%, and 0.5%, respectively. On the contrary, when the addition amount is less than 0.01%, the effect does not appear. Therefore, when it is added, the addition amount is preferably 0.01% or more.
V:0.001〜0.10%
Vは、V(CN)として析出強化により、鋼の強度を向上する元素であり、0.001%以上含有してもよいが、0.10%を超えて含有すると、靭性を低下させる。このため、添加する場合は、0.001〜0.10%とすることが好ましい。
V: 0.001 to 0.10%
V is an element that improves the strength of the steel by precipitation strengthening as V (CN), and may be contained in an amount of 0.001% or more, but if it exceeds 0.10%, the toughness is lowered. For this reason, when adding, it is preferable to set it as 0.001-0.10%.
B:0.003%以下
Bは微量で鋼の焼き入れ性を高める元素として添加してもよい。しかし、0.003%を超えて含有すると溶接部の靭性を低下させるので、添加する場合は0.003%以下とすることが好ましい。
B: 0.003% or less B may be added as an element that enhances the hardenability of steel in a small amount. However, if the content exceeds 0.003%, the toughness of the welded portion is lowered, so when added, the content is preferably 0.003% or less.
Ca:0.005%以下、REM:0.01%以下
Ca、REMは溶接熱影響部の組織を微細化し靭性を向上させ、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。しかし、過度に添加すると、粗大な介在物を形成し母材の靭性を劣化させるので、添加する場合は上限をそれぞれ0.005%、0.01%とするのが好ましい。
4.製造条件
製造条件はスラブ加熱温度、熱間圧延における再結晶γ域(オーステナイト再結晶温度域ともいう)での累積圧下率、未再結晶γ域(オーステナイト未再結晶温度域ともいう)での累積圧下率および潤滑の条件を設定する。
最近のコンテナ船やバルクキャリアーなど船体外板に用いられるようになった板厚50mm以上の厚肉材で、構造安全性を確保する上で目標とされるKca(−10℃)≧6000N/mm3/2の脆性き裂伝播停止性能を得る場合は、まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とする。ついで、鋼素材を、900〜1200℃の温度に加熱してから熱間圧延を行う。
Ca: 0.005% or less, REM: 0.01% or less Ca and REM are necessary because the structure of the weld heat-affected zone is refined to improve toughness, and even if added, the effects of the present invention are not impaired. It may be added accordingly. However, if added excessively, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when added, the upper limit is preferably made 0.005% and 0.01%, respectively.
4). Manufacturing conditions Manufacturing conditions are slab heating temperature, cumulative rolling reduction in recrystallization γ region (also called austenite recrystallization temperature region) in hot rolling, accumulation in non-recrystallized γ region (also called austenite non-recrystallization temperature region) Set the rolling reduction and lubrication conditions.
Kca (-10 ° C) ≧ 6000N / mm, which is a target for securing structural safety, with thick material of 50mm or more thickness that has been used for hull outer plates such as recent container ships and bulk carriers. In order to obtain 3/2 brittle crack propagation stopping performance, first, molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) by continuous casting or the like. Next, hot rolling is performed after the steel material is heated to a temperature of 900 to 1200 ° C.
加熱温度が900℃未満では、オーステナイト再結晶温度域における圧延を行う時間が十分に確保できず、また、1200℃超えではオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、加熱温度は900〜1200℃とする。靭性の観点から好ましい加熱温度の範囲は1000〜1150℃であり、より好ましくは1000〜1050℃である。 If the heating temperature is less than 900 ° C., sufficient time for rolling in the austenite recrystallization temperature region cannot be secured, and if it exceeds 1200 ° C., the austenite grains become coarse, leading to a decrease in toughness, and oxidation loss becomes significant. Since the yield decreases, the heating temperature is set to 900 to 1200 ° C. The range of preferable heating temperature from a viewpoint of toughness is 1000-1150 degreeC, More preferably, it is 1000-1050 degreeC.
熱間圧延はまず、板厚中央部が再結晶γ域となる温度域で累積圧下率を30%以上の圧延を行う。累積圧下率が30%未満であると、オーステナイトの細粒化が不十分で靭性が向上しない。次に、板厚中央部が未再結晶γ域となる温度域において累積圧下率50%以上の圧延を行う。この温度域での累積圧下率が50%以上でないと集合組織の発達が小さくなり、板厚中央部での{100}<011>方位強度が2.0以上とならない。 In the hot rolling, first, rolling with a cumulative reduction ratio of 30% or more is performed in a temperature range where the central portion of the plate thickness becomes the recrystallization γ region. If the cumulative rolling reduction is less than 30%, the austenite is not sufficiently refined and the toughness is not improved. Next, rolling with a cumulative reduction ratio of 50% or more is performed in a temperature range where the central portion of the plate thickness is an unrecrystallized γ region. If the cumulative rolling reduction in this temperature range is not 50% or more, the development of the texture is small, and the {100} <011> azimuth strength at the central portion of the plate thickness does not become 2.0 or more.
再結晶γ域、および、未再結晶γ域は、当該成分組成を有する鋼に、条件を変化させた熱・加工履歴を与える予備的実験を行うことにより、把握することができる。 The recrystallized γ region and the non-recrystallized γ region can be grasped by conducting a preliminary experiment in which a steel having the component composition is given a heat / working history with varying conditions.
圧延時に使用する潤滑剤の種類については特に規定しないが、以下の要件を満足する潤滑剤を使用する。板厚1/4部での{100}<011>方位強度を1.2以上するために、圧延時の摩擦係数が0.35以下となる潤滑剤を用いることが好ましい。また、厚板の圧延は、薄板の圧延とは異なり外部から張力を負荷することは出来ないため、極端に摩擦係数の低い潤滑剤では鋼板がロールにかみ込むことができない。そこで、圧延時の摩擦係数が0.10以上となる潤滑剤を用いることが好ましい。例えば、鉱油、合成エステル、黒鉛等の固体潤滑剤が利用できる。 The type of lubricant used at the time of rolling is not particularly defined, but a lubricant that satisfies the following requirements is used. In order to increase the {100} <011> orientation strength at a thickness of 1/4 part to 1.2 or more, it is preferable to use a lubricant having a rolling friction coefficient of 0.35 or less. Further, unlike the rolling of a thin plate, the thick plate cannot be tensioned from the outside, so that the steel plate cannot be caught in the roll with a lubricant having an extremely low friction coefficient. Therefore, it is preferable to use a lubricant having a friction coefficient during rolling of 0.10 or more. For example, a solid lubricant such as mineral oil, synthetic ester or graphite can be used.
ロールと鋼板との間の摩擦係数は、予め試験材を用いて、種々の表面粗度のロールを用いた熱間圧延を行い、変形抵抗、板厚、圧下率を含めた熱間圧延条件と計測された圧延荷重から、計算により求めておく。圧延荷重より摩擦係数を求める方法は圧延理論によるが、例えば、Orowanの理論による数値計算が好適に用いられる。 The coefficient of friction between the roll and the steel sheet is determined by performing hot rolling using a roll having various surface roughnesses in advance using a test material, and hot rolling conditions including deformation resistance, sheet thickness, and reduction ratio. It calculates | requires by calculation from the measured rolling load. The method for obtaining the friction coefficient from the rolling load is based on the rolling theory. For example, numerical calculation based on the Orowan theory is preferably used.
本発明で規定する摩擦係数は未再結晶γ域での圧延の時に達成されていればよく、再結晶γ域の圧延において摩擦係数は重要な制御因子ではない。しかし、一連の圧延プロセスにおいて摩擦係数が大きく変化することはないので、再結晶γ域の圧延でも同じ様な摩擦係数となるのが通常である。 The friction coefficient defined in the present invention only needs to be achieved at the time of rolling in the non-recrystallized γ region, and the friction coefficient is not an important control factor in rolling in the recrystallized γ region. However, since the friction coefficient does not change greatly in a series of rolling processes, the same friction coefficient is usually obtained in rolling in the recrystallization γ region.
尚、熱間圧延では規定した温度域外での圧延を制限するものではない。上記規定する温度域で規定の累積圧下がおこなわれていれば規定する組織が得られる。 In hot rolling, rolling outside the specified temperature range is not limited. If the specified cumulative reduction is performed in the specified temperature range, the specified structure can be obtained.
熱間圧延の終了温度は特に限定されるものではないが、圧延能率の観点からは、未再結晶γ域において圧延を終了させることが好ましい。また、本発明においては、再結晶γ域及び未再結晶γ域における圧延により生成した集合組織を活用する観点からも、未再結晶γ域において圧延を終了させることが好ましい。 The end temperature of hot rolling is not particularly limited, but from the viewpoint of rolling efficiency, it is preferable to end rolling in the non-recrystallized γ region. In the present invention, from the viewpoint of utilizing the texture generated by rolling in the recrystallized γ region and the non-recrystallized γ region, the rolling is preferably terminated in the non-recrystallized γ region.
圧延が終了した鋼板は2℃/s以上の冷却速度にて600℃以下まで冷却する。圧延によって導入された、変態および加工集合組織が再結晶により減少するのを防ぐためであり、圧延後には鋼板を低温まで冷却する必要がある。 The rolled steel sheet is cooled to 600 ° C. or lower at a cooling rate of 2 ° C./s or higher. This is in order to prevent transformation and processing texture introduced by rolling from being reduced by recrystallization, and it is necessary to cool the steel sheet to a low temperature after rolling.
冷却速度が2℃/s未満では所望の集合組織が得られないばかりか、鋼板の強度も低下するので、冷却速度は2℃/s以上とする。冷却停止温度が600℃超えの場合、冷却停止後にも再結晶が進行して所望の集合組織が得られないので冷却停止温度は600℃以下とする。 When the cooling rate is less than 2 ° C./s, not only the desired texture is not obtained, but also the strength of the steel sheet is lowered. Therefore, the cooling rate is 2 ° C./s or more. When the cooling stop temperature exceeds 600 ° C., recrystallization proceeds even after the cooling stop and a desired texture cannot be obtained, so the cooling stop temperature is set to 600 ° C. or lower.
なお、これら冷却速度や冷却停止温度は、鋼板の板厚中央部の温度とする。板厚中央部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚中央部の温度が求められる。 In addition, let these cooling rate and cooling stop temperature be the temperature of the plate | board thickness center part of a steel plate. The temperature at the central portion of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the temperature at the center of the plate thickness of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
以上の説明は、板厚が50mm以上の厚肉材について行ったが、せん断歪は、板厚が小さい場合には表層付近に発生するようになるので、板厚中央部における圧延面での{100}<011>方位強度が2.0以上、板厚1/4部における圧延面での{100}<011>方位強度が1.2以上で板厚1/4部におけるシャルピー破面遷移温度が−40℃以下の特性を備える鋼板は、板厚50mm未満の場合も優れた脆性き裂伝播特性を備えることは明らかである。 The above explanation was made for a thick material having a plate thickness of 50 mm or more. However, when the plate thickness is small, the shear strain is generated near the surface layer, so that { 100} <011> Azimuth strength of 2.0 or more, Charpy fracture surface transition temperature at 1/4 thickness of {100} <011> orientation strength at a rolling surface at 1/4 thickness However, it is clear that a steel sheet having a characteristic of −40 ° C. or less has excellent brittle crack propagation characteristics even when the thickness is less than 50 mm.
加速冷却後に焼戻し処理を行うことも可能である。焼き戻しを実施することにより、鋼板の靭性をさらに向上させることができる。この場合、圧延で得られた集合組織を低減させないために、焼戻し温度は鋼板平均温度としてAc1点以下で行うこととする。本発明ではAc1点(℃)を下式で求める。
Ac1点=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B
式において各元素記号は鋼中含有量(質量%)で、含有しない場合は0とする。
It is also possible to perform tempering after accelerated cooling. By performing tempering, the toughness of the steel sheet can be further improved. In this case, in order not to reduce the texture obtained by rolling, the tempering temperature is set to an average steel plate temperature of Ac1 point or less. In this invention, Ac1 point (degreeC) is calculated | required by the following Formula.
Ac1 point = 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B
In the formula, each element symbol is the content (% by mass) in steel, and 0 if not contained.
鋼板の平均温度も、板厚中央部の温度と同様、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。 The average temperature of the steel sheet is also obtained by simulation calculation or the like from the sheet thickness, surface temperature, cooling conditions, and the like, similarly to the temperature at the center of the sheet thickness.
表1に示す各組成の溶鋼(鋼記号A〜J)を、転炉で溶製し、連続鋳造法で鋼素材(スラブ280mm厚)とし、板厚50〜80mmに熱間圧延後、冷却を行いNo.1〜27の供試鋼を得た。表2に製造条件を示す。なお、本実施例においては、潤滑剤として鉱油を用いた。 Molten steel (steel symbols A to J) of each composition shown in Table 1 is melted in a converter, made into a steel material (slab 280 mm thick) by a continuous casting method, and after hot rolling to a plate thickness of 50 to 80 mm, cooling is performed. No. 1-27 test steels were obtained. Table 2 shows the manufacturing conditions. In this example, mineral oil was used as the lubricant.
得られた厚鋼板について、板厚の1/4部よりΦ14mmのJIS14A号試験片を試験片の長手方向が圧延方向と直角となるように採取し、引張試験を行い、降伏点(YS)、引張強さ(TS)を測定した。また、板厚の1/4部よりJIS4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、破面遷移温度(vTrs)を求めた。板厚1/4部におけるシャルピー破面遷移温度が―40℃以下のものを本発明範囲内とした。 About the obtained thick steel plate, a JIS14A test piece having a diameter of 14 mm from 1/4 part of the plate thickness was collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction, a tensile test was performed, and the yield point (YS), Tensile strength (TS) was measured. In addition, a JIS No. 4 impact test piece was taken from 1/4 part of the plate thickness so that the direction of the longitudinal axis of the test piece was parallel to the rolling direction, and a Charpy impact test was conducted to determine the fracture surface transition temperature (vTrs). Asked. The Charpy fracture surface transition temperature at ¼ part of the plate thickness was within the range of the present invention within −40 ° C.
また、鋼板の集合組織を評価するため、板厚中央部における圧延面での{100}<011>方位強度と、板厚1/4部における圧延面での{100}<011>方位強度を測定した。方位強度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて(200)、(110)および(211)正極点図を求め、得られた正極点図から3次元結晶方位密度関数を計算することにより求めた。 Further, in order to evaluate the texture of the steel sheet, the {100} <011> azimuth strength at the rolling surface at the central portion of the plate thickness and the {100} <011> azimuth strength at the rolling surface at the ¼ portion of the plate thickness. It was measured. The azimuth strength is 3 from the obtained positive electrode point diagram using an X-ray diffractometer (manufactured by Rigaku Corporation), obtaining (200), (110) and (211) positive electrode point diagrams using a Mo ray source It was determined by calculating the dimensional crystal orientation density function.
次に、脆性き裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、Kca(−10℃)を求めた。 Next, in order to evaluate the brittle crack propagation stop characteristic, a temperature gradient type ESSO test was performed to obtain Kca (−10 ° C.).
表3にこれらの試験結果を示す。板厚中央部、板厚1/4部における集合組織が本発明の範囲内である供試鋼板(製造番号1〜13)の場合、Kca(−10℃)=6100〜7700N/mm3/2と優れた脆性き裂伝播停止性能を示した。 Table 3 shows the results of these tests. In the case of a test steel plate (manufacturing numbers 1 to 13) in which the texture at the center of the plate thickness and 1/4 of the plate thickness is within the scope of the present invention, Kca (−10 ° C.) = 6100 to 7700 N / mm 3/2 And showed excellent brittle crack propagation stopping performance.
一方、鋼板の成分組成が本発明範囲外の供試鋼板および製造条件が本発明範囲外で、鋼板の集合組織が本発明の規定を満たさない鋼板(製造番号14〜27)ではKcaの値は5400N/mm3/2以下で本発明例に及ばなかった。 On the other hand, in the case of the test steel sheet whose component composition is outside the scope of the present invention and the production conditions are outside the scope of the present invention and the steel sheet whose texture does not meet the provisions of the present invention (manufacturing numbers 14 to 27), the value of Kca is It was 5400 N / mm 3/2 or less and did not reach the examples of the present invention.
Claims (4)
板厚中央部における圧延面での{100}<011>方位強度が2.0以上3.0以下、かつ板厚1/4部における圧延面での{100}<011>方位強度が1.2以上の集合組織を有し、板厚1/4部におけるシャルピー破面遷移温度が−40℃以下であることを特徴とする脆性き裂伝播停止特性に優れた構造用高強度厚鋼板。 Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.50%, Mn: 0.5-2.2%, A1: 0.005-0.08 %, P: 0.03% or less, S: 0.010% or less, N: 0.0075% or less, Ti: 0.005 to 0.03%, Nb: 0.005 to 0.05% Furthermore, any one of Cu: 0.01 to 0.5%, Ni: 0.01 to 1.0%, Cr: 0.01 to 0.5%, Mo: 0.01 to 0.5% Containing seeds, or two or more species, the balance consisting of Fe and inevitable impurities,
The {100} <011> orientation strength at the rolling surface at the center of the plate thickness is 2.0 or more and 3.0 or less , and the {100} <011> orientation strength at the rolling surface at the 1/4 thickness portion is 1. A structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics, having a texture of 2 or more and having a Charpy fracture surface transition temperature at ¼ part of a plate thickness of −40 ° C. or lower.
900〜1200℃の温度に加熱した鋼素材を、板厚中央部が再結晶γ域となる温度域で累積圧下率30%以上、板厚中央部が未再結晶γ域となる温度域において累積圧下率50%以上の圧延を圧延時の摩擦係数が0.35以下の潤滑剤を用いて行い、その後2℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性き裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。 A method for producing the structural high-strength thick steel plate according to claim 1 or 2,
A steel material heated to a temperature of 900 to 1200 ° C., in a temperature range in which the central portion of the plate thickness becomes a recrystallized γ region, the cumulative reduction ratio is 30% or more, and in the central region of the plate thickness becomes a non-recrystallized γ region. Brittleness characterized in that rolling with a cumulative rolling reduction of 50% or more is performed using a lubricant having a rolling friction coefficient of 0.35 or less and then cooled to 600 ° C. or less at a cooling rate of 2 ° C./s or more. A manufacturing method for structural high-strength thick steel plates with excellent crack propagation stopping properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012105733A JP5949113B2 (en) | 2011-11-28 | 2012-05-07 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011258438 | 2011-11-28 | ||
JP2011258438 | 2011-11-28 | ||
JP2012105733A JP5949113B2 (en) | 2011-11-28 | 2012-05-07 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013136827A JP2013136827A (en) | 2013-07-11 |
JP5949113B2 true JP5949113B2 (en) | 2016-07-06 |
Family
ID=48912764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012105733A Active JP5949113B2 (en) | 2011-11-28 | 2012-05-07 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5949113B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150002884A (en) * | 2012-05-21 | 2015-01-07 | 제이에프이 스틸 가부시키가이샤 | High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same |
JP6682967B2 (en) * | 2016-04-06 | 2020-04-15 | 日本製鉄株式会社 | Steel plate and method of manufacturing the same |
KR101999015B1 (en) | 2017-12-24 | 2019-07-10 | 주식회사 포스코 | Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof |
JPWO2020116538A1 (en) * | 2018-12-07 | 2021-02-15 | Jfeスチール株式会社 | Steel plate and its manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5181460B2 (en) * | 2006-10-31 | 2013-04-10 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
KR100868423B1 (en) * | 2006-12-26 | 2008-11-11 | 주식회사 포스코 | Hot-rolled high strength API-90 grade steel and manufacturing method for spiral steel pipe |
JP5035199B2 (en) * | 2007-11-09 | 2012-09-26 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
JP5146033B2 (en) * | 2008-03-19 | 2013-02-20 | Jfeスチール株式会社 | High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method |
JP5434145B2 (en) * | 2009-03-04 | 2014-03-05 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
JP5477578B2 (en) * | 2010-04-01 | 2014-04-23 | 新日鐵住金株式会社 | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same |
-
2012
- 2012-05-07 JP JP2012105733A patent/JP5949113B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013136827A (en) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5434145B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5304925B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5924058B2 (en) | High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same | |
JP5733425B2 (en) | High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6536514B2 (en) | High strength steel plate for structure excellent in brittle crack propagation arresting property and method of manufacturing the same | |
JP5598617B1 (en) | High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5304924B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5598618B1 (en) | High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5035199B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5949113B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5733424B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5812193B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6112265B2 (en) | High-strength extra heavy steel plate and method for producing the same | |
JP2013129885A (en) | Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property | |
JP6477743B2 (en) | High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same | |
JP6593541B2 (en) | High strength thick steel plate and manufacturing method thereof | |
JP5949114B2 (en) | Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics | |
JP5838801B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP6338022B2 (en) | High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5949113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |