JP5946993B2 - Liquid oil leak detection device - Google Patents
Liquid oil leak detection device Download PDFInfo
- Publication number
- JP5946993B2 JP5946993B2 JP2011015546A JP2011015546A JP5946993B2 JP 5946993 B2 JP5946993 B2 JP 5946993B2 JP 2011015546 A JP2011015546 A JP 2011015546A JP 2011015546 A JP2011015546 A JP 2011015546A JP 5946993 B2 JP5946993 B2 JP 5946993B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- insulating oil
- laser
- wavelength
- leakage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 65
- 239000007788 liquid Substances 0.000 title claims description 51
- 238000007689 inspection Methods 0.000 claims description 56
- 230000003287 optical effect Effects 0.000 claims description 26
- 230000031700 light absorption Effects 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000010408 sweeping Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000003921 oil Substances 0.000 description 148
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000009413 insulation Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000000411 transmission spectrum Methods 0.000 description 4
- 238000004040 coloring Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Description
本発明は、絶縁油漏洩の検査領域にレーザ光を照射して絶縁油の漏洩を検出する液体漏洩検出装置に関し、特に、中間赤外域のレーザ光に対する絶縁油の赤外吸収原理を利用して絶縁油の漏洩を検出する液体漏洩検出装置に関する。 The present invention relates to liquids leak detection system that detect by irradiating the insulating oil leaked laser beam into the examination region of the insulating oil leakage, in particular, use of the infrared absorption principle of insulating oil middle infrared region with respect to the laser beam It relates liquids leak detection system that detect the insulating oil leakage by.
液体の漏洩が問題となる例としては、例えば、発電所や変電所におけるトランス(変圧器)等の絶縁油封入設備からの絶縁油の漏洩がある。このような絶縁油封入設備は漏油がない設計を基本としているが、長期間にわたる使用、地震等の災害等により絶縁油が漏洩することがある。最近ではPCBを使用しない絶縁油が用いられているが、古い設備・器具においてはPCBを含む絶縁油が使われていたり、PCBが混入した再生油が使われていたりすることがあり、漏油による影響は、設備・器具の本来機能の不具合や故障の原因となるばかりではなく、環境に対しても悪影響を及ぼす場合がある。このため、電力会社においては定期巡視を行い、漏油が発見された場合には漏油箇所の補修、設備の交換、土壌の入換えや監督官庁への報告が義務付けられている。 As an example in which liquid leakage becomes a problem, for example, there is leakage of insulating oil from an insulating oil filling facility such as a transformer (transformer) in a power plant or substation. Such insulation oil filling equipment is based on a design that does not leak oil, but insulation oil may leak due to long-term use, disasters such as earthquakes, and the like. Recently, insulating oil that does not use PCB is used, but old equipment and appliances may use insulating oil containing PCB, or recycled oil containing PCB may be used. The influence of the above may not only cause a malfunction or failure of the original function of equipment / equipment, but may also have an adverse effect on the environment. For this reason, electric power companies are required to make regular patrols, and if oil leaks are found, repair oil leaks, replace equipment, replace soil, and report to the supervisory authorities.
ところで、従来、レーザ光を利用して油を検出する漏油検出装置として、例えば特許文献1に記載されたものがある。この装置は、油運搬船等からの大量の油の海上流出を未然に防止することを目的とし、レーザ光を海面や海水中に照射し、レーザ光の照射による漏油からの蛍光、散乱光を検出することで、海面や海水中に浮遊する漏油を検出している。 By the way, conventionally, as an oil leakage detection device that detects oil using laser light, for example, there is one described in Patent Document 1. The purpose of this device is to prevent a large amount of oil from flowing out of the ocean from oil carriers, etc., and to irradiate the surface of the sea and seawater with laser light, and to emit fluorescence and scattered light from the oil leaked by the laser light irradiation. By detecting it, oil leakage floating in the sea surface or sea water is detected.
しかしながら、特許文献1に記載された漏油検出装置は、海面に浮遊する油分を検出対象とするもので、漏油検出に蛍光、散乱光を利用しており、蛍光の発生効率及び水中透過性を考慮して照射するレーザ光の波長を220〜550nm、受光波長を350〜570nmとしている。この場合、太陽光の日射スペクトルの最大値が550nm付近であることを考えると、昼間の太陽光の下では漏油の検出が難しく、昼間の漏油検査には使用できないという問題がある。電力会社において、現状の定期巡視では、漏油の検査を巡視員の目視で行っており、漏油の有無が巡視員の主観的な判断で行われており、極めて微量な漏油については発見が極めて難しいと言う問題がある。このため、漏洩検査の信頼度向上や安全対策等の観点から、漏油の有無を客観的に判断でき、極めて微量な漏油でも検出できる漏油検出装置が望まれている。 However, the oil leakage detection device described in Patent Document 1 is intended for detection of oil components floating on the sea surface, and uses fluorescence and scattered light for oil leakage detection. In consideration of the above, the wavelength of the laser beam to be irradiated is 220 to 550 nm, and the light receiving wavelength is 350 to 570 nm. In this case, considering that the maximum value of the solar radiation spectrum is around 550 nm, there is a problem that it is difficult to detect oil leakage under daylight sunlight and cannot be used for daytime oil leakage inspection. In electric power companies, the current periodic patrols are conducted by inspection of the oil leakage by the patrolman, and the presence or absence of oil leakage is determined by the patrolman's subjective judgment. There is a problem that is extremely difficult. For this reason, from the viewpoint of improving the reliability of leakage inspection, safety measures, etc., there is a demand for an oil leakage detection device that can objectively determine the presence or absence of oil leakage and can detect even a very small amount of oil leakage.
本発明は上記問題点に着目してなされたもので、昼夜を問わずに絶縁油の漏洩を客観的に検出できる液体漏洩検出装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a liquid body leak detection system that can objectively detect an insulating oil leakage to day or night.
本発明の液体漏洩検出装置は、絶縁油漏洩の検査領域に照射する中間赤外域の波長として、3.6μmを中心波長とする波長帯のレーザ光を発生するレーザ発光手段と、前記レーザ光の波長を検査対象の絶縁油の光吸収波長帯を含んで掃引制御する波長掃引制御手段と、前記検査領域からのレーザ光の反射光を受光して受光強度に応じた出力を発生する受光手段と、該受光手段の出力の落込みを検出して前記絶縁油漏洩を検出する漏洩検出手段と、前記絶縁油漏洩が検出されたことを操作者に警告する警告手段と、前記絶縁油漏洩の検査場所の位置情報を取得する位置情報取得手段と、を備え、前記漏洩検出手段は、前記絶縁油の前記光吸収波長帯を含んで掃引したときの最大受光強度と前記落込みの量との比率を判定値として前記比率が予め設定した閾値以上か否かを判定することを特徴とする。 The liquid leakage detection apparatus of the present invention comprises a laser emitting means for generating a laser beam having a wavelength band centered on 3.6 μm as a wavelength in the mid-infrared region irradiated to an inspection region for insulating oil leakage, Wavelength sweep control means for sweeping and controlling the wavelength including the light absorption wavelength band of the insulating oil to be inspected, and light receiving means for receiving the reflected light of the laser light from the inspection area and generating an output corresponding to the received light intensity a warning means for warning the leak detection means for detecting the detection to the insulating oil leaking drop in output of the light receiving means, said insulating oil leakage is detected to the operator, the inspection of the insulating oil leaks A position information acquisition means for acquiring position information of a place , wherein the leakage detection means is a ratio of a maximum received light intensity when swept including the light absorption wavelength band of the insulating oil and the amount of the drop Is used as a judgment value. Wherein the determining whether or the set threshold value.
かかる構成では、レーザ発光手段から絶縁油漏洩の検査領域に照射する中間赤外域の波長として、3.6μmを中心波長とする波長帯のレーザ光を発生し、波長掃引制御手段でレーザ光の波長を検査対象の絶縁油の光吸収波長帯を含んで掃引制御して絶縁油漏洩の検査領域に照射する。受光手段は、検査領域からのレーザ光の反射光を受光して受光強度に応じた出力を発生し、漏洩検出手段は受光手段の出力の落込みを検出する。具体的には、漏洩検出手段は、絶縁油の光吸収波長帯を含んで掃引したときの最大受光強度と落込みの量との比率を判定値として比率が予め設定した閾値以上か否かを判定する。受光手段の出力に落込みがあれば絶縁油による光吸収ありと判断することにより、絶縁油の漏洩を検出するようになる。また、警告手段により、絶縁油の漏洩が検出されたことを操作者に警告する。また、位置情報取得手段により絶縁油漏洩の検査場所の位置情報を取得する。 In such a configuration, a laser beam having a wavelength band having a central wavelength of 3.6 μm is generated as a wavelength in the mid-infrared region irradiated from the laser light emitting unit to the insulating oil leakage inspection region, and the wavelength sweep control unit generates the wavelength of the laser beam. Is swept to include the light absorption wavelength band of the insulating oil to be inspected and irradiated to the inspection area for insulating oil leakage. The light receiving means receives the reflected light of the laser light from the inspection region and generates an output corresponding to the received light intensity, and the leak detection means detects a drop in the output of the light receiving means. Specifically, the leakage detection means determines whether or not the ratio is equal to or greater than a preset threshold value with a ratio between the maximum light receiving intensity and the amount of depression when swept including the light absorption wavelength band of the insulating oil as a determination value. judge. If there is a drop in the output of the light receiving means, it is determined that there is light absorption by the insulating oil, thereby detecting leakage of the insulating oil. Further, the warning means warns the operator that the leakage of the insulating oil has been detected. Further, the position information acquisition means acquires the position information of the inspection location for the insulating oil leakage.
本発明の液体漏洩検出装置によれば、太陽光の影響を受けない中間赤外域の波長として、3.6μmを中心波長とする波長帯のレーザ光を用いたので、昼夜を問わずに絶縁油の漏洩検査を行うことができる。また、絶縁油の光吸収波長帯を含んで掃引したときの最大受光強度と落込みの量との比率を判定値として比率が予め設定した閾値以上か否かを判定することにより、微量な絶縁油の漏洩も確実に検出でき、絶縁油の漏洩検査の信頼度を高めることできる。また、漏洩の発生した絶縁油封入設備を早期に客観的に発見でき、また、その絶縁油封入設備の設置場所を特定できるので、絶縁油封入設備の補修、交換等の安全対策を遅滞なく行える。また、警告手段により、絶縁油の漏洩が検出されたことを操作者に警告できる。 According to the liquid leak detection apparatus of the present invention, since the laser light having a wavelength band having a central wavelength of 3.6 μm is used as the wavelength in the mid-infrared region not affected by sunlight, the insulating oil can be used regardless of day or night. Leakage inspection can be performed. In addition, a small amount of insulation can be obtained by determining whether or not the ratio is equal to or greater than a preset threshold with the ratio between the maximum received light intensity and the amount of drop when swept including the light absorption wavelength band of the insulating oil as a determination value. Oil leaks can be detected reliably, and the reliability of insulation oil leak inspection can be increased. In addition, it is possible to quickly and objectively find leaked insulation oil filling equipment and to identify the installation location of the insulation oil filling equipment, so that safety measures such as repair and replacement of the insulation oil filling equipment can be performed without delay. . Further, the warning means can warn the operator that the leakage of insulating oil has been detected.
以下、本発明の実施形態を図面に基づいて説明する。
本発明の液体漏洩検出装置による絶縁油の漏洩検出は、絶縁油の漏洩を検査する検査領域に中間赤外域(2〜25μm)の波長のレーザ光を照射し、レーザ光の波長を検査対象の絶縁油の光吸収波長帯を含んで掃引して検査領域からの反射光を受光し、絶縁油の赤外吸収による反射光の受光強度の落込みを検出することにより、絶縁油の漏洩を検出することを特徴とするものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Insulating oil leakage detection by the liquid leakage detection apparatus of the present invention irradiates a laser beam having a wavelength in the mid-infrared region (2 to 25 μm) to the inspection region for inspecting the leakage of the insulating oil , and determines the wavelength of the laser light to be inspected. by sweeping comprises a light absorption wavelength band of the insulating oil receiving light reflected from the inspection area, by detecting a drop in the light receiving intensity of the reflected light by the infrared absorption of the insulating oil, it detects the insulating oil leakage It is characterized by doing.
本発明の液体漏洩検出装置による絶縁油の漏洩検出について、例えばトランス(変圧器)に封入されている絶縁油を例として、その漏洩を検出する場合の一例を、図1を参照しながら説明する。 For leak detection of insulating oil due to liquid leak detection system of the present invention, as an example insulating oil sealed in the transformer (transformer) In example embodiment, an example of a case of detecting the leakage, with reference to FIG. 1 explained To do.
液体漏洩検出装置1における受光強度Iは、レーザ光の波長λに応じた出射強度I0、液体漏洩検出装置1から油分封入設備2表面までのレーザ光照射空間における減衰の往復分ρ2、油分封入設備2表面の塗膜反射率R、漏油透過率の往復分T2及び液体漏洩検出装置既知1内の効率fの積により下記の(1)式のように定義される。尚、I、I0、ρ2、R、T2及びfは、レーザ光の波長に依存することから下記の(1)式は波長の関数として表記してある。
I(λ)=I0(λ)・ρ(λ)2・T(λ)2・R(λ)・f(λ) ・・・(1)
The received light intensity I in the liquid leak detection device 1 is the emission intensity I 0 corresponding to the wavelength λ of the laser light, the reciprocation ρ 2 of attenuation in the laser light irradiation space from the liquid leak detection device 1 to the surface of the oil sealing equipment 2 , the oil content The following equation (1) is defined by the product of the coating film reflectance R on the surface of the sealing equipment 2, the reciprocal T 2 of the oil leakage transmission rate, and the efficiency f in the liquid leakage detection device known 1. Since I, I 0 , ρ 2 , R, T 2 and f depend on the wavelength of the laser beam, the following equation (1) is expressed as a function of the wavelength.
I (λ) = I 0 (λ) · ρ (λ) 2 · T (λ) 2 · R (λ) · f (λ) (1)
ここで、レーザ光の出射強度I0は液体漏洩検出装置1内の発振モニタでリアルタイムに計測することで既知となり、レーザ光照射空間における減衰ρはレーザ光をビーム広がりがない平行光とすることにより無視(ρ≒1)することができ、塗膜反射率Rは油分封入設備2表面の顕著な汚れを無視すれば検査場所によらず一定値とみなすことができ、液体漏洩検出装置1内の効率fは設計値及び液体漏洩検出装置1の検査時に計測することで定数にできるので、漏油検査における変数は漏油透過率Tのみとなる。そして、漏油がないときはT=1となるが、漏油があるときは検査対象の油の光吸収特性や漏油の膜厚に依存してその油の光吸収特性に基づいた特定波長帯でT<1となり、受光強度Iが低下するため、受光強度Iを計測することにより、漏油の有無が検出できる。 Here, the emission intensity I 0 of the laser beam is known by measuring in real time with an oscillation monitor in the liquid leak detection apparatus 1, and the attenuation ρ in the laser beam irradiation space is used to make the laser beam a parallel beam with no beam spread. Can be ignored (ρ≈1), and the coating film reflectance R can be regarded as a constant value regardless of the inspection location if the significant dirt on the surface of the oil-sealing facility 2 is ignored. The efficiency f can be made constant by measuring the design value and the liquid leakage detection device 1 during inspection, so the only variable in the oil leakage inspection is the oil leakage transmittance T. And when there is no oil leakage, T = 1, but when there is oil leakage, the specific wavelength based on the light absorption property of the oil depending on the light absorption property of the oil to be inspected and the oil leakage film thickness. Since T <1 in the band and the light reception intensity I decreases, the presence or absence of oil leakage can be detected by measuring the light reception intensity I.
具体的には、レーザ発振器への印加電流を掃引することにより、図2の点線で示すように出射強度I0とレーザ光の波長を同時に掃引する。受光強度Iは、漏油なしのときには図2の実線で示すように出射強度I0に応じた値で計測されるが、漏油ありのときには、絶縁油の光吸収波長帯で透過率Tに応じた光吸収が生じ、受光強度Iが低下し波長掃引中において図2の一点鎖線で示すように落込みが生じる。従って、レーザ光の波長を絶縁油の光吸収波長帯を含んで掃引することで、絶縁油の光吸収波長帯において生じる受光強度Iの落込みを検出することにより、漏油の有無を検出できる。尚、図2は、波長掃引時の漏油の有無による出射強度I0と受光強度Iの様子を模式的に示したものである。ここで、落込みとは、図2で示すような所定の波長領域での強い光吸収部分のことである。 Specifically, by sweeping the current applied to the laser oscillator, the emission intensity I 0 and the wavelength of the laser beam are simultaneously swept as indicated by the dotted line in FIG. The light reception intensity I is measured with a value corresponding to the emission intensity I 0 as shown by the solid line in FIG. 2 when there is no oil leakage. When there is oil leakage, the light reception intensity I is a transmittance T in the light absorption wavelength band of insulating oil. The corresponding light absorption occurs, the received light intensity I decreases, and a drop occurs as shown by the alternate long and short dash line in FIG. Therefore, by sweeping the wavelength of the laser light including the light absorption wavelength band of the insulating oil, it is possible to detect the presence or absence of oil leakage by detecting a drop in the received light intensity I occurring in the light absorption wavelength band of the insulating oil. . FIG. 2 schematically shows the state of the emission intensity I 0 and the received light intensity I depending on the presence or absence of oil leakage during the wavelength sweep. Here, the drop is a strong light absorption portion in a predetermined wavelength region as shown in FIG.
絶縁油の場合、図3に示す透過スペクトルから3.4〜3.7μmの光波長帯で光吸収を示すので、出射したレーザ光の波長が3.4〜3.7μmの範囲で受光強度Iに落込みが生じることになる。 In the case of insulating oil, light absorption is shown in the optical wavelength band of 3.4 to 3.7 μm from the transmission spectrum shown in FIG. 3, and thus the received light intensity I is in the range of the wavelength of the emitted laser light of 3.4 to 3.7 μm. Will be depressed.
また、太陽光(短波放射)の放射スペクトルは、図4に示すように、紫外線域(波長280〜380nm)、可視光域(波長380〜750nm)、近赤外域(波長700〜2500nm)の波長領域で、強い分光放射照度を示し、特に可視光域においては強度が強い。このため、従来のように紫外線域(波長280〜380nm)、可視光域(波長380〜750nm)、近赤外域(波長700〜2500nm)の光を用いた液体漏洩検出装置では、太陽光の影響を受けて昼間の漏油検査が難しかった。 Moreover, as shown in FIG. 4, the radiation spectrum of sunlight (short wave radiation) has wavelengths in the ultraviolet region (wavelength 280 to 380 nm), visible light region (wavelength 380 to 750 nm), and near infrared region (wavelength 700 to 2500 nm). It shows strong spectral irradiance in the region, and is particularly strong in the visible light region. For this reason, in the liquid leakage detection apparatus using light in the ultraviolet region (wavelength 280 to 380 nm), visible light region (wavelength 380 to 750 nm), and near infrared region (wavelength 700 to 2500 nm) as in the past, the influence of sunlight The daytime oil leak test was difficult.
これに対して、本発明では、太陽光(短波放射)の分光放射照度がほとんどない中間赤外域(2〜25μm)の波長のレーザ光を使用する(絶縁油の場合は3.6μmを中心波長とする波長帯のレーザ光を使用する)ので、夜間は勿論、太陽光が存在する昼間でも太陽光(短波放射)の影響を受けることがなく漏油検査が可能である。また、図4に示すように3.6μmの波長帯では地表物質や雲からの大気放射(長波放射)の分光放射照度も、晴天時の1.2W/m2・nm-1に比べて0.001W/m2・nm-1と1/1000以下であるので、本発明による絶縁油の漏油検査のように、3.6μmを中心波長とする波長帯のレーザ光を使用すれば、その影響も受けづらい。 On the other hand, in the present invention, laser light having a wavelength in the mid-infrared region (2 to 25 μm) having almost no spectral irradiance of sunlight (short wave radiation) is used (in the case of insulating oil, the central wavelength is 3.6 μm). Therefore, oil leakage inspection is possible without being affected by sunlight (short wave radiation) not only at night but also in the daytime when sunlight is present. Further, as shown in FIG. 4, in the wavelength band of 3.6 μm, the spectral irradiance of atmospheric radiation (long wave radiation) from surface materials and clouds is also 0 compared to 1.2 W / m 2 · nm −1 in fine weather. .001 W / m 2 · nm −1 , which is 1/1000 or less, so if laser light having a wavelength band centered on 3.6 μm is used as in the case of oil leakage inspection according to the present invention, It is hard to be affected.
地上に設置されている油分封入設備は雨滴に濡れることも多く、また、大気中の水蒸気による漏油検査への影響を考慮すると、液体状態又は気体状態(水蒸気)の水分の影響が少ない波長域のレーザ光、即ち、水分の透過率が高い波長域のレーザ光を使用することが、計測時のS/N比を向上させることになる。水(液体)及び水蒸気の透過スペクトルは図5に示すように、3.6μmの波長域においては、水蒸気の光透過率は略100%で光の吸収がなく、本発明のように絶縁油の漏油検査において3.6μmの波長帯のレーザ光を使用すれば、大気中の水蒸気による漏油検査への影響はない。また、水(液体)の影響については、3.6μmの波長域ではその透過率の変化がなだらかであるため、波長の掃引範囲内においては水(液体)による受光強度Iの変化と絶縁油の光吸収波長において鋭く変化する絶縁油による受光強度Iの変化とは識別が可能であり、水(液体)が存在しても漏油検査には影響はない。 The oil-filled equipment installed on the ground often gets wet with raindrops, and in consideration of the effects of water vapor in the atmosphere on oil leakage inspection, the wavelength range is less affected by moisture in the liquid state or gas state (water vapor) The use of the laser beam, that is, the laser beam having a wavelength range with a high moisture transmittance improves the S / N ratio at the time of measurement. As shown in FIG. 5, the transmission spectrum of water (liquid) and water vapor has a light transmittance of approximately 100% and no light absorption in the wavelength region of 3.6 μm. If laser light having a wavelength band of 3.6 μm is used in the oil leakage inspection, there is no influence on the oil leakage inspection due to water vapor in the atmosphere. As for the influence of water (liquid), since the change in transmittance is gentle in the wavelength range of 3.6 μm, the change in the received light intensity I due to water (liquid) and the insulating oil in the wavelength sweep range. It can be distinguished from the change in the light receiving intensity I due to the insulating oil that changes sharply at the light absorption wavelength, and even if water (liquid) is present, it does not affect the oil leakage inspection.
また、本発明装置では、前述した(1)式から受光強度Iを計測することにより、油分の透過率Tを計測することができる。ここで、ランバート・ベールの法則により、透過率Tは、下記の(2)式のように表せる。
T=exp(−acL) (2)
ただし、aは油分のモル吸光係数、cは油分のモル濃度、Lは光が通過する油分のパス長である。ここで、検査対象が液体であり油分封入設備1の表面に付着することから、漏油の濃度は均一とみなせる。従って、検査対象となる油分のモル吸光係数a及び大気圧、常温環境下におけるモル濃度cが既知であるならば、パス長Lは、下記の(3)式から求めることができる。
L=−ln(T)/ac (3)
Moreover, in this invention apparatus , the transmittance | permeability T of oil can be measured by measuring the light reception intensity | strength I from (1) Formula mentioned above. Here, according to Lambert-Beer's law, the transmittance T can be expressed as the following equation (2).
T = exp (−acL) (2)
Where a is the molar extinction coefficient of oil, c is the molar concentration of oil, and L is the path length of the oil through which light passes. Here, since the inspection target is a liquid and adheres to the surface of the oil-filling facility 1, the concentration of oil leakage can be regarded as uniform. Therefore, if the molar extinction coefficient a of the oil to be inspected, the atmospheric pressure, and the molar concentration c in a normal temperature environment are known, the path length L can be obtained from the following equation (3).
L = −ln (T) / ac (3)
ここで、パス長Lは光が通過した漏油の長さであることから、求めたパス長Lから漏油の膜厚を求めることができる。パス長Lは光が漏油内を往復した長さであるから、パス長Lの半分(L/2)が漏油の膜厚として得られる。検査対象の液体が例えば粘性等が大きく流れ難い液体等であれば、漏油が多い場合に膜厚が厚くなると考えられるので、膜厚から大凡の漏油の程度を把握することが可能である。 Here, since the path length L is the length of the oil leak through which light has passed, the film thickness of the oil leak can be obtained from the obtained path length L. Since the path length L is the length of light traveling back and forth within the oil leakage, half of the path length L (L / 2) is obtained as the film thickness of the oil leakage. If the liquid to be inspected is, for example, a liquid that has a large viscosity and is difficult to flow, it is considered that the film thickness will increase when there is a large amount of oil leakage, so it is possible to determine the approximate level of oil leakage from the film thickness. .
以上のように本発明の液体漏洩検出装置によれば、従来、巡視員の目視では見落とす虞れがあった微量の漏油でも確実に検出できるようになる。また、漏油が検出された場合の油分封入設備の補修、交換、土壌の入換え処理、監督官庁への報告までの移行がより短期的に行うことができ、油分封入設備の機能の異常を遅滞なくいち早く発見して対処できる。従って、安全対策上きわめて有効である。また、中間赤外域の波長のレーザ光を用いることで、太陽光の影響を受けやすかった従来装置に比べて太陽光がある昼間でも漏油検査を実施することができる利点がある。 As described above, according to the liquid leakage detection device of the present invention, it is possible to reliably detect even a small amount of oil leakage that could be overlooked by the visual inspection of a patrolman. In addition, when oil leakage is detected, repair, replacement, soil replacement processing, and transition to reporting to the supervisory authorities can be made in a shorter period of time. Find and deal quickly without delay. Therefore, it is extremely effective for safety measures. In addition, by using laser light having a wavelength in the mid-infrared region, there is an advantage that oil leakage inspection can be performed even in the daytime when there is sunlight, compared to a conventional device that is easily affected by sunlight.
以上、絶縁油の漏洩検査を例に本発明の液体漏洩検出装置による漏洩検出について説明したが、本発明の液体漏洩検出装置は、図6に示すようにその他の各種油分及び油分以外の液体の漏洩検査にも適用できるものである。 As described above, the leak detection by the liquid leak detection device of the present invention has been described by taking the leak inspection of the insulating oil as an example. However, the liquid leak detection device of the present invention is not limited to various other oils and liquids other than oil as shown in FIG. It can also be applied to leak inspection.
次に、上述の本発明の液体漏洩検出装置について具体的に説明する。
図7は、本発明の液体漏洩検出装置の一実施形態の構成を示すブロック図である。
図7において、本実施形態の液体漏洩検出装置10は、レーザ発振器11と、同軸光学系12と、スキャンミラー13と、受光部14と、発振モニタ15と、撮像装置16と、制御部17と、表示部18と、記録部19と、GPS受信機20と、外部インターフェイス21と、計測スイッチ22と、バッテリ23と、警告装置24と、指示用レーザ25と、を備える。
Next, the above-described liquid leakage detection apparatus of the present invention will be specifically described.
FIG. 7 is a block diagram showing a configuration of an embodiment of the liquid leakage detection apparatus of the present invention.
In FIG. 7, the liquid leakage detection device 10 of the present embodiment includes a laser oscillator 11, a coaxial optical system 12, a scan mirror 13, a light receiving unit 14, an oscillation monitor 15, an imaging device 16, and a control unit 17. , A display unit 18, a recording unit 19, a GPS receiver 20, an external interface 21, a measurement switch 22, a battery 23, a warning device 24, and an instruction laser 25.
レーザ発光手段であるレーザ発振器11は、計測スイッチ22のオン操作で制御部17により駆動されて中間赤外域のレーザ光を出射するもので、例えば非線形光学効果を利用した差周波発振原理による波長変換レーザ発振器である。尚、レーザ発振器11は、中間赤外域のレーザ光を出射できるものであればよく、例えば、同じく非線形光学効果を利用した和周波発振、倍波発振、パラメトリック発振等の原理による波長変換レーザ発振器や量子カスケードレーザ発振器等を用いてもよい。 The laser oscillator 11 which is a laser emitting unit is driven by the control unit 17 when the measurement switch 22 is turned on and emits laser light in the mid-infrared region. For example, wavelength conversion based on a difference frequency oscillation principle using a nonlinear optical effect is performed. It is a laser oscillator. The laser oscillator 11 only needs to be capable of emitting laser light in the mid-infrared region. For example, a wavelength conversion laser oscillator based on a principle such as sum frequency oscillation, double wave oscillation, parametric oscillation using the nonlinear optical effect, A quantum cascade laser oscillator or the like may be used.
同軸光学系12は、レーザ発振器11から出射したレーザ光をスキャンミラー13へ導くと共に、出射したレーザ光と同軸でスキャンミラー13に入射する反射光を受光手段である受光部14へ導く。例えば、図8(A)に示すようなビームスプリッタ31としてハーフミラーを用いた構成や、同図(B)のような穴あきミラー32を用いた構成を採用することができる。 The coaxial optical system 12 guides the laser light emitted from the laser oscillator 11 to the scan mirror 13 and guides the reflected light incident on the scan mirror 13 coaxially with the emitted laser light to the light receiving unit 14 serving as a light receiving means. For example, a configuration using a half mirror as the beam splitter 31 as shown in FIG. 8A or a configuration using a perforated mirror 32 as shown in FIG. 8B can be adopted.
光学系に出射光と反射光の光軸が異なる二軸光学系を採用してもよいが、二軸光学系の場合、図9に示すように、液体漏洩検出装置10からの出射光が受光部の視野(図中、斜線部分)内に到達するまでの近距離領域では反射光がほとんど受光できず、計測不能領域が存在する。このため、二軸光学系を採用した場合、漏洩検査の対象設備があまり近すぎると、検査対象設備表面からの反射光が受光できずに漏洩検査ができない虞れがある。一方、同軸光学系の場合は、図9から明らかなように二軸光学系のような計測不能領域は存在せず、また、二軸光学系に比べて同軸光学系は相対的にコンパクトな構成にできる利点がある。従って、同軸光学系を採用することが望ましい。 A biaxial optical system in which the optical axes of the outgoing light and the reflected light are different may be adopted as the optical system. However, in the case of the biaxial optical system, the outgoing light from the liquid leak detection device 10 is received as shown in FIG. In the short-distance area until it reaches the field of view (shaded area in the figure), almost no reflected light can be received, and there is an unmeasurable area. For this reason, when the biaxial optical system is employed, if the target facility for leak inspection is too close, the reflected light from the surface of the target facility for inspection may not be received and the leak inspection may not be performed. On the other hand, in the case of a coaxial optical system, as is apparent from FIG. 9, there is no non-measurable region as in the biaxial optical system, and the coaxial optical system is relatively compact compared to the biaxial optical system. There are advantages that can be made. Therefore, it is desirable to employ a coaxial optical system.
スキャンミラー13は、レーザ発振器11からのレーザ光を2次元的に走査して装置10外部に投光すると共に、油分封入設備2表面からの反射光を同軸光学系12を介して受光部14に導く光走査手段に相当するもので、光を2次元走査する例えば特許第2722314号に記載された半導体製造技術を利用した電磁駆動方式の2次元プレーナ型ガルバノミラーで構成される。電磁駆動方式の2次元プレーナ型ガルバノミラーの詳細は、特許第2722314号に記載されており、簡単に説明すると、軸方向が互いに直交する2対のトーションバーと、それぞれのトーションバーによって揺動可能に軸支された内側及び外側可動部を半導体基板で一体形成し、それぞれの可動部に駆動コイルを設けると共に駆動コイルに静磁界を作用する静磁界発生手段を設け、内側可動部にはミラーを設けて構成される。そして、駆動コイルに例えば駆動電流として交流電流を供給することにより発生する磁界と静磁界との相互作用により電磁駆動力が発生して可動部を揺動させる。駆動交流電流の周波数をガルバノミラーの共振周波数に設定すれば、効率よく可動部を揺動駆動することができる。 The scan mirror 13 scans the laser beam from the laser oscillator 11 two-dimensionally and projects it to the outside of the apparatus 10, and reflects the reflected light from the surface of the oil encapsulating equipment 2 to the light receiving unit 14 via the coaxial optical system 12. This corresponds to a light scanning means for guiding the light, and is constituted by an electromagnetically driven two-dimensional planar galvanometer mirror using a semiconductor manufacturing technique described in Japanese Patent No. 2722314 for performing two-dimensional scanning of light. The details of the electromagnetically driven two-dimensional planar galvanometer mirror are described in Japanese Patent No. 2722314. Briefly, two pairs of torsion bars whose axial directions are orthogonal to each other and swingable by the respective torsion bars The inner and outer movable parts pivotally supported by the semiconductor substrate are integrally formed of a semiconductor substrate, each of the movable parts is provided with a drive coil and a static magnetic field generating means for applying a static magnetic field to the drive coil is provided, and a mirror is provided on the inner movable part. Provided and configured. Then, for example, an electromagnetic driving force is generated by the interaction between a magnetic field generated by supplying an alternating current as a driving current to the driving coil and a static magnetic field, and the movable part is swung. If the frequency of the drive AC current is set to the resonance frequency of the galvanometer mirror, the movable part can be driven to swing efficiently.
受光部14は、スキャンミラー13から同軸光学系12を介して受光した反射光の受光強度Iに応じた出力を制御部17に送る。 The light receiving unit 14 sends an output corresponding to the received light intensity I of the reflected light received from the scan mirror 13 via the coaxial optical system 12 to the control unit 17.
発振モニタ15は、レーザ発振器11から出射されるレーザ光の出射強度I0をリアルタイムで計測して制御部17に送信する。 The oscillation monitor 15 measures the emission intensity I 0 of the laser beam emitted from the laser oscillator 11 in real time and transmits it to the control unit 17.
撮像装置16は、レーザ光を照射する検査領域の画像を撮像するもので、例えばレーザ光で検査領域全域を1回走査する毎に検査領域の静止画像を撮像してその画像データを制御部17に送信する。 The imaging device 16 captures an image of an inspection area irradiated with laser light. For example, each time the entire inspection area is scanned with laser light, a still image of the inspection area is captured and the image data is controlled by the control unit 17. Send to.
制御部17は、計測スイッチ22のオン操作でレーザ発振器11への印可電流を掃引して出射レーザ光の波長を掃引制御する。また、前述の絶縁油の漏洩検出で説明したように、受光部14からの受光出力の落込みの有無を検出し絶縁油の漏洩の有無を判定する。また、絶縁油の漏洩を検出したときに、漏洩箇所にレーザ光が照射されたときのスキャンミラー13からの位置情報(内側及び外側の各可動部の揺動角度情報)に基づいて撮像装置16で撮像した静止画像上の対応箇所に着色指示やハイライト指示等の情報や位置情報取得手段であるGPS受信機20で取得した絶縁油漏洩検査場所の位置情報等を付加した画像データを作成してデータ記録手段である記録部19に記録する。ここで、制御部17は、波長掃引制御手段、漏洩検出手段及び画像処理手段の機能を備える。 The controller 17 sweeps and controls the wavelength of the emitted laser light by sweeping the applied current to the laser oscillator 11 by turning on the measurement switch 22. Further, as described in the above-described detection of insulating oil leakage , the presence / absence of a drop in the received light output from the light receiving unit 14 is detected to determine the presence / absence of leakage of the insulating oil . Further, when the leakage of the insulating oil is detected, the imaging device 16 is based on position information from the scan mirror 13 (oscillation angle information of the inner and outer movable parts) when the leakage spot is irradiated with laser light. The image data is created by adding information such as coloring instructions and highlight instructions to the corresponding locations on the still image captured in step 1 and the location information of the location of the insulation oil leakage inspection acquired by the GPS receiver 20 as the location information acquisition means. The data is recorded in the recording unit 19 which is a data recording means. Here, the control unit 17 includes functions of a wavelength sweep control unit, a leakage detection unit, and an image processing unit.
表示手段である表示部18は、記録部19から記録した静止画像データを読出して表示する。 The display unit 18 as display means reads out the still image data recorded from the recording unit 19 and displays it.
外部インターフェイス21は、外部機器との間で記録部19に記録したデータ等を交信するものである。 The external interface 21 communicates data recorded in the recording unit 19 with an external device.
バッテリ23は、液体漏洩検出装置10の駆動用電源であり、図示しない電源スイッチのオン操作によって液体漏洩検出装置10内各部に電源を供給する。このように、バッテリで駆動可能な構成とすれば、携帯でき電源がない場所でも使用できるようになる。 The battery 23 is a power source for driving the liquid leak detection apparatus 10 and supplies power to each part in the liquid leak detection apparatus 10 by turning on a power switch (not shown). As described above, if the battery can be driven, the portable phone can be used even in a place without a power source.
警告装置24は、絶縁油の漏洩が検出されたことを液体漏洩検出装置10の操作者に警告する警告手段に相当するもので、制御部17が絶縁油の漏洩有りと判定したときに、制御部17からの出力で駆動する。警告装置24としては、音声で警告するものでもよく、ランプ等の光を利用したり、振動を利用して警告するようにしてもよい。 Warning device 24, an insulating oil leakage is detected which corresponds to the warning means to warn the operator of a liquid leak detection system 10, when the control unit 17 determines that there leakage of insulating oil, the control Driven by the output from the unit 17. The warning device 24 may be a device that warns by voice, may use a light such as a lamp, or may use a vibration to warn.
指示用レーザ25は、絶縁油漏洩部分や検査領域の輪郭を直接指示するための可視光レーザを出射するもので、絶縁油の漏洩が検出されたときに制御部17により駆動されてその漏洩部分に同軸光学系からスキャンミラー13を介して可視光レーザを照射する。また、スキャンミラー13からの位置情報(内側及び外側の各可動部の揺動角度情報)に基づいてスキャンミラー13が検査領域の輪郭位置(内側及び外側の各可動部の最大揺動角度位置)に向いたときに制御部17により駆動されて可視光レーザを照射する。 The instruction laser 25 emits a visible light laser for directly indicating the contour of the insulating oil leakage portion and the inspection region. When the leakage of the insulating oil is detected, the instruction laser 25 is driven by the control unit 17 to detect the leakage portion. The laser beam is irradiated from the coaxial optical system via the scan mirror 13. Further, based on position information from the scan mirror 13 (information about the swing angle of each of the inner and outer movable parts), the scan mirror 13 has a contour position of the inspection region (maximum swing angle position of each of the inner and outer movable parts). When it is directed to the position, it is driven by the controller 17 to irradiate a visible light laser.
次に、本実施形態の液体漏洩検出装置による絶縁油の漏洩検査動作について、図10及び図11のフローチャートを参照して説明する。
図10は、装置電源をONしたときの動作を示すフローチャートであり、図11は図10のフローチャートにおける漏油検出動作を示すフローチャートである。
Next, the operation for inspecting leakage of insulating oil by the liquid leakage detection device of the present embodiment will be described with reference to the flowcharts of FIGS.
FIG. 10 is a flowchart showing the operation when the apparatus power supply is turned on, and FIG. 11 is a flowchart showing the oil leakage detection operation in the flowchart of FIG.
図10において、図示しない電源スイッチをONして電源が投入されるとバッテリ23から各部に電源供給が行われ、制御部17、撮像装置16、表示部18及びGPS受信機20が動作を開始し、液体漏洩検出装置10による漏油検査が可能な状態となる。 In FIG. 10, when a power switch (not shown) is turned on to turn on the power, the battery 23 supplies power to each unit, and the control unit 17, the imaging device 16, the display unit 18, and the GPS receiver 20 start operating. Then, the oil leakage inspection by the liquid leakage detection device 10 is possible.
これにより、ステップ1(図中、S1で示し以下同様とする)で、表示部18に撮像装置16で撮像される検査領域の画面が待機画面として表示される。この待機画面には、例えばGPS受信機20で取得した液体漏洩検出装置10(検査場所)の位置情報等が同時に表示される。 As a result, in step 1 (indicated by S1 in the figure, the same shall apply hereinafter), the screen of the examination region imaged by the imaging device 16 is displayed on the display unit 18 as a standby screen. On this standby screen, for example, the position information of the liquid leak detection device 10 (inspection location) acquired by the GPS receiver 20 is displayed at the same time.
ステップ2で、計測スイッチ22がONされたか否かを判定し、判定がYES(計測スイッチ22ON)の場合は、ステップ3に進む。 In step 2, it is determined whether or not the measurement switch 22 is turned ON. If the determination is YES (measurement switch 22 ON), the process proceeds to step 3.
ステップ3では、計測スイッチ22のON操作によって、レーザ発振器11、スキャンミラー14及び発振モニタ15が動作を開始し、図11のフローチャートに示す絶縁油の漏油検出動作を開始する。 In step 3, the laser oscillator 11, the scan mirror 14, and the oscillation monitor 15 start operating by turning on the measurement switch 22, and the insulating oil leakage detection operation shown in the flowchart of FIG. 11 is started.
図11において、ステップ11では、レーザ発振器11が駆動して中間赤外域の波長(絶縁油の漏油検査では、例えば3.6μmを中心波長とする波長帯)のレーザ光を出射すると共に、制御部17によりレーザ発振器11への印加電流を制御して出射するレーザ光の波長を、図2に示すように検査対象の絶縁油の光吸収波長を含んで掃引制御し、レーザ光を外部の油分封入設備2の表面(検査領域)に照射する。これと同時にスキャンミラー15を駆動して油分封入設備2の表面(検査領域)をレーザ光で走査する。この際に、スキャンミラー13からの位置情報に基づいてスキャンミラー13の内側及び外側の各可動部が最大揺動角度位置に向いたときに、制御部17により指示用レーザを駆動して可視光レーザを出射する。これにより、検査領域の輪郭部分に可視光レーザが照射されるので、操作者は検査領域を把握しながら漏油検査を行うことができるようになる。 In FIG. 11, in step 11, the laser oscillator 11 is driven to emit laser light having a wavelength in the mid-infrared region (in the oil leakage inspection of insulating oil, for example, a wavelength band having a central wavelength of 3.6 μm) and control. The wavelength of the laser beam emitted by controlling the current applied to the laser oscillator 11 by the unit 17 is swept including the light absorption wavelength of the insulating oil to be inspected as shown in FIG. Irradiate the surface (inspection area) of the sealing equipment 2. At the same time, the scan mirror 15 is driven to scan the surface (inspection area) of the oil sealing equipment 2 with laser light. At this time, when the movable parts inside and outside the scan mirror 13 are directed to the maximum swing angle position based on the position information from the scan mirror 13, the control unit 17 drives the indication laser to make visible light. A laser is emitted. Thereby, since the visible light laser is irradiated to the contour portion of the inspection area, the operator can perform the oil leakage inspection while grasping the inspection area.
ステップ12では、レーザ光の波長の一掃引したときの受光強度を検出し、例えば、受光強度の傾きの変化状態等から絶縁油の光吸収に基づく受光強度の落込みの有無を検出する。 In step 12, the received light intensity when the wavelength of the laser light is swept is detected. For example, the presence or absence of a drop in received light intensity based on the light absorption of the insulating oil is detected from the change state of the inclination of the received light intensity.
ステップ13では、受光強度の落込みが閾値以上か否かを判定する。例えば波長を掃引したときの最大受光強度と落込み量との比率を判定値として前記比率が予め設定した閾値以上か否かを判定する。前記比率が閾値以上で判定がYESとなったときは、漏油有りと判定してステップ14に進む。受光強度の落込みを検出しなかった場合や受光強度の落込みは検出したが前記比率が閾値未満で判定がNOの場合は、漏油なしと判定してステップ14を飛越してステップ15に進む。尚、波長を掃引したときの最大受光強度と受光強度の落込みが発生した波長における受光強度そのものとの比率を判定値としてその比率が閾値以下か否かを判定するようにしてもよく、この場合は予め設定した閾値以下のときに漏油有りと判定することになる。 In step 13, it is determined whether or not the drop in received light intensity is greater than or equal to a threshold value. For example, it is determined whether or not the ratio is equal to or greater than a preset threshold value by using a ratio between the maximum received light intensity and the drop amount when the wavelength is swept. When the ratio is equal to or greater than the threshold value and the determination is YES, it is determined that there is oil leakage and the process proceeds to step 14. If no drop in received light intensity is detected or if a drop in received light intensity is detected but the ratio is less than the threshold value and the determination is NO, it is determined that there is no oil leakage and step 14 is skipped to step 15. move on. The ratio between the maximum received light intensity when the wavelength is swept and the received light intensity itself at the wavelength where the drop in received light intensity occurs may be used as a determination value to determine whether the ratio is equal to or less than a threshold value. In this case, it is determined that there is oil leakage when it is below a preset threshold value.
ステップ14では、警告装置24を駆動して液体漏洩検出装置10を所持する操作者に漏油を検出したことを知らせる。尚、警告装置24の動作停止は、例えば予め警告装置24の駆動時間を設定して設定時間経過後に自動で停止するようにしてもよく、手動の警告装置停止スイッチを設けて、操作者が手動で停止させるようにしてもよい。また、指示用レーザを駆動して検出した漏洩部分に可視光レーザを照射する。これにより、操作者は漏洩部分を直接視認することができる。 In step 14, the warning device 24 is driven to notify the operator who has the liquid leak detection device 10 that oil leakage has been detected. The operation of the warning device 24 may be stopped, for example, by setting the driving time of the warning device 24 in advance and automatically stopping after the set time elapses. A manual warning device stop switch is provided so that the operator can manually stop the operation. You may make it stop by. Further, a visible light laser is irradiated on the leaked portion detected by driving the instruction laser. Thereby, the operator can visually recognize the leaked part directly.
ステップ15では、スキャンミラー13の揺動角度情報に基づいてスキャンミラー13の一走査が終了したか否かを判定し、判定がYESであればステップ16に進み、判定がNOであればステップ11〜15の動作を繰返す。例えば、ステップ11〜15の動作を、撮像装置16で撮像する静止画像の1ピクセルをスキャンミラー13が走査する毎に行うようにする。こうすることにより、スキャンミラー13の一走査周期毎に得られる静止画像中のピクセル毎に着色指示やハイライト指示等の情報を作成できる。 In step 15, it is determined whether one scan of the scan mirror 13 is completed based on the swing angle information of the scan mirror 13. If the determination is YES, the process proceeds to step 16, and if the determination is NO, step 11 is performed. Repeat the operation of ~ 15. For example, the operations in steps 11 to 15 are performed every time the scan mirror 13 scans one pixel of a still image captured by the imaging device 16. By doing this, it is possible to create information such as a coloring instruction and a highlight instruction for each pixel in the still image obtained for each scanning period of the scanning mirror 13.
ステップ16では、レーザ光により走査された静止画像データを記録部19に記録する。この画像データには、GPS受信機20による検査場所の位置情報等の待機画面で表示される基本的な情報に加えて、画像中の漏油が検出された箇所に相当するピクセル位置に着色指示やハイライト指示等の情報が付加されている。 In step 16, still image data scanned by the laser beam is recorded in the recording unit 19. In this image data, in addition to the basic information displayed on the standby screen such as the location information of the inspection place by the GPS receiver 20, a coloring instruction is given to the pixel position corresponding to the location where oil leakage is detected in the image And information such as a highlight instruction are added.
ステップ17では、記録部19からステップ16で記録した画像データを表示部18で読出して表示する。これにより、表示部19の画像から検査領域のどの箇所に漏油が生じているかを客観的に知ることができる。 In step 17, the image data recorded in step 16 from the recording unit 19 is read out and displayed on the display unit 18. Thereby, it is possible to objectively know in which part of the inspection area the oil leakage has occurred from the image on the display unit 19.
図11に示す漏油検出動作は、計測スイッチ22のOFF操作により終了する。 The oil leakage detection operation shown in FIG. 11 ends when the measurement switch 22 is turned off.
かかる構成の本実施形態の液体漏洩検出装置によれば、従来、巡視員の目視では見落とす虞れがあった微量の絶縁油の漏洩でも確実に検出できる。また、漏油が検出された場合の油分封入設備の補修、交換、土壌の入換え処理、監督官庁への報告までの移行がより短期的に行うことができ、油分封入設備の機能の異常を遅滞なく発見して対処できる。従って、電力会社等における安全対策上きわめて有効である。また、中間赤外域の波長のレーザ光を用いることで、太陽光がある昼間でも漏油検査を実施することができる。更に、小型で持運びが自由にできるので、場所を選ばずにどのような場所でも絶縁油等の漏油検査が極めて容易かつ効率的にできるようになる。 According to the liquid leakage detection device of this embodiment having such a configuration, even a trace amount of insulating oil that could possibly be overlooked by the eyes of a patrolman can be reliably detected. In addition, when oil leakage is detected, repair, replacement, soil replacement processing, and transition to reporting to the supervisory authorities can be made in a shorter period of time. Discover and deal with it without delay. Therefore, it is extremely effective for safety measures in electric power companies. Further, by using laser light having a wavelength in the mid-infrared region, it is possible to carry out an oil leak inspection even in the daytime when sunlight is present. Furthermore, since it is small and can be carried freely, it is possible to perform oil leakage inspection of insulating oil or the like at any place regardless of the place, extremely easily and efficiently.
尚、必ずしもレーザ光を走査する必要はなく、レーザ光を単に外部に出射する構成でもよいが、上記実施形態のように、レーザ光を走査する構成とすれば、検査する油分封入設備2の表面を2次元的に検査できるので、スキャンミラーを設けることが望ましい。また、撮像装置16についても必ずしも設ける必要はないが、中間赤外域のような不可視レーザ光を利用する漏油検査の場合、漏油を検出しても正確に特定できないが、撮像装置16を設けて漏油検出箇所を画像で表示すれば、漏油箇所の特定も容易にできるようになる。 It is not always necessary to scan the laser beam, and the configuration may be such that the laser beam is simply emitted to the outside. However, if the configuration is such that the laser beam is scanned as in the above embodiment, the surface of the oil filling equipment 2 to be inspected Therefore, it is desirable to provide a scan mirror. In addition, although it is not always necessary to provide the imaging device 16, in the case of oil leakage inspection using an invisible laser beam such as a mid-infrared region, it is not possible to accurately identify the leakage, but the imaging device 16 is provided. If an oil leakage detection location is displayed as an image, the location of the oil leakage can be easily identified.
10 液体漏洩検出装置
11 レーザ発振器
12 同軸光学系
13 スキャンミラー
14 受光部
16 撮像装置
17 制御部
18 表示部
19 記録部
20 GPS受信機
24 警告装置
DESCRIPTION OF SYMBOLS 10 Liquid leak detection apparatus 11 Laser oscillator 12 Coaxial optical system 13 Scan mirror 14 Light-receiving part 16 Imaging device 17 Control part 18 Display part 19 Recording part 20 GPS receiver 24 Warning device
Claims (5)
前記レーザ光の波長を検査対象の絶縁油の光吸収波長帯を含んで掃引制御する波長掃引制御手段と、
前記検査領域からのレーザ光の反射光を受光して受光強度に応じた出力を発生する受光手段と、
該受光手段の出力の落込みを検出して前記絶縁油漏洩を検出する漏洩検出手段と、
前記絶縁油漏洩が検出されたことを操作者に警告する警告手段と、
前記絶縁油漏洩の検査場所の位置情報を取得する位置情報取得手段と、
を備え、
前記漏洩検出手段は、前記絶縁油の前記光吸収波長帯を含んで掃引したときの最大受光強度と前記落込みの量との比率を判定値として前記比率が予め設定した閾値以上か否かを判定する、液体漏洩検出装置。 A laser emitting means for generating laser light in a wavelength band having a central wavelength of 3.6 μm as a wavelength in the mid-infrared region irradiated to the inspection region for insulating oil leakage;
Wavelength sweep control means for sweeping and controlling the wavelength of the laser light including the light absorption wavelength band of the insulating oil to be inspected;
A light receiving means for receiving the reflected light of the laser light from the inspection region and generating an output according to the received light intensity;
A leak detection means for detecting the insulating oil leakage by detecting the drop in output of the light receiving means,
Warning means for warning the operator that the insulating oil leakage has been detected;
Position information acquisition means for acquiring position information of the inspection location of the insulating oil leakage;
With
The leak detection means determines whether the ratio is equal to or greater than a preset threshold value by using a ratio between the maximum received light intensity when the insulating oil is swept including the light absorption wavelength band and the amount of the drop as a determination value. A liquid leakage detection device for determining .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011015546A JP5946993B2 (en) | 2011-01-27 | 2011-01-27 | Liquid oil leak detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011015546A JP5946993B2 (en) | 2011-01-27 | 2011-01-27 | Liquid oil leak detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012154854A JP2012154854A (en) | 2012-08-16 |
JP5946993B2 true JP5946993B2 (en) | 2016-07-06 |
Family
ID=46836718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011015546A Active JP5946993B2 (en) | 2011-01-27 | 2011-01-27 | Liquid oil leak detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5946993B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014115157A (en) * | 2012-12-07 | 2014-06-26 | Dkk Toa Corp | Oil film detector |
US9829380B2 (en) | 2013-07-17 | 2017-11-28 | Panasonic Intellectual Property Management Co., Ltd. | Spectroscopic apparatus |
US9322716B2 (en) | 2014-01-07 | 2016-04-26 | Panasonic Intellectual Property Corporation Of America | Component measuring apparatus and moving body |
CN113740302B (en) * | 2020-05-28 | 2024-06-18 | 中国石油化工股份有限公司 | Oil spill monitoring device and monitoring method |
CN117870996B (en) * | 2024-03-12 | 2024-06-04 | 四川耀业科技股份有限公司 | Tightness detection device and method for vanadium-titanium cylinder body of motorcycle |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01276043A (en) * | 1988-04-28 | 1989-11-06 | Mitsubishi Cable Ind Ltd | Waveguide type liquid detector |
JPH02224213A (en) * | 1989-02-27 | 1990-09-06 | Toshiba Corp | Transformer oil leakage alarm apparatus |
US5430293A (en) * | 1991-10-08 | 1995-07-04 | Osaka Gas Co., Ltd. | Gas visualizing apparatus and method for detecting gas leakage from tanks or piping |
JPH0711464B2 (en) * | 1991-10-08 | 1995-02-08 | 大阪瓦斯株式会社 | Gas leak monitor |
JPH06273255A (en) * | 1993-03-22 | 1994-09-30 | Mitsubishi Heavy Ind Ltd | Detection of oil leak and device therefor |
JPH0926375A (en) * | 1995-07-12 | 1997-01-28 | Mitsubishi Heavy Ind Ltd | Oil leakage detector |
JPH10239202A (en) * | 1997-02-27 | 1998-09-11 | Mitsubishi Electric Corp | Method and device for leakage detection |
JPH10332527A (en) * | 1997-05-28 | 1998-12-18 | Mitsubishi Heavy Ind Ltd | Object inspector |
JP2000275135A (en) * | 1999-03-29 | 2000-10-06 | Mitsubishi Heavy Ind Ltd | Apparatus and method for inspection of leakage oil |
JP4286970B2 (en) * | 1999-06-02 | 2009-07-01 | Nec三栄株式会社 | Gas visualization device and gas visualization method |
JP3725832B2 (en) * | 2002-03-29 | 2005-12-14 | 大阪瓦斯株式会社 | Gas leak location indicator |
JP2006341493A (en) * | 2005-06-09 | 2006-12-21 | Canon Inc | Molding die for optical element and manufacturing method of optical element |
JP2008153119A (en) * | 2006-12-19 | 2008-07-03 | Nippon Steel Corp | Battery inspection system, and battery inspection method |
JP5252533B2 (en) * | 2007-08-08 | 2013-07-31 | 四国電力株式会社 | In-vehicle leak gas detection system and method |
JP5121566B2 (en) * | 2008-05-19 | 2013-01-16 | 日本信号株式会社 | Gas measuring device |
-
2011
- 2011-01-27 JP JP2011015546A patent/JP5946993B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012154854A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5946993B2 (en) | Liquid oil leak detection device | |
JP5187843B2 (en) | Semiconductor inspection apparatus and inspection method | |
US7939804B2 (en) | System and method for detecting gas leaks | |
US6495833B1 (en) | Sub-surface imaging under paints and coatings using early light spectroscopy | |
CN101889194B (en) | Non-destructive inspection using laser- ultrasound and infrared thermography | |
JP5037929B2 (en) | Information acquisition apparatus and method for an object using terahertz waves | |
US8824514B2 (en) | Measuring crystal site lifetime in a non-linear optical crystal | |
KR101446037B1 (en) | Remote monitoring system of water temperature per depth, red and green tide occurrence with lidar and process for monitoring thereof | |
CN104641221A (en) | Spectroscope | |
JP2005024556A (en) | Method of determining depth of defects | |
JP2017075945A (en) | HIGH-SPEED THREE-DIMENSIONAL PICTURE DETECTOR USING CONTINUOUS WAVE THz BEAM SCAN | |
JP2015510595A5 (en) | ||
CN111929275A (en) | Laser telemeter for galvanometer imaging and gas concentration information imaging method | |
Kasai et al. | Propane gas leak detection by infrared absorption using carbon infrared emitter and infrared camera | |
KR20220043907A (en) | Method And Apparatus for Detecting Gases Based on Quantum Technology | |
CN107271466B (en) | Nondestructive testing system | |
KR20170126725A (en) | Continuous wave line laser scanning thermography apparatus and method for nondestructive test | |
KR20200121281A (en) | Carrier life measurement method and carrier life measurement device | |
KR101320358B1 (en) | Laser lock-in thermography device for nondestructive evaluation | |
KR20190100622A (en) | crude oil detection apparatus | |
CN109917407A (en) | A kind of near field probe distance measuring method and device based on laser reflection | |
KR20200057998A (en) | Apparatus for detecting oil spill | |
CN110470639A (en) | A kind of multiple mode scanning microscopy imaging system based on induced with laser photo-thermal effect | |
KR20200118791A (en) | Concentration measuring method and concentration measuring device | |
JP6364305B2 (en) | Hydrogen gas concentration measuring apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140121 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141201 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20141219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5946993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |