JP5819620B2 - Polyester microfiber - Google Patents
Polyester microfiber Download PDFInfo
- Publication number
- JP5819620B2 JP5819620B2 JP2011059126A JP2011059126A JP5819620B2 JP 5819620 B2 JP5819620 B2 JP 5819620B2 JP 2011059126 A JP2011059126 A JP 2011059126A JP 2011059126 A JP2011059126 A JP 2011059126A JP 5819620 B2 JP5819620 B2 JP 5819620B2
- Authority
- JP
- Japan
- Prior art keywords
- sea
- island
- fiber
- component
- polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001410 Microfiber Polymers 0.000 title claims description 46
- 229920000728 polyester Polymers 0.000 title claims description 31
- 239000003658 microfiber Substances 0.000 title claims description 11
- 239000000835 fiber Substances 0.000 claims description 58
- 239000002131 composite material Substances 0.000 claims description 28
- 229920000642 polymer Polymers 0.000 claims description 26
- -1 polyethylene naphthalate Polymers 0.000 claims description 17
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 13
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 13
- 239000000155 melt Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000004753 textile Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 10
- 238000009987 spinning Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000002537 cosmetic Substances 0.000 description 5
- 239000012770 industrial material Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002473 artificial blood Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000005447 environmental material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- ZRPKEUVFESZUKX-UHFFFAOYSA-N 2-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=CC=C1C(O)=O ZRPKEUVFESZUKX-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- QUWRNYCGDZRXMR-UHFFFAOYSA-N C1(=CC=CC2=CC=CC=C12)C(=O)O.C=C.C=C.C=C Chemical compound C1(=CC=CC2=CC=CC=C12)C(=O)O.C=C.C=C.C=C QUWRNYCGDZRXMR-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Woven Fabrics (AREA)
- Artificial Filaments (AREA)
Description
本発明は、高強度で、寸法安定性に優れたポリエステル極細繊維に関するものである。 The present invention relates to a polyester microfiber having high strength and excellent dimensional stability.
従来、衣料用布帛や人工皮革、フィルターなどの産業用資材には柔軟性や審美性、緻密性を発現させる為に極細繊維が用いられてきた。極細繊維の素材としては、汎用的にはナイロン6やナイロン66などのポリアミドや、ポリエチレンテレフタレートなどのポリエステルが用いられている。しかし、ポリアミドからなる極細繊維は、この素材固有の特性から黄変などの耐候性が悪く用途が限定されるという問題があった。他方ポリエステルからなる極細繊維は、優れた耐候性を有するものの柔軟性やしなやかさに欠けるという問題があった。 Conventionally, ultrafine fibers have been used in industrial materials such as clothing fabrics, artificial leather, and filters in order to exhibit flexibility, aesthetics, and denseness. As materials for ultrafine fibers, polyamides such as nylon 6 and nylon 66 and polyesters such as polyethylene terephthalate are generally used. However, the ultrafine fiber made of polyamide has a problem that the weather resistance such as yellowing is poor due to the inherent property of this material, and its application is limited. On the other hand, the ultrafine fiber made of polyester has a problem that it has excellent weather resistance but lacks flexibility and flexibility.
そこで、柔軟性をますためには繊度をさらに細くする必要があるが、ポリエステル極細繊維の製造方法として、特許文献1(W02005/095686号公報)では、1フィラメント当たり100島以上の島数を有する海島複合繊維から、海成分を除去することで、柔軟でしなやかな超極細ポリエステル繊維とすることが提案されている。確かに本方法により、実用強度があり、柔軟性を有するポリエステル極細繊維を得ることができるが、産業資材用途に用いるには強度、熱寸法安定性共にいまだ満足できるものではなく、更なる向上が求められていた。 Therefore, in order to increase flexibility, it is necessary to further reduce the fineness. However, as a method for producing a polyester ultrafine fiber, Patent Document 1 (W02005 / 095686) has 100 islands or more per filament. It has been proposed to remove a sea component from a sea-island composite fiber to obtain a flexible and supple ultra-fine polyester fiber. Certainly, this method can provide polyester ultrafine fibers with practical strength and flexibility, but the strength and thermal dimensional stability are still unsatisfactory for use in industrial materials. It was sought after.
本発明の目的は、産業資材用途に適する柔軟で高強度、熱寸法安定性に優れたポリエステル極細繊維を提供することにある。 An object of the present invention is to provide a polyester ultrafine fiber that is flexible, suitable for industrial materials, and has high strength and excellent thermal dimensional stability.
本発明者等は、上記課題を解決するため検討した結果本発明に到達した。
すなわち本発明によれば、
ポリエチレンナフタレートからなり、その単糸繊維径が10〜1000nmで、単糸繊維径のばらつき(CV%)が0〜12%、極細繊維束として引張強度が4.0cN/dtex以上、破断伸度が10〜80%、150℃での乾熱収縮率が5%以下であることを特徴とするポリエステル極細繊維、
上記ポリエステル極細繊維を含む繊維製品、
及び、
島成分ポリマーとしてポリエチレンナフタレートを使用し、海成分ポリマーとして島成
分ポリマーよりも溶解性が高く、且つ島成分ポリマーに対する溶融粘度比(海/島)が0
.8〜2.0の範囲内にある易溶解性ポリマーを使用して、1000〜3000m/分の
引取り速度で海島型複合繊維を溶融紡糸した後、100〜150℃の予熱ローラー上で予
熱して延伸倍率1.1〜6.0倍で延伸し、引続き糸温度として120〜250℃で熱セ
ットした海島型複合繊維の海成分を除去することを特徴とする上記ポリエステル極細繊維の製造方法、
が提供される。
The inventors of the present invention have arrived at the present invention as a result of investigations to solve the above problems.
That is, according to the present invention,
It consists of polyethylene naphthalate, its single yarn fiber diameter is 10 to 1000 nm, single fiber diameter variation (CV%) is 0 to 12%, tensile strength is 4.0 cN / dtex or more as an ultrafine fiber bundle, elongation at break 10 to 80%, a polyester ultrafine fiber characterized in that the dry heat shrinkage at 150 ° C. is 5% or less,
A textile product comprising the polyester microfiber,
as well as,
Polyethylene naphthalate is used as the island component polymer, the sea component polymer is more soluble than the island component polymer, and the melt viscosity ratio (sea / island) to the island component polymer is 0.
. After melt spinning the sea-island type composite fiber at a take-up speed of 1000 to 3000 m / min using an easily soluble polymer in the range of 8 to 2.0, it is preheated on a preheating roller at 100 to 150 ° C. The polyester ultrafine fiber, wherein the sea component of the sea-island composite fiber stretched at a draw ratio of 1.1 to 6.0 times and subsequently heat-set at 120 to 250 ° C. as the yarn temperature is removed.
Is provided.
本発明のポリエステル極細繊維は、単糸径が10〜1000nmであることにより、肌触りや柔らかさなどの風合い、および摩擦性、吸着性、吸水性、防透性、防風性などの機能性に優れた極細繊維構造体となる。また、引張強度が4.0cN/dtex以上であることにより、特に産業用途など機械的強度が必要とされる分野で使用可能である。さらに、150℃での乾熱収縮率が5%以下であることにより、寸法安定性が向上する。また、極細繊維の主成分がポリエチレンナフタレートである極細繊維とすることで、高モジュラス、高強度となり、耐熱性、耐薬品性、耐振性が向上する。 The polyester microfiber of the present invention has a single yarn diameter of 10 to 1000 nm, and is excellent in texture such as touch and softness, and functionality such as friction, adsorptivity, water absorption, permeability, and wind resistance. It becomes a very fine fiber structure. In addition, since the tensile strength is 4.0 cN / dtex or more, it can be used in fields requiring mechanical strength such as industrial applications. Furthermore, when the dry heat shrinkage at 150 ° C. is 5% or less, the dimensional stability is improved. Further, by using ultrafine fibers whose main component is ultrafine fibers, polyethylene naphthalate, high modulus and high strength are obtained, and heat resistance, chemical resistance, and vibration resistance are improved.
以下、本発明のポリエステル極細繊維について詳述する。
本発明のポリエステル極細繊維は海島型複合繊維の海成分を溶解除去して得られる島成分ポリエステルからなる極細繊維(束)である。
Hereinafter, the polyester microfiber of the present invention will be described in detail.
The polyester ultrafine fiber of the present invention is an ultrafine fiber (bundle) made of island component polyester obtained by dissolving and removing the sea component of the sea-island composite fiber.
本発明のポリエステル極細繊維の単糸繊維径は10〜1000nmである。単糸繊維径が10nm未満の場合には、繊維構造自身が不安定で、物性及び繊維形態が不安定になるので好ましくなく、一方1000nmを越える場合には超極細繊維特有の柔らかさや風合いが得られず、好ましくない。海島型複合繊維断面内の各島成分径により単糸繊維径は決まるが、その径が均一であるほどポリエステル極細繊維からなるハイマルチフィラメント糸の品位及び耐久性が向上する。 The single yarn fiber diameter of the polyester ultrafine fiber of the present invention is 10 to 1000 nm. If the single fiber diameter is less than 10 nm, the fiber structure itself is unstable and the physical properties and fiber form become unstable, which is not preferable. On the other hand, if it exceeds 1000 nm, the softness and texture peculiar to ultrafine fibers are obtained. It is not preferable. The single yarn fiber diameter is determined by the diameter of each island component in the cross section of the sea-island composite fiber, but the higher the uniformity of the diameter, the higher the quality and durability of the high multifilament yarn made of polyester ultrafine fibers.
また、本発明のポリエステル極細繊維束を構成する単糸繊維繊度のばらつきを表すCV%値は、0〜12%であることが必要である。このCV値が低いことは、繊度のばらつきが少ないことを意味する。ここで海島成分の溶融粘度比を0.8〜2.5とすることによりCV%を上記の範囲とすることが可能となったものである。 Further, the CV% value representing the variation in the fineness of the single yarn fibers constituting the polyester microfiber bundle of the present invention needs to be 0 to 12 % . It CV value of this is low, it means that the variation of the fineness is small. Here, by setting the melt viscosity ratio of the sea-island component to 0.8 to 2.5, CV% can be set in the above range.
本発明のポリエステル極細繊維は、ナノレベルの繊維径でばらつきも少なく、用途に合わせた商品設計が可能となる。例えば、フィルター用途では、単糸繊維径において吸着できる物質を選択しておけば、用途に合わせて繊維径の設計をすることが可能になり、非常に効率的に商品設計を行うことが可能になる。 The polyester ultrafine fiber of the present invention has a nano-level fiber diameter with little variation, and allows a product design that matches the application. For example, in the filter application, if a substance that can be adsorbed in the single yarn fiber diameter is selected, the fiber diameter can be designed according to the application, and the product can be designed very efficiently. Become.
本発明のポリエステル極細繊維の繊維束としての引張り強度は4.0cN/dtex以上であり、その切断伸度が10〜80%であることが必要である。前記極細繊維の物性、特に引張り強度が4.0cN/dtex以上であることが重要である。引張り強さが4.0cN/dtex未満の場合、用途が限定されてしまう。超極細で柔軟性がある上に高強度であることにより様々な用途に応用展開可能となる。 The tensile strength as a fiber bundle of the polyester microfiber of the present invention is 4.0 cN / dtex or more, and the cut elongation is required to be 10 to 80%. It is important that the physical properties of the ultrafine fiber, particularly the tensile strength, is 4.0 cN / dtex or more. If the tensile strength is less than 4.0 cN / dtex, the application is limited. It is ultra-fine and flexible, and it can be applied to various applications due to its high strength.
本発明のポリエステル極細繊維の150℃での乾熱収縮率は5%以下であることが必要である。ポリエステル極細繊維の150℃での乾熱収縮率が5%を超える場合熱寸法安定性が悪く用途が限定されてしまう。 Dry heat shrinkage rate at 0.99 ° C. polyester ultrafine fiber of the present invention should be 5% or less. When the dry heat shrinkage rate at 150 ° C. of the polyester microfiber exceeds 5%, the thermal dimensional stability is poor and the use is limited.
本発明のポリエステル極細繊維の製造方法について詳述する。
海島型複合繊維の海成分ポリマーとしては島成分ポリマーよりも溶解性が高い組合せである限り、適宜選定できるが、特に溶解速度比(海/島)が200以上であることが好ましい。この溶解速度比が200未満の場合には、繊維断面中央部の海成分を溶解させている間に繊維断面表層部の島成分の一部も溶解されるため、海成分を完全に溶解除去するためには、島成分の何割かも減量されてしまうことになり、島成分の太さ斑や溶剤浸食による強度劣化が発生して、毛羽及びピリングなどを生じ、製品の品位を低下させることがある。
The manufacturing method of the polyester extra fine fiber of this invention is explained in full detail.
The sea component polymer of the sea-island type composite fiber can be appropriately selected as long as it is a combination having higher solubility than the island component polymer, but the dissolution rate ratio (sea / island) is particularly preferably 200 or more. When this dissolution rate ratio is less than 200, part of the island component of the fiber cross-section surface layer is dissolved while the sea component of the fiber cross-section center is dissolved, so the sea component is completely dissolved and removed. In order to do so, the island component will be reduced by a percentage, resulting in deterioration of the strength due to unevenness of the thickness of the island component and solvent erosion, resulting in fluff and pilling, etc. is there.
次に島成分数は、多いほど海成分を溶解除去して極細繊維を製造する場合の生産性が高
くなり、しかも得られる極細繊維も顕著に細くなって、超微細繊維特有の柔らかさ、滑ら
かさ、光沢感などを発現することができるので、島成分数は100以上であることが重要
であり好ましくは500以上である。ここで島成分数が100未満の場合には、海成分を
溶解除去しても極細単繊維からなるハイマルチフィラメント糸を得ることができず、本発
明の目的を達成することができない。なお、島成分数があまりに多くなりすぎると、紡糸
口金の製造コストが高くなるだけでなく、紡糸口金の加工精度自体も低下しやすくなるの
で、島成分数を1000以下とすることが好ましい。
Next, the greater the number of island components, the higher the productivity when producing ultrafine fibers by dissolving and removing sea components, and the resulting ultrafine fibers are also significantly thinner, with the softness and smoothness unique to ultrafine fibers. In addition, since glossiness and the like can be expressed, it is important that the number of island components is 100 or more, and preferably 500 or more. Here, when the number of island components is less than 100, high multifilament yarns composed of ultrafine fibers cannot be obtained even if sea components are dissolved and removed, and the object of the present invention cannot be achieved. If the number of island components is too large, not only the manufacturing cost of the spinneret increases, but also the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of island components is preferably 1000 or less.
その際の海成分用易溶解性ポリマーとしては、ポリ乳酸、超高分子量ポリアルキレンオ
キサイド縮合系ポリマー、ポリエチレングリコール系化合物共重合ポリエステル、及び、
ポリエチレングリコール系化合物と5一ナトリウムスルホイソフタル酸との共重合ポリエ
ステルから選択される少なくとも1種のアルカリ水溶液易溶解性ポリマーを含むことが好
ましい。
As the easily soluble polymer for sea components at that time, polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymer polyester, and
It is preferable to contain at least one alkaline aqueous solution-soluble polymer selected from copolymerized polyesters of polyethylene glycol compounds and 5-monosodium sulfoisophthalic acid.
本発明の海島型複合繊維において、前記ポリエチレングリコール系化合物と、5−ナト
リウムスルホイソフタル酸との共重合ポリエステルが、6〜12モル%の5一ナトリウム
スルホン酸および3〜10重量%の分子量4000〜12000のポリエチレングリコー
ルが共重合されているポリエチレンテレフタレート共重合体から選ばれることが好ましい。
In the sea-island composite fiber of the present invention, the polyester copolymer of the polyethylene glycol compound and 5-sodium sulfoisophthalic acid is composed of 6 to 12 mol% of 5 monosodium sulfonic acid and 3 to 10 wt% of a molecular weight of 4000 to 400. It is preferably selected from polyethylene terephthalate copolymer in which 12000 polyethylene glycol is copolymerized.
一方、島成分ポリマーはポリエチレンナフタレートが好ましい。ポリエチレンナフタレートとしては、例えばナフタレン−2,6−ジカルボン酸またはそのエステル形成性誘導体を触媒の存在下適当な反応条件のもとにエチレングリコールと重縮合させることによって合成されるポリエチレン−2,6−ナフタレートが挙げられる。さらには、全繰り返し単位中の少なくとも90モル%がエチレン−2,6−ナフタレート単位であるポリエチレンナフタレート(以下PENという)から形成されることが好ましく、少なくとも95モル%がエチレン−2,6−ナフタレート単位であることが最も好ましい。また、本発明の目的を阻害しない範囲内、例えば全酸成分を基準として10モル%以下、さらに好ましくは5モル%以下の範囲内で第三成分が共重合されたものであってもよい。好ましく用いられる共重合成分としては、例えば、酸成分としてイソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、β−ヒドロキシエトキシ安息香酸、p一オキシ安息香酸、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸等を挙げることができ、また、ジオール成分としてエチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサン−1,4−ジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールS等を挙げることができる。さらに、上記ポリエチレンナフタレート中には少量の他の重合体や酸化防止剤、制電剤、顔料、蛍光増白剤その他の添加剤が含有されていてもよい。 Meanwhile, the island component polymer is preferably Po triethylene naphthalate rate. Examples of polyethylene naphthalate include polyethylene-2,6 synthesized by polycondensation of naphthalene-2,6-dicarboxylic acid or an ester-forming derivative thereof with ethylene glycol in the presence of a catalyst under appropriate reaction conditions. -Naphthalate is mentioned. Furthermore, it is preferable that at least 90 mol% of all repeating units are formed from polyethylene naphthalate (hereinafter referred to as PEN) in which ethylene-2,6-naphthalate units are formed, and at least 95 mol% is ethylene-2,6- Most preferred are naphthalate units. Further, the third component may be copolymerized within a range that does not impair the object of the present invention, for example, within a range of 10 mol% or less, more preferably 5 mol% or less based on the total acid component. Examples of the copolymer component preferably used include, for example, isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, adipic acid, sebacic acid, 1,4-acid as the acid component. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A, and bisphenol S. Further, the polyethylene naphthalate may contain a small amount of other polymers, antioxidants, antistatic agents, pigments, fluorescent brighteners and other additives.
また前記ポリエチレンナフタレートは、極限粘度[η]が0.45〜1.0のものを使用することが好ましい。ここで極限粘度[η]は、ポリマーをフェノールとオルトジクロロベンゼンとの混合溶媒(混合比6:4)に溶解し、35℃で測定した粘度から求めた値である。極限粘度[η]が1.0を超えると溶融粘度が異常に高くなって溶融紡糸が困難となり、[η]が0.45未満では目的とする高融点を有し、物性も良好な繊維が得られないので好ましくない。 The polyethylene naphthalate preferably has an intrinsic viscosity [η] of 0.45 to 1.0. Here, the intrinsic viscosity [η] is a value obtained from a viscosity measured at 35 ° C. by dissolving the polymer in a mixed solvent of phenol and orthodichlorobenzene (mixing ratio 6: 4). When the intrinsic viscosity [η] exceeds 1.0, the melt viscosity becomes abnormally high and melt spinning becomes difficult, and when [η] is less than 0.45, a fiber having a desired high melting point and good physical properties is obtained. Since it cannot be obtained, it is not preferable.
上記の海成分ポリマーと島成分ポリマーからなる海島型複合繊維は、ポリマーの溶融粘度比(海/島)は、0.8〜2.0範囲内にあることが必要である。0.8倍未満の場合には、海成分の複合質量比率が50%未満のように低くなると、溶融紡糸時に島成分が互いに接合しやすくなり、一方それが2.0倍を越える場合には、粘度差が大きすぎるために紡糸工程の安定性が低下しやすい。 The sea-island type composite fiber composed of the sea component polymer and the island component polymer needs to have a polymer melt viscosity ratio (sea / island) in the range of 0.8 to 2.0. If it is less than 0.8 times, if the composite mass ratio of the sea component is low, such as less than 50%, the island components are likely to join each other during melt spinning, whereas if it exceeds 2.0 times The stability of the spinning process tends to decrease because the viscosity difference is too large.
さらに、海島型複合繊維は、海成分の複合質量比率が50%未満であることが好ましい。その海島複合質量比率(海:島)は、30:70〜5:95の範囲内にあることが好ましい。上記範囲内にあれば、島成分間の海成分の厚さを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になる。ここで海成分の割合が50%を越える場合には、海成分の厚さが厚くなりすぎ、一方5%未満の場合には海成分の量が少なくなりすぎて、島間に相互接合が発生しやすくなる。 Furthermore, the sea-island composite fiber preferably has a composite mass ratio of sea components of less than 50%. The sea-island composite mass ratio (sea: island) is preferably in the range of 30:70 to 5:95. If it exists in the said range, the thickness of the sea component between island components can be made thin, the dissolution removal of a sea component will become easy, and the conversion to an ultrafine fiber of an island component will become easy. Here, when the proportion of the sea component exceeds 50%, the thickness of the sea component becomes too thick. On the other hand, when the proportion is less than 5%, the amount of the sea component becomes too small and the mutual connection occurs between the islands. It becomes easy.
海成分、島成分は別々に溶融し、口金内で海島型に複合し、吐出される。その後、冷却
風などによって固化させた後、1000〜3000m/分で未延伸糸として引き取る。
The sea component and the island component are melted separately, combined into a sea-island shape in the base, and discharged. Thereafter, those were allowed to solidify, such as by cooling air, Ru Hikito as undrawn yarn at 1 000~3000m / min.
得られた未延伸糸は、一旦巻き取った後、あるいは、巻き取ることなく引き続いて延
伸工程を通した後に巻き取る方法のいずれかの方法で延伸される。延伸温度は100〜150℃、好ましくは110℃〜130℃の予熱ローラー上で予熱し、延伸倍率1.1〜6.0倍、好ましくは1.2〜5.0倍で延伸し、糸温度として120〜250℃、好ましくは180〜220℃で熱セットを実施することが好ましい。スリット型ヒーターであれば200〜250℃が好ましく用いられる。予熱温度不足の場合には、目的とする高倍率延伸を達成することができなくなり、セット温度が低すぎると、得られる延伸糸の収縮率が高すぎるため好ましくない。また、セット温度が高すぎると、得られる延伸糸の物性が著しく低下するため好ましくない。
The obtained unstretched yarn is stretched by either a winding method after winding once or after winding through a stretching step without winding. The drawing temperature is 100-150 ° C, preferably 110 ° C-130 ° C, preheated on a preheating roller, drawn at a draw ratio of 1.1-6.0 times, preferably 1.2-5.0 times, yarn temperature It is preferable to carry out heat setting at 120 to 250 ° C, preferably 180 to 220 ° C. If it is a slit type heater, 200-250 degreeC is used preferably. In the case where the preheating temperature is insufficient, the intended high-strength drawing cannot be achieved, and if the set temperature is too low, the shrinkage rate of the drawn yarn obtained is too high, which is not preferable. On the other hand, if the set temperature is too high, the properties of the drawn yarn obtained are significantly lowered, which is not preferable.
海成分を除去するには、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カ
リウムのようなアルカリ金属化合物水溶液で処理することが好ましく、なかでも水酸化ナ
トリウムおよび水酸化カリウムが特に好ましく用いられる。アルカリ水溶液の濃度、処理
温度、処理時間は、使用するアルカリ化合物の種類により異なるが、濃度は10〜300
g/L、温度は40℃〜180℃、処理時間は2分〜20時間の範囲で行うのが好ましい。
In order to remove the sea component, it is preferable to treat with an aqueous solution of an alkali metal compound such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, among which sodium hydroxide and potassium hydroxide are particularly preferably used. The concentration, treatment temperature, and treatment time of the alkaline aqueous solution vary depending on the type of alkali compound used, but the concentration is 10 to 300.
g / L, the temperature is preferably 40 ° C. to 180 ° C., and the treatment time is preferably 2 minutes to 20 hours.
一般的には海島型複合繊維を含む製編織物または短繊維として紡績糸や不織布として布帛などの繊維構造体とした後アルカリ金属化合物水溶液処理することが好ましい。公知のアルカリ減量装置を用いて処理することができる。 In general, it is preferable to use an aqueous alkali metal compound solution after forming a fiber structure such as a spun yarn or a nonwoven fabric as a knitted fabric or short fiber containing a sea-island type composite fiber. It can process using a well-known alkali weight reduction apparatus.
上記の海成分を除去後の島成分からなる繊維構造体は超極細ポリエステル繊維構造体であり、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途や、カーシートなどの車輌内装品、カーペット、ソファー、カーテンなどのインテリア製品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途や研磨布、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途、およびジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材などに用いられる。 The fiber structure consisting of island components after the removal of the sea component is an ultra-fine polyester fiber structure, which is used for environmental and industrial materials such as filters, harmful substance removal products, battery separators, and car interiors such as car seats. Products such as cosmetics, carpets, sofas, curtains and other interior products, cosmetics, cosmetic masks, wiping cloths, health products, etc. and medical uses such as abrasive cloths, sutures, scaffolds, artificial blood vessels, blood filters, and jackets, skirts Used for clothing such as pants and underwear, sports clothing and clothing materials.
本発明を下記実施例によりさらに詳細に説明する。
下記実施例及び比較例において、下記の測定及び評価を行った。
The invention is illustrated in more detail by the following examples.
In the following examples and comparative examples, the following measurements and evaluations were performed.
(1)平均単糸繊維径
海成分溶解除去後の微細繊維の30000倍のTEM観察により、繊維径を求めた。ここで繊維径は膠着していない単糸の繊維径を測定した。ランダムに選択した100本の微細繊維の繊維径データにおいて、平均単糸繊維径rを算出した。
(1) Average single yarn fiber diameter The fiber diameter was calculated | required by TEM observation 30000 times the fine fiber after sea component dissolution removal. Here, the fiber diameter of the single yarn that was not glued was measured. In the fiber diameter data of 100 randomly selected fine fibers, the average single yarn fiber diameter r was calculated.
(2)平均単糸繊維径のばらつきCV%
平均単糸繊維径を求めるに際し、その標準偏差σを算出し、以下で定義する繊維径変動係数CV%を算出した。
CV%=標準偏差σ/平均単糸繊維径r×100(%)
(2) Average single fiber diameter variation CV%
When determining the average single yarn fiber diameter, the standard deviation σ was calculated, and the fiber diameter variation coefficient CV% defined below was calculated.
CV% = standard deviation σ / average single yarn fiber diameter r × 100 (%)
(3)極細繊維の繊度
海島型複合繊維の繊度D(前記(1)断面観察に記載の方法により測定)及び、海ポリマーを溶解させた際の減量率Raから、得られた極細繊維の繊度を下記式により算出した。
極細繊維の繊度=D×(1−Ra)
(3) Fineness of ultrafine fiber Fineness of ultrafine fiber obtained from fineness D of sea-island type composite fiber (measured by the method described in section (1) above) and weight loss Ra when sea polymer is dissolved Was calculated by the following formula.
Fineness of extra fine fiber = D × (1-Ra)
(4)極細繊維の引張強度および破断伸度
海島型複合繊維から、質量1g以上の筒編みを作成し、この編物を溶剤処理し、海成分を除去した。得られた極細繊維からなる編物をほどき、得られた極細繊維の荷重−伸度曲線チャートを、室温、初期試料長=200mm、引張速度=200mm/分の条件下で作成した。上記チャートから、極細繊維の引張強度(cN/dtex)及び破断伸度(%)を求めた。
(4) Tensile strength and elongation at break of ultrafine fiber A cylindrical braid having a mass of 1 g or more was prepared from the sea-island composite fiber, and the knitted fabric was treated with a solvent to remove sea components. The obtained knitted fabric made of ultrafine fibers was unwound, and a load-elongation curve chart of the obtained ultrafine fibers was prepared under conditions of room temperature, initial sample length = 200 mm, and tensile speed = 200 mm / min. From the above chart, the tensile strength (cN / dtex) and elongation at break (%) of the ultrafine fiber were determined.
(5)乾熱収縮率
極細繊維を、試料を枠周1.125mmの検尺機を用いて、10回捲きつけて、かせを作成し、荷重1/30cN/dtex下における、長さL0を測定した。かせから前記荷重を除き、フリー状態で恒温乾燥機中に入れ、150℃で30分間の加熱処理を施した。この乾燥されたかせに1/30cN/dtexの荷重をかけて、乾熱処理後のかせの長さL1を測定した。この極細繊維の乾熱収縮率HDSを下記式から算出した。
HDS(%)=[(L0−L1)/L0]×100
(5) Dry heat shrinkage rate Using ultrafine fiber, the sample was beaten 10 times using a measuring machine with a frame circumference of 1.125 mm to create a skein, and the length L0 under a load of 1/30 cN / dtex was determined. It was measured. The load was removed from the skein, placed in a constant temperature dryer in a free state, and subjected to a heat treatment at 150 ° C. for 30 minutes. A load of 1/30 cN / dtex was applied to the dried skein, and the skein length L1 after the dry heat treatment was measured. The dry heat shrinkage ratio HDS of this ultrafine fiber was calculated from the following formula.
HDS (%) = [(L0−L1) / L0] × 100
(6)溶融粘度
ポリマーを乾燥し、溶融紡糸用押出機の溶融温度に設定されたオリフィス中にセットし、5分間溶融状態に保持したのち、所定水準の荷重下で押出し、このときのせん断速度と溶融粘度とをプロットした。上記操作を、複数水準の荷重下において繰り返した。上記データに基いて、剪断速度が1000秒−1のときの溶融粘度を見積もる。
(6) Melt viscosity The polymer is dried, set in an orifice set at the melt temperature of an extruder for melt spinning, held in a molten state for 5 minutes, and then extruded under a predetermined level of load. The shear rate at this time And melt viscosity were plotted. The above operation was repeated under multiple levels of load. Based on the above data, the melt viscosity at a shear rate of 1000 sec- 1 is estimated.
[実施例1]
島成分として固有粘度0.62(35℃、オルソクロロフェノール中)のポリエチレンナフタレート、海成分として5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した固有粘度0.49のポリエチレンテレフタレートを用い、W02005/095686号公報の方法を用いて海島型複合繊維を得た。海成分と島成分それぞれの溶融粘度は、283Pa・s、250Pa・sであり、ポリマーの溶融粘度比(海/島)は、0.9であった。別々に溶融後、複合口金内で合流させ、海:島=30:70、島数=900の海島型複合未延伸繊維を、紡糸温度300℃、紡糸速度1000m/分で溶融紡糸し、巻き取った。得られた未延伸糸を、延伸温度130℃、延伸倍率3.9倍でローラー延伸し、次いで200℃の非接触型ヒーターで熱セットして巻き取り、海島型複合延伸糸を得た。延伸工程においても毛羽や断糸の発生はなく、全ての未延伸糸は問題なく延伸可能であった。得られた海島型複合延伸糸は62dtex/10filであり、筒編みを作成し、98℃、3.5g/lのアルカリ溶液中で1分間減量処理したところ、海成分のみが溶出されており島成分の平均単糸繊維径は700nm,CV%は12%、強度は5.8cN/dtex、伸度は25%、乾熱収縮率は1.5%であった。
[Example 1]
Polyethylene naphthalate with an intrinsic viscosity of 0.62 (35 ° C. in orthochlorophenol) as an island component, and 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol with a number average molecular weight of 4000 as a sea component A sea-island type composite fiber was obtained by using polyethylene terephthalate having a viscosity of 0.49 and using the method of W02005 / 095686. The melt viscosity of each of the sea component and the island component was 283 Pa · s and 250 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 0.9. After melting separately, they are merged in a composite die, and sea-island type unstretched fibers with sea: island = 30: 70 and number of islands = 900 are melt-spun at a spinning temperature of 300 ° C. and a spinning speed of 1000 m / min, and wound. It was. The obtained undrawn yarn was roller-drawn at a drawing temperature of 130 ° C. and a draw ratio of 3.9 times, and then heat-set by a non-contact heater at 200 ° C. to obtain a sea-island type composite drawn yarn. In the drawing process, no fluff or yarn breakage occurred, and all undrawn yarns could be drawn without problems. The obtained sea-island type composite stretched yarn was 62 dtex / 10 fil, and a tubular knitting was prepared. When the weight was reduced for 1 minute in an alkaline solution at 98 ° C. and 3.5 g / l, only the sea components were eluted. The average single yarn fiber diameter of the component was 700 nm, CV% was 12%, strength was 5.8 cN / dtex, elongation was 25%, and dry heat shrinkage was 1.5%.
[実施例2]
島成分として固有粘度0.50(35℃、オルソクロロフェノール中)のポリエチレンナフタレート用いた以外は実施例1と同様に行った。海成分と島成分それぞれの溶融粘度は、212Pa・s、213Pa・sであり、ポリマーの溶融粘度比(海/島)は、1.0であった。別々に溶融後、複合口金内で合流させ、海:島=30:70、島数=900の海島型複合未延伸繊維を、紡糸温度300℃、紡糸速度1000m/分で溶融紡糸し、巻き取った。得られた未延伸糸を、延伸温度130℃、延伸倍率3.9倍でローラー延伸し、次いで200℃の非接触型ヒーターで熱セットして巻き取り、海島型複合繊維を得た。延伸工程においても毛羽や断糸の発生はなく、全ての未延伸糸は問題なく延伸可能であった。得られた海島型複合延伸糸は62dtex/10filであり、筒編みを作成し、98℃、3.5g/1のアルカリ溶液中で1分間減量処理したところ、海成分のみが溶出されており、島成分の平均単糸繊維径は700nm、CV%は12%、強度は4.5cN/dtex、伸度は23%、乾熱収縮率は2.0%であった。
[Example 2]
The same procedure as in Example 1 was performed except that polyethylene naphthalate having an intrinsic viscosity of 0.50 (35 ° C. in orthochlorophenol) was used as the island component. The melt viscosity of each of the sea component and the island component was 212 Pa · s and 213 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 1.0. After melting separately, they are merged in a composite die, and sea-island type unstretched fibers with sea: island = 30: 70 and number of islands = 900 are melt-spun at a spinning temperature of 300 ° C. and a spinning speed of 1000 m / min, and wound. It was. The obtained undrawn yarn was subjected to roller drawing at a drawing temperature of 130 ° C. and a draw ratio of 3.9 times, and then heat-set with a non-contact heater at 200 ° C. to obtain a sea-island type composite fiber. In the drawing process, no fluff or yarn breakage occurred, and all undrawn yarns could be drawn without problems. The obtained sea-island type composite stretched yarn was 62 dtex / 10 fil, and a tubular knitting was prepared and subjected to a weight reduction treatment in an alkaline solution of 98 ° C. and 3.5 g / 1 for 1 minute. As a result, only sea components were eluted. The average single fiber diameter of the island component was 700 nm, CV% was 12%, strength was 4.5 cN / dtex, elongation was 23%, and dry heat shrinkage was 2.0%.
[比較例1]
島成分として固有粘度0.50(35℃、オルソクロロフェノール中)のポリエチレンナフタレート、海成分として5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した固有粘度0.42のポリエチレンテレフタレートを用いた以外は実施例1と同様の方法で行った。海成分と島成分それぞれの溶融粘度は、114Pa・s、213Pa・sであり、ポリマーの溶融粘度比(海/島)は、0.54であった。
[Comparative Example 1 ]
Polyethylene naphthalate with an intrinsic viscosity of 0.50 (35 ° C. in orthochlorophenol) as the island component, and 9 mol% of 5-sodiumsulfoisophthalic acid and 3% by weight of polyethylene glycol with a number average molecular weight of 4000 as the sea component The same procedure as in Example 1 was performed except that polyethylene terephthalate having a viscosity of 0.42 was used. The melt viscosity of each of the sea component and the island component was 114 Pa · s and 213 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 0.54.
別々に溶融後、複合口金内で合流させ、海:島=50:50、島数=900の海島型複合未延伸繊維を、紡糸温度300℃、紡糸速度1000m/分で溶融紡糸し、巻き取った。
得られた未延伸糸を、延伸温度130℃・延伸倍率3・7倍でローラー延伸し、次いで200℃の非接触型ヒーターで熱セットして巻き取り、海島型複合延伸糸を得た。延伸工程においても毛羽や断糸の発生はなく、全ての未延伸糸は問題なく延伸可能であった。得られた海島型複合延伸糸は64dtex/10filであり、筒編みを作成し、98℃、3.5g/lのアルカリ溶液中で3分間減量処理したところ、海成分のみが溶出されており、島成分の平均繊維径は610nm,CV%は15%、強度は3.8cN/dtex、伸度は30%、乾熱収縮率は2.8%であった。
After melting separately, they are merged in a composite die, and sea-island type composite unstretched fibers of sea: island = 50: 50, number of islands = 900 are melt-spun at a spinning temperature of 300 ° C. and a spinning speed of 1000 m / min, and wound. It was.
The obtained undrawn yarn was roller-drawn at a drawing temperature of 130 ° C. and a draw ratio of 3.7 times, and then heat-set with a non-contact heater at 200 ° C. to obtain a sea-island type composite drawn yarn. In the drawing process, no fluff or yarn breakage occurred, and all undrawn yarns could be drawn without problems. The obtained sea-island type composite stretched yarn was 64 dtex / 10 fil, and a tubular knitting was prepared and subjected to a weight loss treatment at 98 ° C. in an alkaline solution of 3.5 g / l for 3 minutes. As a result, only the sea component was eluted. The average fiber diameter of the island component was 610 nm, CV% was 15%, strength was 3.8 cN / dtex, elongation was 30%, and dry heat shrinkage was 2.8%.
本発明のポリエステル極細繊維は、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途や、カーシートなどの車輌内装品、カーペット、ソファー、カーテンなどのインテリア製品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途や研磨布、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途、およびジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材に使用することができる。 The polyester microfiber of the present invention is used for environmental and industrial material applications such as filters, harmful substance removal products, battery separators, vehicle interior products such as car seats, interior products such as carpets, sofas, curtains, cosmetics, cosmetic masks, Use for daily use such as wiping cloth and health care products, medical use such as polishing cloth, suture thread, scaffold, artificial blood vessel, blood filter, and clothing such as jackets, skirts, pants and underwear, sports clothing, clothing materials Can do.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011059126A JP5819620B2 (en) | 2011-03-17 | 2011-03-17 | Polyester microfiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011059126A JP5819620B2 (en) | 2011-03-17 | 2011-03-17 | Polyester microfiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012193476A JP2012193476A (en) | 2012-10-11 |
JP5819620B2 true JP5819620B2 (en) | 2015-11-24 |
Family
ID=47085627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011059126A Active JP5819620B2 (en) | 2011-03-17 | 2011-03-17 | Polyester microfiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5819620B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101624068B1 (en) * | 2012-03-13 | 2016-05-24 | 아사히 가세이 셍이 가부시키가이샤 | Superfine polyester fiber and tubular seamless fabric |
JP2014101613A (en) * | 2012-11-22 | 2014-06-05 | Teijin Ltd | Ultra fine fiber |
JP6271856B2 (en) * | 2013-04-17 | 2018-01-31 | 帝人株式会社 | Fabric manufacturing method and textile manufacturing method |
JP6108943B2 (en) * | 2013-04-30 | 2017-04-05 | 株式会社ブリヂストン | Adhesive composition coated fiber, rubber member, pneumatic tire and run flat tire |
CN108779585B (en) | 2016-04-20 | 2021-03-26 | 帝人富瑞特株式会社 | Yarn, fabric and textile product |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2995842B2 (en) * | 1990-10-08 | 1999-12-27 | 東洋紡績株式会社 | High-strength heat-resistant extra-fine fiber non-woven fabric |
JP3725064B2 (en) * | 2001-10-31 | 2005-12-07 | 帝人ファイバー株式会社 | Polyester monofilament for screens |
EP1731634B1 (en) * | 2004-03-30 | 2010-08-25 | Teijin Fibers Limited | Composite fiber and composite fabric of island-in-sea type and process for producing the same |
JP4960616B2 (en) * | 2005-09-29 | 2012-06-27 | 帝人ファイバー株式会社 | Short fiber, method for producing the same, and precursor thereof |
-
2011
- 2011-03-17 JP JP2011059126A patent/JP5819620B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012193476A (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4571566B2 (en) | Method for producing fabric capable of adsorbing odor | |
JPWO2005095686A1 (en) | Sea-island type composite fiber and method for producing the same | |
JP5819620B2 (en) | Polyester microfiber | |
JP2014101613A (en) | Ultra fine fiber | |
JP2009024272A (en) | Knitted fabric and fibrous product excellent in cool feeling | |
JP2008007870A (en) | Polyester fine fiber and its fiber product | |
JP2010275649A (en) | Fiber structure and textile product | |
JP5229890B2 (en) | Multi-layer structure woven and textile products | |
JP2011157646A (en) | Polyester microfiber | |
JP2009167565A (en) | Stretchable knitted fabric, method for producing the same, and textile product | |
JP2011058123A (en) | Method for producing polylactic acid microfiber | |
JP2008280636A (en) | Woven or knitted fabric for forming and filter using the same | |
JP5216970B2 (en) | Polyester knitted fabric, production method thereof and textile product | |
JP2005133250A (en) | Core-sheath conjugate fiber | |
JP5495286B2 (en) | Method for producing hair knitted fabric, hair knitted fabric and textile product | |
JP4567500B2 (en) | Fabrics and textiles whose structure is three-dimensionally changed by water absorption | |
JP2011157647A (en) | Wiping cloth | |
JP4922668B2 (en) | Permeability woven and knitted fabric, production method thereof and textile | |
JP4639889B2 (en) | Polytrimethylene terephthalate extra fine yarn | |
JP2012207361A (en) | Ultra fine fiber and wiping cloth containing ultra fine fiber | |
JP2011058124A (en) | Polylactic acid microfiber | |
JP6065440B2 (en) | Artificial leather | |
JP2010233865A (en) | Cleaning tool | |
JP2018168484A (en) | Sea-island type conjugate fiber bundle | |
JP5260192B2 (en) | Textile structures and textile products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5819620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |