JP5836096B2 - Earthwork materials - Google Patents
Earthwork materials Download PDFInfo
- Publication number
- JP5836096B2 JP5836096B2 JP2011267919A JP2011267919A JP5836096B2 JP 5836096 B2 JP5836096 B2 JP 5836096B2 JP 2011267919 A JP2011267919 A JP 2011267919A JP 2011267919 A JP2011267919 A JP 2011267919A JP 5836096 B2 JP5836096 B2 JP 5836096B2
- Authority
- JP
- Japan
- Prior art keywords
- elution
- earthwork material
- earthwork
- arsenic
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、下水汚泥焼却灰を使用した、埋め戻し材などに利用される土工材料に関し、下水汚泥焼却灰に含まれる有害物質の溶出量を土壌環境基準以下に抑制した土工材料に関する。 The present invention relates to an earthwork material used as a backfill material or the like using sewage sludge incineration ash, and to an earthwork material in which the amount of harmful substances contained in the sewage sludge incineration ash is suppressed to a soil environment standard or less.
下水汚泥焼却灰は年間数十万tが発生しており、その一部は土工材料として埋め戻し土や路盤材、あるいはコンクリ−ト製品用混和材などに利用されているものの、大半は産業廃棄物として地中又は海面に埋立処分されている。今後、廃棄物処分場の逼迫や環境負荷低減という社会情勢に対応するためには、下水汚泥焼却灰の有効利用を最大限進めていく必要がある。しかし、下水汚泥焼却灰には重金属類や有害物質の溶出という環境安全面の課題があり、具体的には、主にふっ素、ほう素、砒素、セレンの溶出量が土壌環境基準(環境庁告示第46号)を超える恐れがあることが有効利用の妨げとなっている。表1に土壌環境基準(環境庁告示第46号)に規定されているふっ素、ほう素、砒素、セレンの溶出量を示す。 Hundreds of thousands of tons of sewage sludge incineration ash is generated annually, and some of it is used for backfill soil, roadbed materials, or admixtures for concrete products, but most of it is industrial waste. It is disposed of in the ground or on the sea as an object. In the future, it will be necessary to maximize the effective use of sewage sludge incineration ash in order to respond to the social situation such as tightness of waste disposal sites and reduction of environmental burden. However, sewage sludge incineration ash has environmental safety issues such as elution of heavy metals and harmful substances. Specifically, the amount of elution of fluorine, boron, arsenic, and selenium is mainly determined by soil environment standards (environment agency notification). No. 46) is a hindrance to effective use. Table 1 shows the elution amounts of fluorine, boron, arsenic, and selenium specified in the soil environmental standards (Environment Agency Notification No. 46).
従来、ふっ素の不溶化技術としては、消石灰などのカルシウム塩を使用して難溶性のふっ化カルシウムを生成させる方法、硫酸アルミニウムなどのアルミニウム塩を使用して水酸化アルミニウムが生成される過程でふっ素を吸着・不溶化する方法、硫酸マグネシウムなどのマグネシウム塩を使用して水酸化マグネシウムが生成される過程でふっ素を吸着・不溶化する方法などが知られている。ほう素の不溶化技術としては、硫酸アルミニウムなどのアルミニウム塩の使用、あるいは、硫酸アルミニウムと消石灰を併用することで、ほう素を吸着・不溶化する方法が知られている。砒素の不溶化技術としては、硫酸アルミニウムなどのアルミニウム塩を使用して水酸化アルミニウムが生成される過程で砒素を吸着・不溶化する方法、塩化第二鉄などの鉄塩を使用して水酸化鉄が生成される過程で砒素を吸着・不溶化する方法などが知られている。セレンの不溶化技術としては、鉄塩などを使用した吸着・不溶化方法が知られている。
しかし、これらの方法では、不溶化の効果が低く、下水汚泥焼却灰からのふっ素、ほう素、砒素及びセレンの溶出量を前記土壌環境基準以下に抑制することは困難であった。
Conventionally, fluorine insolubilization techniques include the use of calcium salts such as slaked lime to produce sparingly soluble calcium fluoride, and the process in which aluminum hydroxide is produced using aluminum salts such as aluminum sulfate. There are known methods for adsorption and insolubilization, methods for adsorption and insolubilization of fluorine in the process of producing magnesium hydroxide using a magnesium salt such as magnesium sulfate. As a boron insolubilization technique, a method of adsorbing and insolubilizing boron by using an aluminum salt such as aluminum sulfate or using aluminum sulfate and slaked lime together is known. Arsenic insolubilization technologies include a method of adsorbing and insolubilizing arsenic in the process of producing aluminum hydroxide using aluminum salts such as aluminum sulfate, and iron hydroxide using ferric chloride and other iron salts. A method of adsorbing and insolubilizing arsenic in the process of generation is known. As an insolubilization technique of selenium, an adsorption / insolubilization method using an iron salt or the like is known.
However, in these methods, the effect of insolubilization is low, and it has been difficult to suppress the elution amounts of fluorine, boron, arsenic and selenium from the sewage sludge incineration ash to below the soil environmental standard.
このような観点から、下水汚泥焼却灰などの産業廃棄物における有害物質の溶出抑制方法がいくつか提案されている。例えば、砒素や6価クロムをキレート剤であるジチオカルバミン酸塩あるいはジチオカルバミン酸誘導体で捕捉・不溶化する技術(特許文献1、2)、汚染土壌や焼却灰にチオ硫酸化合物を添加するとともに焼却灰を加熱することで、焼却灰などに含まれる砒素やセレンなどの重金属類を不溶化する装置に関する技術(特許文献3)、焼却灰に水硬性結合材であるセメントまたは石灰を添加することで、焼却灰に含まれるふっ素やほう素の溶出を抑制する技術(特許文献4)、製鋼スラグなどの産業廃棄物にカルシウムアルミネートなどの粉末を添加することで、産業廃棄物からのふっ素の溶出を抑制する技術(特許文献5)、石炭や製紙スラッジなどを燃焼して発生するほう素含有燃焼灰に酸化カルシウム類及び/または水酸化カルシウム類、硫酸カルシウム類、アルミナセメント、水を加えて混合処理することにより、その燃焼灰からのほう素の溶出を抑制する技術(特許文献6)、カルシウムアルミネートとケイ酸カルシウムとを含有する不溶化剤を用いたフッ素及び/又はホウ素の不溶化方法であり、フッ素及び/又はホウ素を含む固形物と該不溶化剤と水を混合してから所要期間養生することでフッ素及び/又はホウ素を不溶化する技術(特許文献7)、汚染土壌や焼却灰に対し、硫酸アルミニウムとチオ硫酸ナトリウムおよび鉄粉を必須成分として含む汚染物質の溶出防止剤を添加・混合することで、砒素やセレンなどの重金属類およびほう素やふっ素の溶出を抑制する技術(特許文献8)、下水汚泥焼却灰にポルトランドセメントのような固化材および水を添加混合し、転動造粒法又は圧縮造粒法により造粒した後、該造粒物の表面にアスファルト・水エマルジョンを用いてアスファルト皮膜を形成させることで、砒素などの重金属類の溶出を物理的に抑制する技術(特許文献9)が報告されている。 From this point of view, several methods for suppressing elution of harmful substances in industrial waste such as sewage sludge incineration ash have been proposed. For example, technologies for capturing and insolubilizing arsenic and hexavalent chromium with chelating agents such as dithiocarbamate or dithiocarbamate derivatives (Patent Documents 1 and 2), adding thiosulfate compounds to contaminated soil and incineration ash, and heating incineration ash By adding a cement or lime, which is a hydraulic binder, to the incineration ash, a technology related to a device that insolubilizes heavy metals such as arsenic and selenium contained in the incineration ash, etc. (Patent Document 3) Technology that suppresses the elution of fluorine and boron contained (Patent Document 4), Technology that suppresses elution of fluorine from industrial waste by adding powder such as calcium aluminate to industrial waste such as steelmaking slag (Patent Document 5), calcium oxides and / or calcium hydroxides in boron-containing combustion ash generated by burning coal, paper sludge, etc. , Calcium sulfate, alumina cement, a technique for suppressing elution of boron from combustion ash by adding water (Patent Document 6), an insolubilizer containing calcium aluminate and calcium silicate Is a method for insolubilizing fluorine and / or boron by mixing the solid material containing fluorine and / or boron, the insolubilizing agent and water, and then curing for a required period of time. Patent Document 7) Adds and mixes anti-elution agents containing pollutants containing aluminum sulfate, sodium thiosulfate and iron powder as essential components to contaminated soil and incinerated ash so that heavy metals such as arsenic and selenium Technology that suppresses the elution of elemental and fluorine (Patent Document 8), adding and mixing a solidifying material such as Portland cement and water to sewage sludge incineration ash After granulation by the rolling granulation method or compression granulation method, the elution of heavy metals such as arsenic is physically suppressed by forming an asphalt film using asphalt / water emulsion on the surface of the granulated product. The technique (patent document 9) to do is reported.
しかしながら、これら従来の技術では、高価な成分を使用する、大がかりな装置を必要とする、煩雑な造粒操作を必要とする、長時間の養生を必要とする等の問題があり、さらに一部の有害物質だけの溶出抑制ができる手段にすぎず、前記4種の有害物質の溶出を抑制できるものではなかった。
従って、本発明の課題は、下水汚泥焼却灰を使用した土工材料において、下水汚泥焼却灰に含まれる有害物質であるふっ素、ほう素および重金属類(ひ素、セレン)の溶出量を土壌環境基準未満に抑制できる経済的かつ効率的な土工材料の処方を提供することにある。
However, these conventional techniques have problems such as using expensive components, requiring a large-scale device, requiring complicated granulation operations, and requiring long-term curing. This is only a means that can suppress the elution of only the harmful substances, and it cannot suppress the elution of the four kinds of harmful substances.
Therefore, the problem of the present invention is that the amount of elution of fluorine, boron and heavy metals (arsenic, selenium), which are harmful substances contained in sewage sludge incineration ash, is less than the soil environment standard in earthwork materials using sewage sludge incineration ash. An object of the present invention is to provide an economical and efficient prescription of earthwork materials that can be suppressed.
そこで本発明者は、検討を重ねた結果、ふっ素、ほう素および重金属類(砒素、セレン)を含む下水汚泥焼却灰を土工材料として使用するに際し、該下水汚泥焼却灰とカルシウムアルミネート、硫酸アルミニウム及び石灰に加えて、アルカリ金属リン酸塩を組み合わせた配合とすることで、該土工材料を水と混合して得られる混合物からの有害物質の溶出量を土壌環境基準以下に抑制でき、しかもその溶出抑制効果が、混合物を作成してから短時間で発揮されることを見出した。また、該土工材料の配合にセメントを加えることで、有害物質の溶出抑制効果がさらに高まることを見出し、本発明を完成させるに至った。 Therefore, as a result of repeated studies, the present inventor, when using sewage sludge incineration ash containing fluorine, boron and heavy metals (arsenic, selenium) as an earthwork material, the sewage sludge incineration ash, calcium aluminate, aluminum sulfate In addition to lime and lime, a combination of alkali metal phosphates can suppress the amount of toxic substances released from the mixture obtained by mixing the earthwork material with water to below the soil environmental standards, and It has been found that the elution suppression effect is exhibited in a short time after the mixture is prepared. In addition, the present inventors have found that the addition of cement to the blending of the earthwork material further increases the effect of suppressing the elution of harmful substances, thereby completing the present invention.
すなわち、本発明は、次の[1]〜[7]に係るものである。
[1](A)ふっ素、ほう素、砒素及びセレンから選ばれる1種以上の溶出量が土壌環境基準を超える下水汚泥焼却灰、(B)カルシウムアルミネート、(C)硫酸アルミニウム、(D)石灰及び(E)アルカリ金属リン酸塩を含有する土工材料。
[2](A)下水汚泥焼却灰100質量部に対して(B)カルシウムアルミネート0.2〜2質量部、(C)硫酸アルミニウム0.1〜1質量部、(D)石灰0.05〜10質量部及び(E)アルカリ金属リン酸塩0.01〜0.1質量部を含有する[1]の土工材料。
[3](B)カルシウムアルミネートの主成分が非晶質の12CaO・7Al2O3である[1]又は[2]の土工材料。
[4](E)アルカリ金属リン酸塩が、リン酸カリウムである[1]〜[3]のいずれかの土工材料。
[5]さらに、セメントを含有する[1]〜[4]のいずれかの土工材料。
[6]セメントが白色ポルトランドセメントである[5]の土工材料。
[7]ふっ素、ほう素、砒素及びセレンの溶出量が、土壌環境基準以下に抑制されたものである[1]〜[6]のいずれかの土工材料。
That is, the present invention relates to the following [1] to [7].
[1] (A) Sewage sludge incinerated ash whose elution amount of one or more selected from fluorine, boron, arsenic and selenium exceeds soil environmental standards, (B) calcium aluminate, (C) aluminum sulfate, (D) Earthwork material containing lime and (E) alkali metal phosphate.
[2] (A) 0.2 to 2 parts by mass of calcium aluminate, (C) 0.1 to 1 parts by mass of aluminum sulfate, and (D) 0.05 to lime with respect to 100 parts by mass of sewage sludge incineration ash The earthwork material of [1] containing 10 to 10 parts by mass and (E) 0.01 to 0.1 parts by mass of an alkali metal phosphate.
[3] The earthwork material according to [1] or [2], wherein the main component of (B) calcium aluminate is amorphous 12CaO · 7Al 2 O 3 .
[4] The earthwork material according to any one of [1] to [3], wherein (E) the alkali metal phosphate is potassium phosphate.
[5] The earthwork material according to any one of [1] to [4], further containing cement.
[6] The earthwork material according to [5], wherein the cement is white Portland cement.
[7] The earthwork material according to any one of [1] to [6], wherein an elution amount of fluorine, boron, arsenic, and selenium is suppressed to a soil environmental standard or less.
本発明の下水汚泥焼却灰を使用した土工材料は、経済的な処方で下水汚泥焼却灰に含まれる有害物質であるふっ素、ほう素および重金属類(ひ素、セレン)の溶出量を土壌環境基準以下に抑制できるため環境安全性が高い。しかも、その溶出抑制効果は該土工材料を水と混合してから短時間で発揮されるため、混合後の養生期間を長く設ける必要なく埋め戻し材などに使用することができる。さらに、本発明の土工材料は水と混合後の溶出抑制効果が長期間保たれるため、混合物を長期間保管することができ、セメント製品用混和材などとして使用する際に便利である。よって、本発明は下水汚泥焼却灰の有効利用の促進に極めて有用な技術である。 The earthwork material using the sewage sludge incineration ash of the present invention is less than the soil environment standard for the amount of elution of fluorine, boron and heavy metals (arsenic, selenium), which are harmful substances contained in the sewage sludge incineration ash, in an economical formulation. Environmental safety is high. And since the elution suppression effect is exhibited for a short time after mixing this earthwork material with water, it can be used for a backfill material etc., without having to provide the curing period after mixing long. Furthermore, since the earthwork material of the present invention maintains the elution suppression effect after mixing with water for a long period of time, the mixture can be stored for a long period of time, which is convenient when used as an admixture for cement products. Therefore, the present invention is an extremely useful technique for promoting effective use of sewage sludge incineration ash.
本発明の土工材料に用いる(A)下水汚泥焼却灰は、下水汚泥を脱水し、さらに減量化・安定化させるために焼却処理がなされたものであり、有害成分として、ふっ素、ほう素、砒素及びセレンから選ばれる1種以上の溶出量が土壌環境基準(環境庁告示第46号)を超えるものである。下水汚泥焼却灰としては、最大粒径が1.2mm以下のものが好ましい。 The (A) sewage sludge incineration ash used in the earthwork material of the present invention has been subjected to incineration treatment to dehydrate, further reduce and stabilize sewage sludge. As harmful components, fluorine, boron, arsenic And at least one elution amount selected from selenium exceeds the soil environment standard (Environment Agency Notification No. 46). As the sewage sludge incineration ash, those having a maximum particle size of 1.2 mm or less are preferable.
本発明の土工材料に用いる(B)カルシウムアルミネートは、基本的にはCaO原料とAl2O3原料を熱処理することにより得られる物質である。カルシウムアルミネートは化学成分としてCaOとAl2O3からなる結晶質やガラス化が進んだ構造の水和活性物質であれば何れのものでも良く、CaOとAl2O3に加えて他の化学成分が加わった化合物、固溶体、ガラス質物質又はこれらの混合物等でもよい。前者としては例えば12CaO・7Al2O3、CaO・Al2O3、3CaO・Al2O3、CaO・2Al2O3、CaO・6Al2O3等が挙げられ、後者としては例えば、4CaO・3Al2O3・SO3、11CaO・7Al2O3・CaF2、Na2O・8CaO・3Al2O3等を挙げられる。好ましくは、有害成分の溶出抑制効果に優れていることから、熱処理後のクリンカを急冷してガラス化率を90%以上にした非晶質の12CaO・7Al2O3を主成分とするものが良い。また、カルシウムアルミネートの粉末度はブレーン比表面積として2000cm2/g以上のものが好ましい。 The (B) calcium aluminate used in the earthwork material of the present invention is basically a substance obtained by heat-treating a CaO raw material and an Al 2 O 3 raw material. Calcium aluminate may be any hydrated active substance having a crystallized structure composed of CaO and Al 2 O 3 or a vitrified structure as a chemical component, and other chemicals in addition to CaO and Al 2 O 3. A compound added with a component, a solid solution, a glassy substance, or a mixture thereof may be used. The former example 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, 3CaO · Al 2 O 3, CaO · 2Al 2 O 3, CaO · 6Al 2 O 3 and the like, and as the latter example, 4CaO · include a 3Al 2 O 3 · SO 3, 11CaO · 7Al 2 O 3 · CaF 2, Na 2 O · 8CaO · 3Al 2 O 3 or the like. Preferably, since it is excellent in the elution suppression effect of harmful components, the main component is amorphous 12CaO · 7Al 2 O 3 in which the clinker after heat treatment is rapidly cooled to a vitrification ratio of 90% or more. good. The fineness of calcium aluminate is preferably 2000 cm 2 / g or more in terms of Blaine specific surface area.
本発明の土工材料に用いる(C)硫酸アルミニウムは、化学成分としてAl2(SO4)3・nH2Oで表される水和物、あるいはAl2(SO4)3で表される無水塩の何れでも良い。好ましくは、有害成分の溶出抑制効果に優れていることからnが14〜18の水和物が良い。 (C) Aluminum sulfate used in the earthwork material of the present invention is a hydrate represented by Al 2 (SO 4 ) 3 .nH 2 O as a chemical component, or an anhydrous salt represented by Al 2 (SO 4 ) 3. Any of these may be used. Preferably, hydrates with n of 14 to 18 are preferable because they are excellent in the elution suppression effect of harmful components.
本発明の土工材料に用いる(D)石灰は、化学成分としてCaOで表される酸化カルシウムを主成分とするもの、あるいは化学成分としてCa(OH)2で表される水酸化カルシウムを主成分とするものが使用でき、これら両方を含むものであっても良い。好ましくは、有害成分の溶出抑制効果に優れていることから酸化カルシウムの含有量が多い石灰が好ましい。石灰の粉末度はブレーン比表面積として2000cm2/g以上のものが好ましい。 The (D) lime used for the earthwork material of the present invention is mainly composed of calcium oxide represented by CaO as a chemical component, or calcium hydroxide represented by Ca (OH) 2 as a chemical component. Can be used, and may include both. Preferably, lime having a high content of calcium oxide is preferable because it has an excellent elution suppressing effect on harmful components. The fineness of lime is preferably 2000 cm 2 / g or more as the Blaine specific surface area.
本発明の土工材料に用いる(E)アルカリ金属リン酸塩は、リン酸ナトリウムやリン酸カリウムなどの易溶性の塩が使用できる。本発明では、アルカリ金属リン酸塩を配合することにより、短い養生期間でも良好な溶出抑制効果が得られる。アルカリ金属リン酸塩としては下記式(1)〜(3)で表されるリン酸カリウムが好ましく、養生期間の短縮効果に優れていることから下記式(2)で表されるリン酸二水素カリウムがより好ましい。 As the (E) alkali metal phosphate used in the earthwork material of the present invention, a readily soluble salt such as sodium phosphate or potassium phosphate can be used. In this invention, a favorable elution inhibitory effect is acquired by a short curing period by mix | blending an alkali metal phosphate. As the alkali metal phosphate, potassium phosphate represented by the following formulas (1) to (3) is preferable, and dihydrogen phosphate represented by the following formula (2) because it is excellent in the effect of shortening the curing period. Potassium is more preferred.
K2HPO4 (1)
KH2PO4 (2)
K3PO4 (3)
K 2 HPO 4 (1)
KH 2 PO 4 (2)
K 3 PO 4 (3)
本発明の土工材料に用いるセメントとしては、ポルトランドセメント、混合セメント、特殊セメント、エコセメントが挙げられる。ポルトランドセメントとは、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント、低熱ポルトランドセメント及びそれらの低アルカリ型のポルトランドセメント等を言う。混合セメントとは、高炉セメント、フライアッシュセメント、シリカセメント等を言う。特殊セメントとは、セメント系固化材、アルミナセメント、超速硬セメント、アウイン系セメント、超微粒子セメント、油井セメント等を言う。エコセメントとは、都市ごみ焼却残渣などの廃棄物を主原料として製造されたセメントを言う。これらのセメントのうち、白色ポルトランドセメントが好ましく、白色ポルトランドセメントはセレンや6価クロムなど有害な重金属類をほとんど含まないため、本発明の土工材料に特に好適に使用できる。 Examples of the cement used in the earthwork material of the present invention include Portland cement, mixed cement, special cement, and ecocement. Portland cement means normal Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, sulfate-resistant Portland cement, white Portland cement, low heat Portland cement, and their low alkali type Portland cement. . Mixed cement refers to blast furnace cement, fly ash cement, silica cement and the like. Special cements include cement-based solidified materials, alumina cements, ultrafast cements, Auin-based cements, ultrafine particle cements, oil well cements, and the like. Eco-cement refers to cement manufactured using waste such as municipal waste incineration residue as the main raw material. Among these cements, white Portland cement is preferable, and white Portland cement contains almost no harmful heavy metals such as selenium and hexavalent chromium, and therefore can be particularly suitably used for the earthwork material of the present invention.
本発明の土工材料は、下水汚泥焼却灰100質量部に対してカルシウムアルミネート0.2〜2質量部、硫酸アルミニウム0.1〜1質量部、石灰0.05〜10質量部、アルカリ金属リン酸塩0.01〜0.1質量部の含有割合とするのが、下水汚泥焼却灰に含まれるふっ素、ほう素、砒素、セレンの溶出量を土壌環境基準(環境庁告示第46号)以下に抑制する効果及び経済性の点から好ましい。カルシウムアルミネート、硫酸アルミニウム及び石灰の含有量は、有害物質の溶出抑制効果の点から、上記範囲が好ましく、石灰の含有量は上記の範囲とすることにより養生時間が短くしても溶出抑制効果が得られる点で好ましい。また、アルカリ金属リン酸塩の含有量は、養生時間の短縮効果の点で上記範囲が好ましい。アルカリ金属リン酸塩の含有量(質量)をカルシウムアルミネートの1/40〜1/10程度にすると短い養生期間で良好な溶出抑制効果が得られ、しかも経済的であるため好ましい。 The earthwork material of the present invention is 0.2 to 2 parts by weight of calcium aluminate, 0.1 to 1 part by weight of aluminum sulfate, 0.05 to 10 parts by weight of lime, 100 parts by weight of alkali metal phosphorus, based on 100 parts by weight of sewage sludge incineration ash. The content ratio of 0.01 to 0.1 parts by weight of acid salt is the amount of elution of fluorine, boron, arsenic and selenium contained in sewage sludge incineration ash below the soil environment standard (Environment Agency Notification No. 46) It is preferable from the point of the effect to suppress to this, and economical efficiency. The content of calcium aluminate, aluminum sulfate and lime is preferably in the above range from the viewpoint of the elution suppressing effect of harmful substances, and the elution suppressing effect even if the curing time is shortened by setting the lime content in the above range. Is preferable in that it is obtained. In addition, the content of the alkali metal phosphate is preferably in the above range from the viewpoint of shortening the curing time. It is preferable that the content (mass) of the alkali metal phosphate is about 1/40 to 1/10 that of calcium aluminate because a good elution suppressing effect can be obtained in a short curing period and it is economical.
本発明の土工材料にセメントを配合すると下水汚泥焼却灰に含まれるふっ素、ほう素、砒素、セレンの溶出をより効果的に抑制することができる。好ましくは、下水汚泥焼却灰100質量部に対してセメントを0.5〜10質量部配合するのが良く、より好ましい配合割合は2〜5質量部である。セメントを配合すると、カルシウムアルミネート、硫酸アルミニウム、石灰、アルカリ金属リン酸塩の配合割合が少なくても良好な溶出防止効果が得られるため、経済的である。 When cement is added to the earthwork material of the present invention, elution of fluorine, boron, arsenic and selenium contained in the sewage sludge incineration ash can be more effectively suppressed. Preferably, 0.5 to 10 parts by mass of cement is added to 100 parts by mass of sewage sludge incineration ash, and a more preferable mixing ratio is 2 to 5 parts by mass. When cement is blended, it is economical because a good elution preventing effect can be obtained even if the blending ratio of calcium aluminate, aluminum sulfate, lime, and alkali metal phosphate is small.
本発明の土工材料の用途は特に限定されず、盛土材、埋め戻し材、裏込材、土壌改良材、道路資材、コンクリートなどのセメント製品用混和材などに有効活用できる。また、本発明の土工材料の製造方法についても特に限定はされず、一般的な製造方法を用いることができる。本発明の土工材料は水と混合後、短時間で溶出抑制効果を発揮するため、養生期間を長く設ける必要なく使用することができ、例えば埋め戻し材として使用する場合は、現場でパン型ミキサーや強制二軸ミキサーなどの一般的なミキサーを用いて本発明の土工材料を水と混合し、スラリー状または塊状の混合物に加工した直後に埋め戻し作業を行うことができる。また、本発明の土工材料は水と混合後、長期間溶出抑制効果が保たれるため、混合物を長期間保管しておいて、適宜、セメント製品用混和材などとして使用することもできる。 The use of the earthwork material of the present invention is not particularly limited, and can be effectively used as an embedding material for cement products such as embankment material, backfill material, backing material, soil improvement material, road material, and concrete. Moreover, it does not specifically limit about the manufacturing method of the earthwork material of this invention, A general manufacturing method can be used. Since the earthwork material of the present invention exhibits an elution suppression effect in a short time after mixing with water, it can be used without the need for a long curing period. For example, when used as a backfill material, a bread mixer on site The earthwork material of the present invention can be mixed with water using a general mixer such as a forced biaxial mixer or the like, and a backfilling operation can be performed immediately after processing into a slurry or block mixture. In addition, since the earthwork material of the present invention maintains an elution suppressing effect for a long time after mixing with water, the mixture can be stored for a long time and used as an admixture for cement products as appropriate.
次に実施例を挙げて本発明をさらに詳細に説明する。 EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
(A)下水汚泥焼却灰
最大粒径が1.2mm以下の下水汚泥焼却灰2種類を使用した。これら下水汚泥焼却灰の環境庁告示第46号によるふっ素、ほう素、砒素、セレンの溶出量を表2に示す。
(A) Sewage sludge incineration ash Two types of sewage sludge incineration ash having a maximum particle size of 1.2 mm or less were used. Table 2 shows the amount of fluorine, boron, arsenic, and selenium eluted from the sewage sludge incineration ash according to Environment Agency Notification No. 46.
(B)カルシウムアルミネート
CaO原料としてCaO含有量97質量%の生石灰(粉末試薬)、Al2O3原料としてバン土頁岩(Al2O3含有量88質量%、Fe2O3含有量1質量%)、Fe2O3原料としてヘマタイト(Al2O3含有量3質量%、Fe2O3含有量93質量%)を用い、表3に示す配合で混合し、電気炉を用いて1550±50℃で2時間加熱した。加熱後は、常温近傍まで炉内で自然冷却(徐冷)したクリンカと、1550℃前後から炉外に取り出し、直ちに冷却用圧搾空気を吹き付けて急冷したクリンカを得た。これらのクリンカについては、粉末エックス線回折によって生成結晶相の存在量を定量し、残部をガラス相とみなしてガラス相生成量を計算し、クリンカ総量との比(質量比)よりクリンカのガラス化率を算定した。この値を表3に示す。これらのクリンカをボールミルでブレーン比表面積5000±500cm2/gとなるように粉砕して用いた。
(B) Calcium aluminate Quicklime (powder reagent) having a CaO content of 97% by mass as a CaO raw material, and Ban earth shale (Al 2 O 3 content of 88% by mass, Fe 2 O 3 content of 1% by mass) as an Al 2 O 3 raw material %), hematite and (Al 2 O 3 content of 3 mass%, Fe 2 O 3 content of 93 wt%) was used as Fe 2 O 3 raw material, mixed according to the formulation shown in Table 3, 1550 ± an electric furnace Heated at 50 ° C. for 2 hours. After heating, a clinker that was naturally cooled (slowly cooled) in the furnace to near room temperature and a clinker that was taken out of the furnace from around 1550 ° C. and immediately cooled with blown compressed air were obtained. For these clinker, the abundance of the generated crystal phase is quantified by powder X-ray diffraction, the remaining phase is regarded as the glass phase, the glass phase generation amount is calculated, and the vitrification rate of the clinker is calculated from the ratio (mass ratio) with the clinker total amount. Was calculated. This value is shown in Table 3. These clinkers were pulverized with a ball mill to a specific surface area of 5000 ± 500 cm 2 / g.
(C)硫酸アルミニウム14−18水和物(略号:ALS):関東化学社製 粉末試薬
(D)酸化カルシウム(略号:CAO):関東化学社製 粉末試薬
(E)リン酸水素二カリウム(略号:PK):関東化学社製 粉末試薬
(F)普通ポルトランドセメント(略号:OPC):太平洋セメント社製
(F)白色ポルトランドセメント(略号:WPC):太平洋セメント社製「ホワイトセメント」
(C) Aluminum sulfate 14-18 hydrate (abbreviation: ALS): Powder reagent manufactured by Kanto Chemical Co., Inc. (D) Calcium oxide (abbreviation: CAO): Powder reagent manufactured by Kanto Chemical Co., Inc. (E) Dipotassium hydrogen phosphate (abbreviation) : PK): Kanto Chemical Co., Inc. Powder Reagent (F) Ordinary Portland Cement (abbreviation: OPC): Taiheiyo Cement (F) White Portland Cement (abbreviation: WPC): Taiheiyo Cement “White Cement”
表4に示す割合で上記使用材料を配合し、本発明の土工材料および比較品の土工材料を得た。 The materials used were blended in the proportions shown in Table 4 to obtain the earthwork material of the present invention and the earthwork material of the comparative product.
(溶出量の測定)
表4に示す土工材料1000gに水600gを加え、モルタルミキサーで3分間混合し、混合物を調製した。該混合物をビニール袋内に封入して20℃の温度で養生し、養生期間3、6、24時間経過後に、環境庁告示第46号に準じた方法でふっ素、ほう素、砒素、セレンの溶出量を測定した。溶出量の測定結果を表6に示す。また、該混合物をビニール袋内に封入して20℃の温度で24時間養生した後、ビニール袋から該混合物を取り出して温度20℃、湿度60%の環境で保管し、1ヶ月経過後に環境庁告示第46号に準じた方法でふっ素、ほう素、砒素、セレンの溶出量を測定した。溶出量の測定結果を表7に示す。
〔環境庁告示第46号に準じた溶出量測定方法〕
(1)所定期間養生後の試料を粗砕し、ふるい2mm通過分を採取混合する。
(2)容積1000mLのポリ容器に試料50gを計りとり、溶媒(純水1Lに0.5mol塩酸を加えてpH6.1に調整したもの)500gを加え、振とう機(振とう回数200回/分)で6時間振とうする。
(3)ポリ容器を30分静置した後、試料液の上澄みを孔径0.45μmのメンブレンフィルターでろ過して検液とする。
(4)採取した検液の成分を表5に示す方法で測定する。
(Measurement of elution amount)
600 g of water was added to 1000 g of the earthwork material shown in Table 4 and mixed for 3 minutes with a mortar mixer to prepare a mixture. The mixture is sealed in a plastic bag and cured at a temperature of 20 ° C. After the curing period of 3, 6, and 24 hours, elution of fluorine, boron, arsenic, and selenium is performed in accordance with the Environmental Agency Notification No. 46. The amount was measured. Table 6 shows the measurement results of the elution amount. The mixture is sealed in a plastic bag and cured at a temperature of 20 ° C. for 24 hours, and then the mixture is taken out from the plastic bag and stored in an environment at a temperature of 20 ° C. and a humidity of 60%. The amount of fluorine, boron, arsenic and selenium eluted was measured by a method according to Notification No. 46. Table 7 shows the measurement results of the elution amount.
[Measurement method of elution volume according to Environmental Agency Notification No. 46]
(1) Roughly crush the sample after curing for a predetermined period, collect and mix the sieve 2 mm passage.
(2) Weigh 50 g of sample in a 1000 mL capacity plastic container, add 500 g of solvent (adjusted to pH 6.1 by adding 0.5 mol hydrochloric acid to 1 L of pure water), and shaker (number of shakes 200 times / Shake for 6 hours.
(3) After allowing the polycontainer to stand for 30 minutes, the supernatant of the sample solution is filtered through a membrane filter having a pore diameter of 0.45 μm to obtain a test solution.
(4) The components of the collected test solution are measured by the method shown in Table 5.
表6の結果より、本発明の土工材料は全て、養生期間が24時間以内でふっ素、ほう素、砒素、セレンの溶出量が土壌環境基準(環境庁告示第46号)の規定値未満に抑制されていることがわかる。また、本発明の土工材料のうち本発明1、2,3、9、14、20を除く土工材料は、ふっ素、ほう素、砒素、セレンの溶出量が養生期間3時間で土壌環境基準の規定値未満に抑制されており、溶出抑制効果が短時間に発揮されることが分かる。一方、比較例として示した土工材料(比較品1〜10)は本発明の土工材料に比べ、出抑制効果が劣っており、特に養生期間が6時間以内での溶出量が多いことが分かる。比較品6および10の土工材料では養生期間を24時間とした場合のふっ素の溶出量が土壌環境基準未満に抑制されているものの、ほう素、砒素、セレンの溶出量は土壌環境基準を超過しており、下水汚泥焼却灰の溶出抑制を図るには性能が不十分である。 From the results shown in Table 6, all the earthwork materials of the present invention have a curing period of 24 hours or less, and the amount of fluorine, boron, arsenic, and selenium released is less than the specified value of the soil environment standard (Environment Agency Notification No. 46). You can see that In addition, among the earthwork materials of the present invention, the earthwork materials excluding the present invention 1, 2, 3, 9, 14, and 20 have an elution amount of fluorine, boron, arsenic, and selenium with a curing period of 3 hours. It can be seen that the elution suppression effect is exhibited in a short time. On the other hand, it can be seen that the earthwork materials (comparative products 1 to 10) shown as comparative examples are inferior to the earthwork material of the present invention, and that the amount of elution is particularly large when the curing period is within 6 hours. In the comparative materials 6 and 10, the elution amount of fluorine when the curing period is 24 hours is suppressed to less than the soil environment standard, but the elution amount of boron, arsenic, and selenium exceeds the soil environment standard. Therefore, its performance is insufficient to suppress the elution of sewage sludge incineration ash.
表6の結果より、結晶質のカルシウムアルミネート(CA-1)を使用した本発明の土工材料(本発明1、14)は、非晶質カルシウムアルミネート(CA-2)を使用して配合割合が同一の本発明の土工材料(本発明4、15)に比べてふっ素、ほう素、砒素、セレンの溶出量が多くなっており、カルシウムアルミネートとしては非晶質のものが好ましいことがわかる。 From the results shown in Table 6, the earthwork material of the present invention using crystalline calcium aluminate (CA-1) (present inventions 1 and 14) was formulated using amorphous calcium aluminate (CA-2). The amount of fluorine, boron, arsenic and selenium eluted is larger than that of the earthwork material of the present invention having the same ratio (Inventions 4 and 15), and it is preferable that the calcium aluminate is amorphous. Recognize.
表6の結果より、普通ポルトランドセメント(OPC)を使用した本発明の土工材料(本発明9)は、白色ポルトランドセメント(WPC)を使用して配合割合が同一の本発明の土工材料(本発明12)に比べてセレンの溶出量が多くなっており、セメントとしては白色ポルトランドセメントが好ましいことがわかる。 From the results shown in Table 6, the earthwork material of the present invention (invention 9) using ordinary Portland cement (OPC) is the earthwork material of the present invention having the same blending ratio (invention 9) using white Portland cement (WPC). Compared with 12), the amount of elution of selenium is larger, and it can be seen that white Portland cement is preferable as the cement.
表6の結果より、本発明の土工材料では、石灰の配合量を増やすと溶出抑制効果が向上することがわかる。また、本発明の土工材料では、リン酸塩の配合量を増やすと溶出抑制効果が向上し、養生時間が短くても溶出量を少なく抑えられることがわかる。 From the results of Table 6, it can be seen that, in the earthwork material of the present invention, when the amount of lime is increased, the elution suppression effect is improved. Moreover, in the earthwork material of this invention, when the compounding quantity of a phosphate is increased, it turns out that the elution inhibitory effect improves, and even if a curing time is short, the elution amount can be restrained small.
表7の結果より、実施例として示す本発明の土工材料(本発明品4、5、11、12、17、18、23、25、26)は、温度20℃、湿度60%の環境で1ヶ月間保管した後も、ふっ素、ほう素、砒素、セレンの溶出量が土壌環境基準(環境庁告示第46号)の規定値未満に抑制されていることがわかる。一方、比較例として示した土工材料のうち比較品6および9は、ふっ素、ほう素、砒素、セレンの溶出量が土壌環境基準(環境庁告示第46号)を超過しており、比較品6は保管前(20℃で24時間養生した時点)より溶出量が増加していた。また、比較品10はふっ素、ほう素、砒素、セレンの溶出量が保管前より僅かに低下しているが、ほう素、砒素、セレンの溶出量は依然として土壌環境基準を超過していた。 From the results of Table 7, the earthwork material of the present invention (invention products 4, 5, 11, 12, 17, 18, 23, 25, 26) shown as examples is 1 in an environment of temperature 20 ° C. and humidity 60%. It can be seen that the amount of fluorine, boron, arsenic, and selenium eluted after the storage for months is kept below the standard value of the soil environment standard (Environment Agency Notification No. 46). On the other hand, comparative products 6 and 9 among the earthwork materials shown as comparative examples have an elution amount of fluorine, boron, arsenic, and selenium exceeding the soil environmental standards (Environment Agency Notification No. 46). The amount of elution increased before storage (when it was cured at 20 ° C. for 24 hours). Further, in Comparative product 10, the elution amounts of fluorine, boron, arsenic, and selenium were slightly lower than before storage, but the elution amounts of boron, arsenic, and selenium still exceeded the soil environmental standards.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011267919A JP5836096B2 (en) | 2011-12-07 | 2011-12-07 | Earthwork materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011267919A JP5836096B2 (en) | 2011-12-07 | 2011-12-07 | Earthwork materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013119586A JP2013119586A (en) | 2013-06-17 |
JP5836096B2 true JP5836096B2 (en) | 2015-12-24 |
Family
ID=48772394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011267919A Active JP5836096B2 (en) | 2011-12-07 | 2011-12-07 | Earthwork materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5836096B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5877049B2 (en) * | 2011-12-07 | 2016-03-02 | 太平洋マテリアル株式会社 | Anti-elution agent for harmful substances |
CN111333354B (en) * | 2020-03-09 | 2021-10-19 | 常熟理工学院 | Method for preparing non-sintered cement by using municipal domestic waste and product |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005313147A (en) * | 2004-03-31 | 2005-11-10 | Oji Paper Co Ltd | Method for processing incineration ash |
JP4826089B2 (en) * | 2004-12-28 | 2011-11-30 | 王子製紙株式会社 | Combustion ash treatment method |
JP2006198505A (en) * | 2005-01-20 | 2006-08-03 | Oji Paper Co Ltd | Processing method of combustion ash |
JP2008086911A (en) * | 2006-10-02 | 2008-04-17 | Kurita Water Ind Ltd | Civil engineering material and its manufacturing method |
WO2009001719A1 (en) * | 2007-06-25 | 2008-12-31 | Azmec Co., Ltd. | Insolubilizing agent for toxic substance, and method for insolubilization of toxic substance |
-
2011
- 2011-12-07 JP JP2011267919A patent/JP5836096B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013119586A (en) | 2013-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5265103B2 (en) | Method for producing a composition for insoluble treatment of hazardous substances | |
JP6850171B2 (en) | Solidification insolubilization method | |
JP2014094877A (en) | Earthwork material composition and method of reducing fluorine elution amount in the same | |
JP6157947B2 (en) | Anti-elution agent for harmful substances and elution prevention method using the same | |
JP5976437B2 (en) | Earthwork materials | |
JP6338885B2 (en) | Oil-contaminated soil solidification treatment material and solidification treatment method | |
JP2017145294A (en) | Agent and method for inhibiting the elution of harmful material | |
JP6957922B2 (en) | Hardened coal ash | |
JP5836096B2 (en) | Earthwork materials | |
JP6077765B2 (en) | Anti-elution agent for harmful substances and elution prevention method using the same | |
JP5877049B2 (en) | Anti-elution agent for harmful substances | |
JP6042246B2 (en) | Earthwork material composition and method for reducing fluorine elution amount in the composition | |
JP5515329B2 (en) | Cement clinker, cement-based solidified material, method for solidifying soil, and method for producing cement clinker | |
JP5833425B2 (en) | Earthwork materials | |
JP2013190257A (en) | Immobilizing material for radioactive substance and processing method of radioactive contaminant | |
JP6046476B2 (en) | Anti-elution agent for harmful substances and elution prevention method using the same | |
JP6002496B2 (en) | Earthwork materials | |
JP2013127030A (en) | Civil engineering material | |
JP5976415B2 (en) | Earthwork materials | |
JP2019157053A (en) | Elution preventive agent for heavy metals from incineration ash and elution preventive method using same | |
JP2007176793A (en) | Method for manufacturing fired product of incineration ash | |
JP5887122B2 (en) | Wastewater treatment agent | |
JP3980109B2 (en) | Incineration ash firing method / fired product and method of using the fired product | |
JP6656962B2 (en) | Manufacturing method of fired product | |
JP5976416B2 (en) | Earthwork materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5836096 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |