JP5831162B2 - NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine - Google Patents
NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine Download PDFInfo
- Publication number
- JP5831162B2 JP5831162B2 JP2011253264A JP2011253264A JP5831162B2 JP 5831162 B2 JP5831162 B2 JP 5831162B2 JP 2011253264 A JP2011253264 A JP 2011253264A JP 2011253264 A JP2011253264 A JP 2011253264A JP 5831162 B2 JP5831162 B2 JP 5831162B2
- Authority
- JP
- Japan
- Prior art keywords
- nox
- cylinder
- sensor
- cyl
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
Description
本発明は、多大な実験工数を掛けることなく、また、連続してNOxセンサの異常を診断できるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関に関する。 The present invention relates to an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine that can continuously diagnose abnormality of a NOx sensor without taking a large number of experimental steps.
トラックやバス等の車両においては、この車両に搭載された内燃機関から排出されるNOx(窒素酸化物)の量を減少するために排気ガス浄化処理装置を用いて窒素(N2)に還元して大気中に放出するようにしている。このNOx浄化を効率良く行うためには排気ガス中のNOx濃度及びNOx量を正確に測定する必要があり、そのために、NOxセンサが使用されている。 In vehicles such as trucks and buses, in order to reduce the amount of NOx (nitrogen oxides) discharged from the internal combustion engine mounted on the vehicle, it is reduced to nitrogen (N 2 ) using an exhaust gas purification treatment device. In the atmosphere. In order to perform this NOx purification efficiently, it is necessary to accurately measure the NOx concentration and the NOx amount in the exhaust gas. For this purpose, a NOx sensor is used.
このNOxセンサの検出値に基づいて、排気ガス中のNOxを還元するのに必要な尿素等の還元剤を供給しているため、このNOxセンサが正常状態であるか、故障等の異常状態であるかが重要となる。万一、NOxセンサが異常であると、還元剤の供給量を適正な量にすることができず、還元剤が不十分の場合には、排気ガス中のNOxの還元浄化が不十分になった大気中に基準以上のNOxが放出されてしまい、還元剤が過剰の場合には、NOxの還元で消費されなかった還元剤が大気中に放出され、還元剤が無駄に消費されることになる。 Since a reducing agent such as urea necessary for reducing NOx in the exhaust gas is supplied based on the detected value of the NOx sensor, the NOx sensor is in a normal state or in an abnormal state such as a failure. It is important whether there is. If the NOx sensor is abnormal, the amount of reducing agent supplied cannot be made appropriate, and if the reducing agent is insufficient, the reduction and purification of NOx in the exhaust gas becomes insufficient. If NOx above the standard is released into the atmosphere and the reducing agent is excessive, the reducing agent that was not consumed by the reduction of NOx is released into the atmosphere and the reducing agent is consumed wastefully. Become.
そのため、NOxセンサの異常診断が重要であり、例えば、排出NOx流量演算記憶手段と検出NOx濃度記憶手段を備えて、排出NOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを規定して、内燃機関が通常運転モードにある場合に排出NOx流量が基準パターンに対して所定の関係をもって推移したときに、検出NOx濃度が追従パターンに対して所定の関係をもって推移したか否かを判別することによって、NOxセンサの応答性を判定する故障判定手段を備えたNOxセンサの故障診断装置が提案されている(例えば、特許文献1参照)。 For this reason, abnormality diagnosis of the NOx sensor is important. For example, the NOx sensor is provided with an exhaust NOx flow rate calculation storage means and a detected NOx concentration storage means, and is detected by the NOx sensor with a reference pattern as a reference for temporal change of the exhaust NOx flow rate A follow-up pattern is defined as a reference for the temporal change in the detected NOx concentration, and when the internal combustion engine is in the normal operation mode, the detected NOx concentration follows when the exhaust NOx flow changes with a predetermined relationship with respect to the reference pattern. There has been proposed a NOx sensor failure diagnosis device including failure determination means for determining the responsiveness of the NOx sensor by determining whether or not the pattern has changed with a predetermined relationship (for example, Patent Document 1). reference).
このNOxセンサの診断方法では、予め内燃機関から排出されるNOx流量の経時変化の基準としての基準パターンと、NOxセンサによって検出される検出NOx濃度の経時変化の基準としての追従パターンを予め設定する必要があるが、排出されるNOxの流量は内燃機関の運転状態等の環境条件により大きく変化するため、基準パターンを多数設定する必要があり、多大な工数がかかってしまうという問題がある。 In this NOx sensor diagnosis method, a reference pattern as a reference for the temporal change of the NOx flow rate discharged from the internal combustion engine and a follow-up pattern as a reference for the temporal change of the detected NOx concentration detected by the NOx sensor are set in advance. Although it is necessary, since the flow rate of exhausted NOx varies greatly depending on environmental conditions such as the operating state of the internal combustion engine, it is necessary to set a large number of reference patterns, and there is a problem that it takes a lot of man-hours.
一方、還元触媒の上流側でのNOx量を算出する上流側NOx量演算部とNOxセンサ値検出部と、上流側でのNOx量の推移に現れたピークに対してNOxセンサが応答しているか否かを判定することによりNOxセンサの合理性を判定する合理性判定部と、内燃機関から排出される排気ガス量を算出する排気ガス量演算部とを備え、合理性診断部は、排気ガス量に応じてピークの発生を認識してNOxセンサの合理性を判断するNOxセンサの合理性診断装置(例えば、特許文献2参照)や内燃機関が予め設定された基準稼働条件になったとき、NOxセンサの出力値と、前記基準稼働条件に応じて予め設定された基準出力値との偏差に基づき、NOxセンサの出力を補正する第1補正手段を備えたNOx補正システム(例えば、特許文献3参照)が提案されている。 On the other hand, whether the NOx sensor is responding to the peak appearing in the transition of the NOx amount on the upstream side, the upstream NOx amount calculating unit and the NOx sensor value detecting unit for calculating the NOx amount on the upstream side of the reduction catalyst A rationality determination unit that determines the rationality of the NOx sensor by determining whether or not, and an exhaust gas amount calculation unit that calculates the amount of exhaust gas discharged from the internal combustion engine. When the NOx sensor rationality diagnosis device (see, for example, Patent Document 2) that recognizes the occurrence of a peak in accordance with the amount and determines the rationality of the NOx sensor or the internal combustion engine reaches a preset reference operating condition, A NOx correction system comprising first correction means for correcting the output of the NOx sensor based on the deviation between the output value of the NOx sensor and a reference output value preset in accordance with the reference operating condition (for example, a patent document) 3 reference) has been proposed.
更に、NOxセンサに到達する排気ガス中のNOx濃度を強制的に変動させ、このときにNOxセンサが出力する出力値の変動が当該NOxセンサが正常であるときに取りうる変動からずれている場合に、NOxセンサに異常があると判定する故障判定手段を備えたNOxセンサの故障診断装置(例えば、特許文献4参照)や、内燃機関の所定の運転状態における異常判定モード時に、NOxセンサに到達する排気ガス中のNOx濃度を、一旦増大させて減少変化させる、NOx濃度増減変化手段と、NOx濃度が増減変化されたとき、NOxセンサの所定の第1出力値の出力状態から、NOxセンサが所定の第2の出力値を出力するまでの経過時間を計測する経過時間計測手段と、計測された経過時間と基準経過時間とに基づき、NOxセンサの正常又は異常を判定する判定手段を備えた、排気ガス浄化システムが提案されている(例えば、特許文献5参照)。 Further, the NOx concentration in the exhaust gas reaching the NOx sensor is forcibly changed, and the output value output from the NOx sensor at this time deviates from the change that can be taken when the NOx sensor is normal. In addition, a NOx sensor failure diagnosis device (see, for example, Patent Document 4) provided with a failure determination means that determines that the NOx sensor is abnormal or reaches the NOx sensor during an abnormality determination mode in a predetermined operating state of the internal combustion engine. NOx concentration increase / decrease changing means for once increasing and decreasing the NOx concentration in the exhaust gas to be emitted, and when the NOx concentration is increased / decreased, the NOx sensor detects from the output state of the predetermined first output value of the NOx sensor. Based on the elapsed time measuring means for measuring the elapsed time until the predetermined second output value is output, the measured elapsed time and the reference elapsed time, With a determination means for determining normality or abnormality of the support, the exhaust gas purification system has been proposed (e.g., see Patent Document 5).
しかしながら、これらのNOxセンサの異常診断では、内燃機関の運転状態がNOx濃度のピーク発生時や、強制的にNOx濃度を変化させて作った特定の状態で行っているので、内燃機関の特別の条件下の状態の時にしか診断できず、連続的に異常診断を行うことができないという問題がある。 However, in the abnormality diagnosis of these NOx sensors, the operation state of the internal combustion engine is performed when the peak of the NOx concentration occurs or in a specific state created by forcibly changing the NOx concentration. There is a problem that diagnosis can be performed only under conditions under conditions, and abnormality diagnosis cannot be performed continuously.
本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関を提供することにある。 The present invention has been made in view of the above-described situation, and an object of the present invention is to continuously perform abnormality diagnosis of the NOx sensor by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. An object of the present invention is to provide a NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine.
上記のような目的を達成するための本発明のNOxセンサの異常診断方法は、内燃機関の排気通路に配置されるNOxセンサの異常診断方法であって、前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と、吸気マニホールドに配置された温度センサの検出値(Ti)と、前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからシリンダ内の酸素濃度(O2_cyl)を算出するとともに、定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出して、
この方法によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。 According to this method, by determining the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously.
また、上記のNOxセンサの異常診断方法において、前記NOx濃度(NOx_cyl)の算出を行う演算ステップが、前記吸気量センサで検出した吸入空気の質量流量(m_air)と、前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算ステップと、
前記(5)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算ステップとを備えて構成すると、排気ガス中のNOx濃度を容易に計算できる。
Further, in the abnormality diagnosis method for the NOx sensor, the calculation step for calculating the NOx concentration (NOx_cyl) includes the mass flow rate (m_air) of the intake air detected by the intake air sensor and the detection detected by the temperature sensor. A first calculation for calculating the mass flow rate (m_egr) of the EGR gas from the mass flow rate (m_cyl) in the cylinder calculated from the value (Ti) and the detected value (Pi) detected by the pressure sensor by the equation (1) Steps,
The NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (5) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. If it comprises including the 6th calculation step to perform, the NOx density | concentration in exhaust gas can be calculated easily.
そして、上記の目的を達成するためのNOxセンサの異常診断システムは、内燃機関の排気通路に配置されるNOxセンサの異常診断を行う制御装置を備えたNOxセンサの異常診断システムであって、前記制御装置が、前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と吸気マニホールドに配置された温度センサの検出値(Ti)と前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからシリンダ内の酸素濃度(O2_cyl)を算出するとともに、定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、
この構成によれば、排気ガス中のNOx濃度を計算により求めることで、多大な実験工数を掛けることなくNOxセンサの異常診断を行うことができ、しかも、常時NOx濃度を計算しているので、NOxセンサの異常診断を行う時期を内燃機関の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。 According to this configuration, by calculating the NOx concentration in the exhaust gas by calculation, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours, and the NOx concentration is always calculated. It is not necessary to limit the timing for performing abnormality diagnosis of the NOx sensor when the operating state of the internal combustion engine is in a special condition, and it can be performed continuously.
上記のNOxセンサの異常診断システムにおいて、前記NOx濃度算出手段が、前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算手段と、
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算手段を備えて構成されると、排気ガス中のNOx濃度を容易に計算できる。
In the NOx sensor abnormality diagnosis system, the NOx concentration calculating means detects the intake air mass flow rate (m_air) detected by the intake air amount sensor, the detected value (Ti) detected by the temperature sensor, and the pressure sensor. First calculation means for calculating the mass flow rate (m_egr) of EGR gas from the mass flow rate (m_cyl) in the cylinder calculated from the detected value (Pi),
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. If it comprises the 6th calculating means which performs this, the NOx density | concentration in exhaust gas can be calculated easily.
そして、上記の目的を達成するための内燃機関は、上記のNOxセンサの異常診断システムを備えて構成され、上記のNOxセンサの異常診断システムと同様の効果を奏することができる。 An internal combustion engine for achieving the above object includes the above NOx sensor abnormality diagnosis system, and can achieve the same effects as the above NOx sensor abnormality diagnosis system.
本発明に係るNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、排気ガス中のNOx濃度を計算により求め、この計算されたNOx濃度とNOxセンサで検出されたNOx濃度とを比較することで、多大な実験工数をかけることなくNOxセンサの異常診断ができる。また、内燃機関の運転状態が特別な条件下にある状態ではなく、常にNOx濃度の値を計算して比較できるので、NOxセンサの異常診断を連続的に行うことができる。 According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine according to the present invention, the NOx concentration in the exhaust gas is obtained by calculation, and the calculated NOx concentration and the NOx detected by the NOx sensor are calculated. By comparing the concentration, the abnormality diagnosis of the NOx sensor can be performed without taking a lot of experiment man-hours. In addition, since the operating state of the internal combustion engine is not in a special condition and the value of the NOx concentration can always be calculated and compared, the abnormality diagnosis of the NOx sensor can be performed continuously.
以下、本発明に係る実施の形態のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関について、図面を参照しながら説明する。図1に示すように、この内燃機関10は、エンジン本体11と、吸気マニホールド11aに接続する吸気通路12と、排気マニホールド11bに接続する排気通路18を有して構成される。
Hereinafter, an NOx sensor abnormality diagnosis method, a NOx sensor abnormality diagnosis system, and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the
この吸気通路12には、上流側から順にエアクリーナー13、ターボチャージャー(ターボ式過給機)14のコンプレッサー14a、インタークーラー15、吸気スロットル(吸気弁)16が設けられている。また、排気通路18には、ターボチャージャー14のタービン14b、排気ガス浄化装置19が設けられている。
The
なお、図1の構成では、排気ガス浄化装置19は上流側のDPF(ディーゼルパティキュレートフィルタ)19aと下流側のSCR触媒(選択的還元型触媒)19bを備えている。このSCR触媒19bの上流側には、NOxの還元剤となる尿素水等のアンモニア系溶液(アンモニアを発生する溶液、又はアンモニア水)を排気通路18中に噴霧する還元剤噴射装置(図示しない)が設けられている。
In the configuration of FIG. 1, the exhaust
更に、EGR(排気再循環)のために、排気通路18と吸気通路12とを連通するEGR通路20が設けられ、このEGR通路20には、EGRクーラー21とEGR弁22が配設されている。また、EGRガスGeのEGRクーラー21による過冷却を防止するために、流量調整弁24を備えた排気戻し通路23がEGRクーラー21の出口と排気通路18とを接続して設けられている。
Further, for EGR (exhaust gas recirculation), an
そして、空気Aは、吸気通路12のエアクリーナー13で埃等を除去され、コンプレッサー14aにより過給されて圧力と温度が上昇した状態となり、インタークーラー15で冷却された後、吸気スロットル16で流量を制御され、必要に応じてEGRガスGeと混合されて吸気マニホールド11aからエンジン本体11の各シリンダ(気筒)17内に入る。なお、EGRガスGeは、排気通路18からEGR通路20や排気戻り通路23に分岐され、適度にEGRクーラー21で冷却され、また、EGR弁22や流量調整弁24により流量を調整されて吸気通路12に供給される。
The air A is dust removed by the
シリンダ17内では、燃料噴射弁(図示しない)から噴射された燃料と空気Aが混合して燃焼して排気ガスGを発生する。発生した排気ガスGは排気マニホールド11bから排気通路18に排出され、タービン14bを駆動した後、DPF19aでPM(粒子状物質)等を除去されたのち、排気通路18に供給された還元剤によりSCR触媒19bでNOxが窒素に還元され、その後、サイレンサー(図示しない)等を通過して大気中に放出される。なお、排気ガスGの一部はEGR通路20に分岐され、EGRガスGeとして再循環される。
In the
そして、この内燃機関10の運転制御やDPF19aの再生制御や、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うために、吸気系では、エアクリーナー13とコンプレッサー14aとの間に吸気量m_airを計測するためのエアフローセンサ(吸気量センサ)31が、吸気マニホールド11aに吸気温度Tiを計測するための温度センサ(インテークマニホールド温度センサ)32と吸気圧Piを計測するための圧力センサ(吸気圧センサ:ブースト圧センサ)33が配設される。また、排気系では、DPF19aとSCR触媒19bとの間にNOx濃度NOx_mを計測するNOxセンサ34が配設される。
In order to perform the operation control of the
これらのセンサ31〜34の検出値を入力して、内燃機関10の運転制御、DPF19aの再生制御、SCR触媒19bにおけるNOx浄化のための還元剤供給制御等を行うECU(エンジンコントロールユニット)と呼ばれる制御装置(ECU)30が設けられる。
It is called an ECU (engine control unit) that inputs the detection values of these
そして、この内燃機関10の排気通路18に配置されるNOxセンサ34の異常診断のために、内燃機関10にNOxセンサの異常診断システムが備えられ、このNOxセンサの異常診断システムの制御装置40が制御装置(ECU)30に組み込まれて構成される。
The
この制御装置40は、吸気量センサ31の検出値m_airと温度センサ32の検出値(吸気温度)Tiと圧力センサ33の検出値(吸気圧力)Piと、燃料噴射量qとからNOx濃度NOx_cylを算出するNOx濃度算出手段41と、この算出されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mとを比較して、NOxセンサ34が異常であるか否かの診断を行う比較診断手段42を備えて構成される。この燃料噴射量qは、制御装置(ECU)30内の指示燃料噴射量の値とするのが簡単であるが、実燃料噴射量を計測している場合は、計測した実燃料噴射量の値としてもよい。
The
このNOx濃度算出手段41は、図2に示すように、第1〜第5演算手段41a〜41eを備え、第1演算ステップで、第1演算手段41aにより、吸気量センサ31で検出した吸入空気Aの質量流量(新規空気流量)m_airとシリンダ17内の質量流量m_cylとから、(1)式によりEGRガスGeの質量流量m_egrを算出する。つまり、「(EGRガスの質量流量:m_egr)=(シリンダ内の質量流量m_cyl)−(吸入空気の質量流量:m_air)」となる。なお、シリンダ内の質量流量m_cylは、温度センサ32で検出した温度Tiと圧力センサ33で検出した圧力Piとから算出する。
ここで、吸入空気Aの質量流量(新規空気流量)m_airには、吸気量センサ31で検出した計測値を用い、シリンダ17内の質量流量m_cylは、Vをシリンダ容積とし、Rをガス定数とし、ηを体積効率とすると、「m_cyl=〔(Pi×V)/(R×Ti)〕×η」で算出される算出値を用いる。
Here, the measured value detected by the intake
また、第2演算ステップで、第2演算手段41bにより、吸気量センサ31で検出した吸入空気の質量流量m_airと燃料噴射量qとから、(2)式により、排気空気過剰率λを算出する。なお、理論空燃比L_stは、燃料によって多少変化するが、ディーゼルエンジンに使用される軽油の場合には、14.6となり、ガソリンエンジンに使用されるガソリンの場合には、14.5〜14.7となる。
次に、第3演算ステップで、第3演算手段41cにより、EGRガスG_egrの酸素濃度O2_egrを計算する。大気中の酸素濃度O2_airとEGR空気過剰率λ_egrと理論空燃比L_stとから、(3)式により、EGRガスGe中の酸素濃度O2_egrを算出する。このEGR空気過剰率λ_egrには、排気空気過剰率λからEGRガスGeの時間遅れを考慮した値を用いる。
また、第4演算ステップで、第4演算手段41dにより、(4)式より、シリンダ17内の酸素濃度O2_cylを算出する。
また、第5演算ステップで、第5演算手段41eにより、シリンダ17内の酸素濃度O2_cylを変換して、シリンダ17内のNOx濃度NOx_cylを算出する。ここでは、定常時のシリンダ17内の酸素濃度O2_refと定常時のシリンダ17から排出されるNOx濃度NOx_refと、指数iとが予め設定されている(5)式及び(6)式のシリンダ17内の酸素濃度O2_cylとシリンダ17から排出されるNOx濃度NOx_cylの関係から、現在のシリンダ17から排出されるNOx濃度NOx_cylを算出する。
In the fifth calculation step, the fifth calculation means 41e converts the oxygen concentration O2_cyl in the
これらの酸素濃度O2_refとNOx濃度NOx_refと指数iは予め定常時のエンジンの実験で求めておき、設定しておく。
そして、比較診断手段42には、算出された現在のシリンダ17から排出されるNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mとを比較して、NOxセンサ34が異常であるか否かの診断を行う第6演算手段42aを備える。
Then, the comparison diagnosis means 42 compares the calculated NOx concentration NOx_cyl discharged from the
第6演算ステップでは、この第6演算手段42aにより、NOxセンサ34が異常であるか否かの診断を行うが、このNOxセンサ34が異常であるか否かの診断では、NOxセンサ34が正常な状態であれば、算出されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mと差の絶対値が適正な値に設定された判定値NOx_jud以下となるはずであり、逆にNOxセンサ34が異常な状態であれば、その差の絶対値が判定値NOx_judを超えるはずである。従って、その差の絶対値が判定値NOx_judを超えた場合にNOxセンサ34は異常であると判定する。
In the sixth calculation step, the sixth calculation means 42a diagnoses whether or not the
つまり、|NOx_cyl−NOx_m|≦NOx_judで正常、|NOx_cyl−NOx_m|>NOx_judで異常と判定する。これにより、計算されたNOx濃度NOx_cylとNOxセンサ34の検出値NOx_mを比較することで、NOxセンサ34の異常診断を行うことができる。
That is, it is determined that | NOx_cyl-NOx_m | ≦ NOx_jud is normal and | NOx_cyl-NOx_m |> NOx_jud is abnormal. Accordingly, the
上記のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関10によれば、排気ガスG中のNOx濃度NOx_cylを計算により求めることで、多大な実験工数を掛けることなくNOxセンサ34の異常診断を行うことができ、しかも、常時NOx濃度NOx_cylを計算しているので、NOxセンサ34の異常診断を行う時期を内燃機関10の運転状態が特別な条件の時に限定する必要がなく、連続的に行うことができる。
According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the
本発明のNOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関によれば、NOx濃度の計算値とNOxセンサの検出値を比較することで、NOxセンサの異常診断を連続的に行うことができるので、車両に搭載するような多くの内燃機関に利用できる。 According to the NOx sensor abnormality diagnosis method, the NOx sensor abnormality diagnosis system, and the internal combustion engine of the present invention, the NOx sensor abnormality diagnosis is continuously performed by comparing the calculated value of the NOx concentration with the detected value of the NOx sensor. This can be used for many internal combustion engines that are mounted on vehicles.
10 内燃機関
11 エンジン本体
11a 吸気マニホールド
12 吸気通路
17 シリンダ(気筒)
18 排気通路
19 排気ガス浄化装置
19a DPF
19b SCR触媒(選択的還元型触媒)
20 EGR通路
30 制御装置(ECU)
31 吸気量センサ(エアフローセンサ)
32 温度センサ(インテークマニホールド温度センサ)
33 圧力センサ(吸気圧センサ:ブースト圧センサ)
34 NOxセンサ
40 制御装置(NOxセンサの異常診断システムの制御装置)
41 NOx濃度算出手段
41a 第1演算手段
41b 第2演算手段
41c 第3演算手段
41d 第4演算手段
41e 第5演算手段
42 比較診断手段
42a 第6演算手段
A 空気
G 排気ガス
Ge EGRガス
L_st 理論空燃比
NOx_cyl NOx濃度の算出値
NOx_jud 判定値
NOx_m NOx濃度の計測値
m_air 吸気量センサの検出値
m_cyl シリンダ内の質量流量
m_egr EGRガスの質量流量
O2_air 大気中の酸素濃度
O2_egr EGR空気過剰率
Pi 吸気圧
Ti 吸気温度
q 燃料噴射量
λ 排気空気過剰率
λ_egr EGRガスの空気過剰率
DESCRIPTION OF
18
19b SCR catalyst (selective reduction catalyst)
20
31 Intake air volume sensor (air flow sensor)
32 Temperature sensor (Intake manifold temperature sensor)
33 Pressure sensor (Intake pressure sensor: Boost pressure sensor)
34
41 NOx concentration calculating means 41a
Claims (5)
前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と、吸気マニホールドに配置された温度センサの検出値(Ti)と、前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからシリンダ内の酸素濃度(O2_cyl)を算出するとともに、
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出して、
A detection value (m_air) of an intake air amount sensor arranged in the intake passage of the internal combustion engine, a detection value (Ti) of a temperature sensor arranged in the intake manifold, and a detection value (Ti) of a pressure sensor arranged in the intake manifold ( Pi) and the oxygen concentration (O2_cyl) in the cylinder are calculated from the fuel injection amount (q) ,
The oxygen concentration (O2_ref) in the cylinder in the formula (5) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. And the NOx concentration (NOx_cyl) discharged from the cylinder, the NOx concentration (NOx_cyl) discharged from the current cylinder is calculated,
前記吸気量センサで検出した吸入空気の質量流量(m_air)と、前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算ステップと、
前記(5)式から算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算ステップとを備えたことを特徴とするNOxセンサの異常診断方法。 An arithmetic step for calculating the NOx concentration (NOx_cyl)
Mass flow rate in the cylinder calculated from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor, the detection value (Ti) detected by the temperature sensor, and the detection value (Pi) detected by the pressure sensor ( m_cyl), a first calculation step for calculating the mass flow rate (m_egr) of the EGR gas by the equation (1),
The NOx concentration (NOx_cyl) discharged from the current cylinder calculated from the equation (5) is compared with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. A NOx sensor abnormality diagnosis method, comprising: a sixth calculation step.
前記制御装置が、
前記内燃機関の吸気通路に配置された吸気量センサの検出値(m_air)と吸気マニホールドに配置された温度センサの検出値(Ti)と前記吸気マニホールドに配置された圧力センサの検出値(Pi)と、燃料噴射量(q)とからシリンダ内の酸素濃度(O2_cyl)を算出するとともに、
定常時のシリンダ内の酸素濃度(O2_ref)と定常時のシリンダから排出されるNOx濃度(NOx_ref)と、指数iとが予め設定されている(5)式の、シリンダ内の酸素濃度(O2_cyl)とシリンダから排出されるNOx濃度(NOx_cyl)の関係から、現在のシリンダから排出されるNOx濃度(NOx_cyl)を算出するNOx濃度算出手段と、
The control device is
A detection value (m_air) of an intake air amount sensor arranged in the intake passage of the internal combustion engine, a detection value (Ti) of a temperature sensor arranged in the intake manifold, and a detection value (Pi) of a pressure sensor arranged in the intake manifold And the oxygen concentration (O2_cyl) in the cylinder from the fuel injection amount (q) ,
The oxygen concentration (O2_ref) in the cylinder in the formula (5) in which the oxygen concentration (O2_ref) in the cylinder at a constant time, the NOx concentration discharged from the cylinder at the steady state (NOx_ref), and the index i are set in advance. NOx concentration calculating means for calculating the NOx concentration (NOx_cyl) discharged from the current cylinder from the relationship between the NOx concentration discharged from the cylinder (NOx_cyl),
前記吸気量センサで検出した吸入空気の質量流量(m_air)と前記温度センサで検出した検出値(Ti)と前記圧力センサで検出した検出値(Pi)とから算出したシリンダ内の質量流量(m_cyl)とから、(1)式によりEGRガスの質量流量(m_egr)を算出する第1演算手段と、
前記比較診断手段が、前記算出された現在のシリンダから排出されるNOx濃度(NOx_cyl)と前記NOxセンサの検出値(NOx_m)とを比較して、前記NOxセンサが異常であるか否かの診断を行う第6演算手段を備えていることを特徴とするNOxセンサの異常診断システム。 The NOx concentration calculating means
The mass flow rate (m_cyl) in the cylinder calculated from the mass flow rate (m_air) of the intake air detected by the intake air amount sensor, the detection value (Ti) detected by the temperature sensor, and the detection value (Pi) detected by the pressure sensor. ) From the first calculation means for calculating the mass flow rate (m_egr) of the EGR gas by the equation (1),
The comparison diagnosis means compares the calculated NOx concentration (NOx_cyl) discharged from the current cylinder with the detected value (NOx_m) of the NOx sensor to diagnose whether the NOx sensor is abnormal. An NOx sensor abnormality diagnosis system comprising: sixth arithmetic means for performing
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011253264A JP5831162B2 (en) | 2011-11-18 | 2011-11-18 | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011253264A JP5831162B2 (en) | 2011-11-18 | 2011-11-18 | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013108419A JP2013108419A (en) | 2013-06-06 |
JP5831162B2 true JP5831162B2 (en) | 2015-12-09 |
Family
ID=48705416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011253264A Expired - Fee Related JP5831162B2 (en) | 2011-11-18 | 2011-11-18 | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5831162B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109358158A (en) * | 2018-10-08 | 2019-02-19 | 宁波安创电子科技有限公司 | A kind of detection method for judging nitrogen oxide sensor and whether failing |
CN111044684A (en) * | 2019-12-30 | 2020-04-21 | 潍柴动力股份有限公司 | Method and device for judging tampering of nitrogen-oxygen sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3925485B2 (en) * | 2003-11-06 | 2007-06-06 | トヨタ自動車株式会社 | NOx emission estimation method for internal combustion engine |
JP2006274905A (en) * | 2005-03-29 | 2006-10-12 | Mitsubishi Fuso Truck & Bus Corp | NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE |
JP4537417B2 (en) * | 2007-03-06 | 2010-09-01 | トヨタ自動車株式会社 | NOx sensor abnormality diagnosis device |
-
2011
- 2011-11-18 JP JP2011253264A patent/JP5831162B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013108419A (en) | 2013-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8973431B2 (en) | Apparatus for diagnosing causes of NOx conversion efficiency degradation | |
KR101777986B1 (en) | Method for diagnosing an exhaust gas catalytic converter, and motor vehicle | |
KR101231325B1 (en) | Low pressure EGR system and the Method for determination of intake air leakage therefor | |
JP2006316746A (en) | Exhaust emission control device for internal combustion engine | |
JP2015121214A (en) | System for detecting leakage in intake line of internal combustion engine | |
JP5913619B2 (en) | Diesel engine control device | |
JP5404600B2 (en) | Method and apparatus for controlling the operating state of a catalytic converter in an exhaust pipe of an internal combustion engine | |
JP5834906B2 (en) | Exhaust gas purification device for internal combustion engine | |
US11536209B2 (en) | Control device, engine, and control method of engine | |
JP5831162B2 (en) | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine | |
JP5891734B2 (en) | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine | |
US20190293617A1 (en) | Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine | |
US20160230635A1 (en) | Diagnostic device | |
JP5874342B2 (en) | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine | |
JP5915111B2 (en) | NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and NOx emission concentration estimation method for internal combustion engine | |
JP6071636B2 (en) | Control device and control method for internal combustion engine | |
JP2002070619A (en) | Exhaust emission control device for internal combustion engine | |
JP2008231951A (en) | Engine exhaust emission temperature estimation device and engine exhaust emission control device | |
JP2019116876A (en) | Sensor diagnostic system | |
JP2019044627A (en) | Diagnostic device for internal combustion engine | |
JP4539466B2 (en) | Exhaust gas purification system for internal combustion engine | |
JP7159584B2 (en) | Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device | |
JP7106923B2 (en) | Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device | |
JP7147214B2 (en) | Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device | |
JP7106922B2 (en) | Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5831162 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |