JP5947470B2 - Method for improving substance productivity of microorganisms and kit used for the method - Google Patents
Method for improving substance productivity of microorganisms and kit used for the method Download PDFInfo
- Publication number
- JP5947470B2 JP5947470B2 JP2015557282A JP2015557282A JP5947470B2 JP 5947470 B2 JP5947470 B2 JP 5947470B2 JP 2015557282 A JP2015557282 A JP 2015557282A JP 2015557282 A JP2015557282 A JP 2015557282A JP 5947470 B2 JP5947470 B2 JP 5947470B2
- Authority
- JP
- Japan
- Prior art keywords
- trna
- host cell
- polynucleotide
- deviation
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000005700 microbiome Species 0.000 title claims description 47
- 238000000034 method Methods 0.000 title description 43
- 239000000126 substance Substances 0.000 title description 5
- 108020004566 Transfer RNA Proteins 0.000 claims description 292
- 108090000623 proteins and genes Proteins 0.000 claims description 195
- 102000004169 proteins and genes Human genes 0.000 claims description 143
- 230000014509 gene expression Effects 0.000 claims description 107
- 108091033319 polynucleotide Proteins 0.000 claims description 102
- 102000040430 polynucleotide Human genes 0.000 claims description 102
- 239000002157 polynucleotide Substances 0.000 claims description 102
- 241000894007 species Species 0.000 claims description 63
- 239000013598 vector Substances 0.000 claims description 59
- 150000007523 nucleic acids Chemical class 0.000 claims description 39
- 150000001875 compounds Chemical class 0.000 claims description 38
- 102000039446 nucleic acids Human genes 0.000 claims description 37
- 108020004707 nucleic acids Proteins 0.000 claims description 37
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 241000588724 Escherichia coli Species 0.000 claims description 21
- 230000001965 increasing effect Effects 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 17
- 108090000790 Enzymes Proteins 0.000 claims description 17
- 238000012258 culturing Methods 0.000 claims description 13
- 238000003786 synthesis reaction Methods 0.000 claims description 13
- 230000001131 transforming effect Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 210000004027 cell Anatomy 0.000 description 158
- 108020004705 Codon Proteins 0.000 description 67
- 239000013604 expression vector Substances 0.000 description 43
- 241000187398 Streptomyces lividans Species 0.000 description 20
- 108091026890 Coding region Proteins 0.000 description 17
- 241000187747 Streptomyces Species 0.000 description 17
- 108700010070 Codon Usage Proteins 0.000 description 16
- 239000002609 medium Substances 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 14
- 230000009466 transformation Effects 0.000 description 13
- 241000187432 Streptomyces coelicolor Species 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- OZQAPQSEYFAMCY-QLFBSQMISA-N α-selinene Chemical compound C1CC=C(C)[C@@H]2C[C@H](C(=C)C)CC[C@]21C OZQAPQSEYFAMCY-QLFBSQMISA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 108700026244 Open Reading Frames Proteins 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 241001646716 Escherichia coli K-12 Species 0.000 description 9
- 241001446311 Streptomyces coelicolor A3(2) Species 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 241000588722 Escherichia Species 0.000 description 8
- OZQAPQSEYFAMCY-UHFFFAOYSA-N alpha-selinene Natural products C1CC=C(C)C2CC(C(=C)C)CCC21C OZQAPQSEYFAMCY-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 108020005091 Replication Origin Proteins 0.000 description 7
- 108700005078 Synthetic Genes Proteins 0.000 description 7
- 241000186361 Actinobacteria <class> Species 0.000 description 6
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 108091093128 TRNADB Proteins 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- FJXLZNSVOSVTPH-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-2-one Chemical compound C1CN2C(=O)CC1CC2 FJXLZNSVOSVTPH-UHFFFAOYSA-N 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 108010026552 Proteome Proteins 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000012136 culture method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000002054 inoculum Substances 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 239000001974 tryptic soy broth Substances 0.000 description 5
- 108020005098 Anticodon Proteins 0.000 description 4
- 102000003712 Complement factor B Human genes 0.000 description 4
- 108090000056 Complement factor B Proteins 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 241001464778 Zymobacter Species 0.000 description 4
- 150000003862 amino acid derivatives Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- YOVSPTNQHMDJAG-UHFFFAOYSA-N beta-helmiscapene Natural products C1CCC(=C)C2CC(C(=C)C)CCC21C YOVSPTNQHMDJAG-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- VPQBJIRQUUEAFC-UHFFFAOYSA-N selinene Natural products C1CC=C(C)C2CC(C(C)C)CCC21C VPQBJIRQUUEAFC-UHFFFAOYSA-N 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 150000003505 terpenes Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000186063 Arthrobacter Species 0.000 description 3
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 241000186216 Corynebacterium Species 0.000 description 3
- 108010006035 Metalloproteases Proteins 0.000 description 3
- 241000187392 Streptomyces griseus Species 0.000 description 3
- NSFFHOGKXHRQEW-UHFFFAOYSA-N Thiostrepton B Natural products N1C(=O)C(C)NC(=O)C(=C)NC(=O)C(C)NC(=O)C(C(C)CC)NC(C(C2=N3)O)C=CC2=C(C(C)O)C=C3C(=O)OC(C)C(C=2SC=C(N=2)C2N=3)NC(=O)C(N=4)=CSC=4C(C(C)(O)C(C)O)NC(=O)C(N=4)CSC=4C(=CC)NC(=O)C(C(C)O)NC(=O)C(N=4)=CSC=4C21CCC=3C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 238000011218 seed culture Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229930188070 thiostrepton Natural products 0.000 description 3
- NSFFHOGKXHRQEW-AIHSUZKVSA-N thiostrepton Chemical compound C([C@]12C=3SC=C(N=3)C(=O)N[C@H](C(=O)NC(/C=3SC[C@@H](N=3)C(=O)N[C@H](C=3SC=C(N=3)C(=O)N[C@H](C=3SC=C(N=3)[C@H]1N=1)[C@@H](C)OC(=O)C3=CC(=C4C=C[C@H]([C@@H](C4=N3)O)N[C@H](C(N[C@@H](C)C(=O)NC(=C)C(=O)N[C@@H](C)C(=O)N2)=O)[C@@H](C)CC)[C@H](C)O)[C@](C)(O)[C@@H](C)O)=C\C)[C@@H](C)O)CC=1C1=NC(C(=O)NC(=C)C(=O)NC(=C)C(N)=O)=CS1 NSFFHOGKXHRQEW-AIHSUZKVSA-N 0.000 description 3
- 229940063214 thiostrepton Drugs 0.000 description 3
- NSFFHOGKXHRQEW-OFMUQYBVSA-N thiostrepton A Natural products CC[C@H](C)[C@@H]1N[C@@H]2C=Cc3c(cc(nc3[C@H]2O)C(=O)O[C@H](C)[C@@H]4NC(=O)c5csc(n5)[C@@H](NC(=O)[C@H]6CSC(=N6)C(=CC)NC(=O)[C@@H](NC(=O)c7csc(n7)[C@]8(CCC(=N[C@@H]8c9csc4n9)c%10nc(cs%10)C(=O)NC(=C)C(=O)NC(=C)C(=O)N)NC(=O)[C@H](C)NC(=O)C(=C)NC(=O)[C@H](C)NC1=O)[C@@H](C)O)[C@](C)(O)[C@@H](C)O)[C@H](C)O NSFFHOGKXHRQEW-OFMUQYBVSA-N 0.000 description 3
- 238000011426 transformation method Methods 0.000 description 3
- -1 α-serinene Chemical class 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 2
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 2
- 241000228251 Aspergillus phoenicis Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000555281 Brevibacillus Species 0.000 description 2
- 241000534630 Brevibacillus choshinensis Species 0.000 description 2
- 241000186146 Brevibacterium Species 0.000 description 2
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 241001467578 Microbacterium Species 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241000191025 Rhodobacter Species 0.000 description 2
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 241000235346 Schizosaccharomyces Species 0.000 description 2
- 241001468227 Streptomyces avermitilis Species 0.000 description 2
- 241000315804 Streptomyces avermitilis MA-4680 = NBRC 14893 Species 0.000 description 2
- 241000892502 Streptomyces lividans 1326 Species 0.000 description 2
- 241000531819 Streptomyces venezuelae Species 0.000 description 2
- 241000588901 Zymomonas Species 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000014726 immortalization of host cell Effects 0.000 description 2
- 230000008099 melanin synthesis Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101150091320 ptlB gene Proteins 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 229930000044 secondary metabolite Natural products 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000001419 two-dimensional polyacrylamide gel electrophoresis Methods 0.000 description 2
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 description 2
- 108010035061 (-)-alpha-pinene synthase Proteins 0.000 description 1
- ZKMZPXWMMSBLNO-UHFFFAOYSA-N 1-azabicyclo[2.2.2]octan-3-one Chemical compound C1CC2C(=O)CN1CC2 ZKMZPXWMMSBLNO-UHFFFAOYSA-N 0.000 description 1
- GZSOSUNBTXMUFQ-NJGQXECBSA-N 5,7,3'-Trihydroxy-4'-methoxyflavone 7-O-rutinoside Natural products O(C[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](Oc2cc(O)c3C(=O)C=C(c4cc(O)c(OC)cc4)Oc3c2)O1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1 GZSOSUNBTXMUFQ-NJGQXECBSA-N 0.000 description 1
- VTIKDEXOEJDMJP-UHFFFAOYSA-N Actinorhodine Natural products CC1OC(CC(=O)O)CC2=C1C(=O)c3c(O)c(cc(O)c3C2=O)c4cc(O)c5C(=O)C6=C(C(C)OC(CC(=O)O)C6)C(=O)c5c4O VTIKDEXOEJDMJP-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 108010002084 Apoferritins Proteins 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- 101150097493 D gene Proteins 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001303799 Herpetosiphon aurantiacus DSM 785 Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 241000186805 Listeria innocua Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241001524101 Rhodococcus opacus Species 0.000 description 1
- 241000187693 Rhodococcus rhodochrous Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000186988 Streptomyces antibioticus Species 0.000 description 1
- 101100001626 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) pepP2 gene Proteins 0.000 description 1
- 241001222752 Streptomyces granaticolor Species 0.000 description 1
- 241000026193 Streptomyces septatus Species 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 108700040099 Xylose isomerases Proteins 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- VTIKDEXOEJDMJP-WYUUTHIRSA-N actinorhodin Chemical compound C([C@@H](CC(O)=O)O[C@@H]1C)C(C(C2=C(O)C=3)=O)=C1C(=O)C2=C(O)C=3C(C(=C1C2=O)O)=CC(O)=C1C(=O)C1=C2[C@@H](C)O[C@H](CC(O)=O)C1 VTIKDEXOEJDMJP-WYUUTHIRSA-N 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- NPNUFJAVOOONJE-UONOGXRCSA-N caryophyllene Natural products C1CC(C)=CCCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-UONOGXRCSA-N 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GZSOSUNBTXMUFQ-YFAPSIMESA-N diosmin Chemical compound C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)O1 GZSOSUNBTXMUFQ-YFAPSIMESA-N 0.000 description 1
- 229960004352 diosmin Drugs 0.000 description 1
- IGBKNLGEMMEWKD-UHFFFAOYSA-N diosmin Natural products COc1ccc(cc1)C2=C(O)C(=O)c3c(O)cc(OC4OC(COC5OC(C)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 IGBKNLGEMMEWKD-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 101150081397 dps gene Proteins 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 150000003881 polyketide derivatives Chemical class 0.000 description 1
- VIZAVBQHHMQOQF-KKUJBODISA-N porphyra-334 Chemical compound COC1=C(NCC(O)=O)CC(O)(CO)C\C1=N\[C@H]([C@H](C)O)C(O)=O VIZAVBQHHMQOQF-KKUJBODISA-N 0.000 description 1
- VIZAVBQHHMQOQF-UHFFFAOYSA-N porphyra-334 Natural products COC1=C(CC(O)(CO)C/C/1=NC(C(C)O)C(=O)O)NCC(=O)O VIZAVBQHHMQOQF-UHFFFAOYSA-N 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000009712 regulation of translation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- 108010050327 trypticase-soy broth Proteins 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
- C12P1/02—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
- C12P1/04—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
- C12P1/06—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、微生物による物質生産性を向上させる方法、ならびに該方法に用いる改変宿主細胞およびキットに関する。 The present invention relates to a method for improving substance productivity by microorganisms, and a modified host cell and kit used in the method.
微生物を利用したタンパク質組換え発現等の物質生産技術は、種々の有用物質の生産に用いられている。微生物を用いて目的物質を工業的に大量生産するためには、目的タンパク質自体、あるいは目的化合物の生合成に関与する酵素タンパク質等の発現効率を高めることが求められる。 Substance production techniques such as recombinant protein expression using microorganisms are used to produce various useful substances. In order to industrially mass-produce target substances using microorganisms, it is required to increase the expression efficiency of target proteins themselves or enzyme proteins involved in biosynthesis of target compounds.
微生物を宿主細胞として用いるタンパク質の組換え発現においては、該タンパク質をコードする遺伝子が該宿主細胞において使用頻度の低い所謂レアコドンを含むことによる発現効率の低下が問題となり得る。かかる問題を解決する手段としては、(1)タンパク質をコードする遺伝子のヌクレオチド配列中に存在するレアコドンを、宿主細胞における使用頻度の高い同義コドンに置換した改変遺伝子をタンパク質発現に用いる方法(いわゆるコドン最適化)(特許文献2)、(2)レアコドンに対応するtRNAをコードする遺伝子を宿主細胞に導入し、該tRNAの供給量を増大させる方法等が知られている(特許文献1、特許文献3、非特許文献1〜3)。
In the recombinant expression of a protein using a microorganism as a host cell, a decrease in expression efficiency due to a gene encoding the protein containing a so-called rare codon that is not frequently used in the host cell can be a problem. As means for solving such problems, (1) a method in which a modified gene in which a rare codon present in a nucleotide sequence of a gene encoding a protein is replaced with a synonymous codon frequently used in a host cell is used for protein expression (so-called codon) (Optimization) (Patent Document 2), (2) A method of introducing a gene encoding a tRNA corresponding to a rare codon into a host cell and increasing the supply amount of the tRNA is known (
しかし、上記のコドン最適化は、目的タンパク質が多種類に及ぶ場合、各々のタンパク質についてコード遺伝子を改変する手間が大きい。また、異なる宿主細胞を用いる場合には再度のコドン最適化が必要になる。さらに、目的タンパク質が同種タンパク質(宿主細胞として用いる微生物と同じ生物種に由来するタンパク質)である場合、該タンパク質をコードするヌクレオチド配列は通常、該微生物のコドン使用頻度に適合しており、レアコドンを含まない場合が多いため、上記の方法ではタンパク質発現量を増大させることができないケースが多い。 However, the above-mentioned codon optimization requires a lot of time and effort to modify the coding gene for each protein when there are many kinds of target proteins. In addition, when different host cells are used, codon optimization is required again. Furthermore, when the target protein is a homologous protein (a protein derived from the same species as the microorganism used as the host cell), the nucleotide sequence encoding the protein is usually adapted to the codon usage of the microorganism, and a rare codon is used. In many cases, the amount of protein expression cannot be increased by the above-mentioned methods because they are not included.
そこで、微生物において種々のタンパク質の生産効率を向上させることができる新たなタンパク質発現改良技術の開発が求められている。 Therefore, development of a new protein expression improvement technique that can improve the production efficiency of various proteins in microorganisms is required.
本発明は、タンパク質の種類や由来生物種を問わず、微生物におけるタンパク質の発現量を増大させ得る方法を提供することを目的とする。また、本発明は、微生物における化合物の生産性を向上させる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of increasing the expression level of a protein in a microorganism regardless of the type of protein or the species of origin. Another object of the present invention is to provide a method for improving the productivity of a compound in a microorganism.
本発明者らは、微生物を宿主細胞として用いるタンパク質の生産に関し、宿主細胞が有するtRNAの中に、該宿主細胞における供給量に対して宿主細胞内の全タンパク質コード配列の翻訳における使用頻度が高いtRNAが存在すること、および、かかる使用頻度の高いtRNAをコードする遺伝子を該宿主細胞に導入して発現させることにより、該宿主細胞におけるタンパク質の発現量を増大させ得ることを見出した。 The present inventors relate to the production of a protein using a microorganism as a host cell, and the tRNA possessed by the host cell is frequently used in the translation of the entire protein coding sequence in the host cell relative to the supply amount in the host cell. It was found that tRNA exists and that the expression level of the protein in the host cell can be increased by introducing and expressing a gene encoding such a frequently used tRNA in the host cell.
本発明は、宿主細胞内の供給量に対して使用頻度の高いtRNA(後述の「高稼働tRNA」)を補充することに基づく、タンパク質発現用の改変宿主細胞、該改変宿主細胞の製造方法、宿主細胞を改変するための核酸分子、ベクターおよびキット、ならびに微生物による化合物の生産性を向上させる方法等を提供する。 The present invention relates to a modified host cell for protein expression, a method for producing the modified host cell based on supplementing a frequently used tRNA (hereinafter referred to as “highly active tRNA”) with respect to the supply amount in the host cell, Nucleic acid molecules, vectors and kits for modifying host cells, methods for improving the productivity of compounds by microorganisms, and the like are provided.
より具体的には、本発明は、以下に記載する態様を提供する:
(1)タンパク質発現用の改変宿主細胞であって、
(a)下記式の通り定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド、および/または
(b)下記式の通り定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド
が導入された改変宿主細胞(第一の態様);
(2)宿主細胞が属する生物種と同属の生物種に由来するタンパク質の発現に用いるものである、(1)に記載の改変宿主細胞;
(3)tRNAをコードするポリヌクレオチドであって、未改変の宿主細胞のゲノム中には存在しないポリヌクレオチドがさらに導入された、(1)または(2)に記載の改変宿主細胞;
(4)以下の工程を含む、タンパク質発現用改変宿主細胞の製造方法(第二の態様):
(i)宿主細胞を提供する工程; および
(ii)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを用いて該宿主細胞を形質転換する工程;
(5)宿主細胞を改変するために用いる、以下を含む核酸分子またはベクター(第三の態様):
(A)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド、および/または
(B)(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド;
(6)宿主細胞を改変するために用いる、以下を含むキット(第四の態様):
(A)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド、および/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド; および
(B)該ポリヌクレオチドを組み込むことができるベクターであって、宿主細胞を形質転換するために用いるベクター;
(7)タンパク質発現用の改変宿主細胞を製造するための、以下を含むキット(第五の態様):
(A)宿主細胞; および
(B)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクター;
(8)タンパク質発現用の改変宿主細胞を製造するための、以下を含むキット(第六の態様):
(A)宿主細胞;
(B)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド; および
(C)該ポリヌクレオチドを組み込むことができるベクターであって、宿主細胞を形質転換するために用いるベクター;
(9)以下の工程を含む、微生物による化合物の生産性を向上させる方法(第七の態様):
(i)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを提供する工程; および
(ii)該核酸分子またはベクターを用いて微生物を形質転換する工程;
(10)(9)の方法によって得られる改変微生物であって、未改変の同一種の微生物と比較して増大した化合物生産性を有する微生物(第八の態様);
(11)以下の工程を含む、化合物の生産方法(第九の態様):
(i)(a)該化合物の合成反応を触媒する酵素をコードするポリヌクレオチドならびに(b)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(c)(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドが導入された宿主細胞を提供する工程; および
(ii)該宿主細胞を培養する工程; ならびに
(12)以下の工程を含む、化合物の生産方法(第十の態様):
(i)該化合物の合成反応を触媒する酵素をコードするポリヌクレオチドを含む核酸分子またはベクターを提供する工程;
(ii)(1)において定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または(1)において定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを提供する工程;
(iii)(i)および(ii)の核酸分子またはベクターを用いて宿主細胞を形質転換する工程; および
(iv)該形質転換された宿主細胞を培養する工程。More specifically, the present invention provides the embodiments described below:
(1) a modified host cell for protein expression,
(A) a polynucleotide encoding at least one tRNA having a deviation value of availability factor A defined by the following formula of 70 or more, and / or (b) a deviation of availability factor B defined by the formula below A modified host cell into which a polynucleotide encoding at least one tRNA having a value of 70 or more has been introduced (first embodiment);
(2) The modified host cell according to (1), which is used for expression of a protein derived from a biological species to which the host cell belongs;
(3) The modified host cell according to (1) or (2), further introduced with a polynucleotide encoding tRNA, which is not present in the genome of the unmodified host cell;
(4) A method for producing a modified host cell for protein expression, comprising the following steps (second embodiment):
(I) providing a host cell; and (ii) a polynucleotide encoding at least one tRNA having a deviation in operating rate A as defined in (1) of 70 or more and / or defined in (1) A step of transforming the host cell with a nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA having a deviation value of availability factor B of 70 or more;
(5) A nucleic acid molecule or vector comprising the following, which is used to modify a host cell (third aspect):
(A) a polynucleotide encoding at least one tRNA having a deviation value of utilization rate A defined in (1) of 70 or more, and / or (B) deviation of utilization rate B defined in (1) A polynucleotide encoding at least one tRNA having a value of 70 or greater;
(6) A kit comprising the following, which is used for modifying a host cell (fourth embodiment):
(A) A polynucleotide encoding at least one tRNA having a deviation value of availability factor A defined in (1) of 70 or more and / or a deviation value of availability factor B defined in (1) is 70. A polynucleotide encoding at least one tRNA as described above; and (B) a vector into which the polynucleotide can be incorporated, the vector being used to transform a host cell;
(7) A kit comprising the following for producing a modified host cell for protein expression (fifth aspect):
(A) a host cell; and (B) a polynucleotide encoding at least one tRNA having a deviation value of the availability A defined in (1) of 70 or more and / or the availability defined in (1). A nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA having a B deviation value of 70 or greater;
(8) A kit comprising the following for producing a modified host cell for protein expression (sixth aspect):
(A) a host cell;
(B) A polynucleotide encoding at least one tRNA having a deviation value of availability A defined in (1) of 70 or more and / or a deviation value of availability B defined in (1) of 70 or more. A polynucleotide encoding at least one tRNA which is; and (C) a vector into which the polynucleotide can be incorporated, the vector being used to transform a host cell;
(9) A method for improving the productivity of a compound by a microorganism, comprising the following steps (seventh aspect):
(I) A polynucleotide encoding at least one tRNA having a deviation value of availability factor A defined in (1) of 70 or more and / or a deviation value of availability factor B defined in (1) is 70 or more. Providing a nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA, and (ii) transforming a microorganism with the nucleic acid molecule or vector;
(10) A modified microorganism obtained by the method of (9), which has an increased compound productivity as compared with an unmodified microorganism of the same species (eighth aspect);
(11) A method for producing a compound comprising the following steps (ninth aspect):
(I) (a) a polynucleotide encoding an enzyme that catalyzes the synthesis reaction of the compound, and (b) encoding at least one tRNA having a deviation in operating rate A defined in (1) of 70 or more. (Ii) providing a host cell into which a polynucleotide and / or a polynucleotide encoding at least one tRNA that has a deviation value of availability B as defined in (c) of (1) is 70 or more; and (ii) ) Culturing the host cell; and (12) a method for producing a compound comprising the following steps (tenth embodiment):
(I) providing a nucleic acid molecule or vector comprising a polynucleotide encoding an enzyme that catalyzes a synthesis reaction of the compound;
(Ii) A polynucleotide encoding at least one tRNA having a deviation value of availability A defined in (1) of 70 or more and / or a deviation value of availability B defined in (1) of 70 or more. Providing a nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA which is
(Iii) transforming a host cell with the nucleic acid molecule or vector of (i) and (ii); and (iv) culturing the transformed host cell.
本発明の改変宿主細胞は、高稼働tRNAをコードする遺伝子の導入により、該tRNAの供給量が増大している。その結果、本発明の改変宿主細胞は、種々のタンパク質について、非改変宿主細胞と比較して増大したタンパク質発現量を達成することができる。また、本発明に係る高稼働tRNAをコードする遺伝子の導入は、微生物が有する化合物の生合成酵素等を含むあらゆるタンパク質の発現を増大させ得るため、微生物による二次代謝産物等の有用物質の生産性を向上させることもできる。 In the modified host cell of the present invention, the supply amount of the tRNA is increased by introduction of a gene encoding a high-performance tRNA. As a result, the modified host cell of the present invention can achieve an increased protein expression level for various proteins compared to the unmodified host cell. In addition, since the introduction of a gene encoding a highly active tRNA according to the present invention can increase the expression of all proteins including biosynthetic enzymes of compounds possessed by microorganisms, production of useful substances such as secondary metabolites by microorganisms It can also improve the performance.
本明細書において、「宿主細胞」とは、例えばタンパク質の組換え発現や遺伝子クローニング等に用いる目的で、外部から遺伝因子(典型的には組換え核酸)が導入される細胞をいう。用い得る宿主細胞の種類としては、微生物細胞、動物細胞(例えば哺乳動物細胞や昆虫細胞)、植物細胞等が挙げられる。本発明の好ましい態様においては、宿主細胞として微生物細胞を用いる。 In the present specification, the “host cell” refers to a cell into which a genetic factor (typically a recombinant nucleic acid) is introduced from the outside for the purpose of, for example, recombinant expression of a protein or gene cloning. Examples of the types of host cells that can be used include microbial cells, animal cells (for example, mammalian cells and insect cells), plant cells, and the like. In a preferred embodiment of the present invention, microbial cells are used as host cells.
本発明の第一から第六ならびに第九および第十の態様において、宿主細胞は、好ましくは、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Brevibacillus属、Microbacterium属、Pseudomonas属、Aspergillus属、Arthrobacter属、Rhodobacter属、Rhodococcus属、Streptomyces属、Zymomonas属, Novosphigobium属、Saccharomyces属、Schizosaccharomyces属、Zymobacter属等に属する微生物等を挙げることができる。該微生物の具体例としては、例えば、Aspergillus niger、Aspergillus oryzae、Aspergillus phoenicis、Bacillus amyloliquefaciens、Bacillus licheniformis、Bacillus subtilis、Brevibacillus choshinensis、Corynebacterium ammoniagenes、Corynebacterium glutamicum、Escherichia coli、Psudomonas putida、Rhodococcus rhodochrous、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Streptomyces avermitilis、Streptomyces coelicolor、Streptomyces lividans、Streptomyces griseus、Streptomyces venezuelae、Zymobacter palmaem、Zymomonas mobilis等が挙げられる。一つの態様において、宿主細胞はStreptomyces属またはEscherichia属の微生物である。Streptomyces属の微生物としては、例えばStreptomyces lividans(例えば Sterptomyces lividans 1326株)を用いることができる。また、Streptomyces lividansに限らず、Streptomyces属のうち性状が詳しく解析されている種もしくは株を用いることができる。Escherichia属の微生物としては、例えばEscherichia coli(例えば Escherichia coli K12株)を用いることができる。また、Escherichia coliに限らず、Escherichia属のうち性状が詳しく解析されている種もしくは株を用いることができる。一つの態様において、宿主細胞はStreptomyces lividansまたはEscherichia coliである。 In the first to sixth and ninth and tenth aspects of the present invention, the host cell is preferably Escherichia, Corynebacterium, Brevibacterium, Bacillus, Brevibacillus, Microbacterium, Pseudomonas, Aspergillus, Arthrobacter, Arthrobacter Examples include microorganisms belonging to the genus, Rhodobacter genus, Rhodococcus genus, Streptomyces genus, Zymomonas genus, Novosphigobium genus, Saccharomyces genus, Schizosaccharomyces genus, Zymobacter genus and the like. Specific examples of such microorganisms include, for example, Aspergillus niger, Aspergillus oryzae, Aspergillus phoenicis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus subtilis, Brevibacillus choshinensis, Corynebacterium ammoniagenes, Corynebacterium glutamicum, Scherichia coli, rhosc pombe, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces lividans, Streptomyces griseus, Streptomyces venezuelae, Zymobacter palmaem, Zymomonas mobilis and the like. In one embodiment, the host cell is a microorganism of the genus Streptomyces or Escherichia. As a microorganism belonging to the genus Streptomyces, for example, Streptomyces lividans (for example, Sterptomyces lividans 1326 strain) can be used. Further, not limited to Streptomyces lividans, species or strains whose properties are analyzed in detail among the genus Streptomyces can be used. As a microorganism belonging to the genus Escherichia, for example, Escherichia coli (for example, Escherichia coli K12 strain) can be used. Moreover, not only Escherichia coli but the seed | species or strain | stump | stock whose property is analyzed in detail among the genus Escherichia can be used. In one embodiment, the host cell is Streptomyces lividans or Escherichia coli.
本明細書において、「コドン使用頻度」とは、宿主細胞のゲノムに存在するタンパク質コード配列中における各コドンの出現頻度を意味する。本明細書においては、一定個数のコドンあたりの出現回数(例えばXX回/1,000コドン等)により表す。本明細書において用いる「ゲノム」の用語には、染色体だけでなくプラスミド等の染色体外遺伝因子も含まれるものとする。したがって、「ゲノムにコードされている全てのタンパク質のコード配列」には、染色体に存在するタンパク質コード配列に加えて、プラスミド等の染色体外遺伝因子に存在するタンパク質コード配列が含まれる。 As used herein, “codon usage frequency” means the frequency of occurrence of each codon in a protein coding sequence present in the genome of a host cell. In the present specification, it is represented by the number of appearances per certain number of codons (for example, XX times / 1,000 codons). As used herein, the term “genome” includes not only chromosomes but also extrachromosomal genetic elements such as plasmids. Therefore, the “coding sequence of all proteins encoded in the genome” includes protein coding sequences present in extrachromosomal genetic elements such as plasmids in addition to protein coding sequences present in chromosomes.
本明細書において、「tRNAの使用頻度」とは、特定のコドンに対応するtRNAをコードするtRNA遺伝子の使用頻度であり、コドン使用頻度と同様に、対応する各コドンの出現頻度として表す(例えばXX回/1,000コドン等)。 In the present specification, the “frequency of use of tRNA” is the frequency of use of a tRNA gene that encodes a tRNA corresponding to a specific codon, and is expressed as the frequency of appearance of each corresponding codon, as with the frequency of codon usage (for example, XX times / 1,000 codons).
本明細書において、「タンパク質(の)コード配列」とは、タンパク質のアミノ酸配列をコードする核酸配列をいい、オープンリーディングフレーム(ORF)やコーディング配列(CDS)に相当するものである。かかる核酸配列は、通常はDNA配列またはRNA配列である。 In the present specification, the “protein coding sequence” refers to a nucleic acid sequence that encodes an amino acid sequence of a protein, and corresponds to an open reading frame (ORF) or a coding sequence (CDS). Such a nucleic acid sequence is usually a DNA or RNA sequence.
本発明において、宿主細胞あるいは微生物に導入されるポリヌクレオチド(tRNA遺伝子、タンパク質コード遺伝子)は、転写あるいは翻訳の調節に関与する各種調節配列(例えばプロモーター、エンハンサー、5’非翻訳領域、3’非翻訳領域等)を伴うものであってもよい。これら調節配列は、例えば発現させるタンパク質等に応じて適当なものを選択できるが、特定の配列に限定されるものではない。例えば、所望のプロモーター配列の下流に所望のタンパク質コード配列を連結したポリヌクレオチドを、宿主細胞に導入することができる。 In the present invention, a polynucleotide (tRNA gene, protein-encoding gene) introduced into a host cell or a microorganism is various regulatory sequences involved in the regulation of transcription or translation (for example, promoter, enhancer, 5 ′ untranslated region, 3 ′ non-translated region). It may be accompanied by a translation area or the like. These regulatory sequences can be selected as appropriate depending on, for example, the protein to be expressed, but are not limited to specific sequences. For example, a polynucleotide in which a desired protein coding sequence is linked downstream of a desired promoter sequence can be introduced into a host cell.
本発明の第一の態様は、宿主細胞内における使用頻度の高いtRNAをコードするポリヌクレオチドが導入された改変宿主細胞である。
本発明は、宿主細胞内においてタンパク質コード配列の翻訳における使用頻度が非常に高く、需要に対して供給が不足しているtRNAの存在を見出したことに基づく。本発明は、かかるtRNAを宿主細胞内で過剰発現させることにより、タンパク質翻訳効率を改善し、宿主細胞内におけるタンパク質の発現量を増大させることを特徴とする。The first aspect of the present invention is a modified host cell into which a polynucleotide encoding a frequently used tRNA in the host cell is introduced.
The present invention is based on the discovery of the presence of tRNAs that are very frequently used in the translation of protein coding sequences in host cells and are in short supply for demand. The present invention is characterized by improving the protein translation efficiency and increasing the expression level of the protein in the host cell by overexpressing such tRNA in the host cell.
本明細書において、tRNAの供給量に対する、タンパク質コード配列の翻訳における該tRNAの使用頻度の比率を「稼働率」と称する。また、かかる稼働率の高いtRNAを「高稼働tRNA」と称する。 In the present specification, the ratio of the usage frequency of the tRNA in the translation of the protein coding sequence to the supply amount of the tRNA is referred to as “operation rate”. Such a high availability tRNA is referred to as a “high availability tRNA”.
特定のtRNAの供給量は、通常、ゲノム中における該特定のtRNAをコードする遺伝子の数を反映するものと考えられる。また、ある生物種において高発現しているタンパク質のコード配列中における各コドンの使用頻度の分布は、該生物種における各コドンに対応するtRNAの使用頻度の分布に合致しているものと考えられる。したがって、本明細書においては、宿主細胞における特定のtRNAについての「稼働率」およびその偏差値(Tスコア)を以下の式によって算出し、高稼働tRNAの指標として用いる。
または
Or
本発明の第一の態様において、宿主細胞に導入されるポリヌクレオチドは、(a)上記式の通り定義される稼働率Aの偏差値が70以上であるtRNAをコードするポリヌクレオチド、および/または(b)上記式の通り定義される稼働率Bの偏差値が70以上であるtRNAをコードするポリヌクレオチドである。稼働率Aの偏差値は、好ましくは72.5以上、より好ましくは75以上である。稼働率Bの偏差値は、好ましくは71以上、より好ましくは72以上である。一つの態様において、稼働率Bの偏差値は78以上であり得る。 In the first aspect of the present invention, the polynucleotide to be introduced into the host cell is (a) a polynucleotide encoding a tRNA having a deviation value of availability A defined by the above formula of 70 or more, and / or (B) A polynucleotide that encodes a tRNA having a deviation in operating rate B defined by the above formula of 70 or more. The deviation value of the operating rate A is preferably 72.5 or more, more preferably 75 or more. The deviation value of the operation rate B is preferably 71 or more, more preferably 72 or more. In one embodiment, the deviation value of the operation rate B may be 78 or more.
本発明の第一の態様に係る宿主細胞には、稼働率Aの偏差値が70以上または稼働率Bの偏差値が70以上のいずれかの基準を満たす少なくとも1個のtRNA(該tRNAをコードするポリヌクレオチド)が導入されれば足りる。所望により、かかる基準を満たす2個以上のtRNA、例えば2個、3個、4個、5個、6個、7個、8個、9個、または10個以上のtRNAを宿主細胞に導入してもよい。 The host cell according to the first aspect of the present invention includes at least one tRNA (which encodes the tRNA) that satisfies any criterion that the deviation value of the operation rate A is 70 or more or the deviation value of the operation rate B is 70 or more. It is sufficient that the polynucleotide is introduced. Optionally, two or more tRNAs that meet such criteria, eg, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more tRNAs are introduced into the host cell. May be.
宿主細胞に導入されたtRNAをコードするポリヌクレオチドは、プラスミド等の染色体外遺伝因子として保持されてもよく、非相同組換えまたは相同組換え等によってゲノム中に組み込まれてもよい。 A polynucleotide encoding a tRNA introduced into a host cell may be retained as an extrachromosomal genetic element such as a plasmid, or may be integrated into the genome by non-homologous recombination or homologous recombination.
上記稼働率Aおよび稼働率Bの式における「宿主細胞が属する生物種と同属の1種または複数種の生物種」は、好ましくは宿主細胞が属する生物種と同属の1種の生物種であり、より好ましくは宿主細胞が属する生物種と同種の生物種である。 The “one or more species of the same genus as the host species to which the host cell belongs” in the formula of the operating rate A and the operating rate B is preferably one species of the same genus as the host species to which the host cell belongs. More preferably, it is the same species as the species to which the host cell belongs.
ある生物種の「ゲノムにコードされている全てのタンパク質のコード配列」とは、該生物種のゲノム中に存在する全てのオープンリーディングフレーム(ORF)を意味する。しかし、生物種によって、得られているゲノム情報の量や精度は異なる。したがって、通常、本発明において高稼働tRNAの特定に用いる生物種の「全ての」タンパク質コード配列は、各種ゲノムデータベース等から情報を入手できる限度における全てのオープンリーディングフレームである。 The “coding sequence of all proteins encoded in the genome” of a biological species means all open reading frames (ORFs) present in the genome of the biological species. However, the amount and accuracy of the genome information obtained varies depending on the species. Therefore, the “all” protein coding sequences of the species used to identify highly active tRNAs in the present invention are usually all open reading frames to the extent that information can be obtained from various genome databases and the like.
種々の生物種における各種コドンの使用頻度は、かずさDNA研究所の Codon Usage Database(http://www.kazusa.or.jp/codon/)から入手することができる。あるいは、所望の生物種のゲノム(好ましくは全ゲノム)の塩基配列を各種ゲノムデータベース等から取得し、Glimmer3(http://ccb.jhu.edu/software/glimmer/index.shtml)、GeneMark(http://opal.biology.gatech.edu/)、PRODIGAL(http://prodigal.ornl.gov/)等の解析ソフトを用いて該塩基配列からORFを抽出し、各コドンの出現回数をカウントする等の方法によってコドンの使用頻度を特定することもできる。所望の塩基配列におけるコドン使用頻度の算出は、例えば、かずさDNA研究所が提供する Countcodon program(http://www.kazusa.or.jp/codon/countcodon.html)を用いて容易に行うことができる。あるいは、Perl等のプログラミング言語を用いて解析プログラムを作成し、該プログラムを用いてコドン使用頻度を算出することもできる。 The frequency of use of various codons in various biological species can be obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon/) of Kazusa DNA Research Institute. Alternatively, the base sequence of the genome (preferably the entire genome) of the desired species is obtained from various genome databases, etc., and Glimmer3 (http://ccb.jhu.edu/software/glimmer/index.shtml), GeneMark (http : //opal.biology.gatech.edu/), PRODIGAL (http://prodigal.ornl.gov/), etc. are used to extract the ORF from the base sequence and count the number of occurrences of each codon The frequency of codon usage can also be specified by such a method. Calculation of codon usage frequency in a desired base sequence can be easily performed using, for example, the Countcodon program (http://www.kazusa.or.jp/codon/countcodon.html) provided by Kazusa DNA Research Institute. it can. Alternatively, an analysis program can be created using a programming language such as Perl, and the codon usage frequency can be calculated using the program.
所望の生物種のゲノム中における特定のtRNAをコードする遺伝子の数は、tRNAdb データベース(http://trna.bioinf.uni-leipzig.de/DataOutput/)、Genomic tRNA Database(http://lowelab.ucsc.edu/GtRNAdb/)等において確認することができる。あるいは、所望の生物種のゲノム(好ましくは全ゲノム)の塩基配列を各種ゲノムデータベース等から取得し、tRNAscan-SE(http://lowelab.ucsc.edu/tRNAscan-SE/)等の解析ソフトを用いて塩基配列からtRNAをコードする遺伝子を抽出する方法によって、tRNAをコードする遺伝子の数を特定することもできる。 The number of genes encoding a specific tRNA in the genome of the desired species can be found in the tRNAdb database (http://trna.bioinf.uni-leipzig.de/DataOutput/), Genomic tRNA Database (http: // lowelab. ucsc.edu/GtRNAdb/) etc. Alternatively, the base sequence of the genome of the desired species (preferably the entire genome) is obtained from various genome databases, etc., and analysis software such as tRNAscan-SE (http://lowelab.ucsc.edu/tRNAscan-SE/) is used. The number of genes encoding tRNA can also be specified by a method of extracting a gene encoding tRNA from the base sequence.
宿主細胞として用いる生物種が上記データベースに登録されていない場合、該生物種と近縁な他の種、例えば該生物種と同じ属の別の生物種のデータを利用して稼働率Aおよび/または稼働率Bを算出することが可能である。宿主細胞が属する生物種と同属の1種の生物種のデータを用いてもよく、同属の複数種の生物種のデータをプールして用いてもよい。宿主細胞が属する生物種と近縁な種のデータも利用できない場合には、公知の手法により宿主細胞が属する生物種と同属の1種または複数種の生物種のゲノム解析を行って、同定されたORF中のコドンの使用頻度およびtRNA遺伝子の情報を得ることができる。 When the species to be used as the host cell is not registered in the database, the utilization rate A and / or the data of another species closely related to the species, for example, another species of the same genus as the species is used. Alternatively, the operating rate B can be calculated. Data of one species belonging to the same species as the species to which the host cell belongs may be used, or data of a plurality of species belonging to the same genus may be pooled. If data on the species closely related to the species to which the host cell belongs are not available, genome analysis of one or more species of the same genus as the species to which the host cell belongs is performed using known methods. In addition, the frequency of codon usage in the ORF and information on the tRNA gene can be obtained.
本明細書において、特に上記稼働率Bの式に関し、ある生物種において「高発現しているタンパク質」とは、(a)該生物種における全タンパク質の二次元電気泳動において信頼性のあるスポットとして検出されるタンパク質、または(b)該生物種において、表1に記載のタンパク質およびそれらのホモログからなる群より選択される1種以上のタンパク質と同等以上の発現量を有するタンパク質をいうものとする。
上記(a)のタンパク質に関しては、例えば、SWICZ(http://proteom.biomed.cas.cz/)、SWISS-2DPAGE(http://world-2dpage.expasy.org/swiss-2dpage/)、Proteome 2D-PAGE Database(http://web.mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi)、DOGAN(http://www.bio.nite.go.jp/dogan/top)等のプロテオームデータベースにおいて、Streptomyces coelicolor、Streptomyces granaticolor(以上SWICZ)、Escherichia coli、Saccharomyces cerevisiae(以上SWISS-2DPAGE)、Bacillus amyloliquefaciens、Bacillus anthracis(以上Proteome 2D-PAGE Database)、Aspergillus oryzae および Rhodococcus opacus(以上DOGAN)を含む様々な生物種のプロテオーム解析(二次元電気泳動)の結果に基づいて同定されたタンパク質のリストを入手することができ、これらのタンパク質を本発明における高発現タンパク質として上記「稼働率B」の算出に用いることができる。
また、プロテオーム解析のデータベースが利用できない生物種の場合には、公知の方法によって該生物種の全タンパク質の二次元電気泳動を行い、信頼性のあるスポットとして検出されるタンパク質を同定することが可能である。この場合、信頼性のあるスポットの選定は、例えば Garrels et. al, J. Biol. Chem., 1989, vol. 264, No. 9, pp. 5269-5282 において定義される「スポットクオリティ」の値が50以上であるスポットを選択すること等により行い得る。In the present specification, in particular, with respect to the above-described expression of the operation rate B, “a protein highly expressed” in a certain biological species means (a) a reliable spot in two-dimensional electrophoresis of all proteins in the biological species. A protein to be detected, or (b) a protein having an expression level equal to or higher than that of one or more proteins selected from the group consisting of the proteins listed in Table 1 and their homologs in the biological species. .
Regarding the protein (a) above, for example, SWICZ (http://proteom.biomed.cas.cz/), SWISS-2DPAGE (http://world-2dpage.expasy.org/swiss-2dpage/), Proteome 2D-PAGE Database (http://web.mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi), DOGAN (http: //www.bio.nite.go. jp / dogan / top) and other proteome databases such as Streptomyces coelicolor, Streptomyces granaticolor (more SWICZ), Escherichia coli, Saccharomyces cerevisiae (more SWISS-2DPAGE), Bacillus amyloliquefaciens, Bacillus anthracis (more Proteome 2D-PAGE oryz), Asperae A list of proteins identified based on the results of proteomic analysis (two-dimensional electrophoresis) of various species including Rhodococcus opacus (DOGAN) can be obtained, and these proteins are expressed in the present invention. Can be used to calculate the “operation rate B”.
In addition, in the case of a biological species for which a database for proteome analysis is not available, it is possible to identify the protein detected as a reliable spot by performing two-dimensional electrophoresis of all the proteins of the biological species by a known method It is. In this case, the selection of a reliable spot is determined by, for example, the “spot quality” value defined in Garrels et. Al, J. Biol. Chem., 1989, vol. 264, No. 9, pp. 5269-5282. This can be done by selecting a spot having a value of 50 or more.
本発明の改変宿主細胞は、例えば、稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドおよび/または稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを用いて該宿主細胞を形質転換することによって得ることができる。また、本発明の改変宿主細胞は、上記稼働率の偏差値の基準を満たすtRNAをコードするポリヌクレオチドを導入することができる限り、他の改変方法、例えば細胞融合等によって得たものであってもよい。 The modified host cell of the present invention is, for example, a polynucleotide encoding at least one tRNA having a deviation of 70 or more in operation rate A and / or at least one tRNA having a deviation of 70 or more in operation rate B. Can be obtained by transforming the host cell with a nucleic acid molecule or vector comprising a polynucleotide encoding. In addition, the modified host cell of the present invention is obtained by other modification methods such as cell fusion as long as a polynucleotide encoding tRNA that satisfies the above criteria of deviation in operating rate can be introduced. Also good.
本発明の改変宿主細胞は、タンパク質の発現に好適に用い得る。本発明の改変宿主細胞に所望のタンパク質をコードするポリヌクレオチドを導入し、該宿主細胞を培養することにより、該タンパク質を高い効率で生産することができる。発現させるタンパク質は、該宿主細胞が属する生物種と同属の生物種に由来するものであってもよく、該宿主細胞が属する生物種とは異なる属の生物種に由来するものであってもよい。また、発現させるタンパク質をコードする遺伝子は、宿主細胞におけるコドン使用頻度に合わせてコドン最適化等を行った改変遺伝子や人工遺伝子であってもよい。例えば、宿主細胞が属する生物種とは異なる種または異なる属の生物種に由来するタンパク質を発現させる場合、かかる改変遺伝子や人工遺伝子を用いることが効率的な発現のために有効な手段となり得る。コドン最適化等の遺伝子改変や、所望の(例えばコドン最適化された)配列を有する人工遺伝子の合成等は、当該技術分野において公知の方法を用いて行い得る。一つの態様において、本発明の改変宿主細胞は、該宿主細胞が属する生物種と同属の生物種、好ましくは同種の生物種に由来するタンパク質の発現に用いるものである。別の態様において、本発明の改変宿主細胞は、該宿主細胞が属する生物種とは異なる種または異なる属の生物種に由来するタンパク質の発現に用いるものである。 The modified host cell of the present invention can be suitably used for protein expression. By introducing a polynucleotide encoding a desired protein into the modified host cell of the present invention and culturing the host cell, the protein can be produced with high efficiency. The protein to be expressed may be derived from a biological species belonging to the same species as the biological species to which the host cell belongs, or may be derived from a biological species belonging to a genus different from the biological species to which the host cell belongs. . Further, the gene encoding the protein to be expressed may be a modified gene or an artificial gene that has been subjected to codon optimization or the like in accordance with the codon usage frequency in the host cell. For example, when expressing a protein derived from a species different from the species to which the host cell belongs or a species of a different genus, using such a modified gene or an artificial gene can be an effective means for efficient expression. Genetic modification such as codon optimization, synthesis of an artificial gene having a desired (for example, codon optimized) sequence, and the like can be performed using methods known in the art. In one embodiment, the modified host cell of the present invention is used for the expression of a protein derived from the same species as the species to which the host cell belongs, preferably the same species. In another embodiment, the modified host cell of the present invention is used for the expression of a protein derived from a species different from or different from the species to which the host cell belongs.
一つの態様において、本発明の改変宿主細胞には、tRNAをコードするポリヌクレオチドであって、未改変の宿主細胞のゲノム中には存在しないポリヌクレオチド(本明細書において「非存在tRNA遺伝子」とも称する)をさらに導入し得る。これにより、未改変の宿主細胞のゲノムにコードされておらず、該宿主細胞中に全く存在していなかったtRNAを新たに供給し、該tRNAに対応するコドンをコード配列中に含むタンパク質の発現効率を向上させることができる。所望の宿主細胞における非存在tRNA遺伝子は、上記 tRNAdb データベースにおいて、終止コドンを除く全種類のコドンに対応するアンチコドンを有するtRNA遺伝子のうち、該宿主細胞が属する生物種が有していないtRNA遺伝子として特定することができる。 In one embodiment, the modified host cell of the invention includes a polynucleotide that encodes a tRNA that is not present in the genome of the unmodified host cell (also referred to herein as a “absent tRNA gene”). May be further introduced. As a result, tRNA that is not encoded in the genome of the unmodified host cell and is not present at all in the host cell is newly supplied, and the expression of the protein that includes the codon corresponding to the tRNA in the coding sequence Efficiency can be improved. Absent tRNA genes in a desired host cell are tRNA genes having anticodons corresponding to all types of codons excluding stop codons in the tRNAdb database as tRNA genes not possessed by the species to which the host cell belongs. Can be identified.
例えば、ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))では、全てのORFにおけるコドンGCC(Ala)の使用頻度は78.4回/1000コドンであり(かずさDNA研究所 Codon Usage Databaseより)、コドンGCC(Ala)に対応するtRNA(アンチコドンはCGG(3’から5’方向))をコードする遺伝子はストレプトマイセス・コエリカラーのゲノム中に2個存在する(tRNAdbより)。したがって、コドンGCC(Ala)に対応するtRNAの「稼働率A」は78.4÷2=39.2である。さらに、ストレプトマイセス・コエリカラーのゲノムにコードされている全てのtRNAについて同様に稼働率Aを求めると、稼働率Aの平均値は10.0、標準偏差は10.5となる。こうして得られた平均値および標準偏差を用いて、上記の式によりコドンGCC(Ala)に対応するtRNAの稼働率Aの偏差値を求めると、該偏差値は77.8となる。したがって、宿主細胞として Streptomyces属の種、例えばストレプトマイセス・コエリカラー、ストレプトマイセス・エバメチルス、ストレプトマイセス・グリセウス、ストレプトマイセス・リビダンス等を用いる場合、コドンGCC(Ala)に対応するtRNAは、本発明における高稼働tRNAの基準を満たす。 For example, in Streptomyces coelicolor A3 (2), the frequency of use of codon GCC (Ala) in all ORFs is 78.4 times / 1000 codons (from Kazusa DNA Research Institute Codon Usage Database) There are two genes (from tRNAdb) encoding the tRNA corresponding to the codon GCC (Ala) (anticodon is CGG (3 ′ to 5 ′ direction)) in the genome of Streptomyces coelicolor. Therefore, the “operation rate A” of tRNA corresponding to the codon GCC (Ala) is 78.4 ÷ 2 = 39.2. Further, when the operation rate A is similarly determined for all tRNAs encoded in the Streptomyces coelicolor genome, the average value of the operation rate A is 10.0 and the standard deviation is 10.5. Using the average value and the standard deviation thus obtained, the deviation value of the availability A of tRNA corresponding to the codon GCC (Ala) is obtained by the above formula, and the deviation value is 77.8. Therefore, when a Streptomyces species such as Streptomyces coelicolor, Streptomyces evamethyls, Streptomyces griseus, Streptomyces lividans or the like is used as a host cell, the tRNA corresponding to the codon GCC (Ala) is: Satisfies the high-activity tRNA standard in the present invention.
本発明の第二の態様は、高稼働tRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを用いて宿主細胞を形質転換することにより、タンパク質発現効率の向上した改変宿主細胞を製造する方法である。 The second aspect of the present invention is a method for producing a modified host cell with improved protein expression efficiency by transforming the host cell with a nucleic acid molecule or vector containing a polynucleotide encoding a highly active tRNA. .
第二の態様において用いる高稼働tRNAをコードするポリヌクレオチドは、上記の通り定義される稼働率Aの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチド、および/または上記の通り定義される稼働率Bの偏差値が70以上である少なくとも1個のtRNAをコードするポリヌクレオチドである。好ましい稼働率Aの偏差値および稼働率Bの偏差値については、上記第一の態様において記載したものと同様である。 The polynucleotide encoding a high-activity tRNA used in the second aspect is a polynucleotide encoding at least one tRNA having a deviation value of the operation rate A defined as described above of 70 or more, and / or as described above. It is a polynucleotide that encodes at least one tRNA having a defined deviation rate of availability B of 70 or more. About the preferable deviation value of the operation rate A and the deviation value of the operation rate B, it is the same as that described in the first aspect.
2つ以上の高稼働tRNAを宿主細胞に導入する場合、該tRNAをコードするポリヌクレオチドは、単一の核酸分子またはベクターに含まれていてもよく、複数の核酸分子またはベクター内に別々に含まれていてもよい。 When two or more highly active tRNAs are introduced into a host cell, the polynucleotides encoding the tRNAs may be contained in a single nucleic acid molecule or vector, and are separately contained in multiple nucleic acid molecules or vectors. It may be.
本明細書において、宿主細胞の形質転換に用い得る「ポリヌクレオチドを含む核酸分子」には、該ポリヌクレオチドとアダプター等の他のヌクレオチド配列とを含む核酸分子のほか、該ポリヌクレオチドのみからなる核酸分子も含まれるものとする。かかる核酸分子は、例えば、直鎖DNAの形態であり得る。 In the present specification, the “nucleic acid molecule comprising a polynucleotide” that can be used for transformation of a host cell includes a nucleic acid molecule comprising only the polynucleotide, in addition to a nucleic acid molecule comprising the polynucleotide and another nucleotide sequence such as an adapter. Include molecules. Such nucleic acid molecules can be, for example, in the form of linear DNA.
宿主細胞の形質転換に用い得るベクターとしては、プラスミドベクターやウイルスベクターのほか、トランスポゾンや挿入配列(IS)等の転移因子を利用したベクター等が挙げられるが、これらに限定されるものではない。 Examples of vectors that can be used for transformation of host cells include, but are not limited to, plasmid vectors and viral vectors, as well as vectors using transposons and transposable elements such as insertion sequences (IS).
宿主細胞の形質転換方法としては、エレクトロポレーション、ヒートショック法、酢酸リチウム法、アグロバクテリウム法、プロトプラスト−PEG法等、当該技術分野において公知の方法を用い得る。 As a host cell transformation method, methods known in the art such as electroporation, heat shock method, lithium acetate method, Agrobacterium method, protoplast-PEG method and the like can be used.
本発明の第三の態様は、宿主細胞を改変するために用いる、高稼働tRNAをコードするポリヌクレオチドを含む核酸分子またはベクターである。
高稼働tRNAをコードするポリヌクレオチド、ならびに該ポリヌクレオチドを含む核酸分子およびベクターについては、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A third aspect of the present invention is a nucleic acid molecule or vector comprising a polynucleotide encoding a highly efficient tRNA used to modify a host cell.
The polynucleotide encoding the high-efficiency tRNA, and the nucleic acid molecule and vector containing the polynucleotide are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第四の態様は、宿主細胞を改変するために用いる、高稼働tRNAをコードするポリヌクレオチドおよび該ポリヌクレオチドを組み込むことができる形質転換用ベクターを含むキットである。
高稼働tRNAをコードするポリヌクレオチド、および宿主細胞の形質転換に用い得るベクターについては、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A fourth aspect of the present invention is a kit comprising a polynucleotide encoding a high-efficiency tRNA used for modifying a host cell and a transformation vector capable of incorporating the polynucleotide.
The polynucleotide encoding the high-efficiency tRNA and the vector that can be used for transformation of the host cell are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第五の態様は、タンパク質発現用の改変宿主細胞を製造するための、宿主細胞および高稼働tRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを含むキットである。
高稼働tRNAをコードするポリヌクレオチド、ならびに該ポリヌクレオチドを含む核酸分子およびベクターについては、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A fifth aspect of the present invention is a kit comprising a nucleic acid molecule or vector comprising a host cell and a polynucleotide encoding a high-efficiency tRNA for producing a modified host cell for protein expression.
The polynucleotide encoding the high-efficiency tRNA, and the nucleic acid molecule and vector containing the polynucleotide are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第六の態様は、タンパク質発現用の改変宿主細胞を製造するための、宿主細胞、高稼働tRNAをコードするポリヌクレオチド、および該ポリヌクレオチドを組み込むことができる形質転換用ベクターを含むキットである。
高稼働tRNAをコードするポリヌクレオチド、および宿主細胞の形質転換に用い得るベクターについては、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A sixth aspect of the present invention is a kit comprising a host cell, a polynucleotide encoding a high-efficiency tRNA, and a transformation vector capable of incorporating the polynucleotide, for producing a modified host cell for protein expression. It is.
The polynucleotide encoding the high-efficiency tRNA and the vector that can be used for transformation of the host cell are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第七の態様は、高稼働tRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを用いて微生物を形質転換する工程を含む、微生物による化合物の生産性を向上させる方法である。
高稼働tRNAをコードするポリヌクレオチド、該ポリヌクレオチドを含む核酸分子およびベクター、ならびに形質転換方法については、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A seventh aspect of the present invention is a method for improving the productivity of a compound by a microorganism, comprising the step of transforming the microorganism with a nucleic acid molecule or a vector containing a polynucleotide encoding a highly active tRNA.
The polynucleotide encoding the high-efficiency tRNA, the nucleic acid molecule and vector containing the polynucleotide, and the transformation method are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第八の態様は、本発明の第七の態様として記載した方法によって得られる改変微生物であって、未改変の同一種の微生物と比較して増大した化合物生産性を有する微生物である。 The eighth aspect of the present invention is a modified microorganism obtained by the method described as the seventh aspect of the present invention, which has an increased compound productivity as compared with an unmodified microorganism of the same species. .
本発明の第七および第八の態様において用い得る微生物の種類は、特に限定されない。一つの態様において、該微生物は、好ましくは、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Brevibacillus属、Microbacterium属、Pseudomonas属、Aspergillus属、Arthrobacter属、Rhodobacter属、Rhodococcus属、Streptomyces属、Zymomonas属、Novosphigobium属、Saccharomyces属、Schizosaccharomyces属、Zymobacter属等に属する微生物等を挙げることができる。
本発明の第七および第八の態様において、該微生物の具体例としては、例えば、Aspergillus niger、Aspergillus oryzae、Aspergillus phoenicis、Bacillus amyloliquefaciens、Bacillus licheniformis、Bacillus subtilis、Brevibacillus choshinensis、Corynebacterium ammoniagenes、Corynebacterium glutamicum、Escherichia coli、Psudomonas putida、Rhodococcus rhodochrous、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Streptomyces avermitilis、Streptomyces coelicolor、Streptomyces lividans、Streptomyces griseus、Streptomyces venezuelae、Zymobacter palmaem、Zymomonas mobilis等が挙げられる。一つの態様において、宿主細胞はStreptomyces属またはEscherichia属の微生物である。Streptomyces属の微生物としては、例えばStreptomyces lividans(例えば Sterptomyces lividans 1326株)を用いることができる。また、Streptomyces lividansに限らず、Streptomyces属のうち性状が詳しく解析されている種もしくは株を用いることができる。Escherichia属の微生物としては、例えばEscherichia coli(例えば Escherichia coli K12株)を用いることができる。また、Escherichia coliに限らず、Escherichia属のうち性状が詳しく解析されている種もしくは株を用いることができる。一つの態様において、宿主細胞はStreptomyces lividansまたはEscherichia coliである。The kind of microorganism that can be used in the seventh and eighth aspects of the present invention is not particularly limited. In one embodiment, the microorganism is preferably Escherichia, Corynebacterium, Brevibacterium, Bacillus, Brevibacillus, Microbacterium, Pseudomonas, Aspergillus, Arthrobacter, Rhodobacter, Rhodococcus, Streptomyces, Zymomonas And microorganisms belonging to the genus Novosphigobium, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Zymobacter, and the like.
In the seventh and eighth aspects of the present invention, specific examples of the microorganism include, for example, Aspergillus niger, Aspergillus oryzae, Aspergillus phoenicis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus subtilis, Brevibacillus choshinensis, Corynebacterium ammoniagenes, Corynebacterium chemobacterium, E. coli, Psudomonas putida, Rhodococcus rhodochrous, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces lividans, Streptomyces griseus, Streptomyces venezuelae, Zymobacter palmem, etc. In one embodiment, the host cell is a microorganism of the genus Streptomyces or Escherichia. As a microorganism belonging to the genus Streptomyces, for example, Streptomyces lividans (for example, Sterptomyces lividans 1326 strain) can be used. Further, not limited to Streptomyces lividans, species or strains whose properties are analyzed in detail among the genus Streptomyces can be used. As a microorganism belonging to the genus Escherichia, for example, Escherichia coli (for example, Escherichia coli K12 strain) can be used. Moreover, not only Escherichia coli but the seed | species or strain | stump | stock whose property is analyzed in detail among the genus Escherichia can be used. In one embodiment, the host cell is Streptomyces lividans or Escherichia coli.
微生物への高稼働tRNAの導入は、該微生物が発現するあらゆるタンパク質の生産効率を向上させ得る。したがって、本発明の第七および第八の態様によって生産性を向上させ得る化合物は、微生物内で生合成されるものであるか、または微生物内で生産される酵素が触媒する反応によって生成されるものである限り、特に限定されない。例えば、化合物の合成反応を触媒する酵素は、微生物によって生産された後、菌体外へ分泌され、菌体外で反応を触媒するものであってもよい。 The introduction of a highly operational tRNA into a microorganism can improve the production efficiency of any protein expressed by the microorganism. Accordingly, the compounds capable of improving productivity according to the seventh and eighth aspects of the present invention are biosynthesized in microorganisms or produced by reactions catalyzed by enzymes produced in microorganisms. As long as it is a thing, it will not specifically limit. For example, an enzyme that catalyzes a synthesis reaction of a compound may be one that is produced by a microorganism, secreted outside the cell, and catalyzes the reaction outside the cell.
一つの態様において、本発明の方法によって微生物における生産性が向上する化合物は、該微生物の二次代謝産物、例えばアミノ酸誘導体、イソプレノイド、抗生物質、色素、ポリケチド等であり得る。例えば、本発明の方法によって改変される微生物が放線菌(例えばストレプトマイセス・リビダンス)である場合、ジオスミン、アクチノロージン等の生産性を向上させることができる。 In one embodiment, the compound whose productivity in a microorganism is improved by the method of the present invention may be a secondary metabolite of the microorganism, such as an amino acid derivative, an isoprenoid, an antibiotic, a pigment, a polyketide and the like. For example, when the microorganism modified by the method of the present invention is actinomycetes (for example, Streptomyces lividans), the productivity of diosmin, actinorhodin, etc. can be improved.
本発明の第九の態様は、化合物の合成反応を触媒する酵素をコードするポリヌクレオチドならびに高稼働tRNAをコードするポリヌクレオチドが導入された宿主細胞を培養することにより、化合物を生産する方法である。
高稼働tRNAをコードするポリヌクレオチドについては、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。A ninth aspect of the present invention is a method for producing a compound by culturing a host cell into which a polynucleotide encoding an enzyme that catalyzes a compound synthesis reaction and a polynucleotide encoding a highly active tRNA are introduced. .
The polynucleotide encoding the high-performance tRNA is the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第十の態様は、化合物の合成反応を触媒する酵素をコードするポリヌクレオチドを含む核酸分子またはベクターならびに高稼働tRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを用いて形質転換された宿主細胞を培養することにより、化合物を生産する方法である。
高稼働tRNAをコードするポリヌクレオチド、該ポリヌクレオチドを含む核酸分子およびベクター、ならびに形質転換方法については、上記第二の態様と同様である。高稼働tRNAの指標である稼働率Aの偏差値および稼働率Bの偏差値の好ましい範囲は、上記第一の態様において記載したものと同様である。According to a tenth aspect of the present invention, a nucleic acid molecule or vector containing a polynucleotide encoding an enzyme that catalyzes a compound synthesis reaction and a nucleic acid molecule or vector containing a polynucleotide encoding a high-efficiency tRNA were transformed. A method for producing a compound by culturing host cells.
The polynucleotide encoding the high-efficiency tRNA, the nucleic acid molecule and vector containing the polynucleotide, and the transformation method are the same as in the second embodiment. A preferable range of the deviation value of the operation rate A and the deviation value of the operation rate B, which is an index of the high operation tRNA, is the same as that described in the first aspect.
本発明の第九および第十の態様において、高稼働tRNAをコードするポリヌクレオチドが導入された宿主細胞によって生産される化合物は、特に限定されない。目的化合物の合成反応を触媒する酵素の選択が適切であり、該酵素の基質となる化合物が提供される限り、所望するあらゆる化合物を生産することができる。一つの態様において、該宿主細胞により生産される化合物は、アミノ酸誘導体、例えばメラニン、ポルフィラ-334等であり得る。別の態様において、該宿主細胞により生産される化合物は、イソプレノイド、例えばα‐セリネン、β‐カロテン等であり得る。例えば、高稼働tRNAをコードするポリヌクレオチドおよびα‐ピネン合成酵素をコードするポリヌクレオチドが導入された宿主細胞を培養することにより、α‐ピネンを得ることができる。 In the ninth and tenth aspects of the present invention, the compound produced by a host cell into which a polynucleotide encoding a highly active tRNA has been introduced is not particularly limited. Any desired compound can be produced as long as the selection of an enzyme that catalyzes the synthesis reaction of the target compound is appropriate, and a compound serving as a substrate for the enzyme is provided. In one embodiment, the compound produced by the host cell can be an amino acid derivative such as melanin, porphyra-334, and the like. In another embodiment, the compound produced by the host cell can be an isoprenoid, such as α-serinene, β-carotene, and the like. For example, α-pinene can be obtained by culturing a host cell into which a polynucleotide encoding a highly active tRNA and a polynucleotide encoding α-pinene synthase have been introduced.
目的化合物の合成反応を触媒する酵素(以下、単に「合成酵素」とも称する)の基質となる化合物は、宿主細胞によって生産されるものであり得る。この場合、該合成酵素をコードするポリヌクレオチドが導入された宿主細胞を、当該技術分野において用いられる任意の培地において培養することにより、目的化合物を得ることができる。 A compound serving as a substrate for an enzyme that catalyzes a synthesis reaction of a target compound (hereinafter, also simply referred to as “synthetic enzyme”) may be produced by a host cell. In this case, the target compound can be obtained by culturing host cells into which the polynucleotide encoding the synthase has been introduced in any medium used in the art.
別の態様において、目的化合物の生産は、合成酵素をコードするポリヌクレオチドが導入された宿主細胞を、該合成酵素の基質となる化合物の存在下で培養することにより達成し得る。この場合、合成酵素の基質となる化合物は、宿主細胞を培養する培地中に存在させればよい。 In another embodiment, production of a target compound can be achieved by culturing a host cell into which a polynucleotide encoding a synthase has been introduced in the presence of a compound that is a substrate for the synthase. In this case, the compound serving as the substrate for the synthetic enzyme may be present in the medium for culturing the host cell.
本発明の第九および第十の態様において、宿主細胞を培養する条件は、宿主細胞に導入されたポリヌクレオチドから合成酵素および高稼働tRNAが産生される限り、特に限定されない。培養条件は、用いる宿主細胞、合成酵素、該合成酵素の基質等に応じて適宜決定し得る。 In the ninth and tenth aspects of the present invention, the conditions for culturing a host cell are not particularly limited as long as a synthase and a high-activity tRNA are produced from a polynucleotide introduced into the host cell. The culture conditions can be appropriately determined according to the host cell used, the synthetic enzyme, the substrate of the synthetic enzyme, and the like.
以下、実施例によって本発明をさらに具体的に説明するが、本発明の範囲は実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to an Example.
1.放線菌における高稼働tRNAの同定
(1)全タンパク質コード配列に基づく稼働率の算出および高稼働tRNAの同定
ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))のゲノム(GenBank No. NC_003888)およびプラスミド(GenBank No. NC_003903, NC_003904)に含まれる全ORF中におけるコドン使用頻度の情報を、かずさDNA研究所の Codon Usage Database から取得した。ストレプトマイセス・コエリカラーのゲノム中におけるtRNA遺伝子の数は、tRNAデータベースである tRNAdb(http://trna.bioinf.uni-leipzig.de/DataOutput/)においてストレプトマイセス・コエリカラーが有するものとして登録されているtRNA遺伝子の数を、wobble則による複数コドンの認識を考慮して補正した値([特定のコドンに対応するアンチコドンを有するtRNAをコードする遺伝子の個数]+[wobble則により該特定のコドンを認識する他のtRNAをコードする遺伝子の個数×0.6])とした。
コドン使用頻度およびtRNA遺伝子数に基づき、以下の式を用いてtRNAの稼働率Aを算出した。各tRNAについての稼働率Aの算出結果を図1に示す。
Based on the codon usage frequency and the number of tRNA genes, the availability A of tRNA was calculated using the following formula. The calculation result of the operation rate A for each tRNA is shown in FIG.
次に、全てのtRNAについて求めた稼働率Aの平均値および標準偏差に基づき、以下の式を用いて算出した稼働率Aの偏差値が70以上であるtRNAを高稼働tRNAと判定した。
計算の結果、ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))では、稼働率Aの平均値は10.0、標準偏差は10.5であった。コドンGCC(Ala)に対応するtRNA(稼働率Aが39.2、偏差値は77.8であった)、およびコドンCTG(Leu)に対応するtRNA(稼働率Aが38.1、偏差値は76.7であった)を高稼働tRNAとして同定し、以後の実験に使用した。また、コドンCGGは、偏差値70以上の条件を満たしている(稼働率Aが31.9、偏差値は70.9)が、稼働率Bの偏差値(偏差値72.2)のほうが高かったため、以後の実験においては稼働率Bの高いtRNAとして取り扱った。 As a result of calculation, in Streptomyces coelicolor A3 (2), the average value of the operation rate A was 10.0, and the standard deviation was 10.5. TRNA corresponding to codon GCC (Ala) (operation rate A was 39.2, deviation value was 77.8), and tRNA corresponding to codon CTG (Leu) (operation rate A was 38.1, deviation value) Was identified as a highly operational tRNA and used in subsequent experiments. In addition, the codon CGG satisfies the condition of a deviation value of 70 or more (operation rate A is 31.9, deviation value is 70.9), but the deviation value of operation rate B (deviation value 72.2) is higher. Therefore, in subsequent experiments, it was handled as a tRNA having a high operation rate B.
(2)高発現タンパク質コード配列に基づく稼働率の算出および高稼働tRNAの同定
プロテオームデータベースである SWICZ: Swiss-Czech Proteomics server(http://proteom.biomed.cas.cz/)を利用し、放線菌の菌体内で高発現しているタンパク質を選定した。SWICZ に登録されているストレプトマイセス・コエリカラー(Streptomyces coelicolor)の二次元電気泳動像(Master Gel)においてスポットとして同定されているタンパク質を、本発明における「高発現タンパク質」として稼働率の算出に用いた。かかる高発現タンパク質のリストを表1に示す。(これらタンパク質はいずれも、Garrels et. al, J. Biol. Chem., 1989, vol. 264, No. 9, pp. 5269-5282 において定義される“スポットクオリティ”の値が50以上のスポットに対応するものである。)(2) Calculation of availability based on highly expressed protein coding sequences and identification of highly active tRNAs Using the proteome database SWICZ: Swiss-Czech Proteomics server (http://proteom.biomed.cas.cz/) A protein highly expressed in the fungus body was selected. The protein identified as a spot in the two-dimensional electrophoresis image (Master Gel) of Streptomyces coelicolor registered in SWICZ is used as the “highly expressed protein” in the present invention to calculate the operation rate. It was. A list of such highly expressed proteins is shown in Table 1. (Each of these proteins has a spot quality value of 50 or more as defined in Garrels et. Al, J. Biol. Chem., 1989, vol. 264, No. 9, pp. 5269-5282. Corresponding.)
表1に示すタンパク質のコード配列におけるコドン使用頻度と、上記稼働率Aの算出にも用いたストレプトマイセス・コエリカラー(Streptomyces coelicolor)の全ORF中におけるコドン使用頻度に基づき、以下の式を用いてtRNAの稼働率Bを算出した。各tRNAについての稼働率Bの算出結果を図2に示す。
次いで、表1に示すタンパク質のコード配列中における使用頻度が10回/コドン1000個以上であるコドンに対応するtRNAについて求めた稼働率Bの平均値および標準偏差に基づき、以下の式を用いて算出した稼働率Bの偏差値が70以上であるtRNAを高稼働tRNAと判定した。
計算の結果、ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))では、稼働率Bの平均値が1.02、標準偏差が0.29であった。コドンCGG(Arg)に対応するtRNA(稼働率Bが1.66、偏差値は72.2であった)、およびコドンGGG(Gly)に対応するtRNA(稼働率Bが1.91、偏差値は80.7であった)を高稼働tRNAとして同定し、以後の実験に使用した。 As a result of calculation, in Streptomyces coelicolor A3 (2), the average value of the operation rate B was 1.02 and the standard deviation was 0.29. TRNA corresponding to codon CGG (Arg) (operation rate B was 1.66, deviation value was 72.2), and tRNA corresponding to codon GGG (Gly) (operation rate B was 1.91, deviation value) Was 80.7) and was identified as a highly operational tRNA and used in subsequent experiments.
(3)非存在tRNA遺伝子の同定
上述の tRNAdb に登録されているtRNA遺伝子の情報から、ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))のゲノム中には、コドンCGC(Arg)、CGA(Arg)およびATA(Ile)に対応するtRNAをコードする遺伝子が存在しないことが判明した。これらのtRNAも、以後の実験(宿主細胞の改変)に使用した。(3) Identification of non-existing tRNA gene From the information of the tRNA gene registered in the above-described tRNAdb, the genome of Streptomyces coelicolor A3 (2) contains codons CGC (Arg), CGA ( Arg) and ATA (Ile) were found to lack a gene encoding a tRNA. These tRNAs were also used in subsequent experiments (host cell modification).
2.高稼働tRNA発現株(改変宿主細胞)の作成
(1−1)tRNA遺伝子のクローニング1
ストレプトマイセス・コエリカラー(Streptomyces coelicolor A(3)2)のゲノム情報(GenBank no. NC_003888)を基に、tRNA遺伝子を増幅するためのプライマーを設計した(表2)。ストレプトマイセス・リビダンス TK64(Streptomyces lividans TK64) のゲノムDNAをテンプレート、設計したプライマーをフォワードプライマーとリバースプライマーとし、タカラバイオ社の PrimeSTAR(登録商標) GXL DNA Polymeraseキットを用いてPCR反応を行い、目的のtRNA遺伝子を増幅した。例えば、GCC断片取得のためのPCR反応は、(98℃にて2分)を1サイクル後、(98℃にて30秒,55℃にて30秒,68℃にて30秒)を30サイクルの条件で行った。かかる増幅により得た、GCC(Ala)、CTG(Leu)、CGG(Arg)、GGG(Gly)およびATC(Ile)に対応するtRNA遺伝子(上流および下流領域を含む)の配列は、それぞれ配列番号17、18、19、20および21に対応する。その後、各遺伝子を、pSG5の複製起点を有するプラスミドに導入した。 2. Preparation of high-performance tRNA expression strain (modified host cell) (1-1) Cloning of
Primers for amplifying the tRNA gene were designed based on the genomic information (GenBank no. NC — 003888) of Streptomyces coelicolor A (3) 2 (Table 2). Streptomyces lividans TK64 (Streptomyces lividans TK64) genomic DNA as a template, designed primers as forward primer and reverse primer, PCR reaction using PrimeSTAR (registered trademark) GXL DNA Polymerase kit from Takara Bio Inc. The tRNA gene was amplified. For example, the PCR reaction for obtaining the GCC fragment is 1 cycle after (2 minutes at 98 ° C.), followed by 30 cycles (30 seconds at 98 ° C., 30 seconds at 55 ° C., 30 seconds at 68 ° C.). It went on condition of. The sequences of tRNA genes (including upstream and downstream regions) corresponding to GCC (Ala), CTG (Leu), CGG (Arg), GGG (Gly) and ATC (Ile) obtained by such amplification are respectively shown in SEQ ID NOs: Corresponding to 17, 18, 19, 20 and 21. Thereafter, each gene was introduced into a plasmid having a replication origin of pSG5.
(1−2)tRNA遺伝子のクローニング2
ストレプトマイセス・コエリカラーのゲノムに存在しないtRNA遺伝子は、点変異導入法により作成した。変異導入のために、表3に示したプライマーを設計した。点変異導入前のtRNA遺伝子が組込まれたプラスミドをテンプレートとし、設計したプライマーとタカラバイオ社のPrimeSTAR(登録商標) GXL DNA Polymeraseキットを用いてPCR反応を行った。例えば、PCR反応は、(98℃にて2分)を1サイクル後、(98℃にて30秒、55℃にて30秒、68℃にて420秒)を20サイクルの条件で行った。その後、増幅産物をDpnIで処理することにより、それぞれコドンCGC(Arg)、CGA(Arg)およびATA(Ile)に対応するtRNA遺伝子(上流および下流領域を含み、それぞれ配列番号22、23および24に対応する)を得た。(1-2) Cloning of tRNA gene 2
A tRNA gene which does not exist in the Streptomyces coelicolor genome was prepared by a point mutation introduction method. The primers shown in Table 3 were designed for mutagenesis. PCR was performed using the designed primer and PrimeSTAR (registered trademark) GXL DNA Polymerase kit of Takara Bio Inc. as a template with a plasmid in which the tRNA gene before point mutation was introduced. For example, the PCR reaction was carried out under the conditions of 20 cycles (after 98 minutes at 98 ° C.) and after 1 cycle (30 seconds at 98 ° C., 30 seconds at 55 ° C., 420 seconds at 68 ° C.). Thereafter, the amplified product is treated with DpnI, thereby including tRNA genes (including upstream and downstream regions corresponding to codons CGC (Arg), CGA (Arg) and ATA (Ile), respectively, in SEQ ID NOs: 22, 23 and 24, respectively. Obtained).
(2)tRNA発現ベクターの作成
pSG5の複製起点を有するベクターに、上記の通り取得したtRNA遺伝子を連結し、tRNA発現ベクターを作成した。作成したtRNA発現ベクターの名称および組み込んだtRNA遺伝子を表4に示し、該tRNA発現ベクターの構造を図3に示す。(2) Preparation of tRNA expression vector The tRNA gene obtained as described above was linked to a vector having a pSG5 replication origin to prepare a tRNA expression vector. The name of the prepared tRNA expression vector and the incorporated tRNA gene are shown in Table 4, and the structure of the tRNA expression vector is shown in FIG.
(3)放線菌の形質転換
ストレプトマイセス・リビダンス(Streptomyces lividans)1326株(独立行政法人 製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門(NBRC):NBRC番号15675)を各tRNA発現ベクターで形質転換した。放線菌の形質転換は、放線菌に関する遺伝子操作技術についての「Genetic Manipulation of Streptomyces」(Hopwood,D.A.ら、1985年、Genetic Manipulation of Streptomyces: a Laboratory Manual,the John Innes Foundation,Norwich)に記載の方法に従って行った。(3) Transformation of actinomycetes
Streptomyces lividans 1326 strain (National Institute of Technology and Evaluation, Biotechnology Headquarters, Biogenetic Resource Division (NBRC): NBRC No. 15675) was transformed with each tRNA expression vector. Transformation of actinomycetes is a method described in “Genetic Manipulation of Streptomyces” (Hopwood, DA et al., 1985, Genetic Manipulation of Streptomyces: a Laboratory Manual, the John Innes Foundation, Norwich) on genetic engineering techniques for actinomycetes. Went according to.
(4)tRNA遺伝子の発現確認
宿主細胞内でtRNA遺伝子が過剰発現しているかどうかは、定量PCR(qPCR)法によって確認した。tRNA発現ベクターで形質転換された放線菌(Streptomyces lividans)をカナマイシン(50μg/mL)を含有するSSMP培地5mLにて、試験管培養(28℃で48時間)した。1mLの培養液を分取し、遠心分離(14,000rpm、20分)により、該培養液から菌体を回収した。Invitrogen社のPureLink(商標) miRNA Isokation Kit を用いて低分子RNAを精製した後、TOYOBO社のReverTraAce(登録商標) qPCR RT Kit を用いてcDNAを作製した。次に、TOYOBO社のTHUNDERBIRD(登録商標) SYBR(登録商標) qPCR Mix kitを用いて、目的tRNAの発現量を定量した。tRNAの検出には、表5に示すプライマーを設計し、これをプライマー対として、検出に用いた。定量PCR反応には、コルベットリサーチ社のRotergene 3000を用いた。PCR反応は、(95℃にて60秒)を1サイクル後、(95℃にて15秒,55℃にて10秒,72℃にて30秒)を40サイクルの条件で行った。(4) Confirmation of tRNA gene expression Whether or not the tRNA gene was overexpressed in the host cell was confirmed by a quantitative PCR (qPCR) method. Streptomyces lividans transformed with the tRNA expression vector were cultured in a test tube (28 ° C., 48 hours) in 5 mL of SSMP medium containing kanamycin (50 μg / mL). 1 mL of the culture solution was collected, and the cells were collected from the culture solution by centrifugation (14,000 rpm, 20 minutes). After purifying small RNAs using Invitrogen's PureLink ™ miRNA Isokation Kit, cDNA was prepared using ReverTraAce ™ qPCR RT Kit from TOYOBO. Next, the expression level of the target tRNA was quantified using THUNDERBIRD (registered trademark) SYBR (registered trademark) qPCR Mix kit of TOYOBO. For detection of tRNA, primers shown in Table 5 were designed and used as a primer pair for detection. For quantitative PCR reaction, Rotorgene 3000 manufactured by Corvette Research was used. The PCR reaction was carried out under the conditions of 40 cycles (95 ° C for 60 seconds) followed by 1 cycle (95 ° C for 15 seconds, 55 ° C for 10 seconds, 72 ° C for 30 seconds).
未改変のストレプトマイセス・リビダンス(Streptomyces lividans)1326株、およびコドンGCC(Ala)に対応するtRNA遺伝子を組み込んだ発現ベクターを用いてプロトプラスト−PEG法により形質転換されたストレプトマイセス・リビダンス1326株において、コドンGCC(Ala)に対応するtRNAの発現量を定量した。コントロール実験として、コドンGAC(Asp)に対応するtRNAの発現量を定量した。 Unmodified Streptomyces lividans strain 1326 and Streptomyces lividans strain 1326 transformed by protoplast-PEG method using an expression vector incorporating a tRNA gene corresponding to codon GCC (Ala) The amount of tRNA expression corresponding to the codon GCC (Ala) was quantified. As a control experiment, the expression level of tRNA corresponding to codon GAC (Asp) was quantified.
tRNAの定量結果を図4に示す。株間の差を排除するために、コドンGCCに対応するtRNAの発現量をコドンGACに対応するtRNAの発現量で補正し、相対発現量を算出した。tRNA発現ベクターの導入により、コドンGCCに対応するtRNAの発現量は2.8倍に増加した。かかる結果より、tRNA発現ベクターからtRNAが発現していることが確認できた。 The quantification result of tRNA is shown in FIG. In order to eliminate the difference between strains, the expression level of tRNA corresponding to codon GCC was corrected with the expression level of tRNA corresponding to codon GAC, and the relative expression level was calculated. With the introduction of the tRNA expression vector, the expression level of tRNA corresponding to the codon GCC increased 2.8 times. From these results, it was confirmed that tRNA was expressed from the tRNA expression vector.
3.改変宿主細胞を用いたタンパク質発現
(1)タンパク質発現ベクターの構築および改変宿主細胞の作成
タンパク質を高発現させるために、4種類のプロモーター(ストレプトマイセス・スンナモネウス由来ホスソリパーゼD遺伝子(PLD)プロモーター(配列番号39)(特開2002−51780に開示)、ストレプトマイセス・セプタタス由来メタロエンドプロテアーゼ(SSMP)プロモーター(配列番号38)(特開2009−65837に開示)、ストレプトマイセス・エバメチルス由来キシロースイソメラーゼ(xylA)プロモーター(配列番号40)(J. Microbiol. Biotechnol. 2008 May;18(5):837-44に開示))およびストレプトマイセス・エバメチルス由来メタロプロテアーゼ遺伝子プロモーター(SAVプロモーター)(配列番号80)を利用した。これらプロモーターと共に、表6に記載したタンパク質をpIJ101の複製起点を有するベクターに連結し、タンパク質発現ベクターとした。該タンパク質発現ベクターの構造を図5に示す。また、該発現ベクターに導入したタンパク質コード遺伝子とプロモーターの組合せを表7に示す。
これらのタンパク質発現ベクターを用いて ストレプトマイセス・リビダンス1326株を形質転換し、タンパク質発現株を得た。さらに、これらの株を上記の表4に示すtRNA発現ベクターを用いて形質転換し、tRNA高発現株とした。形質転換はいずれもプロトプラスト−PEG法により行った。 3. Protein expression using modified host cells (1) Construction of protein expression vector and creation of modified host cells Four types of promoters (Streptomyces sunnamoneus-derived phossolipase D gene (PLD) promoter (sequence) No. 39) (disclosed in JP-A-2002-51780), Streptomyces septatus-derived metalloendoprotease (SSMP) promoter (SEQ ID NO: 38) (disclosed in JP-A-2009-65837), Streptomyces evamethyls-derived xylose isomerase ( xylA) promoter (SEQ ID NO: 40) (disclosed in J. Microbiol. Biotechnol. 2008 May; 18 (5): 837-44)) and Streptomyces evamethyls-derived metalloprotease gene promoter (SAV promoter) (SEQ ID NO: 8) 0) was used. Along with these promoters, the proteins listed in Table 6 were linked to a vector having the replication origin of pIJ101 to obtain a protein expression vector. The structure of the protein expression vector is shown in FIG. Table 7 shows combinations of the protein coding gene and the promoter introduced into the expression vector.
Using these protein expression vectors, the Streptomyces lividans strain 1326 was transformed to obtain a protein expression strain. Furthermore, these strains were transformed with the tRNA expression vectors shown in Table 4 above to obtain high-tRNA expression strains. All transformations were performed by the protoplast-PEG method.
(2)培養方法
上記の通り作成したtRNA高発現株を、まず種菌培養として、チオストレプトン(50μg/mL)及びカナマイシン(50μg/mL)を含有するTSB培地(ベクトン・ディッキンソン製 Bacto(商標) Tryptic Soy Broth (Soybean-Casein Digest Medium、品番:211825)5mlにて、試験管培養(28℃で72時間)した。その後、SSMP培地5mlに、種菌培養溶液を3%(150μL)植菌し、試験管培養(28℃で96時間)した(ただし、SAV_6372発現株のみ48時間培養した)。xylAプロモーターを利用した場合は、培養開始48時間後に10%キシロース溶液を500μL添加した。用いたSSMP培地の組成を表8に示す。(2) Culturing method The tRNA high-expressing strain prepared as described above was first used as a seed culture for TSB medium (Bacto (trademark) manufactured by Becton Dickinson) containing thiostrepton (50 μg / mL) and kanamycin (50 μg / mL ). Tube culture (72 hours at 28 ° C.) in 5 ml of Tryptic Soy Broth (Soybean-Casein Digest Medium, product number: 211825) After that, 3% (150 μL) of the inoculum culture solution was inoculated into 5 ml of SSMP medium. (However, only the SAV — 6372 expression strain was cultured for 48 hours.) When the xylA promoter was used, 500 μL of a 10% xylose solution was added 48 hours after the start of the culture. Table 8 shows the composition.
(3)発現量評価
培養終了後、菌体外タンパク質(SAV_6208、SGR_5506、SAV_967、SCO7576、AAS68222、SCO3222、SAV_5268、SAV_6139、SCO5912)は、菌体培養液1mlを分取後、遠心(14,000rpm、20分)により分離し、上清を回収した。菌体内タンパク質(SCO1352、SAV_6372、SCO2431)は、菌体培養液1mlを分取後、超音波破砕を行った。次に、得られたサンプルをSDS−PAGE分析した。SDS−PAGEデータから、BioRad社のGel DocTM EZ Systemと付属解析ソフト(Image Lab(商標))を用いて、目的タンパク質のバンドを数値化して発現レベルを定量し、タンパク質発現レベルを比較した。(3) Evaluation of expression level After completion of the culture, extracellular proteins (SAV — 6208, SGR — 5506, SAV — 967, SCO7576, AAS68222, SCO3222, SAV — 5268, SAV — 6139, and SCO5912) were collected from 1 ml of the cell culture solution and centrifuged (14,000 rpm). 20 minutes), and the supernatant was recovered. Cellular proteins (SCO1352, SAV — 6372, SCO2431) were subjected to ultrasonic disruption after separating 1 ml of the cell culture solution. Next, the obtained sample was subjected to SDS-PAGE analysis. From SDS-PAGE data, using the Gel DocTM EZ System of BioRad and the attached analysis software (Image Lab (trademark) ), the band of the target protein was digitized, the expression level was quantified, and the protein expression level was compared.
(4)タンパク質発現レベルの比較
タンパク質発現レベルは、tRNA発現ベクター導入前の株におけるタンパク質発現量に対する、tRNA高発現株におけるタンパク質発現量の比率として評価した。結果を図6ならびに表9および10に示した。作成したいずれのtRNA高発現株においても、tRNA発現ベクター導入前の株と比較してタンパク質の発現量が有意に増加した。これらの結果より、本発明において同定した高稼働tRNAをコードする遺伝子の導入は、プロモーターに依存せず、宿主細胞におけるタンパク質の発現量を増加させる効果があることが示された。(4) Comparison of protein expression level The protein expression level was evaluated as the ratio of the protein expression level in the tRNA high expression strain to the protein expression level in the strain before introduction of the tRNA expression vector. The results are shown in FIG. 6 and Tables 9 and 10. In any of the tRNA high-expression strains prepared, the protein expression level was significantly increased compared to the strain before the introduction of the tRNA expression vector. From these results, it was shown that the introduction of the gene encoding the highly active tRNA identified in the present invention has an effect of increasing the protein expression level in the host cell without depending on the promoter.
4.tRNA稼働率とタンパク質発現量増大効果
本明細書で定義した稼働率Aの偏差値が70未満であるtRNAと、該偏差値が70以上であるtRNAの効果を比較した。具体的には、ストレプトマイセス・コエリカラー(Streptomyces coelicolor A3(2))において、コドンATC(Ile)に対応するtRNA(稼働率A=27.5、偏差値=66.7)と、コドンGCC(Ala)に対応するtRNA(稼働率A=39.2、偏差値=77.8)のそれぞれをコードするtRNA遺伝子を、pSG5の複製起点を有するベクターに導入し、tRNA発現ベクターとした。コドンGCC(Ala)に対応するtRNA遺伝子を導入した発現ベクターの構造を図7に示す。
該tRNA発現ベクターを用いて、上記「3.改変宿主細胞を用いたタンパク質発現」と同様の方法に従ってタンパク質発現株の構築、該発現株の培養、およびタンパク質発現量の評価を行った。宿主細胞はストレプトマイセス・リビダンス(Streptomyces lividans)1326株、発現させたタンパク質はトランスグルタミナーゼ、用いたプロモーターはSSMPプロモーターである。 4). tRNA utilization rate and protein expression level increasing effect The effect of tRNA having a deviation value of the utilization rate A defined in the present specification of less than 70 and tRNA having the deviation value of 70 or more was compared. Specifically, in Streptomyces coelicolor A3 (2), tRNA corresponding to codon ATC (Ile) (operation rate A = 27.5, deviation value = 66.7) and codon GCC ( A tRNA gene encoding each of tRNA corresponding to Ala) (operation rate A = 39.2, deviation value = 77.8) was introduced into a vector having a replication origin of pSG5 to obtain a tRNA expression vector. FIG. 7 shows the structure of an expression vector into which a tRNA gene corresponding to the codon GCC (Ala) has been introduced.
Using the tRNA expression vector, a protein expression strain was constructed, the expression strain was cultured, and the protein expression level was evaluated in the same manner as in “3. Protein expression using modified host cells” above. The host cell is Streptomyces lividans strain 1326, the expressed protein is transglutaminase, and the promoter used is the SSMP promoter.
タンパク質発現量の評価結果を表11に示す。コドンATCに対応するtRNA遺伝子を導入した株ではタンパク質発現量の増加がみられない一方で、コドンGCCに対応するtRNA遺伝子を導入した株ではタンパク質発現量の増加が確認された。かかる結果から、稼働率の高いtRNA、例えば稼働率Aの偏差値が70以上であるtRNAを少なくとも1個、宿主細胞に導入することによって、タンパク質発現量の増大効果が得られることが確認できた。即ち、本明細書で定義した稼働率の偏差値は、宿主細胞への導入によってタンパク質発現量の増大をもたらす高稼働tRNAを同定するための指標として有効に機能するものである。 Table 11 shows the evaluation results of the protein expression level. In the strain into which the tRNA gene corresponding to the codon ATC was introduced, no increase in the protein expression level was observed, whereas in the strain into which the tRNA gene corresponding to the codon GCC was introduced, an increase in the protein expression level was confirmed. From these results, it was confirmed that an effect of increasing the protein expression level can be obtained by introducing at least one tRNA having a high operation rate, for example, a tRNA having a deviation of 70 or more in the operation rate A into the host cell. . That is, the deviation value of the operation rate defined in the present specification effectively functions as an index for identifying a high-operation tRNA that causes an increase in protein expression level by introduction into a host cell.
5.改変宿主細胞を用いた化合物生産
(1)アミノ酸誘導体の生産
i)メラニン生産株の構築
プラスミドpIJ702に存在する Streptomyces antibioticus のmelCオペロン領域(配列番号43)を、表12に示すプライマーを用いてクローニングし、pK18mobクローニングベクターに組み込んだ。得られたベクターの構造を図8に示す。このベクターを用いた形質転換により Streptomyces lividans の染色体上にmelCオペロンを導入した。さらに、この株を上記「2.高稼働tRNA発現株(改変宿主細胞)の作成」において作成した4種類のtRNA発現ベクター(pBuT04、pBuT02、pRaT02およびpSH04)を用いて形質転換し、tRNA高発現株とした。形質転換はいずれもプロトプラスト−PEG法により行った。 5. Compound production using modified host cells (1) Production of amino acid derivatives i) Construction of melanin production strain The melC operon region of Streptomyces antibioticus (SEQ ID NO: 43) present in plasmid pIJ702 was cloned using the primers shown in Table 12. And incorporated into a pK18mob cloning vector. The structure of the obtained vector is shown in FIG. The melC operon was introduced into the chromosome of Streptomyces lividans by transformation using this vector. Further, this strain was transformed with the four types of tRNA expression vectors (pBuT04, pBuT02, pRaT02 and pSH04) prepared in “2. Production of high-efficiency tRNA expression strain (modified host cell)”, and high expression of tRNA was performed. It was a stock. All transformations were performed by the protoplast-PEG method.
ii)培養方法
得られたtRNA高発現株を、種菌培養として、チオストレプトン(50μg/mL)及びカナマイシン(50μg/mL)を含有するTSB培地5mlにて、試験管培養(28℃で72時間)した。その後、TSB培地5mlに、種菌培養溶液を3%(150μL)植菌し、28℃で96時間振とう培養した。ii) Culture method The obtained tRNA high expression strain was cultured as a seed culture in 5 ml of TSB medium containing thiostrepton (50 μg / mL) and kanamycin (50 μg / mL) in a test tube culture (at 28 ° C. for 72 hours). )did. Thereafter, 3% (150 μL) of the inoculum culture solution was inoculated into 5 ml of TSB medium, and cultured with shaking at 28 ° C. for 96 hours.
iii)メラニンの定量
培養終了後、菌体培養液を1ml回収し、遠心(14,000rpm、20分)により分離した。上清を回収し、405nmの吸光度を測定した。具体的には、tRNA遺伝子導入前の株の405nmにおける吸光度に対する、tRNA高発現株の405nmにおける吸光度の比率を算出することにより、tRNA遺伝子導入によるメラニン生産量の変化を評価した。結果を表13に示す。該表に示される結果から、高稼働tRNAをコードする遺伝子の宿主細胞への導入が、メラニン等のアミノ酸誘導体の生産量の増加に寄与することが示された。iii) Determination of melanin After completion of the culture, 1 ml of the bacterial cell culture solution was recovered and separated by centrifugation (14,000 rpm, 20 minutes). The supernatant was collected and the absorbance at 405 nm was measured. Specifically, the ratio of the absorbance at 405 nm of the high tRNA expression strain to the absorbance at 405 nm of the strain before the introduction of the tRNA gene was calculated to evaluate the change in the amount of melanin production due to the introduction of the tRNA gene. The results are shown in Table 13. From the results shown in the table, it was shown that introduction of a gene encoding a highly active tRNA into a host cell contributes to an increase in the production amount of amino acid derivatives such as melanin.
(2)イソプレノイド(テルペン)の生産
i)α‐セリネン生産株の構築
Herpetosiphon aurantiacus DSM 785 由来のα‐セリネン合成遺伝子(GenBank Gene ID: 5734860)の情報を基に、人工遺伝子合成技術を用いて放線菌に最適化されたコドン使用頻度をもつ人工遺伝子(配列番号44)を作成した。また、Streptomyces avermitilis MA-4680 のゲノムDNAをテンプレートとし、表14に示すプライマーを用いて、Streptomyces avermitilis MA-4680 由来のptlB遺伝子(GenBank Gene ID: 1210633、配列番号47)をクローニングした。この2つの遺伝子を、プラスミドpIJ101の複製起点を有するベクターに導入し、α‐セリネン発現ベクターとした。このベクターは、図5に対応させると、"promoter"の位置にストレプトマイセス・エバメチルス由来メタロプロテアーゼ遺伝子プロモーター(SAVプロモーター)(配列番号80)、"target protein"の位置にα‐セリネン合成遺伝子およびptlB遺伝子が組み込まれた構造を有するものである。
このα‐セリネン発現ベクターを用いて Streptomyces lividans を形質転換し、これをα‐セリネン発現株とした。さらに、この株を上記「2.高稼働tRNA発現株(改変宿主細胞)の作成」において作成した3種類のtRNA発現ベクター(pBuT04、pBuT02およびpRaT02)を用いて形質転換し、tRNA高発現株とした。形質転換はいずれもプロトプラスト−PEG法により行った。(2) Production of isoprenoids (terpenes) i) Construction of α-selinen production strain
An artificial gene with codon usage optimized for actinomycetes using artificial gene synthesis technology based on the information of the α-serinene synthesis gene (GenBank Gene ID: 5734860) derived from Herpetosiphon aurantiacus DSM 785 (SEQ ID NO: 44) It was created. In addition, Streptomyces avermitilis MA-4680 genomic DNA was used as a template and Streptomyces avermitilis MA-4680-derived ptlB gene (GenBank Gene ID: 1210633, SEQ ID NO: 47) was cloned using the primers shown in Table 14. These two genes were introduced into a vector having an origin of replication of plasmid pIJ101 to obtain an α-serinen expression vector. When this vector corresponds to FIG. 5, the Streptomyces evamethyls-derived metalloprotease gene promoter (SAV promoter) (SEQ ID NO: 80) is located at the “promoter” position, and the α-serinen synthetic gene and the “target protein” are located. It has a structure in which the ptlB gene is incorporated.
Streptomyces lividans was transformed using this α-selinen expression vector, and this was used as an α-selinen expression strain. Further, this strain was transformed with the three types of tRNA expression vectors (pBuT04, pBuT02 and pRaT02) prepared in “2. Production of high-performance tRNA expression strain (modified host cell)” above, did. All transformations were performed by the protoplast-PEG method.
ii)培養方法
得られたtRNA高発現株を、種菌培養として、チオストレプトン(50μg/mL)及びカナマイシン(50μg/mL)を含有するTSB培地5mlにて、28℃で72時間振とう培養した。その後、AVM半合成培地5mlに、種菌培養溶液を1%(50μL)植菌し、28℃で120時間振とう培養した。用いたAVM半合成培地の組成を表15に示す。ii) Culture method The obtained tRNA high-expression strain was cultured as a seed inoculum in 5 ml of TSB medium containing thiostrepton (50 μg / mL) and kanamycin (50 μg / mL) at 28 ° C. for 72 hours. . Thereafter, 1% (50 μL) of the inoculum culture solution was inoculated into 5 ml of AVM semi-synthetic medium and cultured with shaking at 28 ° C. for 120 hours. The composition of the AVM semi-synthetic medium used is shown in Table 15.
iii)α‐セリネンの定量
培養終了後、菌体培養液を2ml回収後、遠心(14,000rpm、20分)により分離し、菌体を回収した。回収した菌体を1.5mlのメタノールで分散し、5分間振蕩してα‐セリネンを抽出した。次いで、遠心(14,000rpm、20分)により上清のメタノール1mlを回収し、0.25ml蒸留水及び0.5mlヘキサンを加えて振蕩で混合した。さらに遠心分離後、上層のヘキサン層150μlをサンプルとし、このヘキサン溶液中のα‐セリネンの量を、GL Sciences社のInertCap 5カラムを用いた島津製作所のガスクロマトグラフィーで、レート20℃/分の50℃(2分保持)〜280℃(6.5分保持)の温度グラジェントで溶出し定量した。なお、この条件では、α‐セリネンは10.1分付近に溶出される。また、α‐セリネンの量は、上記クロマトグラムにおけるβ‐カリオフィレン標準品の検量線により算出される。
結果を表16に示す。pRaT02による生産量増加が最も大きかったが、高稼働tRNAセット(pBuT04、pBuT02)を導入した場合にもα‐セリネン生産量の増加が確認された。iii) Quantification of α-selinen After completion of the culture, 2 ml of the bacterial cell culture solution was collected and then separated by centrifugation (14,000 rpm, 20 minutes) to collect the bacterial cells. The collected cells were dispersed with 1.5 ml of methanol, and shaken for 5 minutes to extract α-selinene. Subsequently, 1 ml of supernatant methanol was collected by centrifugation (14,000 rpm, 20 minutes), 0.25 ml distilled water and 0.5 ml hexane were added and mixed by shaking. After further centrifugation, 150 μl of the upper hexane layer was used as a sample, and the amount of α-selinene in this hexane solution was determined by a gas chromatography using Shimadzu Corporation's InertCap 5 column at a rate of 20 ° C./min. Elution was performed with a temperature gradient of 50 ° C. (2 minutes hold) to 280 ° C. (6.5 minutes hold), and quantified. Under these conditions, α-selinene is eluted at around 10.1 minutes. The amount of α-selinene is calculated from a calibration curve of a β-caryophyllene standard product in the chromatogram.
The results are shown in Table 16. The increase in production amount by pRaT02 was the largest, but an increase in the production amount of α-linenene was also confirmed when a highly operational tRNA set (pBuT04, pBuT02) was introduced.
6.放線菌改変宿主細胞を用いた異種タンパク質発現
特開2007−124922の実施例に基づき、ロドトルラ・ルブラ(Rhodotolura rubra)JCM3782株由来の3−キヌクリジノン不斉還元酵素(以下、単に「キヌクリジノン」とも称する)のcDNA(配列番号50)をクローニングした。この遺伝子をpIJ101の複製起点を有するベクターに導入し、キヌクリジノン発現ベクターとした。このベクターは、図5に対応させると、"promoter"の位置にストレプトマイセス・エバメチルス由来メタロプロテアーゼ遺伝子プロモーター(SAVプロモーター)(配列番号80)、"target protein"の位置にキヌクリジノン遺伝子が組み込まれた構造を有するものである。 6). Expression of heterologous proteins using actinomycete-modified host cells Based on the examples of JP 2007-124922, 3-quinuclidinone asymmetric reductase derived from Rhodotolura rubra JCM3782 (hereinafter also simply referred to as “quinuclidinone”) CDNA (SEQ ID NO: 50) was cloned. This gene was introduced into a vector having the replication origin of pIJ101 to obtain a quinuclidinone expression vector. When this vector corresponds to FIG. 5, the Streptomyces evamethyls-derived metalloprotease gene promoter (SAV promoter) (SEQ ID NO: 80) was incorporated at the “promoter” position, and the quinuclidinone gene was incorporated at the “target protein” position. It has a structure.
このキヌクリジノン発現ベクターを用いて Streptomyces lividans を形質転換し、これをキヌクリジノン発現株とした。さらに、この株を「2.高稼働tRNA発現株(改変宿主細胞)の作成」において作成した4種類のtRNA発現ベクター(pBuT04、pBuT02、pRaT02およびpSH04)を用いて形質転換し、tRNA高発現株とした。形質転換はいずれもプロトプラスト−PEG法により行った。 Streptomyces lividans was transformed with this quinuclidinone expression vector, and this was used as a quinuclidinone expression strain. Further, this strain was transformed with the four types of tRNA expression vectors (pBuT04, pBuT02, pRaT02 and pSH04) prepared in “2. Production of high-performance tRNA expression strain (modified host cell)”, and a tRNA high-expression strain was obtained. It was. All transformations were performed by the protoplast-PEG method.
培養方法は、上記「3.改変宿主細胞を用いたタンパク質発現の(2)培養方法」と同様の手法で実施した。また、発現量は、上記「3.改変宿主細胞を用いたタンパク質発現の(3)発現量評価」における菌体内タンパク質と同様の手法で評価した。発現レベルの比較は、「3.改変宿主細胞を用いたタンパク質発現の(4)タンパク質発現レベルの比較」と同様の手法で行った。結果を表17に示した。使用頻度が高いtRNA高発現株では、tRNA発現ベクター導入前の株と比較してタンパク質の発現量が有意に増加した。この結果より、高稼働tRNAの高発現は、宿主細胞由来の遺伝子のみならず、異種由来の遺伝子の発現においてもタンパク質の発現量を増加させる効果があることが示された。 The culture method was carried out in the same manner as in “3. Protein expression using modified host cells (2) Culture method”. Further, the expression level was evaluated by the same method as that for the intracellular protein in “3. Protein expression using modified host cells (3) Expression level evaluation”. Comparison of expression levels was performed in the same manner as "3. Protein expression using modified host cells (4) Comparison of protein expression levels". The results are shown in Table 17. The expression level of the protein was significantly increased in the tRNA high expression strain that was frequently used compared to the strain before the introduction of the tRNA expression vector. From this result, it was shown that high expression of high-activity tRNA has an effect of increasing the expression level of protein not only in genes derived from host cells but also in expression of genes derived from different species.
7.大腸菌における高稼働tRNAの同定
(1)全タンパク質コード配列に基づく稼働率Aの算出および高稼働tRNA遺伝子の同定
エシェリシア・コリ(Escherichia coli) K12のゲノム(GenBank No.NC_000913)に対して、tRNA稼働率Aを上記「1.放線菌における高稼働tRNAの同定の(1)全タンパク質コード配列に基づく稼働率の算出および高稼働tRNAの同定」と同様の方法に従って算出した。計算の結果(図9)、エシェリシア・コリ K12では、稼働率Aの平均値は9.28、標準偏差は5.29であった。コドンCAT(His)に対応するtRNA(稼働率が26.3、偏差値が82.2)、コドンGCG(Ala)に対応するtRNA(稼働率Aが21.4、偏差値は72.9)、およびコドンGAT(Asp)に対応するtRNA(稼働率Aが21.1、偏差値は72.3)を高稼働率tRNAと同定した。しかし、これらのコドンに対応するtRNA遺伝子は、大腸菌ゲノム上に見出すことができなかった。そこで、wobble則に従い、これらのコドンを認識するtRNA、すなわちコドンCAC(His)、コドンGCA(Ala)およびコドンGAC(Asp)に対応するtRNAを高稼働率tRNAとして以後の実験に使用した。 7). Identification of high- efficiency tRNA in E. coli (1) Calculation of operation rate A based on the total protein coding sequence and identification of high-performance tRNA gene Escherichia coli (Escherichia coli) tRNA operation on the genome of K12 (GenBank No. NC_000913) The rate A was calculated according to the same method as in “1. Identification of high-activity tRNA in actinomycetes (1) Calculation of availability based on all protein coding sequences and identification of high-activity tRNA”. As a result of the calculation (FIG. 9), in Escherichia coli K12, the average value of the operation rate A was 9.28, and the standard deviation was 5.29. TRNA corresponding to codon CAT (His) (operating rate 26.3, deviation value 82.2), tRNA corresponding to codon GCG (Ala) (operating rate A 21.4, deviation value 72.9) , And tRNA corresponding to codon GAT (Asp) (operating rate A is 21.1, deviation value is 72.3) was identified as a high operating rate tRNA. However, tRNA genes corresponding to these codons could not be found on the E. coli genome. Therefore, in accordance with the wobble rule, tRNAs that recognize these codons, that is, tRNAs corresponding to codon CAC (His), codon GCA (Ala), and codon GAC (Asp) were used as high availability tRNAs in the subsequent experiments.
(2)非存在tRNA遺伝子の同定
tRNAdbに登録されているtRNA遺伝子の情報から、エシェリシア・コリ K12(Escherichia coli)のゲノム中には、コドンCGC(Arg)、CGA(Arg)およびATA(Ile)に対応するtRNAをコードする遺伝子が存在しなかった。これらのtRNAも、以後の実験に使用した。(2) Identification of non-existing tRNA gene From the information of tRNA gene registered in tRNAdb, the codons CGC (Arg), CGA (Arg) and ATA (Ile) are contained in the genome of Escherichia coli K12 (Escherichia coli). There was no gene encoding the tRNA corresponding to. These tRNAs were also used in subsequent experiments.
8.高稼働tRNA発現株(大腸菌)の作成
Escherichia coli K12のゲノム情報を基に、tRNA遺伝子を増幅するためのプライマーを設計した(表18)。上記「2.高稼働tRNA発現株(改変宿主細胞)の作成の(1−1)tRNA遺伝子のクローニング1」と同様に、Escherichia coli K12のゲノムDNAをテンプレートとし、設計したプライマーとタカラバイオ社の PrimeSTAR(登録商標) GXL DNA Polymeraseキットを用いてPCR反応を行い、目的のtRNA遺伝子を増幅した。PCR反応条件も上記「2.高稼働tRNA発現株(改変宿主細胞)の作成の(1−1)tRNA遺伝子のクローニング1」と同様である。かかる増幅により得た、GAC(Asp)、GCA(Ala)、CAC(His)、AGG(Arg)およびATC(Ile)に対応するtRNA遺伝子(上流および下流領域を含む)の配列は、それぞれ配列番号67、68、69、70および71に対応する。その後、各遺伝子を、pMB1を複製起点として有するプラスミドに導入した。 8). Preparation of high-performance tRNA expression strain (Escherichia coli) Based on the genomic information of Escherichia coli K12, primers for amplifying the tRNA gene were designed (Table 18). In the same manner as in “2. (1) Cloning of
Escherichia coli K12のゲノムに存在しないtRNAは、点変異導入法により作成した。表19に示したプライマーを設計した。上記「2.高稼働tRNA発現株(改変宿主細胞)の作成の(1−2)tRNA遺伝子のクローニング2」と同様に、点変異導入前のtRNA遺伝子が組込まれたプラスミドをテンプレートとした。テンプレートとなるAGG(Arg)およびATC(Ile)は、上記項目に述べた手法でtRNA遺伝子をクローニングした。テンプレートと設計したプライマーとタカラバイオ社のPrimeSTAR(登録商標) GXL DNA Polymeraseキットを用いてPCR反応を行った後、DpnI処理により、それぞれコドンCGC(Arg)、CGA(Arg)およびATA(Ile)に対応する遺伝子(上流および下流領域を含み、それぞれ配列番号72、73および74に対応する)を得た。PCR反応条件も上記「2.高稼働tRNA発現株(改変宿主細胞)の作成の(1−2)tRNA遺伝子のクローニング2」と同じである。A tRNA that does not exist in the Escherichia coli K12 genome was prepared by a point mutagenesis method. The primers shown in Table 19 were designed. In the same manner as in “(1-2) Cloning of tRNA gene 2 in the preparation of a high-efficiency tRNA expression strain (modified host cell)” described above, a plasmid in which the tRNA gene before introduction of point mutation was incorporated was used as a template. AGG (Arg) and ATC (Ile) serving as templates cloned the tRNA gene by the method described in the above item. After performing PCR reaction using the template and the designed primer and PrimeSTAR (registered trademark) GXL DNA Polymerase kit from Takara Bio Inc. Corresponding genes (including upstream and downstream regions, corresponding to SEQ ID NOs: 72, 73 and 74, respectively) were obtained. The PCR reaction conditions are also the same as those described in “2. Preparation of high-performance tRNA expression strain (modified host cell) (1-2) Cloning of tRNA gene 2”.
pACYCの複製起点を有するベクターに、上記の通り取得したtRNA遺伝子を連結し、tRNA発現ベクターを作成した。作成したtRNA発現ベクターの名称および組み込んだtRNA遺伝子を表20に示し、該tRNA発現ベクターの構造を図10に示す。 The tRNA gene obtained as described above was ligated to a vector having the pACYC replication origin to prepare a tRNA expression vector. The name of the prepared tRNA expression vector and the incorporated tRNA gene are shown in Table 20, and the structure of the tRNA expression vector is shown in FIG.
9.大腸菌改変宿主細胞を用いたタンパク質発現
(1)タンパク質発現ベクターの構築および改変宿主細胞の作成
3種類のタンパク質を高発現させるために、pKK233−3ベクター(ファルマシア・バイオテックス社製)を利用した。リパーゼはActinobactor calcoaceticus subsp. antiratusのゲノムDNAをテンプレートとし、表21に示すプライマーを用いて、該生物由来リパーゼ遺伝子(配列番号77)をクローニングした。Equus caballus由来フェリチンLサブユニット遺伝子(配列番号78、GenBak Gene ID: 167621434)およびListeria innocua由来DPS遺伝子(配列番号79、GenBak Gene ID: 26185792)は、人工遺伝子合成技術を用いて全合成した。プロモーターと共にこれらの遺伝子をpBR322の複製起点を有するベクターに連結し、タンパク質発現ベクターとした。
これらのタンパク質発現ベクター、および表20に示すtRNA発現ベクターの2種類を用いて、大腸菌W3110株を形質転換し、tRNA高発現株とした。形質転換はヒートショック法により行った。 9. Protein expression using E. coli modified host cells (1) Construction of protein expression vector and preparation of modified host cells In order to highly express three kinds of proteins, pKK233-3 vector (Pharmacia Biotex) was used. The lipase is Actinobacter calcaceticus subsp. The organism-derived lipase gene (SEQ ID NO: 77) was cloned using the genomic DNA of antiratus as a template and the primers shown in Table 21. The Eubus caballus-derived ferritin L subunit gene (SEQ ID NO: 78, GenBak Gene ID: 167621434) and the Listeria innocua-derived DPS gene (SEQ ID NO: 79, GenBak Gene ID: 26185792) were totally synthesized using an artificial gene synthesis technique. These genes together with the promoter were ligated to a vector having the pBR322 origin of replication to obtain a protein expression vector.
Using these protein expression vectors and the tRNA expression vector shown in Table 20, E. coli W3110 strain was transformed into a tRNA high expression strain. Transformation was performed by the heat shock method.
(2)培養方法
上記の通り作成したtRNA高発現株を、まず種菌培養として、アンピシリン(50μg/mL)及びクロラムフェニコール(15μg/mL)を含有するLB培地(ナカライテスク製 LB培地、Miller、品番:20068−75)3mLにて、試験管培養(37℃で24時間)した。その後、2xYT培地(ナカライテスク製、LB培地、Lennox、品番:20066−95を2倍濃度で使用)に終濃度1%になるようにラクトース溶液を加えた培養液3mLに、種菌培養溶液を0.1%(3μL)植菌し、試験管培養(37℃で72時間)した。(2) Culture method The tRNA high-expression strain prepared as described above was first used as an inoculum culture for LB medium (Nacalai Tesque LB medium, Miller) containing ampicillin (50 μg / mL) and chloramphenicol (15 μg / mL). , Product number: 20068-75) in 3 mL, and cultured in a test tube (at 37 ° C. for 24 hours). Thereafter, the seed culture solution was added to 3 mL of a culture solution obtained by adding a lactose solution to a final concentration of 1% in 2 × YT medium (manufactured by Nacalai Tesque, LB medium, Lennox, product number: 20066-95 at a double concentration). .1% (3 μL) were inoculated and cultured in a test tube (at 37 ° C. for 72 hours).
(3)発現量評価
培養終了後、菌体培養液10μLを回収し、等量のSDSバッファーを加え、ボルテックスした。99℃で5分間熱処理後、得られたサンプルをSDS−PAGE分析した。SDS−PAGEデータから、BioRad社のGel DocTM EZ Systemと付属解析ソフト(Image Lab(商標))を用いて、目的タンパク質のバンドを数値化して発現レベルを定量し、タンパク質発現レベルを比較した。
タンパク質発現レベルは、上記「3.改変宿主細胞を用いたタンパク質発現の(4)タンパク質発現レベルの比較」と同様の手法で評価した。結果を表22に示す。作成したいずれのtRNA高発現株においても、tRNA発現ベクター導入前の株と比較してタンパク質の発現量が有意に増加した。これらの結果より、高稼働tRNAの高発現は、宿主細胞を大腸菌とした場合でもタンパク質の発現量を増加させる効果があること、また宿主細胞に依存せず、tRNA発現ベクターの導入によりタンパク質の発現量を増加させる効果があることが示された。(3) Expression level evaluation After completion of the culture, 10 μL of the bacterial cell culture solution was collected, and an equal amount of SDS buffer was added thereto, followed by vortexing. After heat treatment at 99 ° C. for 5 minutes, the obtained sample was subjected to SDS-PAGE analysis. From SDS-PAGE data, using the Gel DocTM EZ System of BioRad and the attached analysis software (Image Lab (trademark) ), the band of the target protein was digitized, the expression level was quantified, and the protein expression level was compared.
The protein expression level was evaluated in the same manner as in “3. Protein expression using modified host cells (4) Comparison of protein expression level”. The results are shown in Table 22. In any of the tRNA high-expression strains prepared, the protein expression level was significantly increased compared to the strain before the introduction of the tRNA expression vector. From these results, it can be seen that high expression of highly active tRNA has the effect of increasing the protein expression level even when the host cell is Escherichia coli, and does not depend on the host cell. It has been shown to have an effect of increasing the amount.
本発明は、タンパク質発現用の改変宿主細胞であって、該宿主細胞において稼働率の高いtRNAをコードする遺伝子が導入された改変宿主細胞を提供する。該改変宿主細胞は、該tRNAコード遺伝子が導入されていない宿主細胞と比較して高い効率でタンパク質を発現するものであり、タンパク質の組換え発現や有用化合物の生産において好適に用いることができる。 The present invention provides a modified host cell for expressing a protein, wherein the host cell is introduced with a gene encoding a tRNA having a high availability rate. The modified host cell expresses a protein with higher efficiency than a host cell into which the tRNA-encoding gene has not been introduced, and can be suitably used for recombinant expression of proteins and production of useful compounds.
Claims (11)
(a)下記式の通り定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド、および/または
(b)下記式の通り定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド
が導入された改変宿主細胞(但し、稼働率Aまたは稼働率Bの偏差値が70以上であるtRNAのうち1種のみをコードするポリヌクレオチドが導入された大腸菌を除く)。
(A) the following formula of at least one polynucleotide encoding the tRNA, and / or (b) the deviation of the operating rate B being defined as the following equation deviation of as being defined operating rate A is 70 or more value modified host cell in which the polynucleotide is introduced that encodes at least one tRNA is 70 or more (however, encoding only one kind of tRNA deviation of operation rate a or operating rate B is 70 or more Except for E. coli into which the polynucleotide has been introduced) .
(i)宿主細胞を提供する工程;
(ii)請求項1において定義される稼働率Aおよび/または請求項1において定義される稼働率Bに基づいて、該稼働率Aおよび/または稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドを選択する工程;および
(iii)該ポリヌクレオチドを含む核酸分子またはベクターを用いて該宿主細胞を形質転換する工程。 A method for producing a modified host cell for protein expression, comprising the following steps:
(I) providing a host cell ;
(Ii) Based on the operating rate A defined in claim 1 and / or the operating rate B defined in claim 1, the deviation value of the operating rate A and / or operating rate B is at least 1 or more Selecting a polynucleotide encoding a species tRNA ; and
(Iii) transforming the host cell with a nucleic acid molecule or vector comprising the polynucleotide .
(A)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド、および/または
(B)請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド
(但し、該宿主細胞が大腸菌であり、該核酸分子またはベクターが、稼働率Aまたは稼働率Bの偏差値が70以上であるtRNAのうち1種のみをコードするポリヌクレオチドを含む場合を除く)。 A nucleic acid molecule or vector used to modify a host cell comprising:
(A) a polynucleotide deviation encodes at least one tRNA is 70 or more defined the operating rate A according to claim 1, and / or (B) the deviation of the operating rate B as defined in claim 1 polynucleotides encoding at least one tRNA value is 70 or more
(However, the case where the host cell is Escherichia coli and the nucleic acid molecule or the vector contains a polynucleotide encoding only one of tRNAs having a deviation in operating rate A or operating rate B of 70 or more) .
(A)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド、および/または請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド; および
(B)該ポリヌクレオチドを組み込むことができるベクターであって、宿主細胞を形質転換するために用いるベクター
(但し、該宿主細胞が大腸菌であり、該ポリヌクレオチドが稼働率Aまたは稼働率Bの偏差値が70以上であるtRNAのうち1種のみをコードするポリヌクレオチドである場合を除く)。 A kit comprising the following for use in modifying a host cell:
(A) deviation of operating ratio B as defined in claims polynucleotides, and / or claim 1 deviation of operating ratio A defined in 1 encoding at least one tRNA is 70 or 70 polynucleotides encoding at least one tRNA is higher; a vector which can incorporate and (B) said polynucleotide, a vector using a host cell to transform
(Except when the host cell is Escherichia coli and the polynucleotide is a polynucleotide encoding only one of tRNAs having a deviation in operating rate A or operating rate B of 70 or more) .
(A)宿主細胞; および
(B)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドおよび/または請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクター
(但し、該宿主細胞が大腸菌であり、該核酸分子またはベクターが、稼働率Aまたは稼働率Bの偏差値が70以上であるtRNAのうち1種のみをコードするポリヌクレオチドを含む場合を除く)。 A kit comprising the following for producing a modified host cell for protein expression:
(A) a host cell; and (B) operating ratio deviation of operating ratio A defined in claim 1 is defined in the polynucleotide and / or claim 1 encoding at least one tRNA is 70 or more nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA deviation of B is 70 or more
(However, the case where the host cell is Escherichia coli and the nucleic acid molecule or the vector contains a polynucleotide encoding only one of tRNAs having a deviation in operating rate A or operating rate B of 70 or more) .
(A)宿主細胞;
(B)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドおよび/または請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチド; および
(C)該ポリヌクレオチドを組み込むことができるベクターであって、宿主細胞を形質転換するために用いるベクター
(但し、該宿主細胞が大腸菌であり、該ポリヌクレオチドが稼働率Aまたは稼働率Bの偏差値が70以上であるtRNAのうち1種のみをコードするポリヌクレオチドである場合を除く)。 A kit comprising the following for producing a modified host cell for protein expression:
(A) a host cell;
(B) deviation of operating ratio B as defined in the polynucleotide and / or claim 1 deviation of operating rate A as defined in claim 1 encodes at least one tRNA is 70 or more 70 or more polynucleotides encoding at least one tRNA is: a vector which can incorporate and (C) said polynucleotide, a vector using a host cell to transform
(Except when the host cell is Escherichia coli and the polynucleotide is a polynucleotide encoding only one of tRNAs having a deviation in operating rate A or operating rate B of 70 or more) .
(i)請求項1において定義される稼働率Aおよび/または請求項1において定義される稼働率Bに基づいて、該稼働率Aおよび/または稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドを選択する工程;
(ii)該ポリヌクレオチドを含む核酸分子またはベクターを提供する工程;および
(iii)該核酸分子またはベクターを用いて微生物を形質転換する工程。 A method for producing a modified microorganism comprising the following steps, wherein the modified microorganism has an increased compound productivity as compared to an unmodified microorganism of the same species:
(I) Based on the operation rate A defined in claim 1 and / or the operation rate B defined in claim 1, the deviation value of the operation rate A and / or operation rate B is at least 1 or more Selecting a polynucleotide encoding a species tRNA ;
(Ii) providing a nucleic acid molecule or vector comprising the polynucleotide; and
(Iii) A step of transforming a microorganism using the nucleic acid molecule or vector.
(i)(a)該化合物の合成反応を触媒する酵素をコードするポリヌクレオチドならびに(b)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドおよび/または(c)請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドが導入された宿主細胞を提供する工程; および
(ii)該宿主細胞を培養する工程。 A method for producing a compound comprising the following steps:
(I) (a) deviation of the polynucleotide and (b) operating rate A as defined in claim 1 which encodes an enzyme that catalyzes the synthesis of the compound encoding at least one tRNA is 70 or more providing a polynucleotide and / or (c) a host cell in which the polynucleotide is introduced that encodes at least one tRNA deviation of operating rate B being defined is 70 or more in claim 1; and (ii ) Culturing the host cell.
(i)該化合物の合成反応を触媒する酵素をコードするポリヌクレオチドを含む核酸分子またはベクターを提供する工程;
(ii)請求項1において定義される稼働率Aの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドおよび/または請求項1において定義される稼働率Bの偏差値が70以上である少なくとも1種のtRNAをコードするポリヌクレオチドを含む核酸分子またはベクターを提供する工程;
(iii)(i)および(ii)の核酸分子またはベクターを用いて宿主細胞を形質転換する工程; および
(iv)該形質転換された宿主細胞を培養する工程。 A method for producing a compound comprising the following steps:
(I) providing a nucleic acid molecule or vector comprising a polynucleotide encoding an enzyme that catalyzes a synthesis reaction of the compound;
(Ii) deviation of operating ratio B as defined in the polynucleotide and / or claim 1 deviation of operating rate A as defined in claim 1 encodes at least one tRNA is 70 or more 70 or more providing a nucleic acid molecule or vector comprising a polynucleotide encoding at least one tRNA is;
(Iii) transforming host cells with the nucleic acid molecules or vectors of (i) and (ii); and (iv) culturing the transformed host cells.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014111436 | 2014-05-29 | ||
JP2014111436 | 2014-05-29 | ||
PCT/JP2015/065460 WO2015182719A1 (en) | 2014-05-29 | 2015-05-28 | Method for improving yield of substance from micro-organism, and kit using said method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5947470B2 true JP5947470B2 (en) | 2016-07-06 |
JPWO2015182719A1 JPWO2015182719A1 (en) | 2017-04-20 |
Family
ID=54699042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015557282A Active JP5947470B2 (en) | 2014-05-29 | 2015-05-28 | Method for improving substance productivity of microorganisms and kit used for the method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5947470B2 (en) |
WO (1) | WO2015182719A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005046068A (en) * | 2003-07-29 | 2005-02-24 | Sekisui Chem Co Ltd | New bacterium for producing protein and method for producing the protein |
JP2005508629A (en) * | 2001-05-04 | 2005-04-07 | ユニバーシティー オブ フロリダ リサーチ ファンデーション, インク. | Cloning and sequencing of pyruvate decarboxylase (PDC) gene from bacteria and uses thereof |
WO2010033007A2 (en) * | 2008-09-22 | 2010-03-25 | 한국과학기술원 | Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with trna of the specific amino acid |
-
2015
- 2015-05-28 JP JP2015557282A patent/JP5947470B2/en active Active
- 2015-05-28 WO PCT/JP2015/065460 patent/WO2015182719A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005508629A (en) * | 2001-05-04 | 2005-04-07 | ユニバーシティー オブ フロリダ リサーチ ファンデーション, インク. | Cloning and sequencing of pyruvate decarboxylase (PDC) gene from bacteria and uses thereof |
JP2005046068A (en) * | 2003-07-29 | 2005-02-24 | Sekisui Chem Co Ltd | New bacterium for producing protein and method for producing the protein |
WO2010033007A2 (en) * | 2008-09-22 | 2010-03-25 | 한국과학기술원 | Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with trna of the specific amino acid |
Non-Patent Citations (4)
Title |
---|
JPN6016005077; Expression Technologies Inc., 2003 tRNA [検索日:2016年2月4日] * |
JPN6016005078; 'Misreading of histidine codons by hypomodified tRNAGln1.' Abstracts of the General Meeting of the American Society for Microbiology, (2001) Vol. 101, pp. 480 * |
JPN6016005079; Microbiology, 2009, vol.155, p.3581-3588 * |
JPN6016005080; J Bacteriology, 2011, vol.193, no.14, p.3569-3576 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015182719A1 (en) | 2017-04-20 |
WO2015182719A1 (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6920491B2 (en) | Compositions and Methods for Rapid and Dynamic Flux Control Using Synthetic Metabolism Valves | |
Savakis et al. | Synthesis of 2, 3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria | |
Nguyen et al. | Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2, 3-butanediol production from methane | |
Lang et al. | Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites | |
JP6562950B2 (en) | Dreamenol synthase and method for producing dreammenol | |
JP2011500031A (en) | Microorganisms engineered to produce isopropanol | |
US11230721B2 (en) | Production of a flavour compound in a host cell | |
JP5867586B2 (en) | Hydrocarbon synthase gene and use thereof | |
Bañares et al. | Discovering a novel D-xylonate-responsive promoter: the P yjhI-driven genetic switch towards better 1, 2, 4-butanetriol production | |
CN106460014B (en) | Drimenol synthase and method for producing drimenol | |
JP2017502685A (en) | Method of using O-methyltransferase for biosynthetic production of pterostilbene | |
WO2021195517A2 (en) | Compositions and methods for recombinant biosynthesis of cannabinoids | |
JP5947470B2 (en) | Method for improving substance productivity of microorganisms and kit used for the method | |
US20200308612A1 (en) | Vetiver | |
US20230051453A1 (en) | Biosynthetic platform for the production of olivetolic acid and analogues of olivetolic acid | |
US10184138B2 (en) | Bacteria engineered for conversion of ethylene to ethanol | |
CA3227215A1 (en) | Recombinant prenyltransferase polypeptides engineered for enhanced biosynthesis of cannabinoids | |
JP6034332B2 (en) | Recombinant microorganism and method for producing substance using the recombinant microorganism | |
WO2013055667A2 (en) | Biocatalysis cells and methods | |
WO2023069921A1 (en) | Recombinant thca synthase polypeptides engineered for enhanced biosynthesis of cannabinoids | |
WO2024095283A1 (en) | Recombinant dna, recombinant vector for producing delta-acyl lactones and its implementation thereof | |
JP2021003034A (en) | Coliform bacillus that expresses efp protein, and method for producing flavonoid compound by using the same | |
WO2016020528A1 (en) | New hydroxynitrile lyases | |
Vegunta | Biochemical characterization of mmgB, a gene encoding a 3-hydroxybutyryl-CoA dehydrogenase from Bacillus subtilis 168 and genetic evidence for the methylcitric acid cycle in Bacillus subtilis 168 | |
JP2018000195A (en) | Method for producing nootkatone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5947470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |