Nothing Special   »   [go: up one dir, main page]

JP5820435B2 - Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure - Google Patents

Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure Download PDF

Info

Publication number
JP5820435B2
JP5820435B2 JP2013151590A JP2013151590A JP5820435B2 JP 5820435 B2 JP5820435 B2 JP 5820435B2 JP 2013151590 A JP2013151590 A JP 2013151590A JP 2013151590 A JP2013151590 A JP 2013151590A JP 5820435 B2 JP5820435 B2 JP 5820435B2
Authority
JP
Japan
Prior art keywords
steel structure
fiber sheet
resin
reinforcing
elastic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013151590A
Other languages
Japanese (ja)
Other versions
JP2013234569A (en
Inventor
篤也 小森
篤也 小森
小林 朗
朗 小林
佑哉 秀熊
佑哉 秀熊
賀津雄 大垣
賀津雄 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Kawasaki Motors Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd, Kawasaki Jukogyo KK filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2013151590A priority Critical patent/JP5820435B2/en
Publication of JP2013234569A publication Critical patent/JP2013234569A/en
Application granted granted Critical
Publication of JP5820435B2 publication Critical patent/JP5820435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/005Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material preformed metal and synthetic material elements being joined together, e.g. by adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2331/00Polyvinylesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/266Concrete reinforced with fibres other than steel or glass
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31576Ester monomer type [polyvinylacetate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Bridges Or Land Bridges (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、連続した強化繊維を含むシート状の強化繊維含有材料(以下、「繊維シート」という。)を使用して、橋、桟橋、煙突等、更には、船、車両、航空機等の鋼構造物を補修補強(以後、単に「補強」という。)する鋼構造物の補強方法及び鋼構造物補強用の弾性層形成材に関するものである。 The present invention uses a sheet-like reinforcing fiber-containing material containing continuous reinforcing fibers (hereinafter referred to as “fiber sheet”), and is used for steels such as bridges, piers, chimneys, and ships, vehicles, and aircraft. structure repair reinforcement (hereinafter, simply "reinforcement" hereinafter.) relates to an elastic layer forming material of the reinforcing method及beauty steel structure for reinforcement of steel structures.

近年、既存或いは新設の鋼構造物の補強方法として、その表面に炭素繊維シートやアラミド繊維シートなどの連続強化繊維シートを貼り付けたり、巻き付けたりする炭素繊維シート接着工法やアラミド繊維シート接着工法などの連続繊維シート接着工法がある。また、未硬化のマトリクス樹脂を連続繊維束に含浸させた繊維シートを接着した後に硬化させる工法、がある。   In recent years, carbon fiber sheet bonding method or aramid fiber sheet bonding method in which continuous reinforcing fiber sheet such as carbon fiber sheet or aramid fiber sheet is pasted or wound on the surface as a reinforcing method of existing or new steel structure There is a continuous fiber sheet bonding method. Further, there is a method of curing after bonding a fiber sheet in which a continuous fiber bundle is impregnated with an uncured matrix resin.

更には、現場での樹脂の含浸を省略するため、工場生産した板厚1〜2mm、幅5cm程度のFRP板をパテ状接着樹脂を用いて接着するFRP板接着補強工法も開発されている。   Furthermore, in order to omit the impregnation of the resin on site, an FRP plate adhesion reinforcing method has been developed in which a factory-produced FRP plate having a thickness of 1 to 2 mm and a width of about 5 cm is adhered using a putty-like adhesive resin.

このような方法で補強した鋼構造物は、繊維シートが鋼構造物と一体に接着されている限りにおいては、繊維シートによる高い補強効果を得ることができる。しかしながら、負荷により鋼構造物が変形することなどにより、繊維シートが破断する前にこれが鋼構造物表面から剥離した場合には、所期の目的を達成することができなくなる。   The steel structure reinforced by such a method can obtain a high reinforcing effect by the fiber sheet as long as the fiber sheet is integrally bonded to the steel structure. However, if the steel sheet is peeled off from the surface of the steel structure before the fiber sheet breaks due to deformation of the steel structure due to the load, the intended purpose cannot be achieved.

そこで、特許文献1は、鋼構造物の表面に緩衝材層を設け、その後、繊維シートを接着剤にて接着し補強する方法について開示している。また、緩衝材層としては、熱硬化性樹脂や熱可塑性樹脂等の樹脂を使用し得ることについて開示している。加えて、この樹脂を単独で硬化させた際の23℃での引張弾性率が、0.1〜50N/mm2であると開示している。 Therefore, Patent Document 1 discloses a method of providing a buffer material layer on the surface of a steel structure and then bonding and reinforcing the fiber sheet with an adhesive. Moreover, it discloses that a resin such as a thermosetting resin or a thermoplastic resin can be used as the buffer material layer. In addition, it is disclosed that the tensile elastic modulus at 23 ° C. when this resin is cured alone is 0.1 to 50 N / mm 2 .

特許第3553865号公報Japanese Patent No. 3553865

しかしながら、本発明者らの研究実験の結果、鋼構造物を補強する際に鋼構造物表面から繊維シートが剥離する問題は、コンクリート構造物を繊維シートで補強する場合と異なり、鋼構造物表面の温度が大きく影響することが新たに分かった。従って、鋼構造物を繊維シートで補強する場合は、鋼構造物表面の温度を十分に考慮することが必要となる。鋼構造物(鋼材)は、温度による伸び、車両通行などによる撓みがコンクリート構造物に比べ大きい。そのため、剛性の高い連続繊維シートを鋼構造物に接着させると、その端部から繊維シートが剥離することが懸念される。   However, as a result of our research experiments, the problem that the fiber sheet peels off the surface of the steel structure when reinforcing the steel structure is different from the case of reinforcing the concrete structure with the fiber sheet. It has been newly found that the temperature of the is greatly affected. Therefore, when reinforcing a steel structure with a fiber sheet, it is necessary to fully consider the temperature of the steel structure surface. Steel structures (steel materials) have a greater elongation due to temperature and deflection due to vehicle traffic than concrete structures. Therefore, when a continuous fiber sheet having high rigidity is bonded to the steel structure, there is a concern that the fiber sheet peels from the end portion.

ここで、鋼構造物は、例えば、我が国においては、真夏の直射日光により、その表面は60℃程度の温度にまで上昇することが知られている。そのため、従来仕様の繊維シートによる補強に使用される接着剤等を用いると、その高い表面温度により接着剤が軟化し、時には、必要な補強効果が得られない場合があることが分かった。   Here, for example, in Japan, the surface of a steel structure is known to rise to a temperature of about 60 ° C. by direct sunlight in midsummer. For this reason, it has been found that when an adhesive or the like used for reinforcement by a conventional fiber sheet is used, the adhesive softens due to its high surface temperature, and sometimes the necessary reinforcing effect may not be obtained.

また、上記特許文献1の補強方法においては、緩衝材層を形成する樹脂の引張弾性率が低く、剛性の高い連続繊維シートなどで補強すると、緩衝材層が本来繊維シートに伝達されるべき応力を伝達出来ない可能性がある。即ち、この場合は繊維シートが役に立っておらず、補強できていない。   Moreover, in the reinforcement method of the said patent document 1, when the tensile elasticity modulus of resin which forms a buffer material layer is low, and it reinforces with a rigid continuous fiber sheet etc., the stress which a buffer material layer should be transmitted to a fiber sheet originally May not be transmitted. That is, in this case, the fiber sheet is not useful and cannot be reinforced.

そこで、本発明の目的は、鋼構造物を繊維シートで補強した場合に、日光照射等により繊維シートによる補強効果が得られなくなるような事態を回避し、十分な補強効果を得ることができ、且つ、繊維シートが破断に至る前に鋼構造物表面から剥がれることを回避することのできる鋼構造物の補強方法及び鋼構造物補強用弾性層形成材を提供することである。 Therefore, the purpose of the present invention is to avoid a situation where the reinforcing effect by the fiber sheet cannot be obtained by irradiation with sunlight, etc. when the steel structure is reinforced with the fiber sheet, and a sufficient reinforcing effect can be obtained. and to provide a reinforcing method及beauty steel structure reinforcing elastic layer forming material of steel structures that can be fibrous sheet to prevent the peeling off from the steel structure surface before rupture.

上記目的は本発明に係る鋼構造物の補強方法及び鋼構造物補強用弾性層形成材にて達成される。要約すれば、第1の本発明によれば、鋼構造物の表面上に強化繊維を含む繊維シートを接着して一体化する鋼構造物の補強方法において、
(a)前記鋼構造物の表面にポリウレア樹脂パテ剤を塗布して硬化させ弾性層を形成する工程と、
(b)前記弾性層が形成された前記鋼構造物の表面に前記繊維シートを、接着剤により接着する工程と、を有し、
前記ポリウレア樹脂パテ剤は、硬化時における引張伸びが400%以上、引張強度が8N/mm 2 以上、引張弾性率が60N/mm 2 以上500N/mm 2 以下であり、
前記接着剤は、ガラス転移点温度が60℃以上である、
ことを特徴とする鋼構造物の補強方法が提供される。
The above object is achieved by a steel structure reinforcing method and a steel structure reinforcing elastic layer forming material according to the present invention. In summary, according to the first aspect of the present invention, in a method for reinforcing a steel structure in which a fiber sheet containing reinforcing fibers is bonded and integrated on the surface of the steel structure,
(A) applying a polyurea resin putty agent to the surface of the steel structure and curing it to form an elastic layer;
(B) the said fiber sheet to the surface of the steel structures elastic layer is formed, possess a step of bonding, a by an adhesive,
The polyurea resin putty agent has a tensile elongation at curing of 400% or more, a tensile strength of 8 N / mm 2 or more, and a tensile modulus of 60 N / mm 2 or more and 500 N / mm 2 or less,
The adhesive has a glass transition temperature of 60 ° C. or higher.
A method for reinforcing a steel structure is provided.

第1の本発明の他の実施態様によれば、前記(b)工程にて使用する接着剤は、常温硬化型エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、MMA樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、又は、光硬化型樹脂である According to another embodiment of the first invention, the adhesive used in the step (b) is a room temperature curing type epoxy resin, epoxy acrylate resin, acrylic resin, MMA resin, vinyl ester resin, unsaturated polyester. It is a resin or a photocurable resin .

第1の本発明の他の実施態様によれば、前記鋼構造物の表面に前記弾性層を形成する前に、前記鋼構造物の表面を下地処理する工程及び/又はプライマーを塗布する工程、を有する。   According to another embodiment of the first aspect of the present invention, before forming the elastic layer on the surface of the steel structure, the step of applying a primer to the surface of the steel structure and / or the step of applying a primer, Have

第1の本発明の他の実施態様によれば、前記繊維シートは、一方向に引き揃えた連続した強化繊維を互いに線材固定材にて固定した繊維シートである。又は、前記繊維シートは、強化繊維にマトリクス樹脂が含浸され、硬化された連続した繊維強化プラスチック線材を複数本、長手方向にスダレ状に引き揃え、線材を互いに線材固定材にて固定した繊維シートである。又は、前記繊維シートは、一方向に引き揃えた連続した強化繊維シートに樹脂が含浸され、前記樹脂が硬化された繊維シートである。   According to another embodiment of the first aspect of the present invention, the fiber sheet is a fiber sheet in which continuous reinforcing fibers aligned in one direction are fixed to each other with a wire fixing material. Alternatively, the fiber sheet is a fiber sheet in which reinforcing fibers are impregnated with a matrix resin, a plurality of cured continuous fiber reinforced plastic wire materials are arranged in a slender shape in the longitudinal direction, and the wire materials are fixed to each other with a wire material fixing material. It is. Alternatively, the fiber sheet is a fiber sheet in which a continuous reinforcing fiber sheet aligned in one direction is impregnated with a resin and the resin is cured.

第1の本発明の他の実施態様によれば、前記繊維シートは、複数層にて前記鋼構造物の表面に積層して接着され、前記鋼構造物と一体化する。   According to another embodiment of the first aspect of the present invention, the fiber sheet is laminated and bonded to the surface of the steel structure in a plurality of layers, and is integrated with the steel structure.

第2の本発明によれば、
鋼構造物の表面上に強化繊維を含む繊維シートを接着して一体化する鋼構造物の補強方法であって、
(a)前記鋼構造物の表面にポリウレア樹脂パテ剤を塗布して硬化させ弾性層を形成する工程と、
(b)前記弾性層が形成された前記鋼構造物の表面に前記繊維シートを、接着剤により接着する工程と、
を有する鋼構造物の補強方法において前記弾性層を形成するポリウレア樹脂パテ剤から成る鋼構造物補強用弾性層形成材であって、
前記ポリウレア樹脂パテ剤は、硬化時における引張伸びが400%以上、引張強度が8N/mm2以上、引張弾性率が60N/mm2以上500N/mm2以下であることを特徴とする鋼構造物補強用弾性層形成材が提供される。
According to the second invention,
A method of reinforcing a steel structure in which a fiber sheet containing reinforcing fibers is bonded and integrated on the surface of the steel structure,
(A) applying a polyurea resin putty agent to the surface of the steel structure and curing it to form an elastic layer;
(B) bonding the fiber sheet to the surface of the steel structure on which the elastic layer is formed, using an adhesive;
A steel structures reinforcing the elastic layer forming material made of polyurea resin putty agent to form a pre-Symbol elastic layer Te reinforcing method smell steel structures having,
The polyurea resin putty agent has a tensile elongation at curing of 400% or more, a tensile strength of 8 N / mm 2 or more, and a tensile modulus of 60 N / mm 2 or more and 500 N / mm 2 or less. A reinforcing elastic layer forming material is provided.

本発明の鋼構造物の補強方法及び鋼構造物補強用弾性層形成材によれば、日光照射により補強効果が得られなくなるような事態を回避し、十分な補強効果を得ることができ、且つ、繊維シートが破断強度に至る前に鋼構造物表面から剥がれることを回避することができる。 According to the reinforcing method及beauty steel structure reinforcing elastic layer forming material of the steel structure of the present invention to avoid becomes such a situation not be obtained reinforcing effect by the irradiation sunlight, it is possible to obtain a sufficient reinforcing effect, And it can avoid that a fiber sheet peels off from the steel structure surface before reaching a breaking strength.

図1は、本発明の鋼構造物の補強方法及び補強構造体を説明するための補強された鋼構造物の例の断面図である。FIG. 1 is a cross-sectional view of an example of a reinforced steel structure for explaining a steel structure reinforcing method and a reinforcing structure according to the present invention. 図2は、本発明の鋼構造物の補強方法に使用し得る繊維シートの一実施例を示す図である。FIG. 2 is a view showing an embodiment of a fiber sheet that can be used in the steel structure reinforcing method of the present invention. 図3は、本発明の鋼構造物の補強方法に使用し得る繊維シートの他の実施例を示す図である。FIG. 3 is a view showing another embodiment of a fiber sheet that can be used in the steel structure reinforcing method of the present invention. 図4は、本発明の鋼構造物の補強方法に使用し得る繊維シートの一実施例を示す斜視図である。FIG. 4 is a perspective view showing an embodiment of a fiber sheet that can be used in the steel structure reinforcing method of the present invention. 図5は、本発明の鋼構造物の補強方法に使用し得る繊維シートを構成する繊維強化プラスチック線材の例の断面図である。FIG. 5 is a cross-sectional view of an example of a fiber-reinforced plastic wire constituting a fiber sheet that can be used in the steel structure reinforcing method of the present invention. 図6は、本発明の鋼構造物の補強方法に使用し得る繊維シートの他の実施例を示す斜視図である。FIG. 6 is a perspective view showing another embodiment of a fiber sheet that can be used in the steel structure reinforcing method of the present invention. 図7は、本発明の鋼構造物の補強方法の一実施例を説明する工程図である。FIG. 7 is a process diagram for explaining an embodiment of the steel structure reinforcing method of the present invention. 図8は、本発明の鋼構造物の補強方法の他の実施例を説明する工程図である。FIG. 8 is a process diagram for explaining another embodiment of the steel structure reinforcing method of the present invention. 図9は、本発明の鋼構造物の補強方法を実証するための曲げ強度試験装置の構成を説明する図である。FIG. 9 is a diagram illustrating the configuration of a bending strength test apparatus for demonstrating the steel structure reinforcing method of the present invention. 図10は、本発明に従って補強された鋼構造物の曲げ試験結果を示す図である。FIG. 10 is a diagram showing a bending test result of a steel structure reinforced in accordance with the present invention. 図11は、本発明と比較例とを比較するための補強された鋼構造物の曲げ試験結果を示す図である。FIG. 11 is a diagram showing a bending test result of a reinforced steel structure for comparing the present invention with a comparative example. 図12、本発明と比較例とを比較するための補強された鋼構造物の曲げ試験結果を示す図である。FIG. 12 is a diagram showing a bending test result of a reinforced steel structure for comparing the present invention with a comparative example.

以下、本発明に係る鋼構造物の補強方法及び鋼構造物補強用弾性層形成材を図面に則して更に詳しく説明する。 Hereinafter will be described in more detail with reference to reinforcing method及beauty steel structure reinforcing elastic layer forming material of the steel structure according to the present invention with reference to the drawings.

図1を参照すると、本発明に係る鋼構造物の補強方法によれば、鋼構造物100は、弾性層104を介してその表面上に連続した強化繊維fを含む繊維シート1が接着されて一体化される。   Referring to FIG. 1, according to the method for reinforcing a steel structure according to the present invention, a steel sheet 100 is bonded to a fiber sheet 1 including continuous reinforcing fibers f on the surface thereof through an elastic layer 104. Integrated.

本発明の鋼構造物の補強方法の特徴は、
(a)鋼構造物100の表面102にポリウレア樹脂パテ剤を塗布して硬化させ、緩衝層としての弾性層104を形成する工程と、
(b)弾性層104が形成された鋼構造物100の表面に繊維シート1を、必要に応じてガラス転移点温度が60℃以上となるように調整された接着剤105を使用して接着する工程と、
を有する構成にある。
The feature of the steel structure reinforcing method of the present invention is:
(A) applying a polyurea resin putty agent to the surface 102 of the steel structure 100 and curing it to form an elastic layer 104 as a buffer layer;
(B) The fiber sheet 1 is bonded to the surface of the steel structure 100 on which the elastic layer 104 is formed, using an adhesive 105 adjusted so that the glass transition temperature is 60 ° C. or higher as necessary. Process,
It is in the composition which has.

つまり、本発明によれば、
(a)鋼構造物100の表面102にポリウレア樹脂パテ剤を塗布して形成した弾性層104と、
(b)弾性層104が形成された鋼構造物100の表面102に接着剤105により接着された、樹脂含浸された繊維シート層106と、
を有することを特徴とする鋼構造物の補強構造体が提供される。弾性層104は、硬化時における引張伸びが400%以上、引張強度が8N/mm2以上、引張弾性率が60N/mm2以上500N/mm2以下とされる。
That is, according to the present invention,
(A) an elastic layer 104 formed by applying a polyurea resin putty agent to the surface 102 of the steel structure 100;
(B) a resin-impregnated fiber sheet layer 106 adhered by an adhesive 105 to the surface 102 of the steel structure 100 on which the elastic layer 104 is formed;
A reinforcing structure for a steel structure is provided. The elastic layer 104 has a tensile elongation at curing of 400% or more, a tensile strength of 8 N / mm 2 or more, and a tensile modulus of 60 N / mm 2 or more and 500 N / mm 2 or less.

本発明によれば、好ましくは、鋼構造物100の表面に弾性層104を形成する前に、鋼構造物1の表面102を下地処理することができ、更には、鋼構造物表面102にプライマーを塗布する。   According to the present invention, preferably, the surface 102 of the steel structure 1 can be pretreated before the elastic layer 104 is formed on the surface of the steel structure 100, and further, the primer is applied to the surface 102 of the steel structure. Apply.

次に、本発明にて使用する各材料について説明する。   Next, each material used in the present invention will be described.

(繊維シート)
本発明においては種々の形態の繊維シート1を使用することができる。繊維シート1の実施例を具体的に具体例1〜3として説明するが、本発明で使用する繊維シート1の形態は、これら具体例に示すものに限定されるものではない。
(Fiber sheet)
In the present invention, various forms of fiber sheets 1 can be used. Although the Example of the fiber sheet 1 is concretely demonstrated as the specific examples 1-3, the form of the fiber sheet 1 used by this invention is not limited to what is shown to these specific examples.

具体例1
図2に、本発明にて使用することのできる繊維シート1の一実施例を示す。繊維シート1は、連続した強化繊維fを一方向に引き揃えてシート状に構成される樹脂未含浸の繊維シート1Aとされる。
Example 1
FIG. 2 shows an embodiment of the fiber sheet 1 that can be used in the present invention. The fiber sheet 1 is a non-resin-impregnated fiber sheet 1A configured in a sheet shape by aligning continuous reinforcing fibers f in one direction.

即ち、繊維シート1Aは、一方向に引き揃えた連続した強化繊維fから成る強化繊維シートをメッシュ状の支持体シートなどとされる線材固定材3にて保持した構成とすることができる。例えば、強化繊維fとして炭素繊維を使用した場合には、例えば平均径7μmの単繊維(炭素繊維モノフィラメント)fを6000〜24000本収束した樹脂未含浸の単繊維束を複数本、一方向に平行に引き揃えて使用される。炭素繊維シート1Aの繊維目付は、通常、30〜1000g/m2とされる。 That is, 1 A of fiber sheets can be set as the structure which hold | maintained the reinforcing fiber sheet which consists of the continuous reinforcing fiber f arranged in one direction with the wire fixing material 3 used as a mesh-like support body sheet | seat. For example, when carbon fibers are used as the reinforcing fibers f, for example, a plurality of unimpregnated single fiber bundles in which 6000 to 24000 single fibers (carbon fiber monofilaments) f having an average diameter of 7 μm are converged in parallel in one direction. Used to align. The fiber basis weight of the carbon fiber sheet 1A is usually 30 to 1000 g / m 2 .

線材固定材3としてのメッシュ状の支持体シートを構成する縦糸4及び横糸5の表面に低融点タイプの熱可塑性樹脂を予め含浸させておき、メッシュ状支持体シート3をシート状に配列した炭素繊維の片面或いは両面に積層して加熱加圧し、メッシュ状支持体シート3の縦糸4及び横糸5の部分を炭素繊維シートに溶着する。   Carbon obtained by impregnating the surfaces of the warp yarn 4 and the weft yarn 5 constituting the mesh-like support sheet as the wire fixing material 3 in advance with a low melting point type thermoplastic resin, and arranging the mesh-like support sheet 3 in a sheet shape The fibers are laminated on one or both sides of the fiber and heated and pressed to weld the warp 4 and weft 5 portions of the mesh-like support sheet 3 to the carbon fiber sheet.

メッシュ状支持体シート3は、2軸構成のほかに、ガラス繊維を3軸に配向して形成したり、或いは、ガラス繊維を一方向に配列された炭素繊維に対して直交する横糸5のみを配置した、所謂、1軸に配向して形成して前記シート状に引き揃えた炭素繊維に接着することもできる。   In addition to the biaxial configuration, the mesh-shaped support sheet 3 is formed by orienting glass fibers in three axes, or only the wefts 5 orthogonal to the carbon fibers arranged in one direction. It can also be bonded to the so-called uniaxially oriented carbon fibers that are arranged and aligned in the form of a sheet.

又、上記線材固定材3の糸条としては、例えばガラス繊維を芯部に有し、低融点の熱融着性ポリエステルをその周囲に配したような二重構造の複合繊維も又好ましく用いられる。   As the yarn of the wire fixing material 3, for example, a double-structured composite fiber having a glass fiber in the core and a low-melting-point heat-fusible polyester around it is also preferably used. .

具体例2
また、繊維シート1は、図3に示すように、複数の強化繊維fを一方向に引き揃えた強化繊維シート、例えば、図2に示すような繊維シート1Aに樹脂Reを含浸し、前記樹脂が硬化された繊維シート(所謂、FRP板)1Bとすることもできる。
Example 2
Further, as shown in FIG. 3, the fiber sheet 1 is obtained by impregnating a resin fiber Re with a reinforcing fiber sheet in which a plurality of reinforcing fibers f are aligned in one direction, for example, a fiber sheet 1A as shown in FIG. A fiber sheet (so-called FRP plate) 1B in which is cured.

上記具体例1、2で説明した繊維シート1A、1Bにおいて、強化繊維fとしては、炭素繊維に限定されるものではなく、ガラス繊維、バサルト繊維;ボロン繊維、チタン繊維、スチール繊維などの金属繊維;更には、アラミド、PBO(ポリパラフェニレンベンズビスオキサゾール)、ポリアミド、ポリアリレート、ポリエステルなどの有機繊維;が単独で、又は、複数種混入してハイブリッドにて使用することができる。   In the fiber sheets 1A and 1B described in the specific examples 1 and 2, the reinforcing fiber f is not limited to carbon fiber, but glass fiber, basalt fiber; metal fiber such as boron fiber, titanium fiber, and steel fiber. Further, organic fibers such as aramid, PBO (polyparaphenylene benzbisoxazole), polyamide, polyarylate, and polyester can be used singly or in a mixture of plural kinds.

また、具体例2における繊維シート1Bの場合の樹脂Reとしては、熱硬化性樹脂又は熱可塑性樹脂を使用することができ、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂などが好適に使用され、又、熱可塑性樹脂としては、ナイロン、ビニロンなどが好適に使用可能である。又、樹脂含浸量は、30〜70重量%、好ましくは、40〜60重量%とされる。   In addition, as the resin Re in the case of the fiber sheet 1B in the specific example 2, a thermosetting resin or a thermoplastic resin can be used. As the thermosetting resin, a room temperature curing type or a thermosetting type epoxy resin can be used. Vinyl ester resin, MMA resin, acrylic resin, unsaturated polyester resin, phenol resin and the like are preferably used, and nylon, vinylon and the like can be suitably used as the thermoplastic resin. The resin impregnation amount is 30 to 70% by weight, preferably 40 to 60% by weight.

具体例3
更には、図4及び図5に示すように、繊維シート1としては、マトリクス樹脂Rが含浸され硬化された細径の連続した繊維強化プラスチック線材2を複数本、長手方向にスダレ状に引き揃え、各線材2を互いに線材固定材3にて固定した繊維シート1Cを使用することもできる。
Example 3
Further, as shown in FIGS. 4 and 5, the fiber sheet 1 has a plurality of continuous fiber reinforced plastic wires 2 having a small diameter, which are impregnated with the matrix resin R and cured, and are arranged in a slender shape in the longitudinal direction. Moreover, the fiber sheet 1C which fixed each wire 2 with the wire fixing material 3 mutually can also be used.

繊維強化プラスチック線材2は、直径(d)が0.5〜3mmの略円形断面形状(図5(a))であるか、又は、幅(w)が1〜10mm、厚み(t)が0.1〜2mmとされる略矩形断面形状(図5(b))とし得る。勿論、必要に応じて、その他の種々の断面形状とすることができる。   The fiber reinforced plastic wire 2 has a substantially circular cross-sectional shape (FIG. 5A) having a diameter (d) of 0.5 to 3 mm, or a width (w) of 1 to 10 mm and a thickness (t) of 0. A substantially rectangular cross-sectional shape (FIG. 5B) of 1 to 2 mm can be obtained. Of course, other various cross-sectional shapes can be used as necessary.

上述のように、一方向に引き揃えスダレ状とされた繊維シート1において、各線材2は、互いに空隙(g)=0.05〜3.0mmだけ近接離間して、線材固定材3にて固定される。また、このようにして形成された繊維シート1の長さ(L)及び幅(W)は、補強される構造物の寸法、形状に応じて適宜決定されるが、取扱い上の問題から、一般に、全幅(W)は、100〜1000mmとされる。又、長さ(L)は、1〜5m程度の短冊状のもの、或いは、100m以上のものを製造し得るが、使用時においては、適宜切断して使用される。   As described above, in the fiber sheet 1 that is aligned and slid in one direction, the wires 2 are close to and separated from each other by a gap (g) = 0.05 to 3.0 mm. Fixed. In addition, the length (L) and width (W) of the fiber sheet 1 formed in this way are appropriately determined according to the size and shape of the structure to be reinforced, The total width (W) is 100 to 1000 mm. Moreover, although the length (L) can manufacture a strip-shaped thing about 1-5 m, or a thing 100 m or more, it cuts and uses it suitably at the time of use.

また、繊維シート1Cの長さ(L)を1〜5m程度として、幅Wをこれより長く1〜10m程度として製造することも可能である。   It is also possible to manufacture the fiber sheet 1C with a length (L) of about 1 to 5 m and a width W of about 1 to 10 m longer than this.

繊維シート1Cの場合においても、強化繊維fとしては、炭素繊維、ガラス繊維、バサルト繊維;ボロン繊維、チタン繊維、スチール繊維などの金属繊維;更には、アラミド、PBO(ポリパラフェニレンベンズビスオキサゾール)、ポリアミド、ポリアリレート、ポリエステルなどの有機繊維;が単独で、又は、複数種混入してハイブリッドにて使用することができる。また、繊維強化プラスチック線材2に含浸されるマトリクス樹脂Rは、熱硬化性樹脂又は熱可塑性樹脂を使用することができ、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂などが好適に使用され、又、熱可塑性樹脂としては、ナイロン、ビニロンなどが好適に使用可能である。又、樹脂含浸量は、30〜70重量%、好ましくは、40〜60重量%とされる。   Even in the case of the fiber sheet 1C, as the reinforcing fiber f, carbon fiber, glass fiber, basalt fiber; metal fiber such as boron fiber, titanium fiber, steel fiber; and aramid, PBO (polyparaphenylene benzbisoxazole) Organic fibers such as polyamide, polyarylate, and polyester can be used alone or in a mixture of plural kinds. The matrix resin R impregnated in the fiber reinforced plastic wire 2 can be a thermosetting resin or a thermoplastic resin. As the thermosetting resin, a room temperature curing type or a thermosetting type epoxy resin, A vinyl ester resin, an MMA resin, an acrylic resin, an unsaturated polyester resin, a phenol resin, or the like is preferably used, and nylon, vinylon, or the like can be preferably used as the thermoplastic resin. The resin impregnation amount is 30 to 70% by weight, preferably 40 to 60% by weight.

又、各線材2を線材固定材3にて固定する方法としては、図4に示すように、例えば、線材固定材3として横糸を使用し、一方向にスダレ状に配列された複数本の線材2から成るシート形態とされる線材、即ち、連続した線材シートを、線材に対して直交して一定の間隔(P)にて打ち込み、編み付ける方法を採用し得る。横糸3の打ち込み間隔(P)は、特に制限されないが、作製された繊維シート1の取り扱い性を考慮して、通常10〜100mm間隔の範囲で選定される。   Further, as a method of fixing each wire 2 with the wire fixing material 3, for example, as shown in FIG. 4, a plurality of wires arranged in a sag-like manner using wefts as the wire fixing material 3 are arranged. It is possible to adopt a method of driving and knitting a wire rod in the form of a sheet consisting of two, that is, a continuous wire rod sheet at a constant interval (P) perpendicular to the wire rod. The driving interval (P) of the weft yarn 3 is not particularly limited, but is usually selected in the range of 10 to 100 mm in consideration of the handleability of the produced fiber sheet 1.

このとき、横糸3は、例えば直径2〜50μmのガラス繊維或いは有機繊維を複数本束ねた糸条とされる。又、有機繊維としては、ナイロン、ビニロンなどが好適に使用される。   At this time, the weft 3 is, for example, a yarn obtained by bundling a plurality of glass fibers or organic fibers having a diameter of 2 to 50 μm. Moreover, nylon, vinylon, etc. are used suitably as an organic fiber.

各線材2をスダレ状に固定する他の方法としては、図6(a)に示すように、線材固定材3としてメッシュ状支持体シートを使用することができる。   As another method of fixing each wire 2 in a slender shape, a mesh-like support sheet can be used as the wire fixing member 3 as shown in FIG.

つまり、シート形態を成すスダレ状に引き揃えた複数本の線材2、即ち、線材シートの片側面、又は、両面を、例えば直径2〜50μmのガラス繊維或いは有機繊維にて作製した、上記具体例1で説明したと同様の構成とされるメッシュ状の支持体シート3により支持した構成とすることもできる。   That is, the above-mentioned specific example in which a plurality of wire rods 2 arranged in the form of a sheet in a sheet form, that is, one side or both sides of a wire sheet is made of glass fiber or organic fiber having a diameter of 2 to 50 μm, for example. 1 may be configured to be supported by a mesh-like support sheet 3 having the same configuration as described in 1.

更に、各線材2をスダレ状に固定する他の方法としては、図6(b)に示すように、線材固定材3として、例えば、粘着テープ又は接着テープなどとされる可撓性帯材を使用することができる。可撓性帯材3は、シート形態を成すスダレ状に引き揃えた各繊維強化プラスチック線材2の長手方向に対して垂直方向に、複数本の繊維強化プラスチック線材2の片側面、又は、両面を貼り付けて固定する。   Furthermore, as another method of fixing each wire 2 in a slender shape, as shown in FIG. 6 (b), as the wire fixing material 3, for example, a flexible belt material such as an adhesive tape or an adhesive tape is used. Can be used. The flexible strip 3 has one side or both sides of a plurality of fiber reinforced plastic wires 2 in a direction perpendicular to the longitudinal direction of each fiber reinforced plastic wire 2 arranged in the form of a sheet. Paste and fix.

つまり、可撓性帯材3として、幅(w1)2〜30mm程度の、塩化ビニルテープ、紙テープ、布テープ、不織布テープなどの粘着テープ又は接着テープが使用される。これらテープ3を、通常、10〜100mm間隔(P)で各繊維強化プラスチック線材2の長手方向に対して垂直方向に貼り付ける。   That is, as the flexible strip 3, an adhesive tape or adhesive tape such as a vinyl chloride tape, a paper tape, a cloth tape, and a nonwoven fabric tape having a width (w1) of about 2 to 30 mm is used. These tapes 3 are usually stuck in a direction perpendicular to the longitudinal direction of each fiber reinforced plastic wire 2 at intervals (P) of 10 to 100 mm.

更に、可撓性帯材3としては、ナイロン、EVA樹脂などの熱可塑性樹脂を帯状に、線材2の長手方向に対して垂直方向に片側面、又は、両面に熱融着させることによっても達成される。   Furthermore, as the flexible strip 3, the thermoplastic resin such as nylon or EVA resin is formed into a strip and is heat-bonded to one side or both sides in the direction perpendicular to the longitudinal direction of the wire 2. Is done.

(補強方法)
次に、図7を参照して、鋼構造物の補強方法について説明する。本発明によれば、前述のようにして製造された繊維シート1を用いて、鋼構造物の補強が行われる。
(Reinforcing method)
Next, a method for reinforcing a steel structure will be described with reference to FIG. According to the present invention, the steel structure is reinforced using the fiber sheet 1 manufactured as described above.

つまり、本発明の鋼構造物の補強方法によれば、例えば、繊維シート1として、上記具体例1で説明した強化繊維fを一方向に引き揃えて作製された繊維シート1Aを使用することができ、鋼構造物の表面に形成された弾性層104の上に接着剤105にて接着して一体化する。この時、繊維シート1Aの鋼構造物への接着と同時に、この接着剤による繊維シート1Aに対する接着剤(マトリクス樹脂)含浸をも行うことができる。   That is, according to the method for reinforcing a steel structure of the present invention, for example, as the fiber sheet 1, the fiber sheet 1A produced by aligning the reinforcing fibers f described in the specific example 1 in one direction can be used. The adhesive layer 105 is bonded and integrated on the elastic layer 104 formed on the surface of the steel structure. At this time, simultaneously with the adhesion of the fiber sheet 1A to the steel structure, the adhesive (matrix resin) impregnation of the fiber sheet 1A with this adhesive can also be performed.

これにより、弾性層104と、樹脂含浸された繊維シート1が接着された繊維シート層106を有する鋼構造物の補強構造体200が形成される。   Thereby, the reinforcing structure 200 of the steel structure having the elastic layer 104 and the fiber sheet layer 106 to which the fiber sheet 1 impregnated with the resin is bonded is formed.

鋼構造物100の補強に際して、曲げモーメント及び軸力を主として受ける部材(構造物)に対しては、曲げモーメントにより生じる引張応力或いは圧縮応力の主応力方向に強化繊維の配向方向を概ね一致させて接着することで、繊維シート1が効果的に応力を負担し、効率的に構造物の耐荷力を向上させることが可能である。   When reinforcing the steel structure 100, for members (structures) that mainly receive bending moment and axial force, the orientation direction of the reinforcing fibers is generally aligned with the principal stress direction of tensile stress or compression stress generated by the bending moment. By bonding, it is possible for the fiber sheet 1 to effectively bear the stress and to efficiently improve the load resistance of the structure.

また、直交する2方向に曲げモーメントが作用する場合、繊維シート1の強化繊維fの配向方向が曲げモーメントにより生じる主応力に概ね一致するように2層以上の繊維シート1を直交させて積層接着することで効率的に耐荷力の向上が図れる。   When bending moments act in two orthogonal directions, two or more fiber sheets 1 are orthogonally laminated and bonded so that the orientation direction of the reinforcing fibers f of the fiber sheet 1 substantially coincides with the principal stress generated by the bending moment. By doing so, the load bearing capacity can be improved efficiently.

(第1工程)
図7(a)、(b)に示すように、必要に応じて、鋼構造物100の被補強面(即ち、被接着面)101の脆弱部101aを、ディスクサンダー、サンドブラスト、スチールショットブラスト、ウォータージェットなどの研削手段50により除去し、鋼構造物100の被接着面101を下地処理をする。
(First step)
As shown in FIGS. 7 (a) and 7 (b), if necessary, the weakened portion 101a of the surface to be reinforced (that is, the surface to be bonded) 101 of the steel structure 100 is replaced with a disk sander, sandblast, steel shot blast, It removes by the grinding means 50, such as a water jet, and the to-be-adhered surface 101 of the steel structure 100 is surface-treated.

(第2工程)
下地処理した面102にエポキシ変性ウレタン樹脂プライマー103を塗布する(図7(c))。プライマー103としては、エポキシ変性ウレタン樹脂系に限ることなくMMA系樹脂など、弾性層104(図7(d))と被補強鋼構造物100の材質に合わせて適宜選定される。
(Second step)
An epoxy-modified urethane resin primer 103 is applied to the surface 102 subjected to the ground treatment (FIG. 7C). The primer 103 is appropriately selected according to the material of the elastic layer 104 (FIG. 7D) and the reinforced steel structure 100, such as an MMA resin, without being limited to the epoxy-modified urethane resin.

なお、プライマー103の塗布工程は、省略することも可能である。   In addition, the application | coating process of the primer 103 can also be skipped.

(第3工程)
下地処理した面102にポリウレア樹脂パテ剤104を所要の厚さ(T)にて塗布し、硬化させ、弾性層104を形成する(図7(d))。塗布厚さ(T)は、被接着面102の表面の凹凸、繊維シート1の厚さTに応じて適宜設定されるが、一般にT=0.2〜10mm程度とされる。
(Third step)
A polyurea resin putty agent 104 is applied to the ground-treated surface 102 at a required thickness (T) and cured to form an elastic layer 104 (FIG. 7D). The coating thickness (T) is appropriately set according to the unevenness on the surface of the adherend surface 102 and the thickness T of the fiber sheet 1, but is generally about T = 0.2 to 10 mm.

本発明にて、弾性率の低いポリウレア樹脂パテ剤、即ち、弾性層104を形成する材料(弾性層形成材)は、主剤、硬化剤、充填剤、添加剤などを含んでおり、その組成の一例を示せば、下記の通りとされる。
(i)主剤:イソシアネート(例えば、4,−4’ジフェニルメタンジイソシアネート)を反応成分とするプレポリマーであり、末端残存イソシアネートがNCO重量%で1〜16重量部に調整されたものを使用する。
(ii)硬化剤:主成分として芳香族アミン(例えばアミン価80〜90)含む硬化剤を使用し、主剤のNCO:アミン比で、1.0:0.55〜0.99重量部で計算されたものを使用する。更には、硬化促進剤としてp−トルエンスルホン酸塩などを含むこともできる。
(iii)充填剤:硅石粉、搖変剤等が含まれ、1〜500重量部で適宜配合される。
(iv)添加剤:着色剤、粘性調整剤、可塑剤等が含まれ、1〜50重量部で適宜配合される。
In the present invention, the polyurea resin putty agent having a low elastic modulus, that is, the material forming the elastic layer 104 (elastic layer forming material) contains a main agent, a curing agent, a filler, an additive, etc. An example is as follows.
(I) Main agent: A prepolymer having an isocyanate (for example, 4, -4′diphenylmethane diisocyanate) as a reaction component and having a terminal residual isocyanate adjusted to 1 to 16 parts by weight with NCO wt%.
(Ii) Curing agent: A curing agent containing an aromatic amine (for example, an amine value of 80 to 90) is used as a main component, and the NCO: amine ratio of the main agent is calculated at 1.0: 0.55 to 0.99 parts by weight. Use what was done. Furthermore, p-toluenesulfonic acid salt etc. can also be included as a hardening accelerator.
(Iii) Filler: Meteorite powder, a habit modifier, and the like are included, and are appropriately blended in an amount of 1 to 500 parts by weight.
(Iv) Additives: Colorants, viscosity modifiers, plasticizers and the like are included, and are appropriately blended in an amount of 1 to 50 parts by weight.

ここで、ポリウレア樹脂パテ剤は、硬化時における引張伸びが400%以上(通常、400〜600%)、引張強度が8N/mm2以上(通常、8〜10N/mm2)、引張弾性率が60N/mm2以上500N/mm2以下(通常、60〜100N/mm2)とされる。 Here, the polyurea resin putty agent has a tensile elongation at curing of 400% or more (usually 400 to 600%), a tensile strength of 8 N / mm 2 or more (usually 8 to 10 N / mm 2 ), and a tensile elastic modulus. 60 N / mm 2 or more and 500 N / mm 2 or less (usually 60 to 100 N / mm 2 ).

弾性率が60N/mm2未満では、必要な補強応力伝達ができず、また逆に、100N/mm2を越えると、特に、500N/mm2を超えると、伸び性能が不足するといった問題が生じる。 If the elastic modulus is less than 60 N / mm 2 , the necessary reinforcing stress cannot be transmitted, and conversely, if it exceeds 100 N / mm 2 , particularly if it exceeds 500 N / mm 2 , the problem of insufficient elongation performance arises. .

また、ポリウレア樹脂をパテ剤として使用するためには、23℃におけるBM型粘度計による2回転での粘度が200〜700Pa・sで、回転数20回転では60〜100Pa・sの範囲にあり、チクソトロピックインデックス、即ち、回転粘度計による異なる回転数による粘度の測定値の比(回転数20回転における粘度÷2回転の粘度)が4〜7であることが望ましい。   Moreover, in order to use polyurea resin as a putty agent, the viscosity at 2 revolutions by a BM type viscometer at 23 ° C. is 200 to 700 Pa · s, and at 20 revolutions, it is in the range of 60 to 100 Pa · s. It is desirable that the thixotropic index, that is, the ratio of the measured values of viscosity at different rotational speeds by a rotational viscometer (viscosity at 20 rotational speeds ÷ viscosity at 2 rotational speeds) is 4 to 7.

すなわち、粘度が60Pa・sより小さくチクソトロピックインデックスが4未満であれば、塗付後にダレ等が生じ塗付面の平滑性及び天井面、壁面の塗布が困難となり、また逆に、粘度が100Pa・sより大きくチクソトロピックインデックスが7を超えると樹脂が硬く、混合に問題があり、且つ、平滑に塗布することも困難になる。   That is, when the viscosity is less than 60 Pa · s and the thixotropic index is less than 4, sagging occurs after coating, and it becomes difficult to apply the smoothness of the coated surface and the ceiling surface and wall surface, and conversely, the viscosity is 100 Pa. If the thixotropic index is larger than s and exceeds 7, the resin is hard, there is a problem in mixing, and it is difficult to apply smoothly.

ここで、下記表1は、上記特許文献1に記載される緩衝材層を形成する材料として従来使用されているエポキシ樹脂パテ剤と、本発明にて使用される弾性層を形成する材料としての、上記組成のポリウレア樹脂パテ剤とが有する物性を比較した結果を示す。   Here, Table 1 below shows the epoxy resin putty agent conventionally used as the material for forming the buffer material layer described in Patent Document 1 and the material for forming the elastic layer used in the present invention. The result of having compared the physical property which the polyurea resin putty agent of the said composition has is shown.

Figure 0005820435
Figure 0005820435

Figure 0005820435
Figure 0005820435

上記表1と、緩衝層の温度と弾性率の関係表(上記表2)の結果から、エポキシ樹脂パテ剤を使用した場合には、伸びと靭性を共存させることができず、特に、高温時には、エポキシ樹脂の素材強度が低下して鋼材補強効果を発揮できない。また、冬季の低温時には延び性能が極端に低下し、硬くなってしまい、早期剥離に至る。   From the results of Table 1 above and the relationship between the temperature and elastic modulus of the buffer layer (Table 2 above), when an epoxy resin putty agent is used, elongation and toughness cannot coexist, especially at high temperatures. The material strength of the epoxy resin is reduced and the steel material reinforcing effect cannot be exhibited. In addition, when the temperature is low in winter, the elongation is extremely deteriorated and becomes hard, leading to early peeling.

これに対して、本発明にて使用するポリウレア樹脂パテ剤は、−20℃から+70℃まで安定した性能を示すことができる。従って、ポリウレア樹脂パテ剤は、鋼構造物補強用弾性層形成材として使用し、温度に影響されない剥離防止、補修補強効果を達成することができ、鋼構造物の補強工法に極めて好適に使用し得ることが分かった。   On the other hand, the polyurea resin putty agent used in the present invention can exhibit stable performance from −20 ° C. to + 70 ° C. Therefore, the polyurea resin putty agent can be used as an elastic layer forming material for reinforcing steel structures, and can achieve peeling prevention and repair reinforcement effects that are not affected by temperature, and is extremely suitably used for the reinforcement method of steel structures. I knew I would get it.

(第4工程)
図7(e)、(f)に示すように、樹脂パテ剤が硬化し、弾性層104が形成されると、この弾性層104の上に接着剤105を塗布し、この面に、繊維シート1を押し付けて補強対象構造物100の表面102に弾性層104を介して接着する。
(4th process)
As shown in FIGS. 7E and 7F, when the resin putty is cured and the elastic layer 104 is formed, an adhesive 105 is applied on the elastic layer 104, and a fiber sheet is applied to this surface. 1 pressed adhered via an elastic layer 104 on the surface 102 of the reinforcing target steel structure 100.

接着剤105としては、高温時に適用するためには、好ましくは、ガラス転移点温度が60℃以上、通常、70℃〜100℃に調整した接着剤を使用する。上述したように、鋼構造物100、即ち、鋼材は、我が国においては、真夏の直射日光により、その表面は60℃程度の温度にまで上昇する。そのため、従来仕様の繊維シートによる補強に使用される接着剤では、その温度により接着剤が軟化し、時には、必要な補修補強効果が得られない場合があることが分かった。   As the adhesive 105, an adhesive whose glass transition temperature is adjusted to 60 ° C. or higher, usually 70 ° C. to 100 ° C., is preferably used for application at high temperatures. As described above, the surface of the steel structure 100, that is, the steel material, rises to a temperature of about 60 ° C. in Japan due to direct sunlight in midsummer. For this reason, it has been found that the adhesive used for the reinforcement with the fiber sheet of the conventional specification softens depending on the temperature, and sometimes the necessary repair and reinforcement effect may not be obtained.

従って、接着剤105として、ガラス転移点温度が、好ましくは60℃以上、通常、70℃〜100℃とされる接着剤を使用することにより、日光照射により補強効果が得られなくなるような事態を回避し、十分な補強効果を得ることができ、且つ、繊維シートが破断強度に至る前に鋼構造物表面から剥がれることを回避することができる。   Therefore, by using an adhesive having a glass transition temperature of preferably 60 ° C. or higher, and usually 70 ° C. to 100 ° C. as the adhesive 105, a situation in which the reinforcing effect cannot be obtained by irradiation with sunlight. It is possible to avoid this, obtain a sufficient reinforcing effect, and avoid peeling of the fiber sheet from the surface of the steel structure before reaching the breaking strength.

このような特性を有した接着剤としては、常温硬化型エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、MMA樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、光硬化型樹脂等が挙げられ、具体的には、常温硬化型エポキシ樹脂及びMMA樹脂が好適とされる。   Examples of the adhesive having such characteristics include room temperature curable epoxy resins, epoxy acrylate resins, acrylic resins, MMA resins, vinyl ester resins, unsaturated polyester resins, photocurable resins, and the like. Room temperature curable epoxy resins and MMA resins are preferred.

本実施例では、エポキシ樹脂接着剤を使用した。エポキシ樹脂接着剤は、主剤、硬化剤の2成分型により提供され、その組成の一例を示せば、下記の通りとされる。
(i)主剤:主成分としてエポキシ樹脂を含み、接着増強付与剤として、必要に応じてシランカップリング剤を含むものを使用する。エポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、特に、靭性付与のためのゴム変性エポキシ樹脂とすることができ、更に、反応性希釈剤及び搖変剤を用途に応じて添加しても良い。
(ii)硬化剤:主成分としてアミン類を含み、必要に応じて、硬化促進剤を含み、添加剤として着色剤等を含むものを使用し、主剤のエポキシ樹脂:硬化剤のアミン当量比は各々1:1である。アミン類は、例えば、メタキシレンジアミン及びイソホロンジアミンを含む脂肪族アミンとすることができる。斯かる組成のエポキシ樹脂は、ガラス転移温度が70℃以上(74℃)とされる。
In this example, an epoxy resin adhesive was used. The epoxy resin adhesive is provided by a two-component type of a main agent and a curing agent, and an example of the composition is as follows.
(I) Main agent: An epoxy resin is used as a main component, and a material containing a silane coupling agent as necessary is used as an adhesion enhancing agent. The epoxy resin can be, for example, a bisphenol type epoxy resin, in particular, a rubber-modified epoxy resin for imparting toughness, and a reactive diluent and a thixotropic agent may be added depending on the application.
(Ii) Curing agent: containing amines as a main component, optionally containing a curing accelerator and using a colorant or the like as an additive, the main component epoxy resin: the amine equivalent ratio of the curing agent is Each is 1: 1. The amines can be aliphatic amines including, for example, metaxylene diamine and isophorone diamine. The epoxy resin having such a composition has a glass transition temperature of 70 ° C. or higher (74 ° C.).

尚、接着剤105は、弾性層104の上に塗布するものとして説明したが、勿論、繊維シート1に塗布することもでき、また、弾性層104の表面及び繊維シート1接着面の両面上に塗布しても良い。   Although the adhesive 105 has been described as being applied on the elastic layer 104, it can of course be applied to the fiber sheet 1, and on both the surface of the elastic layer 104 and the adhesive surface of the fiber sheet 1. It may be applied.

また、必要補強量が多い場合には、構造物表面に複数層の繊維シート1を接着することが可能である。ただ、複数層の繊維シート1を積層して接着すると、端部に応力集中が生じ、剥離破壊抵抗が低下することがある。   Moreover, when there is much required reinforcement amount, it is possible to adhere | attach the multiple layers fiber sheet 1 on the structure surface. However, if the fiber sheets 1 having a plurality of layers are laminated and bonded, stress concentration occurs at the end portion, and the peel fracture resistance may decrease.

そこで、剥離破壊を防止するために、図8に示すように、各層の繊維シート1のシート長さ(L)(図1参照)を変化させるのが好ましい。例えば、複数層積層する繊維シート1の長さは、構造物表面102から離間する外層に行くに従って順に短くして、繊維シート1の端部1aを階段状に積層する。端部1aのずらし長さ(h)は、30mm〜300mm程度とするのが適当である。例えば、シート端部1aが100mmづつ短くなるように接着することにより、好結果を得ることができた。   Therefore, in order to prevent peeling failure, it is preferable to change the sheet length (L) (see FIG. 1) of the fiber sheet 1 of each layer as shown in FIG. For example, the length of the fiber sheet 1 to be laminated in a plurality of layers is shortened in order as it goes to the outer layer that is separated from the structure surface 102, and the end portions 1a of the fiber sheet 1 are laminated stepwise. The shifting length (h) of the end 1a is suitably about 30 mm to 300 mm. For example, good results could be obtained by bonding the sheet end 1a so as to be shortened by 100 mm.

つまり、複数層積層する繊維シート1の長さ(L)を外層を順に30〜300mm程度短くして端部1aを階段状に積層することにより、シート端部1aでの応力集中を低減し、剥離抵抗を向上させることが可能である。   That is, by reducing the length (L) of the fiber sheet 1 to be laminated in a plurality of layers by reducing the outer layer by about 30 to 300 mm in order and laminating the end 1a in a stepped manner, the stress concentration at the sheet end 1a is reduced, It is possible to improve the peeling resistance.

次に、本発明に係る構造物の補強方法及び鋼構造物補強用弾性層形成材の作用効果を実証するために以下の実験を行った。 Next, the following experiment was conducted to demonstrate the effect of the reinforcing method及beauty steel structure reinforcing elastic layer forming material of the structure according to the present invention.

実験例1
本実験例では、繊維シート1を使用して、接着工法に従って鋼構造物100としての鋼材を補強した。また、本実験例で使用した繊維シート1は、図2を参照して具体例1として説明した構成の繊維シート1Aであった。
Experimental example 1
In this experimental example, the fiber sheet 1 was used to reinforce the steel material as the steel structure 100 according to the bonding method. Moreover, the fiber sheet 1 used in this experimental example was the fiber sheet 1A having the configuration described as the specific example 1 with reference to FIG.

繊維シート1Aにおける強化繊維fとしては、平均径10μm、収束本数6000本の樹脂未含浸のピッチ系炭素繊維ストランドを繊維目付300g/m2となるように一方向に引き揃えてシート状とした。このシート状の強化繊維の片側面にガラス繊維を使用して作製された2軸のメッシュ状支持体3を溶着して繊維シート1Aとした。 As the reinforcing fiber f in the fiber sheet 1A, pitch-based carbon fiber strands with an average diameter of 10 μm and a convergent number of 6000 resin-impregnated pitch-based carbon fiber strands were aligned in one direction so as to have a fiber basis weight of 300 g / m 2 to form a sheet. A biaxial mesh-like support 3 made using glass fiber was welded to one side of the sheet-like reinforcing fiber to obtain a fiber sheet 1A.

このようにして作製した繊維シート1Aとされる繊維シート1は、幅(W)が500mm、長さ(L)が50mであった。本実施例では、斯かる繊維シートを適宜切り出して使用した。   The fiber sheet 1 made as the fiber sheet 1A thus produced had a width (W) of 500 mm and a length (L) of 50 m. In this example, such a fiber sheet was appropriately cut out and used.

次に、上記繊維シート1を使用して鋼構造物としての鋼材100を、図7を参照して説明したと同様の繊維シート接着工法により、次のようにして補強した。ただ、本実験例では、鋼材100の下面側に繊維シート1を貼付するものとした。   Next, the steel material 100 as a steel structure using the fiber sheet 1 was reinforced by the same fiber sheet bonding method as described with reference to FIG. However, in this experimental example, the fiber sheet 1 was attached to the lower surface side of the steel material 100.

先ず、本実験例では、鋼材100の下面をショットブラストにて研掃し、適度の粗面とした。この鋼材100の表面102上にエポキシ変性ウレタンプライマー(新日鉄マテリアルズ(株)製「FORCAUL−1」(商品名))103を0.15kg/m2塗布した。 First, in this experimental example, the lower surface of the steel material 100 was polished by shot blasting to obtain an appropriate rough surface. 0.15 kg / m 2 of epoxy-modified urethane primer (“FORCAUL-1” (trade name) manufactured by Nippon Steel Materials Co., Ltd.) 103 was applied onto the surface 102 of the steel material 100.

エポキシ変性ウレタン樹脂プライマー103が指触乾燥した後、塗付面を背面とした状況で弾性層104を形成するために、上述した組成のポリウレア樹脂パテ剤を、およそ1mmの厚さ(T)となるよう、ヘラで鋼材(供試体)100に塗布した。このとき、ポリウレア樹脂パテ剤は、塗布完了後も自重で滴下することはなく鋼材供試体100に付着していた。   After the epoxy-modified urethane resin primer 103 is dry to the touch, the polyurea resin putty having the above-described composition is formed with a thickness (T) of about 1 mm in order to form the elastic layer 104 with the application surface as the back surface. The steel material (specimen) 100 was applied with a spatula. At this time, the polyurea resin putty agent was not dripped by its own weight even after the application was completed, and adhered to the steel specimen 100.

弾性層104の形成樹脂として用いたパテ状ポリウレア樹脂の23℃におけるBM型粘度計による2回転での粘度は600Pa・sで、回転数20回転では95Pa・sであった。   The putty-like polyurea resin used as the resin for forming the elastic layer 104 had a viscosity of 600 Pa · s at 2 revolutions by a BM viscometer at 23 ° C. and 95 Pa · s at 20 revolutions.

また、チクソトロピックインデックス(回転数20回転における粘度÷2回転の粘度)は6.32であった。   The thixotropic index (viscosity at 20 revolutions ÷ viscosity at 2 revolutions) was 6.32.

次に、上記鋼材表面102に塗布したポリウレア樹脂パテ剤を硬化させて弾性層104を形成した。この弾性層104の上にガラス転移点温度74℃の上述した組成のエポキシ樹脂を、(繊維シート1を複数層積層する場合には各層当たり下塗りとして)塗布量0.4kg/m2にて塗付した。次いで、繊維シート1をエポキシ樹脂塗布面に軽く押し付けた後、繊維シート1の上を幅100mm直径10mmプラスチックローラーを100N程度の押し付け力を加えながら移動させた。繊維シートは、上述の構成の繊維シートを接着剤により全部で7層積層した。具体的には、新日鉄マテリアルズ(株)製の「炭素繊維シートC830」(商品名))を5層、更に、新日鉄マテリアルズ(株)製の「炭素繊維シートC160」(商品名))を2層、積層した。 Next, the polyurea resin putty agent applied to the steel surface 102 was cured to form an elastic layer 104. On this elastic layer 104, an epoxy resin having a glass transition temperature of 74 ° C. as described above is applied at a coating amount of 0.4 kg / m 2 (as an undercoat for each layer when a plurality of fiber sheets 1 are laminated). It was attached. Next, after lightly pressing the fiber sheet 1 against the epoxy resin coated surface, a plastic roller having a width of 100 mm and a diameter of 10 mm was moved on the fiber sheet 1 while applying a pressing force of about 100 N. The fiber sheet was formed by laminating a total of 7 layers of the above-described fiber sheets with an adhesive. Specifically, five layers of “Carbon Fiber Sheet C830” (trade name) manufactured by Nippon Steel Materials Co., Ltd., and “Carbon Fiber Sheet C160” (trade name) of Nippon Steel Materials Co., Ltd.) Two layers were laminated.

プラスチックローラーによりシート1上から転圧することで、エポキシ樹脂は、繊維シート1の各繊維の隙間から染み出した状態となっており、なんら保持をしなくても鋼材100に貼りついた状態で剥離することはなかった。   By rolling from the sheet 1 with a plastic roller, the epoxy resin has exuded from the gaps between the fibers of the fiber sheet 1 and is peeled off while being stuck to the steel material 100 without any holding. I never did.

なお、本実施例の場合のように、繊維シート1を複数層積層する場合には各層当たり上塗りとしてエポキシ樹脂105を塗布量0.2kg/m2にて繊維シート1の表面に塗布してゴムベラにより表面を平坦に仕上げた。その後、室温で1週間養生した。繊維シート1の貼着面に、何らボイドを発生することなく、鋼材100に極めて良好に接着することができた。 In the case of laminating a plurality of fiber sheets 1 as in this embodiment, an epoxy resin 105 is applied to the surface of the fiber sheet 1 at a coating amount of 0.2 kg / m 2 as a top coat for each layer. To finish the surface flat. Thereafter, it was cured at room temperature for 1 week. It was possible to adhere to the steel material 100 very well without generating any voids on the sticking surface of the fiber sheet 1.

以上のようにして作製した繊維シート補強鋼材(本発明)100と、接着剤としてガラス転移点温度が48℃とされるエポキシ樹脂含浸接着剤を使用し、パテ剤としてポリウレタン樹脂パテ剤(比較例1)及び軟質型エポキシ樹脂パテ剤(比較例2)を使用した繊維シート補強鋼材100に対して、図9に示す試験装置を使用して、支点間距離Ls80mmとした3点曲げ試験を行った。鋼材100の断面は、幅W0=25mm、厚さT0=2.0mm、全長L0=100mmである。3つの供試体は、上述のように、繊維シートを鋼材表面に接着する接着剤105及びパテ剤104が異なる以外は、同じ構造、材料で作製した。   The fiber sheet reinforced steel material (invention) 100 produced as described above, an epoxy resin impregnated adhesive having a glass transition temperature of 48 ° C. as an adhesive, and a polyurethane resin putty agent (comparative example) as a putty agent The fiber sheet reinforced steel material 100 using 1) and the soft epoxy resin putty agent (Comparative Example 2) was subjected to a three-point bending test with a fulcrum distance Ls of 80 mm using the test apparatus shown in FIG. . The cross section of the steel material 100 has a width W0 = 25 mm, a thickness T0 = 2.0 mm, and a total length L0 = 100 mm. As described above, the three specimens were made with the same structure and materials except that the adhesive 105 and the putty agent 104 for bonding the fiber sheet to the steel surface were different.

本実験における、本発明、比較例1、2の各々の構成材料を纏めれば次の表3の通りである。   The constituent materials of the present invention and Comparative Examples 1 and 2 in this experiment are summarized in Table 3 below.

Figure 0005820435
Figure 0005820435

曲げ試験の結果を、図10及び図11に示す。図11に示す温度/荷重を変化させた曲げ試験グラフから以下のことが注目される。   The results of the bending test are shown in FIGS. The following is noted from the bending test graph with the temperature / load varied as shown in FIG.

つまり、比較例1の仕様では、30℃近辺において荷重低下が起こり、エポキシ樹脂含浸接着剤の軟化が発生した。一方、低温では固くなるエポキシ樹脂の性質を生かし、高い荷重を示した。この状況では、高温側で日本の気候条件と補修補強性能を満足させることができない。   In other words, in the specification of Comparative Example 1, the load decreased near 30 ° C., and the epoxy resin-impregnated adhesive softened. On the other hand, taking advantage of the properties of epoxy resin that hardens at low temperatures, it showed a high load. In this situation, Japan's climatic conditions and repair and reinforcement performance cannot be satisfied on the high temperature side.

比較例2の仕様では、低温時には軟質エポキシ樹脂パテ剤がその温度により固くなり、荷重が上がる前に、早期に剥離に至った。このことは補強できていない状況を示す。高温側は、軟質エポキシ樹脂パテ剤の早期の材料破壊で剥離に至った。   In the specification of Comparative Example 2, the soft epoxy resin putty agent hardened with the temperature at a low temperature, and reached early peeling before the load increased. This indicates a situation where reinforcement is not possible. On the high temperature side, peeling occurred due to early material destruction of the soft epoxy resin putty.

これに対して、本発明のポリウレア樹脂パテ剤は低温から高温において安定した性能を示し、日本の国土気象条件に合致した、補修補強材料及び工法仕様が確立されることが確認された。   On the other hand, it was confirmed that the polyurea resin putty agent of the present invention showed stable performance from low temperature to high temperature, and that repair and reinforcing materials and construction method specifications that meet Japanese national weather conditions were established.

実験例2
本実験例では、上記実験例1で説明したと同様の繊維シート1を使用して、接着工法に従って鋼構造物100としての鋼材を補強した。
Experimental example 2
In this experimental example, the same fiber sheet 1 as described in Experimental Example 1 was used, and the steel material as the steel structure 100 was reinforced in accordance with the bonding method.

つまり、本発明の繊維シート補強鋼材(本発明)100は、上記のようにして作製した繊維シート1を、上記実験例1と同様に、プライマー103としてウレタン変性エポキシ樹脂プライマーを、弾性層104のためのパテ剤として、上記組成とされるポリウレア樹脂パテ剤を、更に、接着剤105としてガラス転移点温度74℃の上記組成のエポキシ樹脂を使用して鋼材100に貼付した。   That is, in the fiber sheet reinforced steel material (present invention) 100 of the present invention, the fiber sheet 1 produced as described above was prepared by using a urethane-modified epoxy resin primer as the primer 103 and the elastic layer 104 as in the above Experimental Example 1. As a putty agent, a polyurea resin putty agent having the above composition was attached to the steel material 100 using an epoxy resin having a glass transition temperature of 74 ° C. as the adhesive 105.

比較例3は、上記のようにして作製した繊維シート1を、プライマー103としてエポキシ樹脂プライマーを使用し、弾性層104のためのパテ剤は用いることなく、また、接着剤105としてはガラス転移点温度74℃の上記組成とされるエポキシ樹脂を使用して鋼材100に貼付した。   In Comparative Example 3, the fiber sheet 1 produced as described above uses an epoxy resin primer as the primer 103, does not use a putty agent for the elastic layer 104, and the adhesive 105 has a glass transition point. The epoxy resin having the above composition at a temperature of 74 ° C. was used to attach the steel material 100.

比較例4は、上記のようにして作製した繊維シート1を、上記実験例1で使用したと同様に、プライマー103としてエポキシ変性ウレタン樹脂プライマーを、また、弾性層104のためのパテ剤としてポリウレア樹脂パテ剤を使用したが、接着剤としてガラス転移点温度48℃のエポキシ樹脂(新日鉄マテリアルズ(株)製「FR−E3P」(商品名))を使用した。   In Comparative Example 4, the fiber sheet 1 produced as described above was used in the same manner as in Experimental Example 1, and an epoxy-modified urethane resin primer was used as the primer 103, and polyurea was used as a putty agent for the elastic layer 104. A resin putty agent was used, but an epoxy resin (“FR-E3P” (trade name) manufactured by Nippon Steel Materials Co., Ltd.) having a glass transition temperature of 48 ° C. was used as an adhesive.

以上のようにして作製した3つの供試体を使用して、実験例1と同様の曲げ試験を行った。試験の結果を、表4及び図12に示す。   Using the three specimens produced as described above, the same bending test as in Experimental Example 1 was performed. The test results are shown in Table 4 and FIG.

Figure 0005820435
Figure 0005820435

図12に示す温度/荷重を変化させた曲げ試験グラフから以下のことが理解される。   The following can be understood from the bending test graph with the temperature / load varied as shown in FIG.

比較例3は、接着剤として本発明と同じくガラス転移点温度74℃といった高Tgのエポキシ樹脂接着剤を使用しているが、ポリウレア樹脂パテ剤を用いることなく繊維シート1を鋼材100に貼付している。従って、本発明と比較すると、比較例3では、ポリウレア樹脂パテ剤(弾性層104)の効果を得ることができず、温度上昇と共に、十分な鋼材の補強が達成されない。なお、比較例3においても、エポキシ樹脂接着剤は比較例2と同様に最終的に剥離した。   In Comparative Example 3, an epoxy resin adhesive having a high Tg such as a glass transition temperature of 74 ° C. is used as an adhesive as in the present invention, but the fiber sheet 1 is stuck to the steel material 100 without using a polyurea resin putty agent. ing. Therefore, compared with the present invention, in Comparative Example 3, the effect of the polyurea resin putty agent (elastic layer 104) cannot be obtained, and sufficient reinforcement of the steel material is not achieved with an increase in temperature. In Comparative Example 3, the epoxy resin adhesive was finally peeled off as in Comparative Example 2.

比較例4は、本発明と同じくポリウレア樹脂パテ剤を用いているが、接着剤としてガラス転移点温度48℃といった、比較して低Tgのエポキシ樹脂接着剤を使用した。この場合でも同様に、ポリウレア樹脂パテ剤(弾性層104)の効果により繊維シート層106の剥離は、本発明と同様に、発生していないが、ガラス転移点温度48℃前後から、緩やかに曲げ荷重は低下して、本発明に比較すれば、高温時において補強自体が十分に達成されていない。つまり、比較例4では、鋼材と共に、炭素繊維を使用した繊維シート層106が屈曲する状況を示している。従って、高温時にも補強効果を得るためには、接着剤のガラス転移点を調整することが必要であり、その気候条件に必要な温度対応のため、接着剤のガラス転移点は、60℃以上、好ましくは70℃以上とするのが必要である。   In Comparative Example 4, a polyurea resin putty was used as in the present invention, but a comparatively low Tg epoxy resin adhesive having a glass transition temperature of 48 ° C. was used as an adhesive. In this case as well, the fiber sheet layer 106 is not peeled off due to the effect of the polyurea resin putty agent (elastic layer 104) as in the present invention, but gently bent from a glass transition temperature of around 48 ° C. The load decreases, and the reinforcement itself is not sufficiently achieved at a high temperature as compared with the present invention. In other words, Comparative Example 4 shows a situation where the fiber sheet layer 106 using carbon fiber is bent together with the steel material. Therefore, in order to obtain a reinforcing effect even at high temperatures, it is necessary to adjust the glass transition point of the adhesive, and the glass transition point of the adhesive is 60 ° C. or higher in order to cope with the temperature necessary for the climatic conditions. It is necessary that the temperature be 70 ° C. or higher.

このように、本発明に従った鋼構造物の補強方法及び鋼構造物補強用弾性層形成材によれば、鋼構造物100を有効に補強できることが明らかとなった。 Thus, according to the reinforcing side Ho及 beauty steel structures reinforcing the elastic layer forming material of steel structures in accordance with the present invention, it was revealed that effectively reinforce the steel structure 100.

1 繊維シート
2 繊維強化プラスチック線材
3 線材固定材(横糸、メッシュ支持体シート、可撓性帯材)
100 鋼構造物
103 プライマー
104 弾性層
105 接着剤
106 繊維シート層
200 補強構造体
DESCRIPTION OF SYMBOLS 1 Fiber sheet 2 Fiber reinforced plastic wire 3 Wire material fixing material (weft, mesh support sheet, flexible strip)
DESCRIPTION OF SYMBOLS 100 Steel structure 103 Primer 104 Elastic layer 105 Adhesive 106 Fiber sheet layer 200 Reinforcing structure

Claims (8)

鋼構造物の表面上に強化繊維を含む繊維シートを接着して一体化する鋼構造物の補強方法において、
(a)前記鋼構造物の表面にポリウレア樹脂パテ剤を塗布して硬化させ弾性層を形成する工程と、
(b)前記弾性層が形成された前記鋼構造物の表面に前記繊維シートを、接着剤により接着する工程と、を有し、
前記ポリウレア樹脂パテ剤は、硬化時における引張伸びが400%以上、引張強度が8N/mm 2 以上、引張弾性率が60N/mm 2 以上500N/mm 2 以下であり、
前記接着剤は、ガラス転移点温度が60℃以上である、
ことを特徴とする鋼構造物の補強方法。
In a method for reinforcing a steel structure in which a fiber sheet containing reinforcing fibers is bonded and integrated on the surface of the steel structure,
(A) applying a polyurea resin putty agent to the surface of the steel structure and curing it to form an elastic layer;
(B) the said fiber sheet to the surface of the steel structures elastic layer is formed, possess a step of bonding, a by an adhesive,
The polyurea resin putty agent has a tensile elongation at curing of 400% or more, a tensile strength of 8 N / mm 2 or more, and a tensile modulus of 60 N / mm 2 or more and 500 N / mm 2 or less,
The adhesive has a glass transition temperature of 60 ° C. or higher.
A method for reinforcing a steel structure, characterized in that:
記接着剤は、常温硬化型エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、MMA樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、又は、光硬化型樹脂であることを特徴とする請求項に記載の鋼構造物の補強方法。 Before Kise' Chakuzai is claimed in claim 1, wherein cold-setting epoxy resin, epoxy acrylate resin, an acrylic resin, MMA resin, vinyl ester resin, unsaturated polyester resin, or, that it is a photocurable resin Steel structure reinforcement method. 前記鋼構造物の表面に前記弾性層を形成する前に、前記鋼構造物の表面を下地処理する工程及び/又はプライマーを塗布する工程、を有することを特徴とする請求項1又は2に記載の鋼構造物の補強方法。 Before forming the elastic layer on the surface of the steel structure, according to claim 1 or 2, characterized in that a step, of applying the process and / or primers surface treatment of the surface of the steel structures Steel structure reinforcement method. 前記繊維シートは、一方向に引き揃えた連続した強化繊維を互いに線材固定材にて固定した繊維シートであることを特徴とする請求項1〜のいずれかの項に記載の鋼構造物の補強方法。 The steel sheet according to any one of claims 1 to 3 , wherein the fiber sheet is a fiber sheet in which continuous reinforcing fibers aligned in one direction are fixed to each other with a wire rod fixing material. Reinforcement method. 前記繊維シートは、強化繊維にマトリクス樹脂が含浸され、硬化された連続した繊維強化プラスチック線材を複数本、長手方向にスダレ状に引き揃え、線材を互いに線材固定材にて固定した繊維シートであることを特徴とする請求項1〜のいずれかの項に記載の鋼構造物の補強方法。 The fiber sheet is a fiber sheet in which reinforced fibers are impregnated with a matrix resin, and a plurality of cured continuous fiber reinforced plastic wires are aligned in a slender shape in the longitudinal direction, and the wires are fixed to each other by a wire fixing material. The method for reinforcing a steel structure according to any one of claims 1 to 3 , wherein: 前記繊維シートは、一方向に引き揃えた連続した強化繊維シートに樹脂が含浸され、前記樹脂が硬化された繊維シートであることを特徴とする請求項1〜のいずれかの項に記載の鋼構造物の補強方法。 The fiber sheet, the resin is impregnated into a continuous reinforcing fiber sheet was aligned in one direction, the resin is as claimed in any one of claims 1-3, characterized in that the fiber sheet is cured A method of reinforcing steel structures. 前記繊維シートは、複数層にて前記鋼構造物の表面に積層して接着され、前記鋼構造物と一体化することを特徴とする請求項1〜のいずれかの項に記載の鋼構造物の補強方法。 The steel structure according to any one of claims 1 to 6 , wherein the fiber sheet is laminated and bonded to the surface of the steel structure in a plurality of layers, and is integrated with the steel structure. How to reinforce things. 鋼構造物の表面上に強化繊維を含む繊維シートを接着して一体化する鋼構造物の補強方法であって、
(a)前記鋼構造物の表面にポリウレア樹脂パテ剤を塗布して硬化させ弾性層を形成する工程と、
(b)前記弾性層が形成された前記鋼構造物の表面に前記繊維シートを、接着剤により接着する工程と、
を有する鋼構造物の補強方法において前記弾性層を形成するポリウレア樹脂パテ剤から成る鋼構造物補強用弾性層形成材であって、
前記ポリウレア樹脂パテ剤は、硬化時における引張伸びが400%以上、引張強度が8N/mm2以上、引張弾性率が60N/mm2以上500N/mm2以下であることを特徴とする鋼構造物補強用弾性層形成材。
A method of reinforcing a steel structure in which a fiber sheet containing reinforcing fibers is bonded and integrated on the surface of the steel structure,
(A) applying a polyurea resin putty agent to the surface of the steel structure and curing it to form an elastic layer;
(B) bonding the fiber sheet to the surface of the steel structure on which the elastic layer is formed, using an adhesive;
A steel structures reinforcing the elastic layer forming material made of polyurea resin putty agent to form a pre-Symbol elastic layer Te reinforcing method smell steel structures having,
The polyurea resin putty agent has a tensile elongation at curing of 400% or more, a tensile strength of 8 N / mm 2 or more, and a tensile modulus of 60 N / mm 2 or more and 500 N / mm 2 or less. Elastic layer forming material for reinforcement.
JP2013151590A 2010-08-31 2013-07-22 Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure Active JP5820435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151590A JP5820435B2 (en) 2010-08-31 2013-07-22 Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010195122 2010-08-31
JP2010195122 2010-08-31
JP2013151590A JP5820435B2 (en) 2010-08-31 2013-07-22 Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011544713A Division JP5380551B2 (en) 2010-08-31 2011-08-29 Steel structure reinforcement structure

Publications (2)

Publication Number Publication Date
JP2013234569A JP2013234569A (en) 2013-11-21
JP5820435B2 true JP5820435B2 (en) 2015-11-24

Family

ID=45773039

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011544713A Active JP5380551B2 (en) 2010-08-31 2011-08-29 Steel structure reinforcement structure
JP2013151590A Active JP5820435B2 (en) 2010-08-31 2013-07-22 Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011544713A Active JP5380551B2 (en) 2010-08-31 2011-08-29 Steel structure reinforcement structure

Country Status (6)

Country Link
US (2) US9079379B2 (en)
EP (1) EP2612970B1 (en)
JP (2) JP5380551B2 (en)
CN (1) CN103154373B (en)
HK (1) HK1185638A1 (en)
WO (1) WO2012029966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834855B2 (en) 2018-02-28 2023-12-05 Nippon Steel Chemical & Material Co., Ltd. Laminate material for reinforcement, reinforcing method, and reinforcing structural body for structure

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380551B2 (en) 2010-08-31 2014-01-08 新日鉄住金マテリアルズ株式会社 Steel structure reinforcement structure
US10655328B2 (en) * 2012-05-24 2020-05-19 The University Of Kentucky Research Foundation Structural reinforcement, reinforced structural member and related method
CN104512484A (en) * 2013-10-07 2015-04-15 江苏锋华车辆科技有限公司 Electric automobile
JP6436428B2 (en) * 2013-12-26 2018-12-12 国立大学法人長岡技術科学大学 Steel bridge repair and reinforcement method and reinforcement structure
JP6327634B2 (en) * 2013-12-26 2018-05-23 国立大学法人長岡技術科学大学 Repair and reinforcement method for steel structures
WO2015112757A1 (en) 2014-01-23 2015-07-30 Neptune Research, Inc. Unidirectional fiber composite system for structural repairs and reinforcement
RU2017123760A (en) * 2015-01-22 2019-02-22 Нептун Рисёрч, Ллс COMPOSITE REINFORCING SYSTEMS AND METHODS FOR PRODUCING THEM
DE102015103902A1 (en) * 2015-03-17 2016-09-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Underbody of a motor vehicle
CN105330879A (en) * 2015-10-23 2016-02-17 福建梭罗复合材料研究有限公司 Light-cured glass fiber composite material and preparation method thereof
CN105714695A (en) * 2016-02-18 2016-06-29 沈阳建筑大学 Anchoring structure for reinforcing T beam FRP
JP6980365B2 (en) * 2016-07-12 2021-12-15 日鉄ケミカル&マテリアル株式会社 How to reinforce a steel chimney
JP6892678B2 (en) * 2017-01-30 2021-06-23 竹本 直文 Fallen object receiving device and panel for falling object receiving device
US11209113B2 (en) * 2017-03-14 2021-12-28 Csc Operating Company, Llc Fiber composite system and method for pipe reinforcement
US10612713B2 (en) * 2017-03-14 2020-04-07 Cowboy Acquisition, Llc Fiber composite system and method for pipe reinforcement
CN109853784B (en) * 2019-01-18 2024-05-24 盈创新材料(苏州)有限公司 Simple wall and forming method
CN111663459A (en) * 2020-05-21 2020-09-15 大连理工大学 Bridge reinforcing device based on high-molecular metal composite material plate and manufacturing method thereof
CN114718339A (en) * 2022-04-26 2022-07-08 中交上海港湾工程设计研究院有限公司 Structure for reinforcing beam, plate and column by adopting basalt fiber grid system and construction method
CN115260449B (en) * 2022-08-19 2023-08-01 合肥工业大学 Polyurethane anchoring agent with low slurry viscosity and high anchoring body strength and preparation method thereof
US12104378B1 (en) * 2024-01-10 2024-10-01 King Faisal University Multi-layer wedge anchorage for fiber-reinforced polymer (FRP) plates and tendons

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753387B2 (en) * 1987-04-07 1995-06-07 大塚化学株式会社 Integrated molded braking parts
JP3242741B2 (en) * 1993-03-22 2001-12-25 三菱化学株式会社 How to reinforce steel structures
JPH07189426A (en) * 1993-12-24 1995-07-28 Tonen Corp Reinforcing method of high temperature concrete structure and resin used therefor
JPH08128211A (en) * 1994-10-28 1996-05-21 Tonen Corp Reinforcement of concrete floor plate
JPH11140381A (en) * 1997-11-10 1999-05-25 Nippon Light Metal Co Ltd Method for preventing material from being damaged by material-transporting machinery and material
US6737134B2 (en) * 1998-05-06 2004-05-18 Ameron International Corporation Abrasion resistant pipe
DE19954337C2 (en) * 1999-11-11 2003-08-21 Quinting Gmbh Process for the production of textile reinforced in-situ concrete
TWI225116B (en) * 2000-06-29 2004-12-11 Nippon Oil Corp Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure
JP3553865B2 (en) * 2000-08-31 2004-08-11 新日本石油株式会社 Method of reinforcing steel structure and buffer layer for reinforcing steel structure
KR20020055567A (en) * 2000-12-28 2002-07-09 쇼본도 겐세츠 가부시키가이샤 Sheet for repair and reinforcement of concrete structure and method thereof
JP2004060197A (en) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk Concrete peeling-off preventive method and concrete structure with reinforcing layer
JP2004197325A (en) * 2002-12-16 2004-07-15 Nippon Steel Composite Co Ltd Fiber reinforced sheet
US7300893B2 (en) * 2004-06-10 2007-11-27 The United States Of America As Represented By The Secretary Of The Navy Armor including a strain rate hardening elastomer
JP2006008730A (en) * 2004-06-22 2006-01-12 Kyoeisha Chem Co Ltd Enhancer for adhesiveness between oil film coated steel material and foamed cured epoxy resin filler
ITRM20050066A1 (en) * 2005-02-17 2006-08-18 Tec Inn S R L METHOD FOR STRENGTHENING BUILDING STRUCTURES AND COATING OBTAINED FROM THIS METHOD.
US8071206B1 (en) * 2005-08-12 2011-12-06 Touchstone Research Laboratory, Ltd. Blast energy mitigating composite
US20070066786A1 (en) * 2005-09-22 2007-03-22 The Hanson Group, Llc Methods of preparing and using polyurea elastomers
JP5214864B2 (en) * 2006-09-05 2013-06-19 新日鉄住金マテリアルズ株式会社 Structure reinforcement method
US8206791B2 (en) * 2007-05-15 2012-06-26 Texas Research International, Inc. Protective coatings for high strength steels
CN101100905B (en) * 2007-07-31 2010-06-09 上海维固工程实业有限公司 Reinforcement method for concrete structure
CN201521724U (en) * 2009-07-10 2010-07-07 王旭东 Rigid polyurethane foam thermal insulation polyurea anti-corrosion tube
JP5380551B2 (en) 2010-08-31 2014-01-08 新日鉄住金マテリアルズ株式会社 Steel structure reinforcement structure
KR20130137196A (en) * 2010-12-06 2013-12-16 유니버시티 오브 테네시 리서치 파운데이션 High strength and high elasticity composite materials and methods of reinforcing substrates with the same
JP5972592B2 (en) * 2011-03-16 2016-08-17 清水建設株式会社 Reinforced structure
JP2012211244A (en) * 2011-03-31 2012-11-01 Aica Kogyo Co Ltd Epoxy resin adhesive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834855B2 (en) 2018-02-28 2023-12-05 Nippon Steel Chemical & Material Co., Ltd. Laminate material for reinforcement, reinforcing method, and reinforcing structural body for structure

Also Published As

Publication number Publication date
JP2013234569A (en) 2013-11-21
JPWO2012029966A1 (en) 2013-10-31
HK1185638A1 (en) 2014-02-21
US20130157060A1 (en) 2013-06-20
US20150068679A1 (en) 2015-03-12
EP2612970A1 (en) 2013-07-10
WO2012029966A1 (en) 2012-03-08
US9682535B2 (en) 2017-06-20
US9079379B2 (en) 2015-07-14
JP5380551B2 (en) 2014-01-08
EP2612970B1 (en) 2019-10-30
CN103154373A (en) 2013-06-12
EP2612970A4 (en) 2017-06-07
CN103154373B (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5820435B2 (en) Method for reinforcing steel structure and elastic layer forming material for reinforcing steel structure
JP5214864B2 (en) Structure reinforcement method
JP3286270B2 (en) Reinforcement mesh fabric and method of material reinforcement
JP5478651B2 (en) Reinforcing method and reinforcing structure for concrete structure, and elastic layer forming material for reinforcing concrete structure
WO2002001020A1 (en) Structure reinforcing method, structure-reinforcing reinforcing fiber yarn-containing material, reinforcing structure material and reinforced structure
JP5645440B2 (en) Structure reinforcement method
JP6980563B2 (en) Laminated material for reinforcement of structure, reinforcement method and reinforcement structure
JP5409259B2 (en) Structure reinforcement method
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP6012951B2 (en) End coating method for reinforcing fiber sheets of structures
JP6327634B2 (en) Repair and reinforcement method for steel structures
JP6980365B2 (en) How to reinforce a steel chimney
JP7153995B1 (en) Coating agent application method, fiber sheet, and fiber sheet construction method
JP6436428B2 (en) Steel bridge repair and reinforcement method and reinforcement structure
JP3553865B2 (en) Method of reinforcing steel structure and buffer layer for reinforcing steel structure
JP2016216942A (en) Reinforcement sheet and reinforcement structure for concrete structure
JP7332771B1 (en) Reinforcement method and structure of concrete structure
JP7201464B2 (en) Steel structure repair method
JPH1144099A (en) Repaired and reinforced concrete structure and method for repairing and reinforcing the same
JP3220540B2 (en) Concrete repair method using unidirectional reinforced fiber sheet
JP2024100294A (en) Reinforcement method of concrete structure, and reinforcement structure
JP2004107944A (en) Reinforcement method for steel structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250