Nothing Special   »   [go: up one dir, main page]

JP5808425B2 - 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体 - Google Patents

導光性能を有する樹脂組成物、それからなる導光成形品および面光源体 Download PDF

Info

Publication number
JP5808425B2
JP5808425B2 JP2013544366A JP2013544366A JP5808425B2 JP 5808425 B2 JP5808425 B2 JP 5808425B2 JP 2013544366 A JP2013544366 A JP 2013544366A JP 2013544366 A JP2013544366 A JP 2013544366A JP 5808425 B2 JP5808425 B2 JP 5808425B2
Authority
JP
Japan
Prior art keywords
carbon atoms
group
bis
component
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013544366A
Other languages
English (en)
Other versions
JPWO2013073709A1 (ja
Inventor
利往 三宅
利往 三宅
明日香 品川
明日香 品川
直 高橋
直 高橋
麻衣子 村井
麻衣子 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2013544366A priority Critical patent/JP5808425B2/ja
Publication of JPWO2013073709A1 publication Critical patent/JPWO2013073709A1/ja
Application granted granted Critical
Publication of JP5808425B2 publication Critical patent/JP5808425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は導光性能を有する樹脂組成物、それからなる導光成形品および面光源体に関する。本発明はさらに詳しくは、透明性、導光性、熱安定性、色相に優れた樹脂組成物に関する。また本発明は、光学レンズ、導光成形品(導光体、導光板)などの光学素子、あるいは表示パネルや照明用のカバー、ガラス代替用途などに好適に用いることができる導光性能を有する樹脂組成物、それからなる導光成形品および面光源体に関する。
導光板は側面から入れた光を拡散させ、表面に均一な光を出す機能を持つ板である。導光板をパネルに使用することで、背面に光源を入れる必要がなくなり、薄く、ムラのない効率的なパネルを製作することが可能となるため、パーソナルコンピュータ、携帯電話等の液晶表示装置や照明器具などの用途への幅広い展開が期待されている。導光成形品用の材料としては、光源からの光の減衰が少ない特性すなわち導光性が求められ、これまで透明樹脂の中で、ポリメチルメタアクリレート(以下「PMMA」と称する事がある)が最も適した材料として用いられてきた。しかしながら、PMMAは、耐衝撃性、熱安定性などが必ずしも十分でなく、前述の用途においては使用環境が制限されるという問題点がある。また長寿命・低消費電力の観点から光源の発光ダイオード(LED)化が進んできており、導光成形品には上記特性に加えて耐熱性も求められはじめた。そのため、耐熱性、耐衝撃性の点で優れるポリカーボネートの導光性を改良する技術が注目を集めるようになってきた。
ポリカーボネートの導光性を改良した例としては、粘度平均分子量が13,000〜15,000であるポリカーボネートに特定の安定剤と離型剤を配合した導光板用芳香族ポリカーボネート組成物が報告されている(特許文献1)。しかしながら、導光性すなわち輝度の向上については、述べられているものの色相改善については、いわゆるヤケによる黄変の改善について述べられているのみで、面内色差については述べられていない。
特許文献2〜4では芳香族ポリカーボネートと透明性のより高いアクリル系樹脂を混合してなる組成物が報告されている。しかしながらこの方法は、アクリル樹脂、拡散剤の添加により、白濁が避けられない。
特許文献5では芳香族ポリカーボネートと分岐シロキサン構造を有するポリオルガノシロキサンを混合してなる組成物が報告されている。しかしながらこの方法は、成形時のガスの発生やシロキサンの凝集が考えられ、良好な導光板を得ることができない。
一方、ポリカーボネートとポリカーボネート−ポリジオルガノシロキサン共重合体を含む樹脂組成物として、ポリカーボネートポリマーのマトリックス中に平均ドメインサイズ20〜45nm又は20〜40nmのポリシロキサンドメインが埋込まれた熱可塑性樹脂組成物が報告されている(特許文献6)。しかしながら特許文献6には、導光性に関する検討は一切されていない。
特開2007−204737号公報 特許第3330498号公報 特許第3516908号公報 特開2006−201667号公報 特許第4446668号公報 特表2006−523243号公報
本発明の目的は、導光性能を有するポリカーボネート樹脂組成物、それからなる導光成形品および面光源体を提供することにある。
本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、ポリカーボネートと、特定のポリジオルガノシロキサンドメインを有するポリカーボネート−ポリジオルガノシロキサン共重合体とを組み合わせることにより、導光性に優れ、かつ面内色差が小さく色相に優れた樹脂組成物が得られることを見出し、本発明に到達した。
すなわち、本発明によれば、ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)を含有し、導光性能を有する樹脂組成物であって、
(i)B成分は、下記式(2)で表される単位と下記式(4)で表される単位を含有し、
(ii)樹脂組成物の全重量を基準にして、式(4)に含まれる下記式(5)で表されるポリジオルガノシロキサンブロックの含有量が0.0050.08重量%であり、
(iii)B成分は、ポリカーボネートのマトリックス中に平均サイズが0.5〜30nmのポリジオルガノシロキサンドメインが存在する、
前記樹脂組成物が提供される。
[式(2)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記式(3)で表される基からなる群より選ばれる少なくとも一つの基である。
(式(3)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
(式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
(上記式(5)において、R21、R22、R23、R24、R25及びR26は、各々式(4)のR、R、R、R、R及びRと同じである。rはpと同じである。sはqと同じである。r+sはp+qと同じである。)
本発明の樹脂組成物は、その成形体においてポリジオルガノシロキサンドメインが特定の凝集構造を形成し、透明性、耐衝撃性、導光性に優れる。
本発明の樹脂組成物は、透明性、耐衝撃性、導光性に優れるので、光学部品、電気・電子機器分野、自動車分野において幅広く使用することができる。さらに具体的には、照明用のカバー、ディスプレイ用拡散板、ガラス代替用途、光ディスクなどの各種光学ディスクおよび関連部材、電池ハウジングなどの各種ハウジング成形品、鏡筒、メモリーカード、スピーカーコーン、ディスクカートリッジ、面発光体、マイクロマシン用機構部品、ヒンジ付き成形品またはヒンジ用成形品、透光・導光型ボタン類、タッチパネル部品などが例示される。
本発明における導光性(輝度、面内色差)の測定方法を示す概略図である。
以下、本発明について具体的に説明する。
(A成分:ポリカーボネート)
ポリカーボネート(A成分)は、ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法などで反応させて得られるものである。また、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
ここで使用されるジヒドロキシ成分としては、芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。ビスフェノール類としては、例えば4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
脂肪族ジオール類としては、例えば2,2−ビス−(4−ヒドロキシシクロヘキシル)−プロパン、1,14−テトラデカンジオール、オクタエチレングリコール、1,16−ヘキサデカンジオール、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、ビス{(2−ヒドロキシエトキシ)フェニル}メタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}エタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−1−フェニルエタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−メチルフェニル}プロパン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−3,3,5−トリメチルシクロヘキサン、2,2−ビス{4−(2−ヒドロキシエトキシ)−3,3’−ビフェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−イソプロピルフェニル}プロパン、2,2−ビス{3−t−ブチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}ブタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}−4−メチルペンタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}オクタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}デカン、2,2−ビス{3−ブロモ−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3,5−ジメチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、1,1−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2−ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9−ビス{(2−ヒドロキシエトキシ)フェニル}フルオレン、9,9−ビス{4−(2−ヒドロキシエトキシ)−3−メチルフェニル}フルオレン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’−ビス(2−ヒドロキシエトキシ)ジフェニルエ−テル、4,4’−ビス(2−ヒドロキシエトキシ)−3,3’−ジメチルジフェニルエ−テル、1,3−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8−ビス{(2−ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}−5,7−ジメチルアダマンタン、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール(イソソルビド)、1,4:3,6−ジアンヒドロ−D−マンニトール(イソマンニド)、1,4:3,6−ジアンヒドロ−L−イジトール(イソイディッド)等が挙げられる。
これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、が好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
ポリカーボネート(A成分)は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐化ポリカーボネートとしてもよい。かかる分岐化ポリカーボネートに使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられる。中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
これらのポリカーボネートは、通常の芳香族ポリカーボネートを製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。
カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常、酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。
カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。
前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
本発明において、重合反応においては末端停止剤を使用する。末端停止剤は分子量調節のために使用され、また得られたポリカーボネートは、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記式〔6〕〜〔8〕で表される単官能フェノール類を示すことができる。
[式中、Aは水素原子、炭素数1〜9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1〜9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1〜9)であり、rは1〜5、好ましくは1〜3の整数である]。
[式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。]
上記式〔6〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p−tert−ブチルフェノール、p−クレゾール、p−クミルフェノール、2−フェニルフェノール、4−フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。
また、上記式〔7〕〜〔8〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネートの末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。
上記式〔7〕の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。
また上記式〔8〕の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。
これら単官能フェノール類の内、上記式〔6〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノール、p−クミルフェノールまたは2−フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネートの全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
ポリカーボネート(A成分)は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。
ポリカーボネート(A成分)の粘度平均分子量は、11,000〜50,000の範囲が好ましく、12,000〜30,000がより好ましく、12,000〜25,000の範囲がさらにより好ましく、12,000〜22,000の範囲が最も好ましい。
分子量が50,000を超えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が11,000未満であると機械的強度に問題が生じる場合がある。なお、本発明でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
ポリカーボネート(A成分)は、樹脂中の全Cl(塩素)量が好ましくは0〜200ppm、より好ましくは0〜150ppmである。ポリカーボネート中の全Cl量が200ppmを越えると、色相および熱安定性が悪くなるので好ましくない。
(B成分:ポリカーボネート−ポリジオルガノシロキサン共重合体)
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)には、ポリカーボネートのマトリックス中に平均サイズが0.5〜30nmであるポリジオルガノシロキサンドメインが存在する。
ポリジオルガノシロキサンドメインの平均サイズは0.5〜30nmである。ドメインの平均サイズは、0.5〜18nmであることが好ましく、2.0〜18nmであることがさらにより好ましく、5.0〜18nmであることが最も好ましい。この平均サイズが0.5nm未満の場合面内色差改善および導光性向上に効果がなく、30nmを超えた場合、濁りが生じ、全光線透過率が低下し、導光性が得られない場合があるので好ましくない。
ポリジオルガノシロキサンドメインの平均サイズを0.5〜30nmにすることは、上記式(2)で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)と上記式(4)で表わされるカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数が40であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)とを混合する際に、化合物(II)の添加速度を化合物(I)の量に対し一定範囲となるように添加することにより達成される。すなわち、化合物(II)の添加速度を化合物(I)の量1モルあたり、0.0001モル/min〜0.01モル/minの速度で添加することが好ましく、より好ましくは 0.0001モル/min〜0.005 モル/min、さらに好ましくは0.0002モル/min〜0.0025モル/minである。
ポリジオルガノシロキサンドメインの平均サイズは、小角エックス線散乱法(Small Angel X−ray Scattering:SAXS)により測定をする。小角エックス線散乱法とは、散乱角(2θ)が10°未満の範囲の小角領域で生じる散漫な散乱回折を測定する方法である。この小角エックス線散乱法では物質中に電子密度の異なる1〜100nm程度の大きさの領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。
ポリカーボネートのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合体の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、かつ再現性良く測定することができる。
本発明において、B成分中のポリジオルガノシロキサンドメインの平均サイズは、A成分と溶融混練しても変化しない。
B成分は下記式(2)で表されるカーボネート単位および下記式(4)で表されるオルガノシロキサン単位を含む。B成分中の式(2)で表される単位の含有量は、好ましくは90〜99.99モル%、より好ましくは95〜99.99モル%、さらに好ましくは98〜99.99モル%、最も好ましくは98〜99.9モル%である。B成分中の式(4)で表される単位の含有量は、好ましくは0.01〜10モル%、より好ましくは0.01〜5モル%、さらに好ましくは0.01〜2モル%、最も好ましくは0.1〜2モル%である。B成分は式(2)の単位の含有量に比べ、式(4)の単位の含有量が少ないので、式(2)の単位のブロック中に式(4)の単位が存在することになる。
(式(2)で表されるカーボネート単位)
上記式(2)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記式(3)で表される基からなる群より選ばれる少なくとも一つの基である。
上記式(3)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。
11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して、メチル基、エチル基、プロピル基などの炭素原子数1〜6のアルキル基であることが好ましい。
上記式(2)で表されるカーボネート構成単位を誘導する二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
(式(4)で表されるカーボネート単位)
上記式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基である。好ましくは水素原子、炭素数1〜6のアルキル基、又は炭素数6〜12の置換若しくは無置換のアリール基であり、水素原子、炭素数1〜6のアルキル基、又はフェニル基が特に好ましい。炭素数1〜12のアルキル基としてメチル基、エチル基、t−ブチル基などが挙げられる。アリール基としてフェニル基が挙げられる。
及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基である。好ましくは水素原子、炭素原子数1〜10のアルキル基であり、水素原子、炭素原子数1〜4のアルキル基が特に好ましい。炭素数1〜14のアルキル基としてメチル基、エチル基、t−ブチル基などが挙げられる。炭素原子数1〜10のアルコキシ基として、メトキシ基、エトキシ基、t−ブトキシ基などが挙げられる。
pは自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。p+qは、4〜120が好ましく、30〜120がより好ましく、30〜100が最も好ましい
Xは炭素数2〜8の二価脂肪族基である。Xは、エチレン基、トリメチレン基などの炭素数2〜8のアルキレン基であることが好ましい。
上記式(4)で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)としては、例えば下記式(I)に示すような化合物が好適に用いられる。
ジオルガノシロキサン重合度を表すp、qは、それぞれ自然数であり、p+qは150以下の自然数であり、4〜120が好ましく、30〜120がより好ましく、30〜100が特に好ましく、30〜80が最も好ましい。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)全重量に占めるポリジオルガノシロキサン成分含有量は0.01〜20.0重量%が好ましく、より好ましくは0.01〜10.0重量%、さらに好ましくは2.0〜10.0重量%、最も好ましくは2.0〜8.0重量%である。ポリジオルガノシロキサン成分含有量が0.01重量%未満では、面内色差改善効果が不足し、20.0重量%を超えると全光線透過率が低下し導光性能が得られない場合がある。なお、かかるジオルガノシロキサン重合度、ポリジオルガノシロキサン成分含有量は、H−NMR測定により算出することが可能である。
次に、上記の好ましいポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の製造方法について以下に説明する。
上記式(2)で表されるカーボネート構成単位を誘導する二価フェノール(I)とカーボネート前駆物質とを反応させることにより、二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物を生成する。
二価フェノール(I)からのクロロホルメート化合物を生成するにあたり、上記一般式(2)で表されるカーボネート構成単位を誘導する二価フェノール(I)の全量を一度にクロロホルメート化合物としてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
このクロロホルメート化合物生成反応の方法は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。更に、所望に応じ、亜硫酸ナトリウム、およびハイドロサルファイドなどの酸化防止剤を少量添加してもよく、添加することが好ましい。
カーボネート前駆物質の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、好適なカーボネート前駆物質であるホスゲンを使用する場合、ガス化したホスゲンを反応系に吹き込む方法が好適に採用できる。
前記酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。
酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、二価フェノール(I)のクロロホルメート化合物の形成に使用する二価フェノール(I)1モルあたり(通常1モルは2当量に相当)、2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレンおよびクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。
クロロホルメート化合物の生成反応における圧力は特に制限はなく、常圧、加圧、もしくは減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、反応に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
クロロホルメート化合物の生成反応におけるpH範囲は、公知の界面反応条件が利用でき、pHは通常10以上に調整される。
本発明のB成分として使用されるポリカーボネート−ポリジオルガノシロキサン共重合樹脂の製造においては、このようにして二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調整した後、該混合溶液を攪拌しながら上記式(4)で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)を、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、0.01モル/min以下の速度で加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該クロロホルメート化合物とを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合体を得る。本発明を何らかの理論により限定するものではないが、かかる方法により、所定のドメインサイズを小さくできる理由を以下のように推察する。
従来の方法では、二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との混合物に対してホスゲンを反応させるため、二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との反応性差から一方のモノマーのみからなる連鎖長の長いブロック共重合体が形成されやすい。さらには、ヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)からなる短鎖のカーボネートオリゴマーを介して結合した構造が形成されやすい。一方、上記に述べたプロセスでは、ヒドロキシアリール末端ポリジオルガノシロキサン(II)濃度の急増を抑制し、その結果、該モノマーと末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーとの反応を着実に進展させ、未反応のヒドロキシアリール末端ポリジオルガノシロキサン(II)の量を低減することができる。かかる低減は、二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との反応性差を解消し、一方のモノマーのみからなる連鎖長の長いブロック共重合体や、ヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)からなる短鎖のカーボネートオリゴマーを介して結合した構造の形成確率を低下させると考えられる。これにより、ポリジオルガノシロキサンドメインサイズの小さいポリカーボネート−ポリジオルガノシロキサン共重合体が得られると推測される。上述のヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度が、0.01モル/minより速い場合、得られるポリカーボネート−ポリジオルガノシロキサン共重合体の成形品において、内部に分散したポリジオルガノシロキサンドメインサイズが40nmを超えてしまう。即ち、濁りが生じ、全光線透過率が低下し、導光性が得られない場合が生じてしまう。
上述のヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度が0.0001モル当量/minよりも遅い場合、生産効率上好ましくなく、また得られる共重合体のポリジオルガノシロキサン成分含有量が少なくなり、分子量がばらつく傾向があるため好ましくない。したがって、ヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度の下限は実質的には0.0001モル当量/minである。ヒドロキシアリール末端ポリジオルガノシロキサン(II)の添加速度は、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、より好ましくは0.005モル/min以下の速度、更に好ましくは0.0025モル/min以下の速度であり、下限はより好ましくは0.0002モル/min以上の速度である。
また、均一分散性を高めるため、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、溶媒と混合して溶液状態で、末端クロロホルメート化合物を含有する混合溶液中に投入することが望ましい。該溶液の濃度は、反応を阻害しない範囲内で希薄であることが望ましく、好ましくは、0.2〜0.01モル/Lの範囲、より好ましくは0.1〜0.02モル/Lの範囲である。尚、かかる溶媒は特に限定されないものの、上述のクロロホルメート化合物の生成反応に使用する溶媒と同一が好ましく、特に塩化メチレンが好ましい。
界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応は、上記混合液を激しく攪拌することにより行われる。
かかる重縮合反応においては、末端停止剤或いは分子量調節剤が通常使用される。かかる末端停止剤としては、上記式〔6〕〜〔8〕で表される単官能フェノール類を示すことができる。これら単官能フェノール類の内、上記式〔6〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノール、p−クミルフェノールまたは2−フェニルフェノールである。
その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加することができ、添加することが好ましい。特に好適にはトリエチルミンが利用される。
かかる重合反応の反応時間は、所定のポリジオルガノシロキサンドメインサイズを得るためには比較的長くする必要がある。好ましくは30分以上、更に好ましくは50分以上であり、製造効率の点からその上限は好ましくは2時間以下、より好ましくは1.5時間以下である。
本発明のB成分として用いられるポリカーボネート−ポリジオルガノシロキサン共重合体は、分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサン共重合体とすることができる。かかる分岐化ポリカーボネート−ポリジオルガノシロキサン共重合体に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
かかる分岐化ポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該共重合体を構成するカーボネート構成単位全量中、好ましくは0.005〜1.5モル%、より好ましくは0.01〜1.2モル%、特に好ましくは0.05〜1.0モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。
重縮合反応における系内の圧力は、減圧、常圧、もしくは加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
場合により、得られたポリカーボネート共重合体に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート−ポリジオルガノシロキサン共重合体として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合体として回収することができる。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の粘度平均分子量は好ましくは12,000〜30,000であり、より好ましくは12,000〜25,000、更に好ましくは12,000〜22,000である。分子量が30,000を超えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が12,000未満であると機械的強度に問題が生じる場合がある。
ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の粘度平均分子量の算出は次の要領で行なわれる。まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]2 c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
B成分に含まれる上記式(4)に含まれる下記式(5)で表されるポリジオルガノシロキサンブロックの含有量はポリカーボネート樹脂組成物の全重量を基準にして、0.0050.08重量%であり、0.01〜0.08重量%がより好ましく、0.01〜0.08重量%がさらに好ましく、0.01〜0.08重量%が最も好ましい。この割合が0.005重量%未満では、面内色差改善効果が発揮せず、0.08重量%を超えると全光線透過率が低下し導光性能が得られない場合があるので好ましくない。
上記式(5)において、R21、R22、R23、R24、R25及びR26は、各々式(4)のR、R、R、R、R及びRと同じある。rはpと同じである。sはqと同じである。r+sはp+qと同じである。
B成分の含有量は、B成分に含まれるポリジオルガノシロキサン成分含有量を上述の好ましい範囲となるように調整する。B成分の含有量は、好ましくはポリカーボネート(A成分)100重量部に対し、0.01〜20.0重量部であり、0.01〜10.0重量部がより好ましく、0.01〜5.0重量部がさらに好ましく、0.1〜5.0重量部が特に好ましく、0.1〜2.0重量部が最も好ましい。B成分が0.01重量部未満では面内色差改善および導光性向上に効果がなく、10.0重量部を超えると全光線透過率が低下し導光性が得られない場合があるので好ましくない。
(C成分:安定剤)
本発明のC成分として使用される安定剤は下記式(1)で表される安定剤である。
式(1)中、A、Aは、それぞれ独立にアリール基またはアルキル基であり、同一であっても異なっていてもよい。
式(1)中、A、Aがアリール基である場合、炭素数6〜30のアリール基が好ましく、炭素数6〜20のアリール基がより好ましく、炭素数6〜10のアリール基が更により好ましい。具体的には、ジノリルフェニルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチル−6−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイトなどが挙げられ、中でもビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましい。式(1)中、A、Aがアルキル基である場合、炭素数1〜30のアルキル基が好ましく、炭素数6〜30のアルキル基がより好ましく、炭素数6〜20のアルキル基が更により好ましい。
具体的には、ジオクチルペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジベヘニルペンタエリスリトールジホスファイトなどが挙げられる。これらの中ではジステアリルペンタエリスリトールジホスファイトが好ましく用いられる。本発明のC成分として使用される安定剤は、単独でまたは2種以上を組合せて使用することができる。
C成分の含有量は、A成分およびB成分の合計100重量部に対し、0.01〜1.0重量部であり、0.01〜0.5重量部が好ましく、0.01〜0.3重量部がさらに好ましく、0.01〜0.1重量部がさらにより好ましく、0.01〜0.05重量部が最も好ましい。C成分の含有量が1.0重量部を超えると、モールドデポジットが発生し、コスト的にも不利になる傾向があり、また0.01重量部より少ない場合は、色相改善効果が小さくなり好ましくない。
(その他の添加剤)
本発明の樹脂組成物の難燃性、光拡散性、酸化防止性、光安定性(紫外線安定性)、蛍光増白性、離型性および金型腐食の改良のために、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。
(I)難燃剤
本発明の樹脂組成物には、ポリカーボネートの難燃剤として知られる各種の化合物が配合されてよい。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、有機ホウ酸金属塩系難燃剤、および有機錫酸金属塩系難燃剤など)、(ii)有機リン系難燃剤(例えば、有機基含有のモノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(iii)シリコーン化合物からなるシリコーン系難燃剤、(iv)フィブリル化PTFEが挙げられ、その中でも有機金属塩系難燃剤、有機リン系難燃剤が好ましい。
(i)有機金属塩系難燃剤
有機金属塩化合物は炭素原子数1〜50、好ましくは1〜40の有機酸のアルカリ(土類)金属塩、好ましくは有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1〜10、好ましくは2〜8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩が含まれる。また炭素原子数7〜50、好ましくは7〜40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属との金属塩が含まれる。
金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられる。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である。一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。
パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられる。これらは1種もしくは2種以上を併用して使用することができる。
ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造する際に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。
特に有機金属塩系難燃剤は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。
芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウム、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン−3−スルホン酸カリウム、およびジフェニルスルホン−3,3’−ジスルホン酸ジカリウムが好適である。特にこれらの混合物(前者と後者の重量比が15/85〜30/70)が好適である。
スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。
芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
有機金属塩系難燃剤の含有量は、樹脂組成物100重量部に対し、好ましくは0.001〜1重量部、より好ましくは0.005〜0.5重量部、さらに好ましくは0.01〜0.3重量部、特に好ましくは0.03〜0.15重量部である。
(ii)有機リン系難燃剤
有機リン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため、成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できる。有機リン系難燃剤の含有量は、樹脂組成物100重量部に対し、好ましくは0.01〜20重量部、より好ましくは2〜10重量部、さらに好ましくは2〜7重量部である。
(iii)シリコーン系難燃剤
シリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては、従来、芳香族ポリカーボートの難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネートに難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。
ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
シリコーン系難燃剤の含有量は、樹脂組成物100重量部に対し、好ましくは0.01〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。
(iv)フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)
フィブリル化PTFEは、フィブリル化PTFE単独であっても、混合形態のフィブリル化PTFEすなわちフィブリル化PTFE粒子と有機系重合体からなるポリテトラフルオロエチレン系混合体であってもよい。フィブリル化PTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。数平均分子量の下限はより好ましくは300万である。数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、B成分のフィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が107〜1013poiseの範囲であり、好ましくは108〜1012poiseの範囲である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル化PTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。
かかるフィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い、共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号公報などに記載された方法)により得られたものが使用できる。
これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、「メタブレン A3700」(商品名)、「メタブレン A3800」(商品名)で代表されるメタブレンAシリーズ、Shine Polymer社のSN3300B7(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などが例示される。
混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが1重量%〜95重量%であることが好ましく、10重量%〜90重量%であるのがより好ましく、20重量%〜80重量%が最も好ましい。
混合形態におけるフィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。フィブリル化PTFEの配合量は、樹脂組成物100重量部に対して、好ましくは0.001〜0.2重量部であり、0.01〜0.2重量部がより好ましく、0.01〜0.18重量部がさらに好ましい。なお、ここで示す重量部はポリテトラフルオロエチレンが混合形態(混合体)の場合は、混合体全体の重量を示す。
(II)光拡散剤
本発明の樹脂組成物には、ポリカーボネートの光拡散剤として知られる各種の化合物が配合されてよい。また、光拡散剤としては高分子微粒子に代表される有機系微粒子、並びに無機系微粒子の何れであってもよい。高分子微粒子としては、非架橋性モノマーと架橋性モノマーとを重合して得られる架橋粒子が代表的に例示される。さらにかかるモノマー以外の他の共重合可能なモノマーを使用することもできる。
なかでも、高分子微粒子が好ましく、特に架橋粒子が好適に使用できる。かかる架橋粒子において、非架橋性モノマーとして使用されるモノマーとして、アクリル系モノマー、スチレン系モノマー、アクリロニトリル系モノマー等の非架橋性ビニル系モノマー及びオレフィン系モノマー等を挙げることができる。
アクリル系モノマーとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2− エチルヘキシルメタクリレート、およびフェニルメタクリレート等を単独でまたは混合して使用することが可能である。このなかでも特にメチルメタクリレートが好ましい。
また、スチレン系モノマーとしては、スチレン、α−メチルスチレン、メチルスチレン(ビニルトルエン)、およびエチルスチレン等のアルキルスチレン、並びにブロモ化スチレンの如きハロゲン化スチレンを使用することができ、特にスチレンが好ましい。アクリロニトリル系モノマーとしては、アクリロニトリル、およびメタクリロニトリルを使用することができる。
また、オレフィン系モノマーとしては、エチレンおよび各種ノルボルネン型化合物等を使用することができる。さらに、他の共重合可能な他のモノマーとして、グリシジルメタクリレート、N−メチルマレイミド、および無水マレイン酸等を例示することができる。有機架橋粒子は結果としてN−メチルグルタルイミドの如き単位を有することもできる。一方、かかる非架橋性ビニル系モノマーに対する架橋性モノマーとしては、例えば、ジビニルベンゼン、アリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、およびN−メチロール(メタ)アクリルアミド等が挙げられる。
本発明に使用される光拡散剤の平均粒径は0.01〜50μmであることが好ましく、より好ましくは1〜30μm、さらに好ましく2〜30μmである。平均粒径が0.01μm未満あるいは50μmを超えると光拡散性が不足する場合がある。かかる平均粒径は、レーザー回折・散乱法で求められる粒度の積算分布の50%値(D50)で表されるものである。粒子径の分布は単一であっても複数であってもよい。即ち平均粒径の異なる2種以上の光拡散剤を組み合わせることが可能である。しかしながらより好ましい光拡散剤は、その粒径分布の狭いものである。平均粒径の前後2μmの範囲に、粒子の70重量%以上が含有される分布を有するものがより好ましい。光拡散剤の形状は、光拡散性の観点から球状に近いものが好ましく、真球状に近い形態であるほどより好ましい。かかる球状には楕円球を含む。
本発明に使用される光拡散剤の屈折率は、通常1.30〜1.80の範囲が好ましく、より好ましくは1.33〜1.70、さらに好ましくは1.35〜1.65の範囲である。これらは樹脂組成物に配合した状態において十分な光拡散機能を発揮する。
本発明に使用される光拡散剤の含有量は、樹脂組成物100重量部に対して、0.005〜10.0重量部が好ましく、より好ましくは0.1〜10.0重量部、さらに好ましくは0.1〜5.0重量部、特に好ましくは0.1〜2.0重量部である。
(III)リン系安定剤
本発明の樹脂組成物は、加水分解性を促進させない程度において、C成分以外のリン系安定剤を配合することができる。かかるリン系安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイトが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でもトリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。
(IV)ヒンダードフェノール系安定剤
本発明の樹脂組成物には、更にヒンダードフェノール系安定剤を配合することができる。かかる配合は例えば成形加工時の色相悪化や長期間の使用における色相の悪化などを抑制する効果が発揮される。
ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェノール)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N’−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
リン系安定剤およびヒンダードフェノール系安定剤の含有量はそれぞれ、樹脂組成物100重量部に対し、好ましくは0.0001〜1重量部、より好ましくは0.001〜0.5重量部、さらに好ましくは0.005〜0.3重量部である。
(V)前記以外の熱安定剤
本発明の樹脂組成物には、前記リン系安定剤およびヒンダードフェノール系安定剤以外の他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。かかる安定剤の詳細は特開平7−233160号公報に記載されている。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganoxHP−2921が好適に例示される。ラクトン系安定剤の含有量は、樹脂組成物100重量部に対して好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の配合量は、樹脂組成物100重量部に対して好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。
本発明の樹脂組成物には、必要に応じてエポキシ化合物を配合することができる。かかるエポキシ化合物は、金型腐食を抑制するという目的で配合されるものであり、基本的にエポキシ官能基を有するもの全てが適用できる。好ましいエポキシ化合物の具体例としては、3,4ーエポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキシルカルボキシレート、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、メチルメタクリレートとグリシジルメタクリレートの共重合体、スチレンとグリシジルメタクリレートの共重合体等が挙げられる。かかるエポキシ化合物の含有量は、樹脂組成物100重量部に対して0.003〜0.2重量部が好ましく、より好ましくは0.004〜0.15重量部であり、さらに好ましくは0.005〜0.1重量部である。
(VI)紫外線吸収剤
本発明の樹脂組成物においては、耐光性を付与することを目的として紫外線吸収剤の配合も可能である。紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
ベンゾトリアゾール系紫外線吸収剤としては、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。
ヒドロキシフェニルトリアジン系紫外線吸収剤として、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。
環状イミノエステル系紫外線吸収剤として、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
シアノアクリレート系紫外線吸収剤として、1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。前記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。具体的には例えばケミプロ化成(株)「ケミソーブ79」などが挙げられる。前記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、樹脂組成物100重量部に対して好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、さらに好ましくは0.03〜1重量部、特に好ましくは0.05〜0.5重量部である。
(VII)蛍光増白剤
本発明の樹脂組成物において蛍光増白剤は、樹脂等の色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ベンズオキサゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物等が挙げられる。具体的には例えばCI Fluorescent Brightener 219:1や、イーストマンケミカル社製EASTOBRITE OB−1やハッコールケミカル(株)製「ハッコールPSR」、などを挙げることができる。ここで蛍光増白剤は、光線の紫外部のエネルギーを吸収し、このエネルギーを可視部に放射する作用を有するものである。蛍光増白剤の含有量は樹脂組成物100重量部に対して、0.001〜0.1重量部が好ましく、より好ましくは0.001〜0.05重量部である。0.1重量部を超えても該組成物の色調の改良効果は小さい。
(VIII)その他
上記以外にも本発明の樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。かかる添加剤としては、強化充填剤、摺動剤(例えばPTFE粒子)、着色剤、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、離型剤、流動改質剤、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、並びにフォトクロミック剤などが挙げられる。
本発明の樹脂組成物は、単軸押出機、二軸押出機の如き押出機を用いて、溶融混練することによりペレット化することができる。かかるペレットを作製するにあたり、上記各種難燃剤、強化充填剤、添加剤を配合することもできる。本発明の樹脂組成物は、通常、前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、およびフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
(樹脂組成物の製造)
本発明の樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分および任意にC成分などの他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。
すなわち本発明は、ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)を溶融混練することからなる導光性能を有する樹脂組成物の製造方法であって、
(i)B成分は、上記式(2)で表される単位と上記式(4)で表される単位を含有し、
(ii)樹脂組成物の全重量を基準にして、上記式(4)に含まれる上記式(5)で表されるポリジオルガノシロキサンブロックの含有量が0.001〜0.6重量%であり、
(iii)B成分は、ポリカーボネートのマトリックス中に平均サイズが0.5〜30nmのポリジオルガノシロキサンドメインが存在する、
ことを特徴とする樹脂組成物の製造方法を包含する。
<導光成形品>
本発明の樹脂組成物からなる導光成形品を製造するには、任意の方法が採用される。例えば該樹脂組成物を押出機、バンバリーミキサーおよびロール等で混練した後、射出成形、押出成形または圧縮成形等従来公知の方法で成形し、導光成形品を得ることができる。また、この導光成形品の少なくとも一方の側面に光源を設け、該導光成形品の片面に反射板を設置することにより面光源体とすることもできる。かかる導光成形品および面光源体の光源としては、蛍光ランプの他、冷陰極管、LED、レーザーダイオード、有機EL等の自己発光体を使用できる。本発明の導光成形品および面光源体は、携帯電話、携帯端末、カメラ、時計、ノートパソコン、ディスプレイ、照明、信号、自動車のランプ、家電・光学機器の表示部品などに使用される。特には電機製品としてのLEDを光源とする場合のように、周辺機器に難燃性が求められる場合などには、本発明の導光板および面光源体が好適に使用される。
本発明は、ポリカーボネート(A成分)にポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)を溶融混練して、ポリカーボネートの導光性能を向上させる方法であって、
(i)B成分が上記式(2)で表される単位と上記式(4)で表される単位を含有し、
(ii)樹脂組成物の全重量を基準にして、上記式(4)に含まれる上記式(5)で表されるポリジオルガノシロキサンブロックの含有量が0.0050.08重量%であり、
(iii)B成分は、ポリカーボネートのマトリックス中に平均サイズが0.5〜30nmのポリジオルガノシロキサンドメインが存在する、
ことを特徴とする前記方法を包含する。



以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。実施例中の部は重量部であり、%は重量%である。なお、評価は下記の方法に従った。
実施例1〜5
ポリカーボネート、表1記載の各種添加剤を各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネートとの予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで280℃とした。
(1)B成分の評価
(i)ポリオルガノシロキサンドメインの平均サイズ
明細書中に記載の小角エックス線散乱法(Small Angel X−ray Scattering:SAXS)により測定を実施した。
(2)樹脂組成物の評価
(i)Haze
実施例1〜5の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度300℃、金型温度80℃でHaze評価用の角板(150mm×150mm×5mmt)を成形した。
(ii)色相
実施例1〜5の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度300℃、金型温度80℃で色相評価用の角板(150mm×150mm×5mmt)を成形した。
(iii)輝度
実施例1〜5の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度300℃、金型温度80℃で輝度評価用の導光板(100mm×70mm×4mm)(裏面に1mm間隔でシボあり)を成形した。
(iv)導光性能
上記の輝度測定用の導光板の70mm×4mmのエッジから光を入射させ100mm×70mmの面の入射側から10mm地点の中央部から発光する輝度(A1)および入射側から80mm地点の中央部から発光する輝度(A2)を測定し、その比(A2/A1)を導光性能とした。導光性能は155%以上が必要である。
(v)HDT
実施例1〜5の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度300℃、金型温度80℃で評価用の試験片(80mm×10mm×4mm)を成形した。
使用した各成分の詳細は以下の通りである。
(A成分)
A−1:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネートパウダー(帝人化成(株)製:パンライトL−1225WX(商品名)、粘度平均分子量19,700)
A−2:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネートパウダー(帝人化成(株)製:CM−1000(商品名)、粘度平均分子量16,000)
(B成分)
B−1:下記の製造例1で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
製造例1:
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式(2)で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。次に、48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら上記式(4)で表わされるカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数が40であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔4〕で表されるポリジオルガノシロキサン化合物204部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。(シロキサン含有量4.1%、ポリジオルガノシロキサンドメイン10nm、粘度平均分子量19,100)
B−2:下記の製造例2で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
製造例2
ジメチルシロキサン単位の繰返し数が40であるジヒドロキシアリール末端ポリジオルガノシロキサン430部を用い、攪拌時間を45分にした以外は製造例1と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。(シロキサン含有量8.2%、ポリジオルガノシロキサンドメイン10nm、粘度平均分子量19,400)
(その他の成分)
F114P:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製 メガファックF−114P)
A5:サンドスタブ P−EPQ パウダー(クラリアントジャパン(株)製)
実施例6〜10、参考例11、実施例12〜13、参考例14、実施例15〜18および比較例1〜4
A〜B成分および各種添加剤を表2および表3記載の各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネートとの予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで290℃とした。評価結果を表2および表3に示す。
評価は以下の項目について実施した。
1.ポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)の評価
(1)粘度平均分子量(Mv)
次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体を溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出した。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
(2)ポリジオルガノシロキサン成分含有量
日本電子(株)製 JNM−AL400を用い、ポリカーボネート−ポリジオルガノシロキサン共重合体の1H−NMRスペクトルを測定し、二価フェノール(I)由来のピークの積分比とジヒドロキシアリール末端ポリジオルガノシロキサン(II)由来のピークの積分比を比較することにより算出した。
ポリジオルガノシロキサン成分含有量(wt%)=[A/(A+B)]×100
A:〔ジヒドロキシアリール末端ポリジオルガノシロキサン(II)のH一つ分のピークの積分比〕×〔ポリジオルガノシロキサン部分の分子量〕
B:〔二価フェノール(I)のH一つ分のピークの積分比〕×〔二価フェノールの分子量〕
(3)ポリジオルガノシロキサンドメインの平均サイズ
ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーをベント式二軸押出機(テクノベル(株)製、KZW15−25MG)によって、温度260℃で混錬し、ペレット化した。得られたペレットを120℃で5時間熱風乾燥した後、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度280℃、金型温度80℃にて幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)である3段型プレートを成形した。この3段型プレートを用いて、厚み1.0mm部の端部より5mm、側部より5mmの交点におけるポリジオルガノシロキサンドメインの平均サイズを、X線回折装置((株)リガク社製 RINT−TTRII)を用いて測定した。X線源として、CuKα特性エックス線(波長0.1541841nm)、管電圧50kV、管電流300mAを使用した。小角散乱光学系は、Slit:1st 0.03mm、HS 10mm、SS 0.2mm、RS 0.1mmとした。測定は、非対称走査法(2θスキャン)により、FT 0.01°ステップ、4sec/step、走査範囲 0.06−3°として実施した。カーブフィッティングの解析には、(株)リガク社製 小角散乱解析ソフトウェア NANO−Solver(Ver.3.3)を使用した。解析はポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンの球状ドメインが分散した凝集構造であり、粒径分布のばらつきが存在すると仮定して、ポリカーボネートマトリックスの密度を1.2g/cm、ポリジオルガノシロキサンドメインの密度を1.1g/cmとし、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて実施した。
2.樹脂組成物の評価
(1)色相
実施例の各組成から得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥し、射出成形機[住友重機械工業(株)SG150U・S−M IV]を用いて、成形温度320℃、金型温度80℃にて幅100mm、長さ100mm、厚みが5.0mmである平滑平面板を成形した。この平滑平面板の色相(YI値)を、Gretag Macbeth社製Color−Eye7000Aを用いて測定した。
(2)平均輝度
実施例の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度300℃、金型温度80℃で輝度評価用の導光板(100mm×70mm×4mm)(裏面に0.1mm間隔でシボあり)を成形した。上記導光板を裏面が下側になるように設置し、70mm×4mmのエッジから光を入射させ100mm×70mmの面から発光する光の輝度をトプコン社製BM−7を用いて測定した。平均輝度を幅3水準、長さ3水準の合計9箇所の測定値を平均して求めた。なお入射光としては、LEDとしてNS2W150(日亜化学工業(株)製)を18ミリピッチで実装したものを光源として用いた(消費電力 約30W)。
(3)面内色差
上記導光板を裏面が下側になるように設置し、70mm×4mmのエッジから光を入射させ100mm×70mmの面から発光する色度(x,y)をトプコン社製BM−7を用いて測定した。面内色差(Δ(x,y))は、以下の式(1)より算出した数値で評価を行った。なお数値は小さいほど面内色差が小さい事を意味する。なお入射光としては、LEDとしてNS2W150(日亜化学工業(株)製)を18ミリピッチで実装したものを光源として用いた(消費電力 約30W)。
Δ(x,y)=[(x−x+(y−y1/2 (1)
(x,y) 光源側の側面から80mm離れた箇所の色度
(x,y) 光源側の側面から20mm離れた箇所の色度
(4)連続成形後の外観
実施例の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度320℃、金型温度90℃で輝度評価用の導光板(100mm×70mm×4mm)(裏面に0.1mm間隔でシボあり)を成形した。連続成形を500回実施し、500回後の成形片の外観を目視にて評価した。評価方法は以下の通り
○ 成形品表面に付着物由来の外観不良なし
× 成形品表面に付着物由来の外観不良あり
使用した各成分の詳細は以下の通りである。
(A成分)
A−i:下記製法により得られた分子量13,500のポリカーボネートパウダー
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2−ビス(4−ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液257部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、パス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネートパウダーを得た。
A−ii:下記製法により得られた粘度平均分子量15,100のポリカーボネートパウダー
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液221部に変更した以外は、A−iの製造方法と同様に行い、ポリカーボネートパウダーを得た。
A−iii:下記製法により得られた粘度平均分子量20,300の分岐構造を有するポリカーボネートパウダー
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下にビスフェノールA 710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液261部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、パス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネートのパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネートパウダーを得た。
(B成分)
B−i:下記製法により得られた粘度平均分子量19,100のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式(1)で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。次に、48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら上記式(3)で表わされるカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数が約37であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔9〕で表されるポリジオルガノシロキサン化合物204部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート−ポリジオルガノシロキサン共重合体のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥し、ポリカーボネートーポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.1%、ポリジオルガノシロキサンドメインの平均サイズ10nm、粘度平均分子量19,100)
B−ii:下記製法により得られた粘度平均分子量19,400のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の繰返し数が約37であるジヒドロキシアリール末端ポリジオルガノシロキサン430部を用い、攪拌時間を45分にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量8.2%、ポリジオルガノシロキサンドメインの平均サイズ13nm、粘度平均分子量19,400)
B−iii:下記製法により得られた粘度平均分子量19,200のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約100にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメインの平均サイズ25nm、粘度平均分子量19,200)
B−iv:下記製法により得られた粘度平均分子量19,600のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約150にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメインの平均サイズ38nm、粘度平均分子量19,600)
B−v:下記製法により得られた粘度平均分子量18,900のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約13にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメインの平均サイズ1.0nm、粘度平均分子量18,900)
B−vi:下記製法により得られた粘度平均分子量19,200のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を13にし、ポリジオルガノシロキサン化合物を2部にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量0.04%、ポリジオルガノシロキサンドメインの平均サイズ0.3nm、粘度平均分子量19,200)
B−vii:下記製法により得られた粘度平均分子量18,500のポリカーボネート−ポリジオルガノシロキサン共重合体パウダー
ポリカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数を約200にした以外はB−iの製造方法と同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合体パウダーを得た。(ポリジオルガノシロキサン成分含有量4.2%、ポリジオルガノシロキサンドメインの平均サイズ48nm、粘度平均分子量18,500)
(C成分)
C−i:ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト((株)ADEKA製:アデカスタブPEP−36)
C−ii:ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト((株)ADEKA製:アデカスタブPEP−24G)
(その他の成分)
D−i:レゾルノールビス[ジ(2,6−ジメチルフェニル)ホスフェート]を主成分とするリン酸エステル(大八化学工業(株)製:PX−200(商品名))
D−ii:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製:メガファックF−114P(商品名))
E−i: グリセリンモノステアレート(理研ビタミン(株)製:リケマールS−100A(商品名))
F−i:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製:Irganox1076(商品名))
G−i:UV吸収剤(ケミプロ化成(株)製:ケミソーブ79(商品名))
H−i:蛍光増白剤(ハッコールケミカル(株)製:ハッコールPSR(商品名))
A 平板状試験片(100mm×70mm×4mm)(下面に0.1mm間隔でシボあり)
B 光源
L 面輝度
(x,y) 光源側の側面から80mm離れた箇所の色度
(x,y) 光源側の側面から20mm離れた箇所の色度



Claims (8)

  1. ポリカーボネート(A成分)およびポリカーボネート−ポリジオルガノシロキサン共重合体(B成分)を含有し、導光性能を有する樹脂組成物であって、
    (i)B成分は、下記式(2)で表される単位と下記式(4)で表される単位を含有し、
    (ii)樹脂組成物の全重量を基準にして、式(4)に含まれる下記式(5)で表されるポリジオルガノシロキサンブロックの含有量が0.0050.08重量%であり、
    (iii)B成分は、ポリカーボネートのマトリックス中に平均サイズが0.5〜30nmのポリジオルガノシロキサンドメインが存在する、
    前記樹脂組成物。
    [式(2)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記式(3)で表される基からなる群より選ばれる少なくとも一つの基である。
    (式(3)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
    (式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは150以下の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
    (上記式(5)において、R21、R22、R23、R24、R25及びR26は、各々式(4)のR、R、R、R、R及びRと同じある。rはpと同じである。sはqと同じである。r+sはp+qと同じである。)
  2. 100重量部のA成分に対して、B成分0.01〜10.0重量部を含有する請求項1記載の樹脂組成物。
  3. 100重量部のA成分に対して、B成分0.01〜5.0重量部を含有する請求項1記載の樹脂組成物。
  4. A成分およびB成分の合計100重量部に対し、下記式(1)で表される安定剤(C成分)を0.01〜1.0重量部含有する請求項1記載の樹脂組成物。
    (式(1)中、A、Aは、それぞれ独立にアリール基またはアルキル基であり、同一であっても異なっていてもよい。)
  5. 樹脂組成物の全重量を基準にして、式(4)に含まれる式(5)で表されるポリジオルガノシロキサンブロックの含有量が0.01〜0.08重量%である請求項1記載の樹脂組成物。
  6. B成分は、ポリカーボネートのマトリックス中に平均サイズが0.5〜18nmのポリジオルガノシロキサンドメインが存在するポリカーボネート−ポリジオルガノシロキサン共重合体である請求項1記載の樹脂組成物。
  7. 請求項1〜6のいずれか一項に記載の樹脂組成物を成形した導光成形品。
  8. 請求項1〜6のいずれか一項に記載の樹脂組成物を成形した面光源体。
JP2013544366A 2011-11-17 2012-11-14 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体 Active JP5808425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544366A JP5808425B2 (ja) 2011-11-17 2012-11-14 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011251652 2011-11-17
JP2011251652 2011-11-17
JP2012076867 2012-03-29
JP2012076867 2012-03-29
PCT/JP2012/080113 WO2013073709A1 (ja) 2011-11-17 2012-11-14 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体
JP2013544366A JP5808425B2 (ja) 2011-11-17 2012-11-14 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体

Publications (2)

Publication Number Publication Date
JPWO2013073709A1 JPWO2013073709A1 (ja) 2015-04-02
JP5808425B2 true JP5808425B2 (ja) 2015-11-10

Family

ID=48429760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013544366A Active JP5808425B2 (ja) 2011-11-17 2012-11-14 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体

Country Status (8)

Country Link
US (1) US20140323623A1 (ja)
EP (1) EP2801589A4 (ja)
JP (1) JP5808425B2 (ja)
KR (1) KR20140097171A (ja)
CN (1) CN103958610A (ja)
MX (1) MX2014005748A (ja)
TW (1) TWI553056B (ja)
WO (1) WO2013073709A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204094B (zh) * 2012-03-21 2016-03-02 帝人株式会社 光扩散性树脂组合物
CN104334641A (zh) * 2012-06-07 2015-02-04 帝人株式会社 具有导光性能的树脂组合物以及由其构成的导光板和面光源体
KR101779188B1 (ko) 2014-09-05 2017-09-15 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
CN107109043B (zh) * 2014-12-02 2019-06-11 帝人株式会社 聚碳酸酯树脂组合物及由其形成的成型品
KR101685665B1 (ko) 2014-12-04 2016-12-12 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
KR20160067714A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 물품
JP6408370B2 (ja) * 2014-12-16 2018-10-17 三菱ケミカル株式会社 ポリカーボネート樹脂組成物
WO2019124556A1 (ja) * 2017-12-21 2019-06-27 帝人株式会社 ポリカーボネート-ポリジオルガノシロキサン共重合体、その樹脂組成物、およびその製造方法
US20200407498A1 (en) * 2018-03-02 2020-12-31 Teijin Limited Polycarbonate having electro-optic effect, method for producing same, and light control element which uses said polycarbonate
JP6629473B1 (ja) * 2019-02-27 2020-01-15 住化ポリカーボネート株式会社 芳香族ポリカーボネート樹脂組成物および光学用成形品
JP7214614B2 (ja) * 2019-12-04 2023-01-30 住化ポリカーボネート株式会社 芳香族ポリカーボネート樹脂組成物および光学用成形品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790292B2 (en) * 1999-05-18 2010-09-07 Sabic Innovative Plastics Ip B.V. Polysiloxane copolymers, thermoplastic composition, and articles formed therefrom
JP4446668B2 (ja) * 2003-02-19 2010-04-07 三菱エンジニアリングプラスチックス株式会社 導光板用芳香族ポリカーボネート樹脂組成物、導光板および面光源体
JP2006523243A (ja) * 2003-02-21 2006-10-12 ゼネラル・エレクトリック・カンパニイ 半透明熱可塑性樹脂組成物、その製造方法及び成形品
JP4620657B2 (ja) * 2003-02-21 2011-01-26 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ 透明耐熱性ポリカーボネート−ポリシロキサン共重合体、そのポリカーボネートとの透明ブレンド及び製造方法
US6969745B1 (en) * 2004-06-30 2005-11-29 General Electric Company Thermoplastic compositions
US7638091B2 (en) * 2004-07-02 2009-12-29 Sabic Innovative Plastics Ip B. V. Methods of sterilizing polycarbonate articles and methods of manufacture
US7718733B2 (en) * 2004-12-20 2010-05-18 Sabic Innovative Plastics Ip B.V. Optically clear polycarbonate polyester compositions
US7321014B2 (en) * 2004-12-29 2008-01-22 General Electric Company Transparent compositions, methods for the preparation thereof, and articles derived therefrom
WO2007077874A1 (ja) * 2006-01-06 2007-07-12 Mitsubishi Engineering-Plastics Corporation 導光板用芳香族ポリカーボネート樹脂組成物および導光板
JP5266639B2 (ja) * 2006-01-06 2013-08-21 三菱エンジニアリングプラスチックス株式会社 導光板
DE112007001050T5 (de) * 2006-05-01 2009-04-02 Idemitsu Kosan Co., Ltd. Polycarbonatharz-Zusammensetzung, optischer Formkörper unter Verwendung derselben und Beleuchtungseinheit
JP2008003254A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 光線反射用多層シート、これを用いた反射器、照明装置及び液晶表示装置
JP2009120707A (ja) * 2007-11-14 2009-06-04 Teijin Chem Ltd ポリカーボネート樹脂組成物
WO2011013846A1 (ja) * 2009-07-29 2011-02-03 帝人化成株式会社 ポリカーボネート−ポリジオルガノシロキサン共重合体
JP5684470B2 (ja) * 2009-11-11 2015-03-11 帝人株式会社 熱可塑性樹脂組成物

Also Published As

Publication number Publication date
TW201333105A (zh) 2013-08-16
TWI553056B (zh) 2016-10-11
US20140323623A1 (en) 2014-10-30
EP2801589A1 (en) 2014-11-12
JPWO2013073709A1 (ja) 2015-04-02
MX2014005748A (es) 2014-06-05
EP2801589A4 (en) 2015-01-14
CN103958610A (zh) 2014-07-30
WO2013073709A1 (ja) 2013-05-23
KR20140097171A (ko) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5808425B2 (ja) 導光性能を有する樹脂組成物、それからなる導光成形品および面光源体
JP5847292B2 (ja) 光拡散性樹脂組成物
JP5571279B2 (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP6343680B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2006249288A (ja) 光拡散性芳香族ポリカーボネート樹脂組成物
EP2497800A1 (en) Extrusion-molded article comprising aromatic polycarbonate resin composition
JP5809358B2 (ja) 導光性能を有する樹脂組成物、並びにそれからなる導光板および面光源体
JP6426372B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP5947117B2 (ja) 蛍光発光性樹脂組成物
JP6042593B2 (ja) 難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品
JP2011116839A (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP6895778B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2010168463A (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP2013221046A (ja) 導光性能を有する樹脂組成物、並びにそれからなる導光板および面光源体
JP2016108389A (ja) 光拡散性ポリカーボネート樹脂組成物
JP2010280846A (ja) 難燃光拡散性ポリカーボネート樹脂組成物
JP2015218325A (ja) 光拡散性樹脂組成物
JP5654224B2 (ja) 光拡散性芳香族ポリカーボネート樹脂組成物及びそれからなる成形品
JP2024161494A (ja) 面光源体
JP2022154124A (ja) ポリカーボネート樹脂組成物およびその成形品
TW202202571A (zh) 聚碳酸酯樹脂組成物及其成形品
JP2018044062A (ja) ポリカーボネート樹脂組成物並びにそれからなる導光体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150908

R150 Certificate of patent or registration of utility model

Ref document number: 5808425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150